| 1 | /* |
| 2 | ** $Id: lptree.c,v 1.22 2016/09/13 18:10:22 roberto Exp $ |
| 3 | ** Copyright 2013, Lua.org & PUC-Rio (see 'lpeg.html' for license) |
| 4 | */ |
| 5 | |
| 6 | #include <ctype.h> |
| 7 | #include <limits.h> |
| 8 | #include <string.h> |
| 9 | |
| 10 | |
| 11 | #include "lua.h" |
| 12 | #include "lauxlib.h" |
| 13 | |
| 14 | #include "lptypes.h" |
| 15 | #include "lpcap.h" |
| 16 | #include "lpcode.h" |
| 17 | #include "lpprint.h" |
| 18 | #include "lptree.h" |
| 19 | |
| 20 | |
| 21 | /* number of siblings for each tree */ |
| 22 | const byte numsiblings[] = { |
| 23 | 0, 0, 0, /* char, set, any */ |
| 24 | 0, 0, /* true, false */ |
| 25 | 1, /* rep */ |
| 26 | 2, 2, /* seq, choice */ |
| 27 | 1, 1, /* not, and */ |
| 28 | 0, 0, 2, 1, /* call, opencall, rule, grammar */ |
| 29 | 1, /* behind */ |
| 30 | 1, 1 /* capture, runtime capture */ |
| 31 | }; |
| 32 | |
| 33 | |
| 34 | static TTree *newgrammar (lua_State *L, int arg); |
| 35 | |
| 36 | |
| 37 | /* |
| 38 | ** returns a reasonable name for value at index 'idx' on the stack |
| 39 | */ |
| 40 | static const char *val2str (lua_State *L, int idx) { |
| 41 | const char *k = lua_tostring(L, idx); |
| 42 | if (k != NULL) |
| 43 | return lua_pushfstring(L, "%s" , k); |
| 44 | else |
| 45 | return lua_pushfstring(L, "(a %s)" , luaL_typename(L, idx)); |
| 46 | } |
| 47 | |
| 48 | |
| 49 | /* |
| 50 | ** Fix a TOpenCall into a TCall node, using table 'postable' to |
| 51 | ** translate a key to its rule address in the tree. Raises an |
| 52 | ** error if key does not exist. |
| 53 | */ |
| 54 | static void fixonecall (lua_State *L, int postable, TTree *g, TTree *t) { |
| 55 | int n; |
| 56 | lua_rawgeti(L, -1, t->key); /* get rule's name */ |
| 57 | lua_gettable(L, postable); /* query name in position table */ |
| 58 | n = lua_tonumber(L, -1); /* get (absolute) position */ |
| 59 | lua_pop(L, 1); /* remove position */ |
| 60 | if (n == 0) { /* no position? */ |
| 61 | lua_rawgeti(L, -1, t->key); /* get rule's name again */ |
| 62 | luaL_error(L, "rule '%s' undefined in given grammar" , val2str(L, -1)); |
| 63 | } |
| 64 | t->tag = TCall; |
| 65 | t->u.ps = n - (t - g); /* position relative to node */ |
| 66 | assert(sib2(t)->tag == TRule); |
| 67 | sib2(t)->key = t->key; /* fix rule's key */ |
| 68 | } |
| 69 | |
| 70 | |
| 71 | /* |
| 72 | ** Transform left associative constructions into right |
| 73 | ** associative ones, for sequence and choice; that is: |
| 74 | ** (t11 + t12) + t2 => t11 + (t12 + t2) |
| 75 | ** (t11 * t12) * t2 => t11 * (t12 * t2) |
| 76 | ** (that is, Op (Op t11 t12) t2 => Op t11 (Op t12 t2)) |
| 77 | */ |
| 78 | static void correctassociativity (TTree *tree) { |
| 79 | TTree *t1 = sib1(tree); |
| 80 | assert(tree->tag == TChoice || tree->tag == TSeq); |
| 81 | while (t1->tag == tree->tag) { |
| 82 | int n1size = tree->u.ps - 1; /* t1 == Op t11 t12 */ |
| 83 | int n11size = t1->u.ps - 1; |
| 84 | int n12size = n1size - n11size - 1; |
| 85 | memmove(sib1(tree), sib1(t1), n11size * sizeof(TTree)); /* move t11 */ |
| 86 | tree->u.ps = n11size + 1; |
| 87 | sib2(tree)->tag = tree->tag; |
| 88 | sib2(tree)->u.ps = n12size + 1; |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | |
| 93 | /* |
| 94 | ** Make final adjustments in a tree. Fix open calls in tree 't', |
| 95 | ** making them refer to their respective rules or raising appropriate |
| 96 | ** errors (if not inside a grammar). Correct associativity of associative |
| 97 | ** constructions (making them right associative). Assume that tree's |
| 98 | ** ktable is at the top of the stack (for error messages). |
| 99 | */ |
| 100 | static void finalfix (lua_State *L, int postable, TTree *g, TTree *t) { |
| 101 | tailcall: |
| 102 | switch (t->tag) { |
| 103 | case TGrammar: /* subgrammars were already fixed */ |
| 104 | return; |
| 105 | case TOpenCall: { |
| 106 | if (g != NULL) /* inside a grammar? */ |
| 107 | fixonecall(L, postable, g, t); |
| 108 | else { /* open call outside grammar */ |
| 109 | lua_rawgeti(L, -1, t->key); |
| 110 | luaL_error(L, "rule '%s' used outside a grammar" , val2str(L, -1)); |
| 111 | } |
| 112 | break; |
| 113 | } |
| 114 | case TSeq: case TChoice: |
| 115 | correctassociativity(t); |
| 116 | break; |
| 117 | } |
| 118 | switch (numsiblings[t->tag]) { |
| 119 | case 1: /* finalfix(L, postable, g, sib1(t)); */ |
| 120 | t = sib1(t); goto tailcall; |
| 121 | case 2: |
| 122 | finalfix(L, postable, g, sib1(t)); |
| 123 | t = sib2(t); goto tailcall; /* finalfix(L, postable, g, sib2(t)); */ |
| 124 | default: assert(numsiblings[t->tag] == 0); break; |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | |
| 129 | |
| 130 | /* |
| 131 | ** {=================================================================== |
| 132 | ** KTable manipulation |
| 133 | ** |
| 134 | ** - The ktable of a pattern 'p' can be shared by other patterns that |
| 135 | ** contain 'p' and no other constants. Because of this sharing, we |
| 136 | ** should not add elements to a 'ktable' unless it was freshly created |
| 137 | ** for the new pattern. |
| 138 | ** |
| 139 | ** - The maximum index in a ktable is USHRT_MAX, because trees and |
| 140 | ** patterns use unsigned shorts to store those indices. |
| 141 | ** ==================================================================== |
| 142 | */ |
| 143 | |
| 144 | /* |
| 145 | ** Create a new 'ktable' to the pattern at the top of the stack. |
| 146 | */ |
| 147 | static void newktable (lua_State *L, int n) { |
| 148 | lua_createtable(L, n, 0); /* create a fresh table */ |
| 149 | lua_setuservalue(L, -2); /* set it as 'ktable' for pattern */ |
| 150 | } |
| 151 | |
| 152 | |
| 153 | /* |
| 154 | ** Add element 'idx' to 'ktable' of pattern at the top of the stack; |
| 155 | ** Return index of new element. |
| 156 | ** If new element is nil, does not add it to table (as it would be |
