1 | /* |
2 | ** $Id: lptree.c,v 1.22 2016/09/13 18:10:22 roberto Exp $ |
3 | ** Copyright 2013, Lua.org & PUC-Rio (see 'lpeg.html' for license) |
4 | */ |
5 | |
6 | #include <ctype.h> |
7 | #include <limits.h> |
8 | #include <string.h> |
9 | |
10 | |
11 | #include "lua.h" |
12 | #include "lauxlib.h" |
13 | |
14 | #include "lptypes.h" |
15 | #include "lpcap.h" |
16 | #include "lpcode.h" |
17 | #include "lpprint.h" |
18 | #include "lptree.h" |
19 | |
20 | |
21 | /* number of siblings for each tree */ |
22 | const byte numsiblings[] = { |
23 | 0, 0, 0, /* char, set, any */ |
24 | 0, 0, /* true, false */ |
25 | 1, /* rep */ |
26 | 2, 2, /* seq, choice */ |
27 | 1, 1, /* not, and */ |
28 | 0, 0, 2, 1, /* call, opencall, rule, grammar */ |
29 | 1, /* behind */ |
30 | 1, 1 /* capture, runtime capture */ |
31 | }; |
32 | |
33 | |
34 | static TTree *newgrammar (lua_State *L, int arg); |
35 | |
36 | |
37 | /* |
38 | ** returns a reasonable name for value at index 'idx' on the stack |
39 | */ |
40 | static const char *val2str (lua_State *L, int idx) { |
41 | const char *k = lua_tostring(L, idx); |
42 | if (k != NULL) |
43 | return lua_pushfstring(L, "%s" , k); |
44 | else |
45 | return lua_pushfstring(L, "(a %s)" , luaL_typename(L, idx)); |
46 | } |
47 | |
48 | |
49 | /* |
50 | ** Fix a TOpenCall into a TCall node, using table 'postable' to |
51 | ** translate a key to its rule address in the tree. Raises an |
52 | ** error if key does not exist. |
53 | */ |
54 | static void fixonecall (lua_State *L, int postable, TTree *g, TTree *t) { |
55 | int n; |
56 | lua_rawgeti(L, -1, t->key); /* get rule's name */ |
57 | lua_gettable(L, postable); /* query name in position table */ |
58 | n = lua_tonumber(L, -1); /* get (absolute) position */ |
59 | lua_pop(L, 1); /* remove position */ |
60 | if (n == 0) { /* no position? */ |
61 | lua_rawgeti(L, -1, t->key); /* get rule's name again */ |
62 | luaL_error(L, "rule '%s' undefined in given grammar" , val2str(L, -1)); |
63 | } |
64 | t->tag = TCall; |
65 | t->u.ps = n - (t - g); /* position relative to node */ |
66 | assert(sib2(t)->tag == TRule); |
67 | sib2(t)->key = t->key; /* fix rule's key */ |
68 | } |
69 | |
70 | |
71 | /* |
72 | ** Transform left associative constructions into right |
73 | ** associative ones, for sequence and choice; that is: |
74 | ** (t11 + t12) + t2 => t11 + (t12 + t2) |
75 | ** (t11 * t12) * t2 => t11 * (t12 * t2) |
76 | ** (that is, Op (Op t11 t12) t2 => Op t11 (Op t12 t2)) |
77 | */ |
78 | static void correctassociativity (TTree *tree) { |
79 | TTree *t1 = sib1(tree); |
80 | assert(tree->tag == TChoice || tree->tag == TSeq); |
81 | while (t1->tag == tree->tag) { |
82 | int n1size = tree->u.ps - 1; /* t1 == Op t11 t12 */ |
83 | int n11size = t1->u.ps - 1; |
84 | int n12size = n1size - n11size - 1; |
85 | memmove(sib1(tree), sib1(t1), n11size * sizeof(TTree)); /* move t11 */ |
86 | tree->u.ps = n11size + 1; |
87 | sib2(tree)->tag = tree->tag; |
88 | sib2(tree)->u.ps = n12size + 1; |
89 | } |
90 | } |
91 | |
92 | |
93 | /* |
94 | ** Make final adjustments in a tree. Fix open calls in tree 't', |
95 | ** making them refer to their respective rules or raising appropriate |
96 | ** errors (if not inside a grammar). Correct associativity of associative |
97 | ** constructions (making them right associative). Assume that tree's |
98 | ** ktable is at the top of the stack (for error messages). |
99 | */ |
100 | static void finalfix (lua_State *L, int postable, TTree *g, TTree *t) { |
101 | tailcall: |
102 | switch (t->tag) { |
103 | case TGrammar: /* subgrammars were already fixed */ |
104 | return; |
105 | case TOpenCall: { |
106 | if (g != NULL) /* inside a grammar? */ |
107 | fixonecall(L, postable, g, t); |
108 | else { /* open call outside grammar */ |
109 | lua_rawgeti(L, -1, t->key); |
110 | luaL_error(L, "rule '%s' used outside a grammar" , val2str(L, -1)); |
111 | } |
112 | break; |
113 | } |
114 | case TSeq: case TChoice: |
115 | correctassociativity(t); |
116 | break; |
117 | } |
118 | switch (numsiblings[t->tag]) { |
119 | case 1: /* finalfix(L, postable, g, sib1(t)); */ |
120 | t = sib1(t); goto tailcall; |
121 | case 2: |
122 | finalfix(L, postable, g, sib1(t)); |
123 | t = sib2(t); goto tailcall; /* finalfix(L, postable, g, sib2(t)); */ |
124 | default: assert(numsiblings[t->tag] == 0); break; |
125 | } |
126 | } |
127 | |
128 | |
129 | |
130 | /* |
131 | ** {=================================================================== |
132 | ** KTable manipulation |
133 | ** |
134 | ** - The ktable of a pattern 'p' can be shared by other patterns that |
135 | ** contain 'p' and no other constants. Because of this sharing, we |
136 | ** should not add elements to a 'ktable' unless it was freshly created |
137 | ** for the new pattern. |
138 | ** |
139 | ** - The maximum index in a ktable is USHRT_MAX, because trees and |
140 | ** patterns use unsigned shorts to store those indices. |
141 | ** ==================================================================== |
142 | */ |
143 | |
144 | /* |
145 | ** Create a new 'ktable' to the pattern at the top of the stack. |
146 | */ |
147 | static void newktable (lua_State *L, int n) { |
148 | lua_createtable(L, n, 0); /* create a fresh table */ |
149 | lua_setuservalue(L, -2); /* set it as 'ktable' for pattern */ |
150 | } |
151 | |
152 | |
153 | /* |
154 | ** Add element 'idx' to 'ktable' of pattern at the top of the stack; |
155 | ** Return index of new element. |
156 | ** If new element is nil, does not add it to table (as it would be |
