1 | #ifndef wren_value_h |
2 | #define wren_value_h |
3 | |
4 | #include <stdbool.h> |
5 | #include <string.h> |
6 | |
7 | #include "wren_common.h" |
8 | #include "wren_math.h" |
9 | #include "wren_utils.h" |
10 | |
11 | // This defines the built-in types and their core representations in memory. |
12 | // Since Wren is dynamically typed, any variable can hold a value of any type, |
13 | // and the type can change at runtime. Implementing this efficiently is |
14 | // critical for performance. |
15 | // |
16 | // The main type exposed by this is [Value]. A C variable of that type is a |
17 | // storage location that can hold any Wren value. The stack, module variables, |
18 | // and instance fields are all implemented in C as variables of type Value. |
19 | // |
20 | // The built-in types for booleans, numbers, and null are unboxed: their value |
21 | // is stored directly in the Value, and copying a Value copies the value. Other |
22 | // types--classes, instances of classes, functions, lists, and strings--are all |
23 | // reference types. They are stored on the heap and the Value just stores a |
24 | // pointer to it. Copying the Value copies a reference to the same object. The |
25 | // Wren implementation calls these "Obj", or objects, though to a user, all |
26 | // values are objects. |
27 | // |
28 | // There is also a special singleton value "undefined". It is used internally |
29 | // but never appears as a real value to a user. It has two uses: |
30 | // |
31 | // - It is used to identify module variables that have been implicitly declared |
32 | // by use in a forward reference but not yet explicitly declared. These only |
33 | // exist during compilation and do not appear at runtime. |
34 | // |
35 | // - It is used to represent unused map entries in an ObjMap. |
36 | // |
37 | // There are two supported Value representations. The main one uses a technique |
38 | // called "NaN tagging" (explained in detail below) to store a number, any of |
39 | // the value types, or a pointer, all inside one double-precision floating |
40 | // point number. A larger, slower, Value type that uses a struct to store these |
41 | // is also supported, and is useful for debugging the VM. |
42 | // |
43 | // The representation is controlled by the `WREN_NAN_TAGGING` define. If that's |
44 | // defined, Nan tagging is used. |
45 | |
46 | // These macros cast a Value to one of the specific object types. These do *not* |
47 | // perform any validation, so must only be used after the Value has been |
48 | // ensured to be the right type. |
49 | #define AS_CLASS(value) ((ObjClass*)AS_OBJ(value)) // ObjClass* |
50 | #define AS_CLOSURE(value) ((ObjClosure*)AS_OBJ(value)) // ObjClosure* |
51 | #define AS_FIBER(v) ((ObjFiber*)AS_OBJ(v)) // ObjFiber* |
52 | #define AS_FN(value) ((ObjFn*)AS_OBJ(value)) // ObjFn* |
53 | #define AS_FOREIGN(v) ((ObjForeign*)AS_OBJ(v)) // ObjForeign* |
54 | #define AS_INSTANCE(value) ((ObjInstance*)AS_OBJ(value)) // ObjInstance* |
55 | #define AS_LIST(value) ((ObjList*)AS_OBJ(value)) // ObjList* |
56 | #define AS_MAP(value) ((ObjMap*)AS_OBJ(value)) // ObjMap* |
57 | #define AS_MODULE(value) ((ObjModule*)AS_OBJ(value)) // ObjModule* |
58 | #define AS_NUM(value) (wrenValueToNum(value)) // double |
59 | #define AS_RANGE(v) ((ObjRange*)AS_OBJ(v)) // ObjRange* |
60 | #define AS_STRING(v) ((ObjString*)AS_OBJ(v)) // ObjString* |
61 | #define AS_CSTRING(v) (AS_STRING(v)->value) // const char* |
62 | |
63 | // These macros promote a primitive C value to a full Wren Value. There are |
64 | // more defined below that are specific to the Nan tagged or other |
65 | // representation. |
66 | #define BOOL_VAL(boolean) ((boolean) ? TRUE_VAL : FALSE_VAL) // boolean |
67 | #define NUM_VAL(num) (wrenNumToValue(num)) // double |