| 157 | ** useless) and returns 0, as ktable[0] is always nil. |
| 158 | */ |
| 159 | static int addtoktable (lua_State *L, int idx) { |
| 160 | if (lua_isnil(L, idx)) /* nil value? */ |
| 161 | return 0; |
| 162 | else { |
| 163 | int n; |
| 164 | lua_getuservalue(L, -1); /* get ktable from pattern */ |
| 165 | n = lua_rawlen(L, -1); |
| 166 | if (n >= USHRT_MAX) |
| 167 | luaL_error(L, "too many Lua values in pattern" ); |
| 168 | lua_pushvalue(L, idx); /* element to be added */ |
| 169 | lua_rawseti(L, -2, ++n); |
| 170 | lua_pop(L, 1); /* remove 'ktable' */ |
| 171 | return n; |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | |
| 176 | /* |
| 177 | ** Return the number of elements in the ktable at 'idx'. |
| 178 | ** In Lua 5.2/5.3, default "environment" for patterns is nil, not |
| 179 | ** a table. Treat it as an empty table. In Lua 5.1, assumes that |
| 180 | ** the environment has no numeric indices (len == 0) |
| 181 | */ |
| 182 | static int ktablelen (lua_State *L, int idx) { |
| 183 | if (!lua_istable(L, idx)) return 0; |
| 184 | else return lua_rawlen(L, idx); |
| 185 | } |
| 186 | |
| 187 | |
| 188 | /* |
| 189 | ** Concatentate the contents of table 'idx1' into table 'idx2'. |
| 190 | ** (Assume that both indices are negative.) |
| 191 | ** Return the original length of table 'idx2' (or 0, if no |
| 192 | ** element was added, as there is no need to correct any index). |
| 193 | */ |
| 194 | static int concattable (lua_State *L, int idx1, int idx2) { |
| 195 | int i; |
| 196 | int n1 = ktablelen(L, idx1); |
| 197 | int n2 = ktablelen(L, idx2); |
| 198 | if (n1 + n2 > USHRT_MAX) |
| 199 | luaL_error(L, "too many Lua values in pattern" ); |
| 200 | if (n1 == 0) return 0; /* nothing to correct */ |
| 201 | for (i = 1; i <= n1; i++) { |
| 202 | lua_rawgeti(L, idx1, i); |
| 203 | lua_rawseti(L, idx2 - 1, n2 + i); /* correct 'idx2' */ |
| 204 | } |
| 205 | return n2; |
| 206 | } |
| 207 | |
| 208 | |
| 209 | /* |
| 210 | ** When joining 'ktables', constants from one of the subpatterns must |
| 211 | ** be renumbered; 'correctkeys' corrects their indices (adding 'n' |
| 212 | ** to each of them) |
| 213 | */ |
| 214 | static void correctkeys (TTree *tree, int n) { |
| 215 | if (n == 0) return; /* no correction? */ |
| 216 | tailcall: |
| 217 | switch (tree->tag) { |
| 218 | case TOpenCall: case TCall: case TRunTime: case TRule: { |
| 219 | if (tree->key > 0) |
| 220 | tree->key += n; |
| 221 | break; |
| 222 | } |
| 223 | case TCapture: { |
| 224 | if (tree->key > 0 && tree->cap != Carg && tree->cap != Cnum) |
| 225 | tree->key += n; |
| 226 | break; |
| 227 | } |
| 228 | default: break; |
| 229 | } |
| 230 | switch (numsiblings[tree->tag]) { |
| 231 | case 1: /* correctkeys(sib1(tree), n); */ |
| 232 | tree = sib1(tree); goto tailcall; |
| 233 | case 2: |
| 234 | correctkeys(sib1(tree), n); |
| 235 | tree = sib2(tree); goto tailcall; /* correctkeys(sib2(tree), n); */ |
| 236 | default: assert(numsiblings[tree->tag] == 0); break; |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | |
| 241 | /* |
| 242 | ** Join the ktables from p1 and p2 the ktable for the new pattern at the |
| 243 | ** top of the stack, reusing them when possible. |
| 244 | */ |
| 245 | static void joinktables (lua_State *L, int p1, TTree *t2, int p2) { |
| 246 | int n1, n2; |
| 247 | lua_getuservalue(L, p1); /* get ktables */ |
| 248 | lua_getuservalue(L, p2); |
| 249 | n1 = ktablelen(L, -2); |
| 250 | n2 = ktablelen(L, -1); |
| 251 | if (n1 == 0 && n2 == 0) /* are both tables empty? */ |
| 252 | lua_pop(L, 2); /* nothing to be done; pop tables */ |
| 253 | else if (n2 == 0 || lp_equal(L, -2, -1)) { /* 2nd table empty or equal? */ |
| 254 | lua_pop(L, 1); /* pop 2nd table */ |
| 255 | lua_setuservalue(L, -2); /* set 1st ktable into new pattern */ |
| 256 | } |
| 257 | else if (n1 == 0) { /* first table is empty? */ |
| 258 | lua_setuservalue(L, -3); /* set 2nd table into new pattern */ |
| 259 | lua_pop(L, 1); /* pop 1st table */ |
| 260 | } |
| 261 | else { |
| 262 | lua_createtable(L, n1 + n2, 0); /* create ktable for new pattern */ |
| 263 | /* stack: new p; ktable p1; ktable p2; new ktable */ |
| 264 | concattable(L, -3, -1); /* from p1 into new ktable */ |
| 265 | concattable(L, -2, -1); /* from p2 into new ktable */ |
| 266 | lua_setuservalue(L, -4); /* new ktable becomes 'p' environment */ |
| 267 | lua_pop(L, 2); /* pop other ktables */ |
| 268 | correctkeys(t2, n1); /* correction for indices from p2 */ |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | |
| 273 | /* |
| 274 | ** copy 'ktable' of element 'idx' to new tree (on top of stack) |
| 275 | */ |
| 276 | static void copyktable (lua_State *L, int idx) { |
| 277 | lua_getuservalue(L, idx); |
| 278 | lua_setuservalue(L, -2); |
| 279 | } |
| 280 | |
| 281 | |
| 282 | /* |
| 283 | ** merge 'ktable' from 'stree' at stack index 'idx' into 'ktable' |
| 284 | ** from tree at the top of the stack, and correct corresponding |
| 285 | ** tree. |
| 286 | */ |
| 287 | static void mergektable (lua_State *L, int idx, TTree *stree) { |
| 288 | int n; |
| 289 | lua_getuservalue(L, -1); /* get ktables */ |
| 290 | lua_getuservalue(L, idx); |
| 291 | n = concattable(L, -1, -2); |
| 292 | lua_pop(L, 2); /* remove both ktables */ |
| 293 | correctkeys(stree, n); |
| 294 | } |
| 295 | |
| 296 | |
| 297 | /* |
| 298 | ** Create a new 'ktable' to the pattern at the top of the stack, adding |
| 299 | ** all elements from pattern 'p' (if not 0) plus element 'idx' to it. |
| 300 | ** Return index of new element. |
| 301 | */ |
| 302 | static int addtonewktable (lua_State *L, int p, int idx) { |
| 303 | newktable(L, 1); |
| 304 | if (p) |
| 305 | mergektable(L, p, NULL); |
| 306 | return addtoktable(L, idx); |
| 307 | } |
| 308 | |
| 309 | /* }====================================================== */ |
| 310 | |
| 311 | |
| 312 | /* |
| 313 | ** {====================================================== |