157 | ** useless) and returns 0, as ktable[0] is always nil. |
158 | */ |
159 | static int addtoktable (lua_State *L, int idx) { |
160 | if (lua_isnil(L, idx)) /* nil value? */ |
161 | return 0; |
162 | else { |
163 | int n; |
164 | lua_getuservalue(L, -1); /* get ktable from pattern */ |
165 | n = lua_rawlen(L, -1); |
166 | if (n >= USHRT_MAX) |
167 | luaL_error(L, "too many Lua values in pattern" ); |
168 | lua_pushvalue(L, idx); /* element to be added */ |
169 | lua_rawseti(L, -2, ++n); |
170 | lua_pop(L, 1); /* remove 'ktable' */ |
171 | return n; |
172 | } |
173 | } |
174 | |
175 | |
176 | /* |
177 | ** Return the number of elements in the ktable at 'idx'. |
178 | ** In Lua 5.2/5.3, default "environment" for patterns is nil, not |
179 | ** a table. Treat it as an empty table. In Lua 5.1, assumes that |
180 | ** the environment has no numeric indices (len == 0) |
181 | */ |
182 | static int ktablelen (lua_State *L, int idx) { |
183 | if (!lua_istable(L, idx)) return 0; |
184 | else return lua_rawlen(L, idx); |
185 | } |
186 | |
187 | |
188 | /* |
189 | ** Concatentate the contents of table 'idx1' into table 'idx2'. |
190 | ** (Assume that both indices are negative.) |
191 | ** Return the original length of table 'idx2' (or 0, if no |
192 | ** element was added, as there is no need to correct any index). |
193 | */ |
194 | static int concattable (lua_State *L, int idx1, int idx2) { |
195 | int i; |
196 | int n1 = ktablelen(L, idx1); |
197 | int n2 = ktablelen(L, idx2); |
198 | if (n1 + n2 > USHRT_MAX) |
199 | luaL_error(L, "too many Lua values in pattern" ); |
200 | if (n1 == 0) return 0; /* nothing to correct */ |
201 | for (i = 1; i <= n1; i++) { |
202 | lua_rawgeti(L, idx1, i); |
203 | lua_rawseti(L, idx2 - 1, n2 + i); /* correct 'idx2' */ |
204 | } |
205 | return n2; |
206 | } |
207 | |
208 | |
209 | /* |
210 | ** When joining 'ktables', constants from one of the subpatterns must |
211 | ** be renumbered; 'correctkeys' corrects their indices (adding 'n' |
212 | ** to each of them) |
213 | */ |
214 | static void correctkeys (TTree *tree, int n) { |
215 | if (n == 0) return; /* no correction? */ |
216 | tailcall: |
217 | switch (tree->tag) { |
218 | case TOpenCall: case TCall: case TRunTime: case TRule: { |
219 | if (tree->key > 0) |
220 | tree->key += n; |
221 | break; |
222 | } |
223 | case TCapture: { |
224 | if (tree->key > 0 && tree->cap != Carg && tree->cap != Cnum) |
225 | tree->key += n; |
226 | break; |
227 | } |
228 | default: break; |
229 | } |
230 | switch (numsiblings[tree->tag]) { |
231 | case 1: /* correctkeys(sib1(tree), n); */ |
232 | tree = sib1(tree); goto tailcall; |
233 | case 2: |
234 | correctkeys(sib1(tree), n); |
235 | tree = sib2(tree); goto tailcall; /* correctkeys(sib2(tree), n); */ |
236 | default: assert(numsiblings[tree->tag] == 0); break; |
237 | } |
238 | } |
239 | |
240 | |
241 | /* |
242 | ** Join the ktables from p1 and p2 the ktable for the new pattern at the |
243 | ** top of the stack, reusing them when possible. |
244 | */ |
245 | static void joinktables (lua_State *L, int p1, TTree *t2, int p2) { |
246 | int n1, n2; |
247 | lua_getuservalue(L, p1); /* get ktables */ |
248 | lua_getuservalue(L, p2); |
249 | n1 = ktablelen(L, -2); |
250 | n2 = ktablelen(L, -1); |
251 | if (n1 == 0 && n2 == 0) /* are both tables empty? */ |
252 | lua_pop(L, 2); /* nothing to be done; pop tables */ |
253 | else if (n2 == 0 || lp_equal(L, -2, -1)) { /* 2nd table empty or equal? */ |
254 | lua_pop(L, 1); /* pop 2nd table */ |
255 | lua_setuservalue(L, -2); /* set 1st ktable into new pattern */ |
256 | } |
257 | else if (n1 == 0) { /* first table is empty? */ |
258 | lua_setuservalue(L, -3); /* set 2nd table into new pattern */ |
259 | lua_pop(L, 1); /* pop 1st table */ |
260 | } |
261 | else { |
262 | lua_createtable(L, n1 + n2, 0); /* create ktable for new pattern */ |
263 | /* stack: new p; ktable p1; ktable p2; new ktable */ |
264 | concattable(L, -3, -1); /* from p1 into new ktable */ |
265 | concattable(L, -2, -1); /* from p2 into new ktable */ |
266 | lua_setuservalue(L, -4); /* new ktable becomes 'p' environment */ |
267 | lua_pop(L, 2); /* pop other ktables */ |
268 | correctkeys(t2, n1); /* correction for indices from p2 */ |
269 | } |
270 | } |
271 | |
272 | |
273 | /* |
274 | ** copy 'ktable' of element 'idx' to new tree (on top of stack) |
275 | */ |
276 | static void copyktable (lua_State *L, int idx) { |
277 | lua_getuservalue(L, idx); |
278 | lua_setuservalue(L, -2); |
279 | } |
280 | |
281 | |
282 | /* |
283 | ** merge 'ktable' from 'stree' at stack index 'idx' into 'ktable' |
284 | ** from tree at the top of the stack, and correct corresponding |
285 | ** tree. |
286 | */ |
287 | static void mergektable (lua_State *L, int idx, TTree *stree) { |
288 | int n; |
289 | lua_getuservalue(L, -1); /* get ktables */ |
290 | lua_getuservalue(L, idx); |
291 | n = concattable(L, -1, -2); |
292 | lua_pop(L, 2); /* remove both ktables */ |
293 | correctkeys(stree, n); |
294 | } |
295 | |
296 | |
297 | /* |
298 | ** Create a new 'ktable' to the pattern at the top of the stack, adding |
299 | ** all elements from pattern 'p' (if not 0) plus element 'idx' to it. |
300 | ** Return index of new element. |
301 | */ |
302 | static int addtonewktable (lua_State *L, int p, int idx) { |
303 | newktable(L, 1); |
304 | if (p) |
305 | mergektable(L, p, NULL); |
306 | return addtoktable(L, idx); |
307 | } |
308 | |
309 | /* }====================================================== */ |
310 | |
311 | |
312 | /* |
313 | ** {====================================================== |