68 | #define OBJ_VAL(obj) (wrenObjectToValue((Obj*)(obj))) // Any Obj___* |
69 | |
70 | // These perform type tests on a Value, returning `true` if the Value is of the |
71 | // given type. |
72 | #define IS_BOOL(value) (wrenIsBool(value)) // Bool |
73 | #define IS_CLASS(value) (wrenIsObjType(value, OBJ_CLASS)) // ObjClass |
74 | #define IS_CLOSURE(value) (wrenIsObjType(value, OBJ_CLOSURE)) // ObjClosure |
75 | #define IS_FIBER(value) (wrenIsObjType(value, OBJ_FIBER)) // ObjFiber |
76 | #define IS_FN(value) (wrenIsObjType(value, OBJ_FN)) // ObjFn |
77 | #define IS_FOREIGN(value) (wrenIsObjType(value, OBJ_FOREIGN)) // ObjForeign |
78 | #define IS_INSTANCE(value) (wrenIsObjType(value, OBJ_INSTANCE)) // ObjInstance |
79 | #define IS_LIST(value) (wrenIsObjType(value, OBJ_LIST)) // ObjList |
80 | #define IS_MAP(value) (wrenIsObjType(value, OBJ_MAP)) // ObjMap |
81 | #define IS_RANGE(value) (wrenIsObjType(value, OBJ_RANGE)) // ObjRange |
82 | #define IS_STRING(value) (wrenIsObjType(value, OBJ_STRING)) // ObjString |
83 | |
84 | // Creates a new string object from [text], which should be a bare C string |
85 | // literal. This determines the length of the string automatically at compile |
86 | // time based on the size of the character array (-1 for the terminating '\0'). |
87 | #define CONST_STRING(vm, text) wrenNewStringLength((vm), (text), sizeof(text) - 1) |
88 | |
89 | // Identifies which specific type a heap-allocated object is. |
90 | typedef enum { |
91 | OBJ_CLASS, |
92 | OBJ_CLOSURE, |
93 | OBJ_FIBER, |
94 | OBJ_FN, |
95 | OBJ_FOREIGN, |
96 | OBJ_INSTANCE, |
97 | OBJ_LIST, |
98 | OBJ_MAP, |
99 | OBJ_MODULE, |
100 | OBJ_RANGE, |
101 | OBJ_STRING, |
102 | OBJ_UPVALUE |
103 | } ObjType; |
104 | |
105 | typedef struct sObjClass ObjClass; |
106 | |
107 | // Base struct for all heap-allocated objects. |
108 | typedef struct sObj Obj; |
109 | struct sObj |
110 | { |
111 | ObjType type; |
112 | bool isDark; |
113 | |
114 | // The object's class. |
115 | ObjClass* classObj; |
116 | |
117 | // The next object in the linked list of all currently allocated objects. |
118 | struct sObj* next; |
119 | }; |
120 | |
121 | #if WREN_NAN_TAGGING |
122 | |
123 | typedef uint64_t Value; |
124 | |
125 | #else |
126 | |
127 | typedef enum |
128 | { |
129 | VAL_FALSE, |
130 | VAL_NULL, |
131 | VAL_NUM, |
132 | VAL_TRUE, |
133 | VAL_UNDEFINED, |
134 | VAL_OBJ |
135 | } ValueType; |
136 | |
137 | typedef struct |
138 | { |
139 | ValueType type; |
140 | union |
141 | { |
142 | double num; |
143 | Obj* obj; |
144 | } as; |
145 | } Value; |
146 | |
147 | #endif |
148 | |
149 | DECLARE_BUFFER(Value, Value); |
150 | |
151 | // A heap-allocated string object. |
152 | struct sObjString |
153 | { |
154 | Obj obj; |
155 | |
156 | // Number of bytes in the string, not including the null terminator. |
157 | uint32_t length; |
158 | |
159 | // The hash value of the string's contents. |
160 | uint32_t hash; |
161 | |
162 | // Inline array of the string's bytes followed by a null terminator. |
163 | char value[FLEXIBLE_ARRAY]; |
164 | }; |
165 | |
166 | // The dynamically allocated data structure for a variable that has been used |
167 | // by a closure. Whenever a function accesses a variable declared in an |
168 | // enclosing function, it will get to it through this. |
169 | // |
170 | // An upvalue can be either "closed" or "open". An open upvalue points directly |
171 | // to a [Value] that is still stored on the fiber's stack because the local |
172 | // variable is still in scope in the function where it's declared. |
173 | // |
174 | // When that local variable goes out of scope, the upvalue pointing to it will |
175 | // be closed. When that happens, the value gets copied off the stack into the |
176 | // upvalue itself. That way, it can have a longer lifetime than the stack |