| 314 | ** Tree generation |
| 315 | ** ======================================================= |
| 316 | */ |
| 317 | |
| 318 | /* |
| 319 | ** In 5.2, could use 'luaL_testudata'... |
| 320 | */ |
| 321 | static int testpattern (lua_State *L, int idx) { |
| 322 | if (lua_touserdata(L, idx)) { /* value is a userdata? */ |
| 323 | if (lua_getmetatable(L, idx)) { /* does it have a metatable? */ |
| 324 | luaL_getmetatable(L, PATTERN_T); |
| 325 | if (lua_rawequal(L, -1, -2)) { /* does it have the correct mt? */ |
| 326 | lua_pop(L, 2); /* remove both metatables */ |
| 327 | return 1; |
| 328 | } |
| 329 | } |
| 330 | } |
| 331 | return 0; |
| 332 | } |
| 333 | |
| 334 | |
| 335 | static Pattern *getpattern (lua_State *L, int idx) { |
| 336 | return (Pattern *)luaL_checkudata(L, idx, PATTERN_T); |
| 337 | } |
| 338 | |
| 339 | |
| 340 | static int getsize (lua_State *L, int idx) { |
| 341 | return (lua_rawlen(L, idx) - sizeof(Pattern)) / sizeof(TTree) + 1; |
| 342 | } |
| 343 | |
| 344 | |
| 345 | static TTree *gettree (lua_State *L, int idx, int *len) { |
| 346 | Pattern *p = getpattern(L, idx); |
| 347 | if (len) |
| 348 | *len = getsize(L, idx); |
| 349 | return p->tree; |
| 350 | } |
| 351 | |
| 352 | |
| 353 | /* |
| 354 | ** create a pattern. Set its uservalue (the 'ktable') equal to its |
| 355 | ** metatable. (It could be any empty sequence; the metatable is at |
| 356 | ** hand here, so we use it.) |
| 357 | */ |
| 358 | static TTree *newtree (lua_State *L, int len) { |
| 359 | size_t size = (len - 1) * sizeof(TTree) + sizeof(Pattern); |
| 360 | Pattern *p = (Pattern *)lua_newuserdata(L, size); |
| 361 | luaL_getmetatable(L, PATTERN_T); |
| 362 | lua_pushvalue(L, -1); |
| 363 | lua_setuservalue(L, -3); |
| 364 | lua_setmetatable(L, -2); |
| 365 | p->code = NULL; p->codesize = 0; |
| 366 | return p->tree; |
| 367 | } |
| 368 | |
| 369 | |
| 370 | static TTree *newleaf (lua_State *L, int tag) { |
| 371 | TTree *tree = newtree(L, 1); |
| 372 | tree->tag = tag; |
| 373 | return tree; |
| 374 | } |
| 375 | |
| 376 | |
| 377 | static TTree *newcharset (lua_State *L) { |
| 378 | TTree *tree = newtree(L, bytes2slots(CHARSETSIZE) + 1); |
| 379 | tree->tag = TSet; |
| 380 | loopset(i, treebuffer(tree)[i] = 0); |
| 381 | return tree; |
| 382 | } |
| 383 | |
| 384 | |
| 385 | /* |
| 386 | ** add to tree a sequence where first sibling is 'sib' (with size |
| 387 | ** 'sibsize'); returns position for second sibling |
| 388 | */ |
| 389 | static TTree *seqaux (TTree *tree, TTree *sib, int sibsize) { |
| 390 | tree->tag = TSeq; tree->u.ps = sibsize + 1; |
| 391 | memcpy(sib1(tree), sib, sibsize * sizeof(TTree)); |
| 392 | return sib2(tree); |
| 393 | } |
| 394 | |
| 395 | |
| 396 | /* |
| 397 | ** Build a sequence of 'n' nodes, each with tag 'tag' and 'u.n' got |
| 398 | ** from the array 's' (or 0 if array is NULL). (TSeq is binary, so it |
| 399 | ** must build a sequence of sequence of sequence...) |
| 400 | */ |
| 401 | static void fillseq (TTree *tree, int tag, int n, const char *s) { |
| 402 | int i; |
| 403 | for (i = 0; i < n - 1; i++) { /* initial n-1 copies of Seq tag; Seq ... */ |
| 404 | tree->tag = TSeq; tree->u.ps = 2; |
| 405 | sib1(tree)->tag = tag; |
| 406 | sib1(tree)->u.n = s ? (byte)s[i] : 0; |
| 407 | tree = sib2(tree); |
| 408 | } |
| 409 | tree->tag = tag; /* last one does not need TSeq */ |
| 410 | tree->u.n = s ? (byte)s[i] : 0; |
| 411 | } |
| 412 | |
| 413 | |
| 414 | /* |
| 415 | ** Numbers as patterns: |
| 416 | ** 0 == true (always match); n == TAny repeated 'n' times; |
| 417 | ** -n == not (TAny repeated 'n' times) |
| 418 | */ |
| 419 | static TTree *numtree (lua_State *L, int n) { |
| 420 | if (n == 0) |
| 421 | return newleaf(L, TTrue); |
| 422 | else { |
| 423 | TTree *tree, *nd; |
| 424 | if (n > 0) |
| 425 | tree = nd = newtree(L, 2 * n - 1); |
| 426 | else { /* negative: code it as !(-n) */ |
| 427 | n = -n; |
| 428 | tree = newtree(L, 2 * n); |
| 429 | tree->tag = TNot; |
| 430 | nd = sib1(tree); |
| 431 | } |
| 432 | fillseq(nd, TAny, n, NULL); /* sequence of 'n' any's */ |
| 433 | return tree; |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | |
| 438 | /* |
| 439 | ** Convert value at index 'idx' to a pattern |
| 440 | */ |
| 441 | static TTree *getpatt (lua_State *L, int idx, int *len) { |
| 442 | TTree *tree; |
| 443 | switch (lua_type(L, idx)) { |
| 444 | case LUA_TSTRING: { |
| 445 | size_t slen; |
| 446 | const char *s = lua_tolstring(L, idx, &slen); /* get string */ |
| 447 | if (slen == 0) /* empty? */ |
| 448 | tree = newleaf(L, TTrue); /* always match */ |
| 449 | else { |
| 450 | tree = newtree(L, 2 * (slen - 1) + 1); |
| 451 | fillseq(tree, TChar, slen, s); /* sequence of 'slen' chars */ |
| 452 | } |
| 453 | break; |
| 454 | } |
| 455 | case LUA_TNUMBER: { |
| 456 | int n = lua_tointeger(L, idx); |
| 457 | tree = numtree(L, n); |
| 458 | break; |
| 459 | } |
| 460 | case LUA_TBOOLEAN: { |
| 461 | tree = (lua_toboolean(L, idx) ? newleaf(L, TTrue) : newleaf(L, TFalse)); |
| 462 | break; |
| 463 | } |
| 464 | case LUA_TTABLE: { |
| 465 | tree = newgrammar(L, idx); |
| 466 | break; |
| 467 | } |
| 468 | case LUA_TFUNCTION: { |
| 469 | tree = newtree(L, 2); |
| 470 | tree->tag = TRunTime; |
| 471 | tree->key = addtonewktable(L, 0, idx); |
| 472 | sib1(tree)->tag = TTrue; |
| 473 | break; |
| 474 | } |
| 475 | default: { |
| 476 | return gettree(L, idx, len); |
| 477 | } |
| 478 | } |
| 479 | lua_replace(L, idx); /* put new tree into 'idx' slot */ |
| 480 | if (len) |
| 481 | *len = getsize(L, idx); |
| 482 | return tree; |
| 483 | } |
| 484 | |
| 485 | |
| 486 | /* |
| 487 | ** create a new tree, whith a new root and one sibling. |
| 488 | ** Sibling must be on the Lua stack, at index 1. |
| 489 | */ |
| 490 | static TTree *newroot1sib (lua_State *L, int tag) { |
| 491 | int s1; |
| 492 | TTree *tree1 = getpatt(L, 1, &s1); |