314 | ** Tree generation |
315 | ** ======================================================= |
316 | */ |
317 | |
318 | /* |
319 | ** In 5.2, could use 'luaL_testudata'... |
320 | */ |
321 | static int testpattern (lua_State *L, int idx) { |
322 | if (lua_touserdata(L, idx)) { /* value is a userdata? */ |
323 | if (lua_getmetatable(L, idx)) { /* does it have a metatable? */ |
324 | luaL_getmetatable(L, PATTERN_T); |
325 | if (lua_rawequal(L, -1, -2)) { /* does it have the correct mt? */ |
326 | lua_pop(L, 2); /* remove both metatables */ |
327 | return 1; |
328 | } |
329 | } |
330 | } |
331 | return 0; |
332 | } |
333 | |
334 | |
335 | static Pattern *getpattern (lua_State *L, int idx) { |
336 | return (Pattern *)luaL_checkudata(L, idx, PATTERN_T); |
337 | } |
338 | |
339 | |
340 | static int getsize (lua_State *L, int idx) { |
341 | return (lua_rawlen(L, idx) - sizeof(Pattern)) / sizeof(TTree) + 1; |
342 | } |
343 | |
344 | |
345 | static TTree *gettree (lua_State *L, int idx, int *len) { |
346 | Pattern *p = getpattern(L, idx); |
347 | if (len) |
348 | *len = getsize(L, idx); |
349 | return p->tree; |
350 | } |
351 | |
352 | |
353 | /* |
354 | ** create a pattern. Set its uservalue (the 'ktable') equal to its |
355 | ** metatable. (It could be any empty sequence; the metatable is at |
356 | ** hand here, so we use it.) |
357 | */ |
358 | static TTree *newtree (lua_State *L, int len) { |
359 | size_t size = (len - 1) * sizeof(TTree) + sizeof(Pattern); |
360 | Pattern *p = (Pattern *)lua_newuserdata(L, size); |
361 | luaL_getmetatable(L, PATTERN_T); |
362 | lua_pushvalue(L, -1); |
363 | lua_setuservalue(L, -3); |
364 | lua_setmetatable(L, -2); |
365 | p->code = NULL; p->codesize = 0; |
366 | return p->tree; |
367 | } |
368 | |
369 | |
370 | static TTree *newleaf (lua_State *L, int tag) { |
371 | TTree *tree = newtree(L, 1); |
372 | tree->tag = tag; |
373 | return tree; |
374 | } |
375 | |
376 | |
377 | static TTree *newcharset (lua_State *L) { |
378 | TTree *tree = newtree(L, bytes2slots(CHARSETSIZE) + 1); |
379 | tree->tag = TSet; |
380 | loopset(i, treebuffer(tree)[i] = 0); |
381 | return tree; |
382 | } |
383 | |
384 | |
385 | /* |
386 | ** add to tree a sequence where first sibling is 'sib' (with size |
387 | ** 'sibsize'); returns position for second sibling |
388 | */ |
389 | static TTree *seqaux (TTree *tree, TTree *sib, int sibsize) { |
390 | tree->tag = TSeq; tree->u.ps = sibsize + 1; |
391 | memcpy(sib1(tree), sib, sibsize * sizeof(TTree)); |
392 | return sib2(tree); |
393 | } |
394 | |
395 | |
396 | /* |
397 | ** Build a sequence of 'n' nodes, each with tag 'tag' and 'u.n' got |
398 | ** from the array 's' (or 0 if array is NULL). (TSeq is binary, so it |
399 | ** must build a sequence of sequence of sequence...) |
400 | */ |
401 | static void fillseq (TTree *tree, int tag, int n, const char *s) { |
402 | int i; |
403 | for (i = 0; i < n - 1; i++) { /* initial n-1 copies of Seq tag; Seq ... */ |
404 | tree->tag = TSeq; tree->u.ps = 2; |
405 | sib1(tree)->tag = tag; |
406 | sib1(tree)->u.n = s ? (byte)s[i] : 0; |
407 | tree = sib2(tree); |
408 | } |
409 | tree->tag = tag; /* last one does not need TSeq */ |
410 | tree->u.n = s ? (byte)s[i] : 0; |
411 | } |
412 | |
413 | |
414 | /* |
415 | ** Numbers as patterns: |
416 | ** 0 == true (always match); n == TAny repeated 'n' times; |
417 | ** -n == not (TAny repeated 'n' times) |
418 | */ |
419 | static TTree *numtree (lua_State *L, int n) { |
420 | if (n == 0) |
421 | return newleaf(L, TTrue); |
422 | else { |
423 | TTree *tree, *nd; |
424 | if (n > 0) |
425 | tree = nd = newtree(L, 2 * n - 1); |
426 | else { /* negative: code it as !(-n) */ |
427 | n = -n; |
428 | tree = newtree(L, 2 * n); |
429 | tree->tag = TNot; |
430 | nd = sib1(tree); |
431 | } |
432 | fillseq(nd, TAny, n, NULL); /* sequence of 'n' any's */ |
433 | return tree; |
434 | } |
435 | } |
436 | |
437 | |
438 | /* |
439 | ** Convert value at index 'idx' to a pattern |
440 | */ |
441 | static TTree *getpatt (lua_State *L, int idx, int *len) { |
442 | TTree *tree; |
443 | switch (lua_type(L, idx)) { |
444 | case LUA_TSTRING: { |
445 | size_t slen; |
446 | const char *s = lua_tolstring(L, idx, &slen); /* get string */ |
447 | if (slen == 0) /* empty? */ |
448 | tree = newleaf(L, TTrue); /* always match */ |
449 | else { |
450 | tree = newtree(L, 2 * (slen - 1) + 1); |
451 | fillseq(tree, TChar, slen, s); /* sequence of 'slen' chars */ |
452 | } |
453 | break; |
454 | } |
455 | case LUA_TNUMBER: { |
456 | int n = lua_tointeger(L, idx); |
457 | tree = numtree(L, n); |
458 | break; |
459 | } |
460 | case LUA_TBOOLEAN: { |
461 | tree = (lua_toboolean(L, idx) ? newleaf(L, TTrue) : newleaf(L, TFalse)); |
462 | break; |
463 | } |
464 | case LUA_TTABLE: { |
465 | tree = newgrammar(L, idx); |
466 | break; |
467 | } |
468 | case LUA_TFUNCTION: { |
469 | tree = newtree(L, 2); |
470 | tree->tag = TRunTime; |
471 | tree->key = addtonewktable(L, 0, idx); |
472 | sib1(tree)->tag = TTrue; |
473 | break; |
474 | } |
475 | default: { |
476 | return gettree(L, idx, len); |
477 | } |
478 | } |
479 | lua_replace(L, idx); /* put new tree into 'idx' slot */ |
480 | if (len) |
481 | *len = getsize(L, idx); |
482 | return tree; |
483 | } |
484 | |
485 | |
486 | /* |
487 | ** create a new tree, whith a new root and one sibling. |
488 | ** Sibling must be on the Lua stack, at index 1. |
489 | */ |
490 | static TTree *newroot1sib (lua_State *L, int tag) { |
491 | int s1; |
492 | TTree *tree1 = getpatt(L, 1, &s1); |
493 | TTree *tree = newtree(L, 1 + s1); /* create new tree */ |