177 | // variable. |
178 | typedef struct sObjUpvalue |
179 | { |
180 | // The object header. Note that upvalues have this because they are garbage |
181 | // collected, but they are not first class Wren objects. |
182 | Obj obj; |
183 | |
184 | // Pointer to the variable this upvalue is referencing. |
185 | Value* value; |
186 | |
187 | // If the upvalue is closed (i.e. the local variable it was pointing to has |
188 | // been popped off the stack) then the closed-over value will be hoisted out |
189 | // of the stack into here. [value] will then be changed to point to this. |
190 | Value closed; |
191 | |
192 | // Open upvalues are stored in a linked list by the fiber. This points to the |
193 | // next upvalue in that list. |
194 | struct sObjUpvalue* next; |
195 | } ObjUpvalue; |
196 | |
197 | // The type of a primitive function. |
198 | // |
199 | // Primitives are similar to foreign functions, but have more direct access to |
200 | // VM internals. It is passed the arguments in [args]. If it returns a value, |
201 | // it places it in `args[0]` and returns `true`. If it causes a runtime error |
202 | // or modifies the running fiber, it returns `false`. |
203 | typedef bool (*Primitive)(WrenVM* vm, Value* args); |
204 | |
205 | // TODO: See if it's actually a perf improvement to have this in a separate |
206 | // struct instead of in ObjFn. |
207 | // Stores debugging information for a function used for things like stack |
208 | // traces. |
209 | typedef struct |
210 | { |
211 | // The name of the function. Heap allocated and owned by the FnDebug. |
212 | char* name; |
213 | |
214 | // An array of line numbers. There is one element in this array for each |
215 | // bytecode in the function's bytecode array. The value of that element is |
216 | // the line in the source code that generated that instruction. |
217 | IntBuffer sourceLines; |
218 | } FnDebug; |
219 | |
220 | // A loaded module and the top-level variables it defines. |
221 | // |
222 | // While this is an Obj and is managed by the GC, it never appears as a |
223 | // first-class object in Wren. |
224 | typedef struct |
225 | { |
226 | Obj obj; |
227 | |
228 | // The currently defined top-level variables. |
229 | ValueBuffer variables; |
230 | |
231 | // Symbol table for the names of all module variables. Indexes here directly |
232 | // correspond to entries in [variables]. |
233 | SymbolTable variableNames; |
234 | |
235 | // The name of the module. |
236 | ObjString* name; |
237 | } ObjModule; |
238 | |
239 | // A function object. It wraps and owns the bytecode and other debug information |
240 | // for a callable chunk of code. |
241 | // |
242 | // Function objects are not passed around and invoked directly. Instead, they |
243 | // are always referenced by an [ObjClosure] which is the real first-class |
244 | // representation of a function. This isn't strictly necessary if they function |
245 | // has no upvalues, but lets the rest of the VM assume all called objects will |
246 | // be closures. |
247 | typedef struct |
248 | { |
249 | Obj obj; |
250 | |
251 | ByteBuffer code; |
252 | ValueBuffer constants; |
253 | |
254 | // The module where this function was defined. |
255 | ObjModule* module; |
256 | |
257 | // The maximum number of stack slots this function may use. |
258 | int maxSlots; |
259 | |
260 | // The number of upvalues this function closes over. |
261 | int numUpvalues; |
262 | |
263 | // The number of parameters this function expects. Used to ensure that .call |
264 | // handles a mismatch between number of parameters and arguments. This will |
265 | // only be set for fns, and not ObjFns that represent methods or scripts. |
266 | int arity; |
267 | FnDebug* debug; |
268 | } ObjFn; |
269 | |
270 | // An instance of a first-class function and the environment it has closed over. |