| 493 | TTree *tree = newtree(L, 1 + s1); /* create new tree */ |
| 494 | tree->tag = tag; |
| 495 | memcpy(sib1(tree), tree1, s1 * sizeof(TTree)); |
| 496 | copyktable(L, 1); |
| 497 | return tree; |
| 498 | } |
| 499 | |
| 500 | |
| 501 | /* |
| 502 | ** create a new tree, whith a new root and 2 siblings. |
| 503 | ** Siblings must be on the Lua stack, first one at index 1. |
| 504 | */ |
| 505 | static TTree *newroot2sib (lua_State *L, int tag) { |
| 506 | int s1, s2; |
| 507 | TTree *tree1 = getpatt(L, 1, &s1); |
| 508 | TTree *tree2 = getpatt(L, 2, &s2); |
| 509 | TTree *tree = newtree(L, 1 + s1 + s2); /* create new tree */ |
| 510 | tree->tag = tag; |
| 511 | tree->u.ps = 1 + s1; |
| 512 | memcpy(sib1(tree), tree1, s1 * sizeof(TTree)); |
| 513 | memcpy(sib2(tree), tree2, s2 * sizeof(TTree)); |
| 514 | joinktables(L, 1, sib2(tree), 2); |
| 515 | return tree; |
| 516 | } |
| 517 | |
| 518 | |
| 519 | static int lp_P (lua_State *L) { |
| 520 | luaL_checkany(L, 1); |
| 521 | getpatt(L, 1, NULL); |
| 522 | lua_settop(L, 1); |
| 523 | return 1; |
| 524 | } |
| 525 | |
| 526 | |
| 527 | /* |
| 528 | ** sequence operator; optimizations: |
| 529 | ** false x => false, x true => x, true x => x |
| 530 | ** (cannot do x . false => false because x may have runtime captures) |
| 531 | */ |
| 532 | static int lp_seq (lua_State *L) { |
| 533 | TTree *tree1 = getpatt(L, 1, NULL); |
| 534 | TTree *tree2 = getpatt(L, 2, NULL); |
| 535 | if (tree1->tag == TFalse || tree2->tag == TTrue) |
| 536 | lua_pushvalue(L, 1); /* false . x == false, x . true = x */ |
| 537 | else if (tree1->tag == TTrue) |
| 538 | lua_pushvalue(L, 2); /* true . x = x */ |
| 539 | else |
| 540 | newroot2sib(L, TSeq); |
| 541 | return 1; |
| 542 | } |
| 543 | |
| 544 | |
| 545 | /* |
| 546 | ** choice operator; optimizations: |
| 547 | ** charset / charset => charset |
| 548 | ** true / x => true, x / false => x, false / x => x |
| 549 | ** (x / true is not equivalent to true) |
| 550 | */ |
| 551 | static int lp_choice (lua_State *L) { |
| 552 | Charset st1, st2; |
| 553 | TTree *t1 = getpatt(L, 1, NULL); |
| 554 | TTree *t2 = getpatt(L, 2, NULL); |
| 555 | if (tocharset(t1, &st1) && tocharset(t2, &st2)) { |
| 556 | TTree *t = newcharset(L); |
| 557 | loopset(i, treebuffer(t)[i] = st1.cs[i] | st2.cs[i]); |
| 558 | } |
| 559 | else if (nofail(t1) || t2->tag == TFalse) |
| 560 | lua_pushvalue(L, 1); /* true / x => true, x / false => x */ |
| 561 | else if (t1->tag == TFalse) |
| 562 | lua_pushvalue(L, 2); /* false / x => x */ |
| 563 | else |
| 564 | newroot2sib(L, TChoice); |
| 565 | return 1; |
| 566 | } |
| 567 | |
| 568 | |
| 569 | /* |
| 570 | ** p^n |
| 571 | */ |
| 572 | static int lp_star (lua_State *L) { |
| 573 | int size1; |
| 574 | int n = (int)luaL_checkinteger(L, 2); |
| 575 | TTree *tree1 = getpatt(L, 1, &size1); |
| 576 | if (n >= 0) { /* seq tree1 (seq tree1 ... (seq tree1 (rep tree1))) */ |
| 577 | TTree *tree = newtree(L, (n + 1) * (size1 + 1)); |
| 578 | if (nullable(tree1)) |
| 579 | luaL_error(L, "loop body may accept empty string" ); |
| 580 | while (n--) /* repeat 'n' times */ |
| 581 | tree = seqaux(tree, tree1, size1); |
| 582 | tree->tag = TRep; |
| 583 | memcpy(sib1(tree), tree1, size1 * sizeof(TTree)); |
| 584 | } |
| 585 | else { /* choice (seq tree1 ... choice tree1 true ...) true */ |
| 586 | TTree *tree; |
| 587 | n = -n; |
| 588 | /* size = (choice + seq + tree1 + true) * n, but the last has no seq */ |
| 589 | tree = newtree(L, n * (size1 + 3) - 1); |
| 590 | for (; n > 1; n--) { /* repeat (n - 1) times */ |
| 591 | tree->tag = TChoice; tree->u.ps = n * (size1 + 3) - 2; |
| 592 | sib2(tree)->tag = TTrue; |
| 593 | tree = sib1(tree); |
| 594 | tree = seqaux(tree, tree1, size1); |
| 595 | } |
| 596 | tree->tag = TChoice; tree->u.ps = size1 + 1; |
| 597 | sib2(tree)->tag = TTrue; |
| 598 | memcpy(sib1(tree), tree1, size1 * sizeof(TTree)); |
| 599 | } |
| 600 | copyktable(L, 1); |
| 601 | return 1; |
| 602 | } |
| 603 | |
| 604 | |
| 605 | /* |
| 606 | ** #p == &p |
| 607 | */ |
| 608 | static int lp_and (lua_State *L) { |
| 609 | newroot1sib(L, TAnd); |
| 610 | return 1; |
| 611 | } |
| 612 | |
| 613 | |
| 614 | /* |
| 615 | ** -p == !p |
| 616 | */ |
| 617 | static int lp_not (lua_State *L) { |
| 618 | newroot1sib(L, TNot); |
| 619 | return 1; |
| 620 | } |
| 621 | |
| 622 | |
| 623 | /* |
| 624 | ** [t1 - t2] == Seq (Not t2) t1 |
| 625 | ** If t1 and t2 are charsets, make their difference. |
| 626 | */ |
| 627 | static int lp_sub (lua_State *L) { |
| 628 | Charset st1, st2; |
| 629 | int s1, s2; |
| 630 | TTree *t1 = getpatt(L, 1, &s1); |
| 631 | TTree *t2 = getpatt(L, 2, &s2); |
| 632 | if (tocharset(t1, &st1) && tocharset(t2, &st2)) { |
| 633 | TTree *t = newcharset(L); |
| 634 | loopset(i, treebuffer(t)[i] = st1.cs[i] & ~st2.cs[i]); |
| 635 | } |
| 636 | else { |
| 637 | TTree *tree = newtree(L, 2 + s1 + s2); |
| 638 | tree->tag = TSeq; /* sequence of... */ |
| 639 | tree->u.ps = 2 + s2; |
| 640 | sib1(tree)->tag = TNot; /* ...not... */ |
| 641 | memcpy(sib1(sib1(tree)), t2, s2 * sizeof(TTree)); /* ...t2 */ |
| 642 | memcpy(sib2(tree), t1, s1 * sizeof(TTree)); /* ... and t1 */ |
| 643 | joinktables(L, 1, sib1(tree), 2); |
| 644 | } |
| 645 | return 1; |
| 646 | } |
| 647 | |
| 648 | |
| 649 | static int lp_set (lua_State *L) { |
| 650 | size_t l; |
| 651 | const char *s = luaL_checklstring(L, 1, &l); |
| 652 | TTree *tree = newcharset(L); |
| 653 | while (l--) { |
| 654 | setchar(treebuffer(tree), (byte)(*s)); |
| 655 | s++; |
| 656 | } |
| 657 | return 1; |
| 658 | } |
| 659 | |
| 660 | |
| 661 | static int lp_range (lua_State *L) { |
| 662 | int arg; |
| 663 | int top = lua_gettop(L); |
| 664 | TTree *tree = newcharset(L); |
| 665 | for (arg = 1; arg <= top; arg++) { |
| 666 | int c; |
| 667 | size_t l; |
| 668 | const char *r = luaL_checklstring(L, arg, &l); |