494 | tree->tag = tag; |
495 | memcpy(sib1(tree), tree1, s1 * sizeof(TTree)); |
496 | copyktable(L, 1); |
497 | return tree; |
498 | } |
499 | |
500 | |
501 | /* |
502 | ** create a new tree, whith a new root and 2 siblings. |
503 | ** Siblings must be on the Lua stack, first one at index 1. |
504 | */ |
505 | static TTree *newroot2sib (lua_State *L, int tag) { |
506 | int s1, s2; |
507 | TTree *tree1 = getpatt(L, 1, &s1); |
508 | TTree *tree2 = getpatt(L, 2, &s2); |
509 | TTree *tree = newtree(L, 1 + s1 + s2); /* create new tree */ |
510 | tree->tag = tag; |
511 | tree->u.ps = 1 + s1; |
512 | memcpy(sib1(tree), tree1, s1 * sizeof(TTree)); |
513 | memcpy(sib2(tree), tree2, s2 * sizeof(TTree)); |
514 | joinktables(L, 1, sib2(tree), 2); |
515 | return tree; |
516 | } |
517 | |
518 | |
519 | static int lp_P (lua_State *L) { |
520 | luaL_checkany(L, 1); |
521 | getpatt(L, 1, NULL); |
522 | lua_settop(L, 1); |
523 | return 1; |
524 | } |
525 | |
526 | |
527 | /* |
528 | ** sequence operator; optimizations: |
529 | ** false x => false, x true => x, true x => x |
530 | ** (cannot do x . false => false because x may have runtime captures) |
531 | */ |
532 | static int lp_seq (lua_State *L) { |
533 | TTree *tree1 = getpatt(L, 1, NULL); |
534 | TTree *tree2 = getpatt(L, 2, NULL); |
535 | if (tree1->tag == TFalse || tree2->tag == TTrue) |
536 | lua_pushvalue(L, 1); /* false . x == false, x . true = x */ |
537 | else if (tree1->tag == TTrue) |
538 | lua_pushvalue(L, 2); /* true . x = x */ |
539 | else |
540 | newroot2sib(L, TSeq); |
541 | return 1; |
542 | } |
543 | |
544 | |
545 | /* |
546 | ** choice operator; optimizations: |
547 | ** charset / charset => charset |
548 | ** true / x => true, x / false => x, false / x => x |
549 | ** (x / true is not equivalent to true) |
550 | */ |
551 | static int lp_choice (lua_State *L) { |
552 | Charset st1, st2; |
553 | TTree *t1 = getpatt(L, 1, NULL); |
554 | TTree *t2 = getpatt(L, 2, NULL); |
555 | if (tocharset(t1, &st1) && tocharset(t2, &st2)) { |
556 | TTree *t = newcharset(L); |
557 | loopset(i, treebuffer(t)[i] = st1.cs[i] | st2.cs[i]); |
558 | } |
559 | else if (nofail(t1) || t2->tag == TFalse) |
560 | lua_pushvalue(L, 1); /* true / x => true, x / false => x */ |
561 | else if (t1->tag == TFalse) |
562 | lua_pushvalue(L, 2); /* false / x => x */ |
563 | else |
564 | newroot2sib(L, TChoice); |
565 | return 1; |
566 | } |
567 | |
568 | |
569 | /* |
570 | ** p^n |
571 | */ |
572 | static int lp_star (lua_State *L) { |
573 | int size1; |
574 | int n = (int)luaL_checkinteger(L, 2); |
575 | TTree *tree1 = getpatt(L, 1, &size1); |
576 | if (n >= 0) { /* seq tree1 (seq tree1 ... (seq tree1 (rep tree1))) */ |
577 | TTree *tree = newtree(L, (n + 1) * (size1 + 1)); |
578 | if (nullable(tree1)) |
579 | luaL_error(L, "loop body may accept empty string" ); |
580 | while (n--) /* repeat 'n' times */ |
581 | tree = seqaux(tree, tree1, size1); |
582 | tree->tag = TRep; |
583 | memcpy(sib1(tree), tree1, size1 * sizeof(TTree)); |
584 | } |
585 | else { /* choice (seq tree1 ... choice tree1 true ...) true */ |
586 | TTree *tree; |
587 | n = -n; |
588 | /* size = (choice + seq + tree1 + true) * n, but the last has no seq */ |
589 | tree = newtree(L, n * (size1 + 3) - 1); |
590 | for (; n > 1; n--) { /* repeat (n - 1) times */ |
591 | tree->tag = TChoice; tree->u.ps = n * (size1 + 3) - 2; |
592 | sib2(tree)->tag = TTrue; |
593 | tree = sib1(tree); |
594 | tree = seqaux(tree, tree1, size1); |
595 | } |
596 | tree->tag = TChoice; tree->u.ps = size1 + 1; |
597 | sib2(tree)->tag = TTrue; |
598 | memcpy(sib1(tree), tree1, size1 * sizeof(TTree)); |
599 | } |
600 | copyktable(L, 1); |
601 | return 1; |
602 | } |
603 | |
604 | |
605 | /* |
606 | ** #p == &p |
607 | */ |
608 | static int lp_and (lua_State *L) { |
609 | newroot1sib(L, TAnd); |
610 | return 1; |
611 | } |
612 | |
613 | |
614 | /* |
615 | ** -p == !p |
616 | */ |
617 | static int lp_not (lua_State *L) { |
618 | newroot1sib(L, TNot); |
619 | return 1; |
620 | } |
621 | |
622 | |
623 | /* |
624 | ** [t1 - t2] == Seq (Not t2) t1 |
625 | ** If t1 and t2 are charsets, make their difference. |
626 | */ |
627 | static int lp_sub (lua_State *L) { |
628 | Charset st1, st2; |
629 | int s1, s2; |
630 | TTree *t1 = getpatt(L, 1, &s1); |
631 | TTree *t2 = getpatt(L, 2, &s2); |
632 | if (tocharset(t1, &st1) && tocharset(t2, &st2)) { |
633 | TTree *t = newcharset(L); |
634 | loopset(i, treebuffer(t)[i] = st1.cs[i] & ~st2.cs[i]); |
635 | } |
636 | else { |
637 | TTree *tree = newtree(L, 2 + s1 + s2); |
638 | tree->tag = TSeq; /* sequence of... */ |
639 | tree->u.ps = 2 + s2; |
640 | sib1(tree)->tag = TNot; /* ...not... */ |
641 | memcpy(sib1(sib1(tree)), t2, s2 * sizeof(TTree)); /* ...t2 */ |
642 | memcpy(sib2(tree), t1, s1 * sizeof(TTree)); /* ... and t1 */ |
643 | joinktables(L, 1, sib1(tree), 2); |
644 | } |
645 | return 1; |
646 | } |
647 | |
648 | |
649 | static int lp_set (lua_State *L) { |
650 | size_t l; |
651 | const char *s = luaL_checklstring(L, 1, &l); |
652 | TTree *tree = newcharset(L); |
653 | while (l--) { |
654 | setchar(treebuffer(tree), (byte)(*s)); |
655 | s++; |
656 | } |
657 | return 1; |
658 | } |
659 | |
660 | |
661 | static int lp_range (lua_State *L) { |
662 | int arg; |
663 | int top = lua_gettop(L); |
664 | TTree *tree = newcharset(L); |
665 | for (arg = 1; arg <= top; arg++) { |
666 | int c; |
667 | size_t l; |
668 | const char *r = luaL_checklstring(L, arg, &l); |
669 | luaL_argcheck(L, l == 2, arg, "range must have two characters" ); |