271 | // Unlike [ObjFn], this has captured the upvalues that the function accesses. |
272 | typedef struct |
273 | { |
274 | Obj obj; |
275 | |
276 | // The function that this closure is an instance of. |
277 | ObjFn* fn; |
278 | |
279 | // The upvalues this function has closed over. |
280 | ObjUpvalue* upvalues[FLEXIBLE_ARRAY]; |
281 | } ObjClosure; |
282 | |
283 | typedef struct |
284 | { |
285 | // Pointer to the current (really next-to-be-executed) instruction in the |
286 | // function's bytecode. |
287 | uint8_t* ip; |
288 | |
289 | // The closure being executed. |
290 | ObjClosure* closure; |
291 | |
292 | // Pointer to the first stack slot used by this call frame. This will contain |
293 | // the receiver, followed by the function's parameters, then local variables |
294 | // and temporaries. |
295 | Value* stackStart; |
296 | } CallFrame; |
297 | |
298 | // Tracks how this fiber has been invoked, aside from the ways that can be |
299 | // detected from the state of other fields in the fiber. |
300 | typedef enum |
301 | { |
302 | // The fiber is being run from another fiber using a call to `try()`. |
303 | FIBER_TRY, |
304 | |
305 | // The fiber was directly invoked by `runInterpreter()`. This means it's the |
306 | // initial fiber used by a call to `wrenCall()` or `wrenInterpret()`. |
307 | FIBER_ROOT, |
308 | |
309 | // The fiber is invoked some other way. If [caller] is `NULL` then the fiber |
310 | // was invoked using `call()`. If [numFrames] is zero, then the fiber has |
311 | // finished running and is done. If [numFrames] is one and that frame's `ip` |
312 | // points to the first byte of code, the fiber has not been started yet. |
313 | FIBER_OTHER, |
314 | } FiberState; |
315 | |
316 | typedef struct sObjFiber |
317 | { |
318 | Obj obj; |
319 | |
320 | // The stack of value slots. This is used for holding local variables and |
321 | // temporaries while the fiber is executing. It is heap-allocated and grown |
322 | // as needed. |
323 | Value* stack; |
324 | |
325 | // A pointer to one past the top-most value on the stack. |
326 | Value* stackTop; |
327 | |
328 | // The number of allocated slots in the stack array. |
329 | int stackCapacity; |
330 | |
331 | // The stack of call frames. This is a dynamic array that grows as needed but |
332 | // never shrinks. |
333 | CallFrame* frames; |
334 | |
335 | // The number of frames currently in use in [frames]. |
336 | int numFrames; |
337 | |
338 | // The number of [frames] allocated. |
339 | int frameCapacity; |
340 | |
341 | // Pointer to the first node in the linked list of open upvalues that are |
342 | // pointing to values still on the stack. The head of the list will be the |
343 | // upvalue closest to the top of the stack, and then the list works downwards. |
344 | ObjUpvalue* openUpvalues; |
345 | |
346 | // The fiber that ran this one. If this fiber is yielded, control will resume |
347 | // to this one. May be `NULL`. |
348 | struct sObjFiber* caller; |
349 | |
350 | // If the fiber failed because of a runtime error, this will contain the |
351 | // error object. Otherwise, it will be null. |
352 | Value error; |
353 | |
354 | FiberState state; |
355 | } ObjFiber; |
356 | |
357 | typedef enum |
358 | { |
359 | // A primitive method implemented in C in the VM. Unlike foreign methods, |
360 | // this can directly manipulate the fiber's stack. |
361 | METHOD_PRIMITIVE, |
362 | |
363 | // A primitive that handles .call on Fn. |
364 | METHOD_FUNCTION_CALL, |
365 | |
366 | // A externally-defined C method. |
367 | METHOD_FOREIGN, |
368 | |
369 | // A normal user-defined method. |
370 | METHOD_BLOCK, |
371 | |
372 | // No method for the given symbol. |
373 | METHOD_NONE |
374 | } MethodType; |
375 | |
376 | typedef struct |