| 669 | luaL_argcheck(L, l == 2, arg, "range must have two characters" ); |
| 670 | for (c = (byte)r[0]; c <= (byte)r[1]; c++) |
| 671 | setchar(treebuffer(tree), c); |
| 672 | } |
| 673 | return 1; |
| 674 | } |
| 675 | |
| 676 | |
| 677 | /* |
| 678 | ** Look-behind predicate |
| 679 | */ |
| 680 | static int lp_behind (lua_State *L) { |
| 681 | TTree *tree; |
| 682 | TTree *tree1 = getpatt(L, 1, NULL); |
| 683 | int n = fixedlen(tree1); |
| 684 | luaL_argcheck(L, n >= 0, 1, "pattern may not have fixed length" ); |
| 685 | luaL_argcheck(L, !hascaptures(tree1), 1, "pattern have captures" ); |
| 686 | luaL_argcheck(L, n <= MAXBEHIND, 1, "pattern too long to look behind" ); |
| 687 | tree = newroot1sib(L, TBehind); |
| 688 | tree->u.n = n; |
| 689 | return 1; |
| 690 | } |
| 691 | |
| 692 | |
| 693 | /* |
| 694 | ** Create a non-terminal |
| 695 | */ |
| 696 | static int lp_V (lua_State *L) { |
| 697 | TTree *tree = newleaf(L, TOpenCall); |
| 698 | luaL_argcheck(L, !lua_isnoneornil(L, 1), 1, "non-nil value expected" ); |
| 699 | tree->key = addtonewktable(L, 0, 1); |
| 700 | return 1; |
| 701 | } |
| 702 | |
| 703 | |
| 704 | /* |
| 705 | ** Create a tree for a non-empty capture, with a body and |
| 706 | ** optionally with an associated Lua value (at index 'labelidx' in the |
| 707 | ** stack) |
| 708 | */ |
| 709 | static int capture_aux (lua_State *L, int cap, int labelidx) { |
| 710 | TTree *tree = newroot1sib(L, TCapture); |
| 711 | tree->cap = cap; |
| 712 | tree->key = (labelidx == 0) ? 0 : addtonewktable(L, 1, labelidx); |
| 713 | return 1; |
| 714 | } |
| 715 | |
| 716 | |
| 717 | /* |
| 718 | ** Fill a tree with an empty capture, using an empty (TTrue) sibling. |
| 719 | */ |
| 720 | static TTree *auxemptycap (TTree *tree, int cap) { |
| 721 | tree->tag = TCapture; |
| 722 | tree->cap = cap; |
| 723 | sib1(tree)->tag = TTrue; |
| 724 | return tree; |
| 725 | } |
| 726 | |
| 727 | |
| 728 | /* |
| 729 | ** Create a tree for an empty capture |
| 730 | */ |
| 731 | static TTree *newemptycap (lua_State *L, int cap) { |
| 732 | return auxemptycap(newtree(L, 2), cap); |
| 733 | } |
| 734 | |
| 735 | |
| 736 | /* |
| 737 | ** Create a tree for an empty capture with an associated Lua value |
| 738 | */ |
| 739 | static TTree *newemptycapkey (lua_State *L, int cap, int idx) { |
| 740 | TTree *tree = auxemptycap(newtree(L, 2), cap); |
| 741 | tree->key = addtonewktable(L, 0, idx); |
| 742 | return tree; |
| 743 | } |
| 744 | |
| 745 | |
| 746 | /* |
| 747 | ** Captures with syntax p / v |
| 748 | ** (function capture, query capture, string capture, or number capture) |
| 749 | */ |
| 750 | static int lp_divcapture (lua_State *L) { |
| 751 | switch (lua_type(L, 2)) { |
| 752 | case LUA_TFUNCTION: return capture_aux(L, Cfunction, 2); |
| 753 | case LUA_TTABLE: return capture_aux(L, Cquery, 2); |
| 754 | case LUA_TSTRING: return capture_aux(L, Cstring, 2); |
| 755 | case LUA_TNUMBER: { |
| 756 | int n = lua_tointeger(L, 2); |
| 757 | TTree *tree = newroot1sib(L, TCapture); |
| 758 | luaL_argcheck(L, 0 <= n && n <= SHRT_MAX, 1, "invalid number" ); |
| 759 | tree->cap = Cnum; |
| 760 | tree->key = n; |
| 761 | return 1; |
| 762 | } |
| 763 | default: return luaL_argerror(L, 2, "invalid replacement value" ); |
| 764 | } |
| 765 | } |
| 766 | |
| 767 | |
| 768 | static int lp_substcapture (lua_State *L) { |
| 769 | return capture_aux(L, Csubst, 0); |
| 770 | } |
| 771 | |
| 772 | |
| 773 | static int lp_tablecapture (lua_State *L) { |
| 774 | return capture_aux(L, Ctable, 0); |
| 775 | } |
| 776 | |
| 777 | |
| 778 | static int lp_groupcapture (lua_State *L) { |
| 779 | if (lua_isnoneornil(L, 2)) |
| 780 | return capture_aux(L, Cgroup, 0); |
| 781 | else |
| 782 | return capture_aux(L, Cgroup, 2); |
| 783 | } |
| 784 | |
| 785 | |
| 786 | static int lp_foldcapture (lua_State *L) { |
| 787 | luaL_checktype(L, 2, LUA_TFUNCTION); |
| 788 | return capture_aux(L, Cfold, 2); |
| 789 | } |
| 790 | |
| 791 | |
| 792 | static int lp_simplecapture (lua_State *L) { |
| 793 | return capture_aux(L, Csimple, 0); |
| 794 | } |
| 795 | |
| 796 | |
| 797 | static int lp_poscapture (lua_State *L) { |
| 798 | newemptycap(L, Cposition); |
| 799 | return 1; |
| 800 | } |
| 801 | |
| 802 | |
| 803 | static int lp_argcapture (lua_State *L) { |
| 804 | int n = (int)luaL_checkinteger(L, 1); |
| 805 | TTree *tree = newemptycap(L, Carg); |
| 806 | tree->key = n; |
| 807 | luaL_argcheck(L, 0 < n && n <= SHRT_MAX, 1, "invalid argument index" ); |
| 808 | return 1; |
| 809 | } |
| 810 | |
| 811 | |
| 812 | static int lp_backref (lua_State *L) { |
| 813 | luaL_checkany(L, 1); |
| 814 | newemptycapkey(L, Cbackref, 1); |
| 815 | return 1; |
| 816 | } |
| 817 | |
| 818 | |
| 819 | /* |
| 820 | ** Constant capture |
| 821 | */ |
| 822 | static int lp_constcapture (lua_State *L) { |
| 823 | int i; |
| 824 | int n = lua_gettop(L); /* number of values */ |
| 825 | if (n == 0) /* no values? */ |
| 826 | newleaf(L, TTrue); /* no capture */ |
| 827 | else if (n == 1) |
| 828 | newemptycapkey(L, Cconst, 1); /* single constant capture */ |
| 829 | else { /* create a group capture with all values */ |
| 830 | TTree *tree = newtree(L, 1 + 3 * (n - 1) + 2); |
| 831 | newktable(L, n); /* create a 'ktable' for new tree */ |
| 832 | tree->tag = TCapture; |
| 833 | tree->cap = Cgroup; |
| 834 | tree->key = 0; |
| 835 | tree = sib1(tree); |
| 836 | for (i = 1; i <= n - 1; i++) { |
| 837 | tree->tag = TSeq; |
| 838 | tree->u.ps = 3; /* skip TCapture and its sibling */ |
| 839 | auxemptycap(sib1(tree), Cconst); |
| 840 | sib1(tree)->key = addtoktable(L, i); |
| 841 | tree = sib2(tree); |
| 842 | } |
| 843 | auxemptycap(tree, Cconst); |
| 844 | tree->key = addtoktable(L, i); |
| 845 | } |
| 846 | return 1; |
| 847 | } |
| 848 | |
| 849 | |
| 850 | static int lp_matchtime (lua_State *L) { |
| 851 | TTree *tree; |
| 852 | luaL_checktype(L, 2, LUA_TFUNCTION); |