670 | for (c = (byte)r[0]; c <= (byte)r[1]; c++) |
671 | setchar(treebuffer(tree), c); |
672 | } |
673 | return 1; |
674 | } |
675 | |
676 | |
677 | /* |
678 | ** Look-behind predicate |
679 | */ |
680 | static int lp_behind (lua_State *L) { |
681 | TTree *tree; |
682 | TTree *tree1 = getpatt(L, 1, NULL); |
683 | int n = fixedlen(tree1); |
684 | luaL_argcheck(L, n >= 0, 1, "pattern may not have fixed length" ); |
685 | luaL_argcheck(L, !hascaptures(tree1), 1, "pattern have captures" ); |
686 | luaL_argcheck(L, n <= MAXBEHIND, 1, "pattern too long to look behind" ); |
687 | tree = newroot1sib(L, TBehind); |
688 | tree->u.n = n; |
689 | return 1; |
690 | } |
691 | |
692 | |
693 | /* |
694 | ** Create a non-terminal |
695 | */ |
696 | static int lp_V (lua_State *L) { |
697 | TTree *tree = newleaf(L, TOpenCall); |
698 | luaL_argcheck(L, !lua_isnoneornil(L, 1), 1, "non-nil value expected" ); |
699 | tree->key = addtonewktable(L, 0, 1); |
700 | return 1; |
701 | } |
702 | |
703 | |
704 | /* |
705 | ** Create a tree for a non-empty capture, with a body and |
706 | ** optionally with an associated Lua value (at index 'labelidx' in the |
707 | ** stack) |
708 | */ |
709 | static int capture_aux (lua_State *L, int cap, int labelidx) { |
710 | TTree *tree = newroot1sib(L, TCapture); |
711 | tree->cap = cap; |
712 | tree->key = (labelidx == 0) ? 0 : addtonewktable(L, 1, labelidx); |
713 | return 1; |
714 | } |
715 | |
716 | |
717 | /* |
718 | ** Fill a tree with an empty capture, using an empty (TTrue) sibling. |
719 | */ |
720 | static TTree *auxemptycap (TTree *tree, int cap) { |
721 | tree->tag = TCapture; |
722 | tree->cap = cap; |
723 | sib1(tree)->tag = TTrue; |
724 | return tree; |
725 | } |
726 | |
727 | |
728 | /* |
729 | ** Create a tree for an empty capture |
730 | */ |
731 | static TTree *newemptycap (lua_State *L, int cap) { |
732 | return auxemptycap(newtree(L, 2), cap); |
733 | } |
734 | |
735 | |
736 | /* |
737 | ** Create a tree for an empty capture with an associated Lua value |
738 | */ |
739 | static TTree *newemptycapkey (lua_State *L, int cap, int idx) { |
740 | TTree *tree = auxemptycap(newtree(L, 2), cap); |
741 | tree->key = addtonewktable(L, 0, idx); |
742 | return tree; |
743 | } |
744 | |
745 | |
746 | /* |
747 | ** Captures with syntax p / v |
748 | ** (function capture, query capture, string capture, or number capture) |
749 | */ |
750 | static int lp_divcapture (lua_State *L) { |
751 | switch (lua_type(L, 2)) { |
752 | case LUA_TFUNCTION: return capture_aux(L, Cfunction, 2); |
753 | case LUA_TTABLE: return capture_aux(L, Cquery, 2); |
754 | case LUA_TSTRING: return capture_aux(L, Cstring, 2); |
755 | case LUA_TNUMBER: { |
756 | int n = lua_tointeger(L, 2); |
757 | TTree *tree = newroot1sib(L, TCapture); |
758 | luaL_argcheck(L, 0 <= n && n <= SHRT_MAX, 1, "invalid number" ); |
759 | tree->cap = Cnum; |
760 | tree->key = n; |
761 | return 1; |
762 | } |
763 | default: return luaL_argerror(L, 2, "invalid replacement value" ); |
764 | } |
765 | } |
766 | |
767 | |
768 | static int lp_substcapture (lua_State *L) { |
769 | return capture_aux(L, Csubst, 0); |
770 | } |
771 | |
772 | |
773 | static int lp_tablecapture (lua_State *L) { |
774 | return capture_aux(L, Ctable, 0); |
775 | } |
776 | |
777 | |
778 | static int lp_groupcapture (lua_State *L) { |
779 | if (lua_isnoneornil(L, 2)) |
780 | return capture_aux(L, Cgroup, 0); |
781 | else |
782 | return capture_aux(L, Cgroup, 2); |
783 | } |
784 | |
785 | |
786 | static int lp_foldcapture (lua_State *L) { |
787 | luaL_checktype(L, 2, LUA_TFUNCTION); |
788 | return capture_aux(L, Cfold, 2); |
789 | } |
790 | |
791 | |
792 | static int lp_simplecapture (lua_State *L) { |
793 | return capture_aux(L, Csimple, 0); |
794 | } |
795 | |
796 | |
797 | static int lp_poscapture (lua_State *L) { |
798 | newemptycap(L, Cposition); |
799 | return 1; |
800 | } |
801 | |
802 | |
803 | static int lp_argcapture (lua_State *L) { |
804 | int n = (int)luaL_checkinteger(L, 1); |
805 | TTree *tree = newemptycap(L, Carg); |
806 | tree->key = n; |
807 | luaL_argcheck(L, 0 < n && n <= SHRT_MAX, 1, "invalid argument index" ); |
808 | return 1; |
809 | } |
810 | |
811 | |
812 | static int lp_backref (lua_State *L) { |
813 | luaL_checkany(L, 1); |
814 | newemptycapkey(L, Cbackref, 1); |
815 | return 1; |
816 | } |
817 | |
818 | |
819 | /* |
820 | ** Constant capture |
821 | */ |
822 | static int lp_constcapture (lua_State *L) { |
823 | int i; |
824 | int n = lua_gettop(L); /* number of values */ |
825 | if (n == 0) /* no values? */ |
826 | newleaf(L, TTrue); /* no capture */ |
827 | else if (n == 1) |
828 | newemptycapkey(L, Cconst, 1); /* single constant capture */ |
829 | else { /* create a group capture with all values */ |
830 | TTree *tree = newtree(L, 1 + 3 * (n - 1) + 2); |
831 | newktable(L, n); /* create a 'ktable' for new tree */ |
832 | tree->tag = TCapture; |
833 | tree->cap = Cgroup; |
834 | tree->key = 0; |
835 | tree = sib1(tree); |
836 | for (i = 1; i <= n - 1; i++) { |
837 | tree->tag = TSeq; |
838 | tree->u.ps = 3; /* skip TCapture and its sibling */ |
839 | auxemptycap(sib1(tree), Cconst); |
840 | sib1(tree)->key = addtoktable(L, i); |
841 | tree = sib2(tree); |
842 | } |
843 | auxemptycap(tree, Cconst); |
844 | tree->key = addtoktable(L, i); |
845 | } |
846 | return 1; |
847 | } |
848 | |
849 | |
850 | static int lp_matchtime (lua_State *L) { |
851 | TTree *tree; |
852 | luaL_checktype(L, 2, LUA_TFUNCTION); |
853 | tree = newroot1sib(L, TRunTime); |
854 | tree->key = addtonewktable(L, 1, 2); |
855 | return 1; |
856 | } |
857 | |