377 | { |
378 | MethodType type; |
379 | |
380 | // The method function itself. The [type] determines which field of the union |
381 | // is used. |
382 | union |
383 | { |
384 | Primitive primitive; |
385 | WrenForeignMethodFn foreign; |
386 | ObjClosure* closure; |
387 | } as; |
388 | } Method; |
389 | |
390 | DECLARE_BUFFER(Method, Method); |
391 | |
392 | struct sObjClass |
393 | { |
394 | Obj obj; |
395 | ObjClass* superclass; |
396 | |
397 | // The number of fields needed for an instance of this class, including all |
398 | // of its superclass fields. |
399 | int numFields; |
400 | |
401 | // The table of methods that are defined in or inherited by this class. |
402 | // Methods are called by symbol, and the symbol directly maps to an index in |
403 | // this table. This makes method calls fast at the expense of empty cells in |
404 | // the list for methods the class doesn't support. |
405 | // |
406 | // You can think of it as a hash table that never has collisions but has a |
407 | // really low load factor. Since methods are pretty small (just a type and a |
408 | // pointer), this should be a worthwhile trade-off. |
409 | MethodBuffer methods; |
410 | |
411 | // The name of the class. |
412 | ObjString* name; |
413 | |
414 | // The ClassAttribute for the class, if any |
415 | Value attributes; |
416 | }; |
417 | |
418 | typedef struct |
419 | { |
420 | Obj obj; |
421 | uint8_t data[FLEXIBLE_ARRAY]; |
422 | } ObjForeign; |
423 | |
424 | typedef struct |
425 | { |
426 | Obj obj; |
427 | Value fields[FLEXIBLE_ARRAY]; |
428 | } ObjInstance; |
429 | |
430 | typedef struct |
431 | { |
432 | Obj obj; |
433 | |
434 | // The elements in the list. |
435 | ValueBuffer elements; |
436 | } ObjList; |
437 | |
438 | typedef struct |
439 | { |
440 | // The entry's key, or UNDEFINED_VAL if the entry is not in use. |
441 | Value key; |
442 | |
443 | // The value associated with the key. If the key is UNDEFINED_VAL, this will |
444 | // be false to indicate an open available entry or true to indicate a |
445 | // tombstone -- an entry that was previously in use but was then deleted. |
446 | Value value; |
447 | } MapEntry; |
448 | |
449 | // A hash table mapping keys to values. |
450 | // |
451 | // We use something very simple: open addressing with linear probing. The hash |
452 | // table is an array of entries. Each entry is a key-value pair. If the key is |
453 | // the special UNDEFINED_VAL, it indicates no value is currently in that slot. |
454 | // Otherwise, it's a valid key, and the value is the value associated with it. |
455 | // |
456 | // When entries are added, the array is dynamically scaled by GROW_FACTOR to |
457 | // keep the number of filled slots under MAP_LOAD_PERCENT. Likewise, if the map |
458 | // gets empty enough, it will be resized to a smaller array. When this happens, |
459 | // all existing entries are rehashed and re-added to the new array. |
460 | // |
461 | // When an entry is removed, its slot is replaced with a "tombstone". This is an |
462 | // entry whose key is UNDEFINED_VAL and whose value is TRUE_VAL. When probing |
463 | // for a key, we will continue past tombstones, because the desired key may be |
464 | // found after them if the key that was removed was part of a prior collision. |
465 | // When the array gets resized, all tombstones are discarded. |
466 | typedef struct |
467 | { |
468 | Obj obj; |
469 | |
470 | // The number of entries allocated. |
471 | uint32_t capacity; |
472 | |
473 | // The number of entries in the map. |
474 | uint32_t count; |
475 | |
476 | // Pointer to a contiguous array of [capacity] entries. |
477 | MapEntry* entries; |
478 | } ObjMap; |
479 | |
480 | typedef struct |
481 | { |
482 | Obj obj; |
483 | |
484 | // The beginning of the range. |
485 | double from; |