| 853 | tree = newroot1sib(L, TRunTime); |
| 854 | tree->key = addtonewktable(L, 1, 2); |
| 855 | return 1; |
| 856 | } |
| 857 | |
| 858 | /* }====================================================== */ |
| 859 | |
| 860 | |
| 861 | /* |
| 862 | ** {====================================================== |
| 863 | ** Grammar - Tree generation |
| 864 | ** ======================================================= |
| 865 | */ |
| 866 | |
| 867 | /* |
| 868 | ** push on the stack the index and the pattern for the |
| 869 | ** initial rule of grammar at index 'arg' in the stack; |
| 870 | ** also add that index into position table. |
| 871 | */ |
| 872 | static void getfirstrule (lua_State *L, int arg, int postab) { |
| 873 | lua_rawgeti(L, arg, 1); /* access first element */ |
| 874 | if (lua_isstring(L, -1)) { /* is it the name of initial rule? */ |
| 875 | lua_pushvalue(L, -1); /* duplicate it to use as key */ |
| 876 | lua_gettable(L, arg); /* get associated rule */ |
| 877 | } |
| 878 | else { |
| 879 | lua_pushinteger(L, 1); /* key for initial rule */ |
| 880 | lua_insert(L, -2); /* put it before rule */ |
| 881 | } |
| 882 | if (!testpattern(L, -1)) { /* initial rule not a pattern? */ |
| 883 | if (lua_isnil(L, -1)) |
| 884 | luaL_error(L, "grammar has no initial rule" ); |
| 885 | else |
| 886 | luaL_error(L, "initial rule '%s' is not a pattern" , lua_tostring(L, -2)); |
| 887 | } |
| 888 | lua_pushvalue(L, -2); /* push key */ |
| 889 | lua_pushinteger(L, 1); /* push rule position (after TGrammar) */ |
| 890 | lua_settable(L, postab); /* insert pair at position table */ |
| 891 | } |
| 892 | |
| 893 | /* |
| 894 | ** traverse grammar at index 'arg', pushing all its keys and patterns |
| 895 | ** into the stack. Create a new table (before all pairs key-pattern) to |
| 896 | ** collect all keys and their associated positions in the final tree |
| 897 | ** (the "position table"). |
| 898 | ** Return the number of rules and (in 'totalsize') the total size |
| 899 | ** for the new tree. |
| 900 | */ |
| 901 | static int collectrules (lua_State *L, int arg, int *totalsize) { |
| 902 | int n = 1; /* to count number of rules */ |
| 903 | int postab = lua_gettop(L) + 1; /* index of position table */ |
| 904 | int size; /* accumulator for total size */ |
| 905 | lua_newtable(L); /* create position table */ |
| 906 | getfirstrule(L, arg, postab); |
| 907 | size = 2 + getsize(L, postab + 2); /* TGrammar + TRule + rule */ |
| 908 | lua_pushnil(L); /* prepare to traverse grammar table */ |
| 909 | while (lua_next(L, arg) != 0) { |
| 910 | if (lua_tonumber(L, -2) == 1 || |
| 911 | lp_equal(L, -2, postab + 1)) { /* initial rule? */ |
| 912 | lua_pop(L, 1); /* remove value (keep key for lua_next) */ |
| 913 | continue; |
| 914 | } |
| 915 | if (!testpattern(L, -1)) /* value is not a pattern? */ |
| 916 | luaL_error(L, "rule '%s' is not a pattern" , val2str(L, -2)); |
| 917 | luaL_checkstack(L, LUA_MINSTACK, "grammar has too many rules" ); |
| 918 | lua_pushvalue(L, -2); /* push key (to insert into position table) */ |
| 919 | lua_pushinteger(L, size); |
| 920 | lua_settable(L, postab); |
| 921 | size += 1 + getsize(L, -1); /* update size */ |
| 922 | lua_pushvalue(L, -2); /* push key (for next lua_next) */ |
| 923 | n++; |
| 924 | } |
| 925 | *totalsize = size + 1; /* TTrue to finish list of rules */ |
| 926 | return n; |
| 927 | } |
| 928 | |
| 929 | |
| 930 | static void buildgrammar (lua_State *L, TTree *grammar, int frule, int n) { |
| 931 | int i; |
| 932 | TTree *nd = sib1(grammar); /* auxiliary pointer to traverse the tree */ |
| 933 | for (i = 0; i < n; i++) { /* add each rule into new tree */ |
| 934 | int ridx = frule + 2*i + 1; /* index of i-th rule */ |
| 935 | int rulesize; |
| 936 | TTree *rn = gettree(L, ridx, &rulesize); |
| 937 | nd->tag = TRule; |
| 938 | nd->key = 0; /* will be fixed when rule is used */ |
| 939 | nd->cap = i; /* rule number */ |
| 940 | nd->u.ps = rulesize + 1; /* point to next rule */ |
| 941 | memcpy(sib1(nd), rn, rulesize * sizeof(TTree)); /* copy rule */ |
| 942 | mergektable(L, ridx, sib1(nd)); /* merge its ktable into new one */ |
| 943 | nd = sib2(nd); /* move to next rule */ |
| 944 | } |
| 945 | nd->tag = TTrue; /* finish list of rules */ |
| 946 | } |
| 947 | |
| 948 | |
| 949 | /* |
| 950 | ** Check whether a tree has potential infinite loops |
| 951 | */ |
| 952 | static int checkloops (TTree *tree) { |
| 953 | tailcall: |
| 954 | if (tree->tag == TRep && nullable(sib1(tree))) |
| 955 | return 1; |
| 956 | else if (tree->tag == TGrammar) |
| 957 | return 0; /* sub-grammars already checked */ |
| 958 | else { |
| 959 | switch (numsiblings[tree->tag]) { |
| 960 | case 1: /* return checkloops(sib1(tree)); */ |
| 961 | tree = sib1(tree); goto tailcall; |
| 962 | case 2: |
| 963 | if (checkloops(sib1(tree))) return 1; |
| 964 | /* else return checkloops(sib2(tree)); */ |
| 965 | tree = sib2(tree); goto tailcall; |
| 966 | default: assert(numsiblings[tree->tag] == 0); return 0; |
| 967 | } |
| 968 | } |
| 969 | } |
| 970 | |
| 971 | |
| 972 | /* |
| 973 | ** Give appropriate error message for 'verifyrule'. If a rule appears |
| 974 | ** twice in 'passed', there is path from it back to itself without |
| 975 | ** advancing the subject. |
| 976 | */ |
| 977 | static int verifyerror (lua_State *L, int *passed, int npassed) { |
| 978 | int i, j; |
| 979 | for (i = npassed - 1; i >= 0; i--) { /* search for a repetition */ |
| 980 | for (j = i - 1; j >= 0; j--) { |
| 981 | if (passed[i] == passed[j]) { |
| 982 | lua_rawgeti(L, -1, passed[i]); /* get rule's key */ |
| 983 | return luaL_error(L, "rule '%s' may be left recursive" , val2str(L, -1)); |
| 984 | } |
| 985 | } |
| 986 | } |
| 987 | return luaL_error(L, "too many left calls in grammar" ); |
| 988 | } |
| 989 | |
| 990 | |
| 991 | /* |
| 992 | ** Check whether a rule can be left recursive; raise an error in that |