858 | /* }====================================================== */ |
859 | |
860 | |
861 | /* |
862 | ** {====================================================== |
863 | ** Grammar - Tree generation |
864 | ** ======================================================= |
865 | */ |
866 | |
867 | /* |
868 | ** push on the stack the index and the pattern for the |
869 | ** initial rule of grammar at index 'arg' in the stack; |
870 | ** also add that index into position table. |
871 | */ |
872 | static void getfirstrule (lua_State *L, int arg, int postab) { |
873 | lua_rawgeti(L, arg, 1); /* access first element */ |
874 | if (lua_isstring(L, -1)) { /* is it the name of initial rule? */ |
875 | lua_pushvalue(L, -1); /* duplicate it to use as key */ |
876 | lua_gettable(L, arg); /* get associated rule */ |
877 | } |
878 | else { |
879 | lua_pushinteger(L, 1); /* key for initial rule */ |
880 | lua_insert(L, -2); /* put it before rule */ |
881 | } |
882 | if (!testpattern(L, -1)) { /* initial rule not a pattern? */ |
883 | if (lua_isnil(L, -1)) |
884 | luaL_error(L, "grammar has no initial rule" ); |
885 | else |
886 | luaL_error(L, "initial rule '%s' is not a pattern" , lua_tostring(L, -2)); |
887 | } |
888 | lua_pushvalue(L, -2); /* push key */ |
889 | lua_pushinteger(L, 1); /* push rule position (after TGrammar) */ |
890 | lua_settable(L, postab); /* insert pair at position table */ |
891 | } |
892 | |
893 | /* |
894 | ** traverse grammar at index 'arg', pushing all its keys and patterns |
895 | ** into the stack. Create a new table (before all pairs key-pattern) to |
896 | ** collect all keys and their associated positions in the final tree |
897 | ** (the "position table"). |
898 | ** Return the number of rules and (in 'totalsize') the total size |
899 | ** for the new tree. |
900 | */ |
901 | static int collectrules (lua_State *L, int arg, int *totalsize) { |
902 | int n = 1; /* to count number of rules */ |
903 | int postab = lua_gettop(L) + 1; /* index of position table */ |
904 | int size; /* accumulator for total size */ |
905 | lua_newtable(L); /* create position table */ |
906 | getfirstrule(L, arg, postab); |
907 | size = 2 + getsize(L, postab + 2); /* TGrammar + TRule + rule */ |
908 | lua_pushnil(L); /* prepare to traverse grammar table */ |
909 | while (lua_next(L, arg) != 0) { |
910 | if (lua_tonumber(L, -2) == 1 || |
911 | lp_equal(L, -2, postab + 1)) { /* initial rule? */ |
912 | lua_pop(L, 1); /* remove value (keep key for lua_next) */ |
913 | continue; |
914 | } |
915 | if (!testpattern(L, -1)) /* value is not a pattern? */ |
916 | luaL_error(L, "rule '%s' is not a pattern" , val2str(L, -2)); |
917 | luaL_checkstack(L, LUA_MINSTACK, "grammar has too many rules" ); |
918 | lua_pushvalue(L, -2); /* push key (to insert into position table) */ |
919 | lua_pushinteger(L, size); |
920 | lua_settable(L, postab); |
921 | size += 1 + getsize(L, -1); /* update size */ |
922 | lua_pushvalue(L, -2); /* push key (for next lua_next) */ |
923 | n++; |
924 | } |
925 | *totalsize = size + 1; /* TTrue to finish list of rules */ |
926 | return n; |
927 | } |
928 | |
929 | |
930 | static void buildgrammar (lua_State *L, TTree *grammar, int frule, int n) { |
931 | int i; |
932 | TTree *nd = sib1(grammar); /* auxiliary pointer to traverse the tree */ |
933 | for (i = 0; i < n; i++) { /* add each rule into new tree */ |
934 | int ridx = frule + 2*i + 1; /* index of i-th rule */ |
935 | int rulesize; |
936 | TTree *rn = gettree(L, ridx, &rulesize); |
937 | nd->tag = TRule; |
938 | nd->key = 0; /* will be fixed when rule is used */ |
939 | nd->cap = i; /* rule number */ |
940 | nd->u.ps = rulesize + 1; /* point to next rule */ |
941 | memcpy(sib1(nd), rn, rulesize * sizeof(TTree)); /* copy rule */ |
942 | mergektable(L, ridx, sib1(nd)); /* merge its ktable into new one */ |
943 | nd = sib2(nd); /* move to next rule */ |
944 | } |
945 | nd->tag = TTrue; /* finish list of rules */ |
946 | } |
947 | |
948 | |
949 | /* |
950 | ** Check whether a tree has potential infinite loops |
951 | */ |
952 | static int checkloops (TTree *tree) { |
953 | tailcall: |
954 | if (tree->tag == TRep && nullable(sib1(tree))) |
955 | return 1; |
956 | else if (tree->tag == TGrammar) |
957 | return 0; /* sub-grammars already checked */ |
958 | else { |
959 | switch (numsiblings[tree->tag]) { |
960 | case 1: /* return checkloops(sib1(tree)); */ |
961 | tree = sib1(tree); goto tailcall; |
962 | case 2: |
963 | if (checkloops(sib1(tree))) return 1; |
964 | /* else return checkloops(sib2(tree)); */ |
965 | tree = sib2(tree); goto tailcall; |
966 | default: assert(numsiblings[tree->tag] == 0); return 0; |
967 | } |
968 | } |
969 | } |
970 | |
971 | |
972 | /* |
973 | ** Give appropriate error message for 'verifyrule'. If a rule appears |
974 | ** twice in 'passed', there is path from it back to itself without |
975 | ** advancing the subject. |
976 | */ |
977 | static int verifyerror (lua_State *L, int *passed, int npassed) { |
978 | int i, j; |
979 | for (i = npassed - 1; i >= 0; i--) { /* search for a repetition */ |
980 | for (j = i - 1; j >= 0; j--) { |
981 | if (passed[i] == passed[j]) { |
982 | lua_rawgeti(L, -1, passed[i]); /* get rule's key */ |
983 | return luaL_error(L, "rule '%s' may be left recursive" , val2str(L, -1)); |
984 | } |
985 | } |
986 | } |
987 | return luaL_error(L, "too many left calls in grammar" ); |
988 | } |
989 | |
990 | |
991 | /* |
992 | ** Check whether a rule can be left recursive; raise an error in that |
993 | ** case; otherwise return 1 iff pattern is nullable. |