486 | |
487 | // The end of the range. May be greater or less than [from]. |
488 | double to; |
489 | |
490 | // True if [to] is included in the range. |
491 | bool isInclusive; |
492 | } ObjRange; |
493 | |
494 | // An IEEE 754 double-precision float is a 64-bit value with bits laid out like: |
495 | // |
496 | // 1 Sign bit |
497 | // | 11 Exponent bits |
498 | // | | 52 Mantissa (i.e. fraction) bits |
499 | // | | | |
500 | // S[Exponent-][Mantissa------------------------------------------] |
501 | // |
502 | // The details of how these are used to represent numbers aren't really |
503 | // relevant here as long we don't interfere with them. The important bit is NaN. |
504 | // |
505 | // An IEEE double can represent a few magical values like NaN ("not a number"), |
506 | // Infinity, and -Infinity. A NaN is any value where all exponent bits are set: |
507 | // |
508 | // v--NaN bits |
509 | // -11111111111---------------------------------------------------- |
510 | // |
511 | // Here, "-" means "doesn't matter". Any bit sequence that matches the above is |
512 | // a NaN. With all of those "-", it obvious there are a *lot* of different |
513 | // bit patterns that all mean the same thing. NaN tagging takes advantage of |
514 | // this. We'll use those available bit patterns to represent things other than |
515 | // numbers without giving up any valid numeric values. |
516 | // |
517 | // NaN values come in two flavors: "signalling" and "quiet". The former are |
518 | // intended to halt execution, while the latter just flow through arithmetic |
519 | // operations silently. We want the latter. Quiet NaNs are indicated by setting |
520 | // the highest mantissa bit: |
521 | // |
522 | // v--Highest mantissa bit |
523 | // -[NaN ]1--------------------------------------------------- |
524 | // |
525 | // If all of the NaN bits are set, it's not a number. Otherwise, it is. |
526 | // That leaves all of the remaining bits as available for us to play with. We |
527 | // stuff a few different kinds of things here: special singleton values like |
528 | // "true", "false", and "null", and pointers to objects allocated on the heap. |
529 | // We'll use the sign bit to distinguish singleton values from pointers. If |
530 | // it's set, it's a pointer. |
531 | // |
532 | // v--Pointer or singleton? |
533 | // S[NaN ]1--------------------------------------------------- |
534 | // |
535 | // For singleton values, we just enumerate the different values. We'll use the |
536 | // low bits of the mantissa for that, and only need a few: |
537 | // |
538 | // 3 Type bits--v |
539 | // 0[NaN ]1------------------------------------------------[T] |
540 | // |
541 | // For pointers, we are left with 51 bits of mantissa to store an address. |
542 | // That's more than enough room for a 32-bit address. Even 64-bit machines |
543 | // only actually use 48 bits for addresses, so we've got plenty. We just stuff |
544 | // the address right into the mantissa. |
545 | // |
546 | // Ta-da, double precision numbers, pointers, and a bunch of singleton values, |
547 | // all stuffed into a single 64-bit sequence. Even better, we don't have to |
548 | // do any masking or work to extract number values: they are unmodified. This |
549 | // means math on numbers is fast. |
550 | #if WREN_NAN_TAGGING |
551 | |
552 | // A mask that selects the sign bit. |
553 | #define SIGN_BIT ((uint64_t)1 << 63) |
554 | |
555 | // The bits that must be set to indicate a quiet NaN. |
556 | #define QNAN ((uint64_t)0x7ffc000000000000) |
557 | |
558 | // If the NaN bits are set, it's not a number. |
559 | #define IS_NUM(value) (((value) & QNAN) != QNAN) |
560 | |
561 | // An object pointer is a NaN with a set sign bit. |
562 | #define IS_OBJ(value) (((value) & (QNAN | SIGN_BIT)) == (QNAN | SIGN_BIT)) |