| 993 | ** case; otherwise return 1 iff pattern is nullable. |
| 994 | ** The return value is used to check sequences, where the second pattern |
| 995 | ** is only relevant if the first is nullable. |
| 996 | ** Parameter 'nb' works as an accumulator, to allow tail calls in |
| 997 | ** choices. ('nb' true makes function returns true.) |
| 998 | ** Parameter 'passed' is a list of already visited rules, 'npassed' |
| 999 | ** counts the elements in 'passed'. |
| 1000 | ** Assume ktable at the top of the stack. |
| 1001 | */ |
| 1002 | static int verifyrule (lua_State *L, TTree *tree, int *passed, int npassed, |
| 1003 | int nb) { |
| 1004 | tailcall: |
| 1005 | switch (tree->tag) { |
| 1006 | case TChar: case TSet: case TAny: |
| 1007 | case TFalse: |
| 1008 | return nb; /* cannot pass from here */ |
| 1009 | case TTrue: |
| 1010 | case TBehind: /* look-behind cannot have calls */ |
| 1011 | return 1; |
| 1012 | case TNot: case TAnd: case TRep: |
| 1013 | /* return verifyrule(L, sib1(tree), passed, npassed, 1); */ |
| 1014 | tree = sib1(tree); nb = 1; goto tailcall; |
| 1015 | case TCapture: case TRunTime: |
| 1016 | /* return verifyrule(L, sib1(tree), passed, npassed, nb); */ |
| 1017 | tree = sib1(tree); goto tailcall; |
| 1018 | case TCall: |
| 1019 | /* return verifyrule(L, sib2(tree), passed, npassed, nb); */ |
| 1020 | tree = sib2(tree); goto tailcall; |
| 1021 | case TSeq: /* only check 2nd child if first is nb */ |
| 1022 | if (!verifyrule(L, sib1(tree), passed, npassed, 0)) |
| 1023 | return nb; |
| 1024 | /* else return verifyrule(L, sib2(tree), passed, npassed, nb); */ |
| 1025 | tree = sib2(tree); goto tailcall; |
| 1026 | case TChoice: /* must check both children */ |
| 1027 | nb = verifyrule(L, sib1(tree), passed, npassed, nb); |
| 1028 | /* return verifyrule(L, sib2(tree), passed, npassed, nb); */ |
| 1029 | tree = sib2(tree); goto tailcall; |
| 1030 | case TRule: |
| 1031 | if (npassed >= MAXRULES) |
| 1032 | return verifyerror(L, passed, npassed); |
| 1033 | else { |
| 1034 | passed[npassed++] = tree->key; |
| 1035 | /* return verifyrule(L, sib1(tree), passed, npassed); */ |
| 1036 | tree = sib1(tree); goto tailcall; |
| 1037 | } |
| 1038 | case TGrammar: |
| 1039 | return nullable(tree); /* sub-grammar cannot be left recursive */ |
| 1040 | default: assert(0); return 0; |
| 1041 | } |
| 1042 | } |
| 1043 | |
| 1044 | |
| 1045 | static void verifygrammar (lua_State *L, TTree *grammar) { |
| 1046 | int passed[MAXRULES]; |
| 1047 | TTree *rule; |
| 1048 | /* check left-recursive rules */ |
| 1049 | for (rule = sib1(grammar); rule->tag == TRule; rule = sib2(rule)) { |
| 1050 | if (rule->key == 0) continue; /* unused rule */ |
| 1051 | verifyrule(L, sib1(rule), passed, 0, 0); |
| 1052 | } |
| 1053 | assert(rule->tag == TTrue); |
| 1054 | /* check infinite loops inside rules */ |
| 1055 | for (rule = sib1(grammar); rule->tag == TRule; rule = sib2(rule)) { |
| 1056 | if (rule->key == 0) continue; /* unused rule */ |
| 1057 | if (checkloops(sib1(rule))) { |
| 1058 | lua_rawgeti(L, -1, rule->key); /* get rule's key */ |
| 1059 | luaL_error(L, "empty loop in rule '%s'" , val2str(L, -1)); |
| 1060 | } |
| 1061 | } |
| 1062 | assert(rule->tag == TTrue); |
| 1063 | } |
| 1064 | |
| 1065 | |
| 1066 | /* |
| 1067 | ** Give a name for the initial rule if it is not referenced |
| 1068 | */ |
| 1069 | static void initialrulename (lua_State *L, TTree *grammar, int frule) { |
| 1070 | if (sib1(grammar)->key == 0) { /* initial rule is not referenced? */ |
| 1071 | int n = lua_rawlen(L, -1) + 1; /* index for name */ |
| 1072 | lua_pushvalue(L, frule); /* rule's name */ |
| 1073 | lua_rawseti(L, -2, n); /* ktable was on the top of the stack */ |
| 1074 | sib1(grammar)->key = n; |
| 1075 | } |
| 1076 | } |
| 1077 | |
| 1078 | |
| 1079 | static TTree *newgrammar (lua_State *L, int arg) { |
| 1080 | int treesize; |
| 1081 | int frule = lua_gettop(L) + 2; /* position of first rule's key */ |
| 1082 | int n = collectrules(L, arg, &treesize); |
| 1083 | TTree *g = newtree(L, treesize); |
| 1084 | luaL_argcheck(L, n <= MAXRULES, arg, "grammar has too many rules" ); |
| 1085 | g->tag = TGrammar; g->u.n = n; |
| 1086 | lua_newtable(L); /* create 'ktable' */ |
| 1087 | lua_setuservalue(L, -2); |
| 1088 | buildgrammar(L, g, frule, n); |
| 1089 | lua_getuservalue(L, -1); /* get 'ktable' for new tree */ |
| 1090 | finalfix(L, frule - 1, g, sib1(g)); |
| 1091 | initialrulename(L, g, frule); |
| 1092 | verifygrammar(L, g); |
| 1093 | lua_pop(L, 1); /* remove 'ktable' */ |
| 1094 | lua_insert(L, -(n * 2 + 2)); /* move new table to proper position */ |
| 1095 | lua_pop(L, n * 2 + 1); /* remove position table + rule pairs */ |
| 1096 | return g; /* new table at the top of the stack */ |
| 1097 | } |
| 1098 | |
| 1099 | /* }====================================================== */ |
| 1100 | |
| 1101 | |
| 1102 | static Instruction *prepcompile (lua_State *L, Pattern *p, int idx) { |
| 1103 | lua_getuservalue(L, idx); /* push 'ktable' (may be used by 'finalfix') */ |
| 1104 | finalfix(L, 0, NULL, p->tree); |
| 1105 | lua_pop(L, 1); /* remove 'ktable' */ |
| 1106 | return compile(L, p); |
| 1107 | } |
| 1108 | |
| 1109 | |
| 1110 | static int lp_printtree (lua_State *L) { |
| 1111 | TTree *tree = getpatt(L, 1, NULL); |
| 1112 | int c = lua_toboolean(L, 2); |
| 1113 | if (c) { |
| 1114 | lua_getuservalue(L, 1); /* push 'ktable' (may be used by 'finalfix') */ |
| 1115 | finalfix(L, 0, NULL, tree); |
| 1116 | lua_pop(L, 1); /* remove 'ktable' */ |
| 1117 | } |
| 1118 | printktable(L, 1); |
| 1119 | printtree(tree, 0); |
| 1120 | return 0; |
| 1121 | } |
| 1122 | |
| 1123 | |
| 1124 | static int lp_printcode (lua_State *L) { |
| 1125 | Pattern *p = getpattern(L, 1); |
| 1126 | printktable(L, 1); |
| 1127 | if (p->code == NULL) /* not compiled yet? */ |
| 1128 | prepcompile(L, p, 1); |
| 1129 | printpatt(p->code, p->codesize); |