994 | ** The return value is used to check sequences, where the second pattern |
995 | ** is only relevant if the first is nullable. |
996 | ** Parameter 'nb' works as an accumulator, to allow tail calls in |
997 | ** choices. ('nb' true makes function returns true.) |
998 | ** Parameter 'passed' is a list of already visited rules, 'npassed' |
999 | ** counts the elements in 'passed'. |
1000 | ** Assume ktable at the top of the stack. |
1001 | */ |
1002 | static int verifyrule (lua_State *L, TTree *tree, int *passed, int npassed, |
1003 | int nb) { |
1004 | tailcall: |
1005 | switch (tree->tag) { |
1006 | case TChar: case TSet: case TAny: |
1007 | case TFalse: |
1008 | return nb; /* cannot pass from here */ |
1009 | case TTrue: |
1010 | case TBehind: /* look-behind cannot have calls */ |
1011 | return 1; |
1012 | case TNot: case TAnd: case TRep: |
1013 | /* return verifyrule(L, sib1(tree), passed, npassed, 1); */ |
1014 | tree = sib1(tree); nb = 1; goto tailcall; |
1015 | case TCapture: case TRunTime: |
1016 | /* return verifyrule(L, sib1(tree), passed, npassed, nb); */ |
1017 | tree = sib1(tree); goto tailcall; |
1018 | case TCall: |
1019 | /* return verifyrule(L, sib2(tree), passed, npassed, nb); */ |
1020 | tree = sib2(tree); goto tailcall; |
1021 | case TSeq: /* only check 2nd child if first is nb */ |
1022 | if (!verifyrule(L, sib1(tree), passed, npassed, 0)) |
1023 | return nb; |
1024 | /* else return verifyrule(L, sib2(tree), passed, npassed, nb); */ |
1025 | tree = sib2(tree); goto tailcall; |
1026 | case TChoice: /* must check both children */ |
1027 | nb = verifyrule(L, sib1(tree), passed, npassed, nb); |
1028 | /* return verifyrule(L, sib2(tree), passed, npassed, nb); */ |
1029 | tree = sib2(tree); goto tailcall; |
1030 | case TRule: |
1031 | if (npassed >= MAXRULES) |
1032 | return verifyerror(L, passed, npassed); |
1033 | else { |
1034 | passed[npassed++] = tree->key; |
1035 | /* return verifyrule(L, sib1(tree), passed, npassed); */ |
1036 | tree = sib1(tree); goto tailcall; |
1037 | } |
1038 | case TGrammar: |
1039 | return nullable(tree); /* sub-grammar cannot be left recursive */ |
1040 | default: assert(0); return 0; |
1041 | } |
1042 | } |
1043 | |
1044 | |
1045 | static void verifygrammar (lua_State *L, TTree *grammar) { |
1046 | int passed[MAXRULES]; |
1047 | TTree *rule; |
1048 | /* check left-recursive rules */ |
1049 | for (rule = sib1(grammar); rule->tag == TRule; rule = sib2(rule)) { |
1050 | if (rule->key == 0) continue; /* unused rule */ |
1051 | verifyrule(L, sib1(rule), passed, 0, 0); |
1052 | } |
1053 | assert(rule->tag == TTrue); |
1054 | /* check infinite loops inside rules */ |
1055 | for (rule = sib1(grammar); rule->tag == TRule; rule = sib2(rule)) { |
1056 | if (rule->key == 0) continue; /* unused rule */ |
1057 | if (checkloops(sib1(rule))) { |
1058 | lua_rawgeti(L, -1, rule->key); /* get rule's key */ |
1059 | luaL_error(L, "empty loop in rule '%s'" , val2str(L, -1)); |
1060 | } |
1061 | } |
1062 | assert(rule->tag == TTrue); |
1063 | } |
1064 | |
1065 | |
1066 | /* |
1067 | ** Give a name for the initial rule if it is not referenced |
1068 | */ |
1069 | static void initialrulename (lua_State *L, TTree *grammar, int frule) { |
1070 | if (sib1(grammar)->key == 0) { /* initial rule is not referenced? */ |
1071 | int n = lua_rawlen(L, -1) + 1; /* index for name */ |
1072 | lua_pushvalue(L, frule); /* rule's name */ |
1073 | lua_rawseti(L, -2, n); /* ktable was on the top of the stack */ |
1074 | sib1(grammar)->key = n; |
1075 | } |
1076 | } |
1077 | |
1078 | |
1079 | static TTree *newgrammar (lua_State *L, int arg) { |
1080 | int treesize; |
1081 | int frule = lua_gettop(L) + 2; /* position of first rule's key */ |
1082 | int n = collectrules(L, arg, &treesize); |
1083 | TTree *g = newtree(L, treesize); |
1084 | luaL_argcheck(L, n <= MAXRULES, arg, "grammar has too many rules" ); |
1085 | g->tag = TGrammar; g->u.n = n; |
1086 | lua_newtable(L); /* create 'ktable' */ |
1087 | lua_setuservalue(L, -2); |
1088 | buildgrammar(L, g, frule, n); |
1089 | lua_getuservalue(L, -1); /* get 'ktable' for new tree */ |
1090 | finalfix(L, frule - 1, g, sib1(g)); |
1091 | initialrulename(L, g, frule); |
1092 | verifygrammar(L, g); |
1093 | lua_pop(L, 1); /* remove 'ktable' */ |
1094 | lua_insert(L, -(n * 2 + 2)); /* move new table to proper position */ |
1095 | lua_pop(L, n * 2 + 1); /* remove position table + rule pairs */ |
1096 | return g; /* new table at the top of the stack */ |
1097 | } |
1098 | |
1099 | /* }====================================================== */ |
1100 | |
1101 | |
1102 | static Instruction *prepcompile (lua_State *L, Pattern *p, int idx) { |
1103 | lua_getuservalue(L, idx); /* push 'ktable' (may be used by 'finalfix') */ |
1104 | finalfix(L, 0, NULL, p->tree); |
1105 | lua_pop(L, 1); /* remove 'ktable' */ |
1106 | return compile(L, p); |
1107 | } |
1108 | |
1109 | |
1110 | static int lp_printtree (lua_State *L) { |
1111 | TTree *tree = getpatt(L, 1, NULL); |
1112 | int c = lua_toboolean(L, 2); |
1113 | if (c) { |
1114 | lua_getuservalue(L, 1); /* push 'ktable' (may be used by 'finalfix') */ |
1115 | finalfix(L, 0, NULL, tree); |
1116 | lua_pop(L, 1); /* remove 'ktable' */ |
1117 | } |
1118 | printktable(L, 1); |
1119 | printtree(tree, 0); |
1120 | return 0; |
1121 | } |
1122 | |
1123 | |
1124 | static int lp_printcode (lua_State *L) { |
1125 | Pattern *p = getpattern(L, 1); |
1126 | printktable(L, 1); |
1127 | if (p->code == NULL) /* not compiled yet? */ |
1128 | prepcompile(L, p, 1); |
1129 | printpatt(p->code, p->codesize); |