563 | |
564 | #define IS_FALSE(value) ((value) == FALSE_VAL) |
565 | #define IS_NULL(value) ((value) == NULL_VAL) |
566 | #define IS_UNDEFINED(value) ((value) == UNDEFINED_VAL) |
567 | |
568 | // Masks out the tag bits used to identify the singleton value. |
569 | #define MASK_TAG (7) |
570 | |
571 | // Tag values for the different singleton values. |
572 | #define TAG_NAN (0) |
573 | #define TAG_NULL (1) |
574 | #define TAG_FALSE (2) |
575 | #define TAG_TRUE (3) |
576 | #define TAG_UNDEFINED (4) |
577 | #define TAG_UNUSED2 (5) |
578 | #define TAG_UNUSED3 (6) |
579 | #define TAG_UNUSED4 (7) |
580 | |
581 | // Value -> 0 or 1. |
582 | #define AS_BOOL(value) ((value) == TRUE_VAL) |
583 | |
584 | // Value -> Obj*. |
585 | #define AS_OBJ(value) ((Obj*)(uintptr_t)((value) & ~(SIGN_BIT | QNAN))) |
586 | |
587 | // Singleton values. |
588 | #define NULL_VAL ((Value)(uint64_t)(QNAN | TAG_NULL)) |
589 | #define FALSE_VAL ((Value)(uint64_t)(QNAN | TAG_FALSE)) |
590 | #define TRUE_VAL ((Value)(uint64_t)(QNAN | TAG_TRUE)) |
591 | #define UNDEFINED_VAL ((Value)(uint64_t)(QNAN | TAG_UNDEFINED)) |
592 | |
593 | // Gets the singleton type tag for a Value (which must be a singleton). |
594 | #define GET_TAG(value) ((int)((value) & MASK_TAG)) |
595 | |
596 | #else |
597 | |
598 | // Value -> 0 or 1. |
599 | #define AS_BOOL(value) ((value).type == VAL_TRUE) |
600 | |
601 | // Value -> Obj*. |
602 | #define AS_OBJ(v) ((v).as.obj) |
603 | |
604 | // Determines if [value] is a garbage-collected object or not. |
605 | #define IS_OBJ(value) ((value).type == VAL_OBJ) |
606 | |
607 | #define IS_FALSE(value) ((value).type == VAL_FALSE) |
608 | #define IS_NULL(value) ((value).type == VAL_NULL) |
609 | #define IS_NUM(value) ((value).type == VAL_NUM) |
610 | #define IS_UNDEFINED(value) ((value).type == VAL_UNDEFINED) |
611 | |
612 | // Singleton values. |
613 | #define FALSE_VAL ((Value){ VAL_FALSE, { 0 } }) |
614 | #define NULL_VAL ((Value){ VAL_NULL, { 0 } }) |
615 | #define TRUE_VAL ((Value){ VAL_TRUE, { 0 } }) |
616 | #define UNDEFINED_VAL ((Value){ VAL_UNDEFINED, { 0 } }) |
617 | |
618 | #endif |
619 | |
620 | // Creates a new "raw" class. It has no metaclass or superclass whatsoever. |
621 | // This is only used for bootstrapping the initial Object and Class classes, |
622 | // which are a little special. |
623 | ObjClass* wrenNewSingleClass(WrenVM* vm, int numFields, ObjString* name); |
624 | |
625 | // Makes [superclass] the superclass of [subclass], and causes subclass to |
626 | // inherit its methods. This should be called before any methods are defined |
627 | // on subclass. |
628 | void wrenBindSuperclass(WrenVM* vm, ObjClass* subclass, ObjClass* superclass); |
629 | |
630 | // Creates a new class object as well as its associated metaclass. |
631 | ObjClass* wrenNewClass(WrenVM* vm, ObjClass* superclass, int numFields, |
632 | ObjString* name); |
633 | |
634 | void wrenBindMethod(WrenVM* vm, ObjClass* classObj, int symbol, Method method); |
635 | |
636 | // Creates a new closure object that invokes [fn]. Allocates room for its |
637 | // upvalues, but assumes outside code will populate it. |
638 | ObjClosure* wrenNewClosure(WrenVM* vm, ObjFn* fn); |
639 | |
640 | // Creates a new fiber object that will invoke [closure]. |
641 | ObjFiber* wrenNewFiber(WrenVM* vm, ObjClosure* closure); |
642 | |
643 | // Adds a new [CallFrame] to [fiber] invoking [closure] whose stack starts at |
644 | // [stackStart]. |
645 | static inline void wrenAppendCallFrame(WrenVM* vm, ObjFiber* fiber, |
646 | ObjClosure* closure, Value* stackStart) |
647 | { |
648 | // The caller should have ensured we already have enough capacity. |
649 | ASSERT(fiber->frameCapacity > fiber->numFrames, "No memory for call frame." ); |
650 | |
651 | CallFrame* frame = &fiber->frames[fiber->numFrames++]; |