| 1130 | return 0; |
| 1131 | } |
| 1132 | |
| 1133 | |
| 1134 | /* |
| 1135 | ** Get the initial position for the match, interpreting negative |
| 1136 | ** values from the end of the subject |
| 1137 | */ |
| 1138 | static size_t initposition (lua_State *L, size_t len) { |
| 1139 | lua_Integer ii = luaL_optinteger(L, 3, 1); |
| 1140 | if (ii > 0) { /* positive index? */ |
| 1141 | if ((size_t)ii <= len) /* inside the string? */ |
| 1142 | return (size_t)ii - 1; /* return it (corrected to 0-base) */ |
| 1143 | else return len; /* crop at the end */ |
| 1144 | } |
| 1145 | else { /* negative index */ |
| 1146 | if ((size_t)(-ii) <= len) /* inside the string? */ |
| 1147 | return len - ((size_t)(-ii)); /* return position from the end */ |
| 1148 | else return 0; /* crop at the beginning */ |
| 1149 | } |
| 1150 | } |
| 1151 | |
| 1152 | |
| 1153 | /* |
| 1154 | ** Main match function |
| 1155 | */ |
| 1156 | static int lp_match (lua_State *L) { |
| 1157 | Capture capture[INITCAPSIZE]; |
| 1158 | const char *r; |
| 1159 | size_t l; |
| 1160 | Pattern *p = (getpatt(L, 1, NULL), getpattern(L, 1)); |
| 1161 | Instruction *code = (p->code != NULL) ? p->code : prepcompile(L, p, 1); |
| 1162 | const char *s = luaL_checklstring(L, SUBJIDX, &l); |
| 1163 | size_t i = initposition(L, l); |
| 1164 | int ptop = lua_gettop(L); |
| 1165 | lua_pushnil(L); /* initialize subscache */ |
| 1166 | lua_pushlightuserdata(L, capture); /* initialize caplistidx */ |
| 1167 | lua_getuservalue(L, 1); /* initialize penvidx */ |
| 1168 | r = match(L, s, s + i, s + l, code, capture, ptop); |
| 1169 | if (r == NULL) { |
| 1170 | lua_pushnil(L); |
| 1171 | return 1; |
| 1172 | } |
| 1173 | return getcaptures(L, s, r, ptop); |
| 1174 | } |
| 1175 | |
| 1176 | |
| 1177 | |
| 1178 | /* |
| 1179 | ** {====================================================== |
| 1180 | ** Library creation and functions not related to matching |
| 1181 | ** ======================================================= |
| 1182 | */ |
| 1183 | |
| 1184 | /* maximum limit for stack size */ |
| 1185 | #define MAXLIM (INT_MAX / 100) |
| 1186 | |
| 1187 | static int lp_setmax (lua_State *L) { |
| 1188 | lua_Integer lim = luaL_checkinteger(L, 1); |
| 1189 | luaL_argcheck(L, 0 < lim && lim <= MAXLIM, 1, "out of range" ); |
| 1190 | lua_settop(L, 1); |
| 1191 | lua_setfield(L, LUA_REGISTRYINDEX, MAXSTACKIDX); |
| 1192 | return 0; |
| 1193 | } |
| 1194 | |
| 1195 | |
| 1196 | static int lp_version (lua_State *L) { |
| 1197 | lua_pushstring(L, VERSION); |
| 1198 | return 1; |
| 1199 | } |
| 1200 | |
| 1201 | |
| 1202 | static int lp_type (lua_State *L) { |
| 1203 | if (testpattern(L, 1)) |
| 1204 | lua_pushliteral(L, "pattern" ); |
| 1205 | else |
| 1206 | lua_pushnil(L); |
| 1207 | return 1; |
| 1208 | } |
| 1209 | |
| 1210 | |
| 1211 | int lp_gc (lua_State *L) { |
| 1212 | Pattern *p = getpattern(L, 1); |
| 1213 | realloccode(L, p, 0); /* delete code block */ |
| 1214 | return 0; |
| 1215 | } |
| 1216 | |
| 1217 | |
| 1218 | static void createcat (lua_State *L, const char *catname, int (catf) (int)) { |
| 1219 | TTree *t = newcharset(L); |
| 1220 | int i; |
| 1221 | for (i = 0; i <= UCHAR_MAX; i++) |
| 1222 | if (catf(i)) setchar(treebuffer(t), i); |
| 1223 | lua_setfield(L, -2, catname); |
| 1224 | } |
| 1225 | |
| 1226 | |
| 1227 | static int lp_locale (lua_State *L) { |
| 1228 | if (lua_isnoneornil(L, 1)) { |
| 1229 | lua_settop(L, 0); |
| 1230 | lua_createtable(L, 0, 12); |
| 1231 | } |
| 1232 | else { |
| 1233 | luaL_checktype(L, 1, LUA_TTABLE); |
| 1234 | lua_settop(L, 1); |
| 1235 | } |
| 1236 | createcat(L, "alnum" , isalnum); |
| 1237 | createcat(L, "alpha" , isalpha); |
| 1238 | createcat(L, "cntrl" , iscntrl); |
| 1239 | createcat(L, "digit" , isdigit); |
| 1240 | createcat(L, "graph" , isgraph); |
| 1241 | createcat(L, "lower" , islower); |
| 1242 | createcat(L, "print" , isprint); |
| 1243 | createcat(L, "punct" , ispunct); |
| 1244 | createcat(L, "space" , isspace); |
| 1245 | createcat(L, "upper" , isupper); |
| 1246 | createcat(L, "xdigit" , isxdigit); |
| 1247 | return 1; |
| 1248 | } |
| 1249 | |
| 1250 | |
| 1251 | static struct luaL_Reg pattreg[] = { |
| 1252 | {"ptree" , lp_printtree}, |
| 1253 | {"pcode" , lp_printcode}, |
| 1254 | {"match" , lp_match}, |
| 1255 | {"B" , lp_behind}, |
| 1256 | {"V" , lp_V}, |
| 1257 | {"C" , lp_simplecapture}, |
| 1258 | {"Cc" , lp_constcapture}, |
| 1259 | {"Cmt" , lp_matchtime}, |
| 1260 | {"Cb" , lp_backref}, |
| 1261 | {"Carg" , lp_argcapture}, |
| 1262 | {"Cp" , lp_poscapture}, |
| 1263 | {"Cs" , lp_substcapture}, |
| 1264 | {"Ct" , lp_tablecapture}, |
| 1265 | {"Cf" , lp_foldcapture}, |
| 1266 | {"Cg" , lp_groupcapture}, |
| 1267 | {"P" , lp_P}, |
| 1268 | {"S" , lp_set}, |
| 1269 | {"R" , lp_range}, |
| 1270 | {"locale" , lp_locale}, |
| 1271 | {"version" , lp_version}, |
| 1272 | {"setmaxstack" , lp_setmax}, |
| 1273 | {"type" , lp_type}, |
| 1274 | {NULL, NULL} |
| 1275 | }; |
| 1276 | |
| 1277 | |
| 1278 | static struct luaL_Reg metareg[] = { |
| 1279 | {"__mul" , lp_seq}, |
| 1280 | {"__add" , lp_choice}, |
| 1281 | {"__pow" , lp_star}, |
| 1282 | {"__gc" , lp_gc}, |
| 1283 | {"__len" , lp_and}, |
| 1284 | {"__div" , lp_divcapture}, |
| 1285 | {"__unm" , lp_not}, |
| 1286 | {"__sub" , lp_sub}, |
| 1287 | {NULL, NULL} |
| 1288 | }; |
| 1289 | |
| 1290 | |
| 1291 | int luaopen_lpeg (lua_State *L); |
| 1292 | int luaopen_lpeg (lua_State *L) { |
| 1293 | luaL_newmetatable(L, PATTERN_T); |
| 1294 | lua_pushnumber(L, MAXBACK); /* initialize maximum backtracking */ |
| 1295 | lua_setfield(L, LUA_REGISTRYINDEX, MAXSTACKIDX); |
| 1296 | luaL_setfuncs(L, metareg, 0); |
| 1297 | luaL_newlib(L, pattreg); |
| 1298 | lua_pushvalue(L, -1); |
| 1299 | lua_setfield(L, -3, "__index" ); |
| 1300 | return 1; |
| 1301 | } |
| 1302 | |
| 1303 | /* }====================================================== */ |
| 1304 | |