1130 | return 0; |
1131 | } |
1132 | |
1133 | |
1134 | /* |
1135 | ** Get the initial position for the match, interpreting negative |
1136 | ** values from the end of the subject |
1137 | */ |
1138 | static size_t initposition (lua_State *L, size_t len) { |
1139 | lua_Integer ii = luaL_optinteger(L, 3, 1); |
1140 | if (ii > 0) { /* positive index? */ |
1141 | if ((size_t)ii <= len) /* inside the string? */ |
1142 | return (size_t)ii - 1; /* return it (corrected to 0-base) */ |
1143 | else return len; /* crop at the end */ |
1144 | } |
1145 | else { /* negative index */ |
1146 | if ((size_t)(-ii) <= len) /* inside the string? */ |
1147 | return len - ((size_t)(-ii)); /* return position from the end */ |
1148 | else return 0; /* crop at the beginning */ |
1149 | } |
1150 | } |
1151 | |
1152 | |
1153 | /* |
1154 | ** Main match function |
1155 | */ |
1156 | static int lp_match (lua_State *L) { |
1157 | Capture capture[INITCAPSIZE]; |
1158 | const char *r; |
1159 | size_t l; |
1160 | Pattern *p = (getpatt(L, 1, NULL), getpattern(L, 1)); |
1161 | Instruction *code = (p->code != NULL) ? p->code : prepcompile(L, p, 1); |
1162 | const char *s = luaL_checklstring(L, SUBJIDX, &l); |
1163 | size_t i = initposition(L, l); |
1164 | int ptop = lua_gettop(L); |
1165 | lua_pushnil(L); /* initialize subscache */ |
1166 | lua_pushlightuserdata(L, capture); /* initialize caplistidx */ |
1167 | lua_getuservalue(L, 1); /* initialize penvidx */ |
1168 | r = match(L, s, s + i, s + l, code, capture, ptop); |
1169 | if (r == NULL) { |
1170 | lua_pushnil(L); |
1171 | return 1; |
1172 | } |
1173 | return getcaptures(L, s, r, ptop); |
1174 | } |
1175 | |
1176 | |
1177 | |
1178 | /* |
1179 | ** {====================================================== |
1180 | ** Library creation and functions not related to matching |
1181 | ** ======================================================= |
1182 | */ |
1183 | |
1184 | /* maximum limit for stack size */ |
1185 | #define MAXLIM (INT_MAX / 100) |
1186 | |
1187 | static int lp_setmax (lua_State *L) { |
1188 | lua_Integer lim = luaL_checkinteger(L, 1); |
1189 | luaL_argcheck(L, 0 < lim && lim <= MAXLIM, 1, "out of range" ); |
1190 | lua_settop(L, 1); |
1191 | lua_setfield(L, LUA_REGISTRYINDEX, MAXSTACKIDX); |
1192 | return 0; |
1193 | } |
1194 | |
1195 | |
1196 | static int lp_version (lua_State *L) { |
1197 | lua_pushstring(L, VERSION); |
1198 | return 1; |
1199 | } |
1200 | |
1201 | |
1202 | static int lp_type (lua_State *L) { |
1203 | if (testpattern(L, 1)) |
1204 | lua_pushliteral(L, "pattern" ); |
1205 | else |
1206 | lua_pushnil(L); |
1207 | return 1; |
1208 | } |
1209 | |
1210 | |
1211 | int lp_gc (lua_State *L) { |
1212 | Pattern *p = getpattern(L, 1); |
1213 | realloccode(L, p, 0); /* delete code block */ |
1214 | return 0; |
1215 | } |
1216 | |
1217 | |
1218 | static void createcat (lua_State *L, const char *catname, int (catf) (int)) { |
1219 | TTree *t = newcharset(L); |
1220 | int i; |
1221 | for (i = 0; i <= UCHAR_MAX; i++) |
1222 | if (catf(i)) setchar(treebuffer(t), i); |
1223 | lua_setfield(L, -2, catname); |
1224 | } |
1225 | |
1226 | |
1227 | static int lp_locale (lua_State *L) { |
1228 | if (lua_isnoneornil(L, 1)) { |
1229 | lua_settop(L, 0); |
1230 | lua_createtable(L, 0, 12); |
1231 | } |
1232 | else { |
1233 | luaL_checktype(L, 1, LUA_TTABLE); |
1234 | lua_settop(L, 1); |
1235 | } |
1236 | createcat(L, "alnum" , isalnum); |
1237 | createcat(L, "alpha" , isalpha); |
1238 | createcat(L, "cntrl" , iscntrl); |
1239 | createcat(L, "digit" , isdigit); |
1240 | createcat(L, "graph" , isgraph); |
1241 | createcat(L, "lower" , islower); |
1242 | createcat(L, "print" , isprint); |
1243 | createcat(L, "punct" , ispunct); |
1244 | createcat(L, "space" , isspace); |
1245 | createcat(L, "upper" , isupper); |
1246 | createcat(L, "xdigit" , isxdigit); |
1247 | return 1; |
1248 | } |
1249 | |
1250 | |
1251 | static struct luaL_Reg pattreg[] = { |
1252 | {"ptree" , lp_printtree}, |
1253 | {"pcode" , lp_printcode}, |
1254 | {"match" , lp_match}, |
1255 | {"B" , lp_behind}, |
1256 | {"V" , lp_V}, |
1257 | {"C" , lp_simplecapture}, |
1258 | {"Cc" , lp_constcapture}, |
1259 | {"Cmt" , lp_matchtime}, |
1260 | {"Cb" , lp_backref}, |
1261 | {"Carg" , lp_argcapture}, |
1262 | {"Cp" , lp_poscapture}, |
1263 | {"Cs" , lp_substcapture}, |
1264 | {"Ct" , lp_tablecapture}, |
1265 | {"Cf" , lp_foldcapture}, |
1266 | {"Cg" , lp_groupcapture}, |
1267 | {"P" , lp_P}, |
1268 | {"S" , lp_set}, |
1269 | {"R" , lp_range}, |
1270 | {"locale" , lp_locale}, |
1271 | {"version" , lp_version}, |
1272 | {"setmaxstack" , lp_setmax}, |
1273 | {"type" , lp_type}, |
1274 | {NULL, NULL} |
1275 | }; |
1276 | |
1277 | |
1278 | static struct luaL_Reg metareg[] = { |
1279 | {"__mul" , lp_seq}, |
1280 | {"__add" , lp_choice}, |
1281 | {"__pow" , lp_star}, |
1282 | {"__gc" , lp_gc}, |
1283 | {"__len" , lp_and}, |
1284 | {"__div" , lp_divcapture}, |
1285 | {"__unm" , lp_not}, |
1286 | {"__sub" , lp_sub}, |
1287 | {NULL, NULL} |
1288 | }; |
1289 | |
1290 | |
1291 | int luaopen_lpeg (lua_State *L); |
1292 | int luaopen_lpeg (lua_State *L) { |
1293 | luaL_newmetatable(L, PATTERN_T); |
1294 | lua_pushnumber(L, MAXBACK); /* initialize maximum backtracking */ |
1295 | lua_setfield(L, LUA_REGISTRYINDEX, MAXSTACKIDX); |
1296 | luaL_setfuncs(L, metareg, 0); |
1297 | luaL_newlib(L, pattreg); |
1298 | lua_pushvalue(L, -1); |
1299 | lua_setfield(L, -3, "__index" ); |
1300 | return 1; |
1301 | } |
1302 | |
1303 | /* }====================================================== */ |
1304 | |