652 | frame->stackStart = stackStart; |
653 | frame->closure = closure; |
654 | frame->ip = closure->fn->code.data; |
655 | } |
656 | |
657 | // Ensures [fiber]'s stack has at least [needed] slots. |
658 | void wrenEnsureStack(WrenVM* vm, ObjFiber* fiber, int needed); |
659 | |
660 | static inline bool wrenHasError(const ObjFiber* fiber) |
661 | { |
662 | return !IS_NULL(fiber->error); |
663 | } |
664 | |
665 | ObjForeign* wrenNewForeign(WrenVM* vm, ObjClass* classObj, size_t size); |
666 | |
667 | // Creates a new empty function. Before being used, it must have code, |
668 | // constants, etc. added to it. |
669 | ObjFn* wrenNewFunction(WrenVM* vm, ObjModule* module, int maxSlots); |
670 | |
671 | void wrenFunctionBindName(WrenVM* vm, ObjFn* fn, const char* name, int length); |
672 | |
673 | // Creates a new instance of the given [classObj]. |
674 | Value wrenNewInstance(WrenVM* vm, ObjClass* classObj); |
675 | |
676 | // Creates a new list with [numElements] elements (which are left |
677 | // uninitialized.) |
678 | ObjList* wrenNewList(WrenVM* vm, uint32_t numElements); |
679 | |
680 | // Inserts [value] in [list] at [index], shifting down the other elements. |
681 | void wrenListInsert(WrenVM* vm, ObjList* list, Value value, uint32_t index); |
682 | |
683 | // Removes and returns the item at [index] from [list]. |
684 | Value wrenListRemoveAt(WrenVM* vm, ObjList* list, uint32_t index); |
685 | |
686 | // Searches for [value] in [list], returns the index or -1 if not found. |
687 | int wrenListIndexOf(WrenVM* vm, ObjList* list, Value value); |
688 | |
689 | // Creates a new empty map. |
690 | ObjMap* wrenNewMap(WrenVM* vm); |
691 | |
692 | // Validates that [arg] is a valid object for use as a map key. Returns true if |
693 | // it is and returns false otherwise. Use validateKey usually, for a runtime error. |
694 | // This separation exists to aid the API in surfacing errors to the developer as well. |
695 | static inline bool wrenMapIsValidKey(Value arg); |
696 | |
697 | // Looks up [key] in [map]. If found, returns the value. Otherwise, returns |
698 | // `UNDEFINED_VAL`. |
699 | Value wrenMapGet(ObjMap* map, Value key); |
700 | |
701 | // Associates [key] with [value] in [map]. |
702 | void wrenMapSet(WrenVM* vm, ObjMap* map, Value key, Value value); |
703 | |
704 | void wrenMapClear(WrenVM* vm, ObjMap* map); |
705 | |
706 | // Removes [key] from [map], if present. Returns the value for the key if found |
707 | // or `NULL_VAL` otherwise. |
708 | Value wrenMapRemoveKey(WrenVM* vm, ObjMap* map, Value key); |
709 | |
710 | // Creates a new module. |
711 | ObjModule* wrenNewModule(WrenVM* vm, ObjString* name); |
712 | |
713 | // Creates a new range from [from] to [to]. |
714 | Value wrenNewRange(WrenVM* vm, double from, double to, bool isInclusive); |
715 | |
716 | // Creates a new string object and copies [text] into it. |
717 | // |
718 | // [text] must be non-NULL. |
719 | Value wrenNewString(WrenVM* vm, const char* text); |
720 | |
721 | // Creates a new string object of [length] and copies [text] into it. |
722 | // |
723 | // [text] may be NULL if [length] is zero. |
724 | Value wrenNewStringLength(WrenVM* vm, const char* text, size_t length); |
725 | |
726 | // Creates a new string object by taking a range of characters from [source]. |
727 | // The range starts at [start], contains [count] bytes, and increments by |
728 | // [step]. |
729 | Value wrenNewStringFromRange(WrenVM* vm, ObjString* source, int start, |
730 | uint32_t count, int step); |
731 | |
732 | // Produces a string representation of [value]. |
733 | Value wrenNumToString(WrenVM* vm, double value); |
734 | |
735 | // Creates a new formatted string from [format] and any additional arguments |
736 | // used in the format string. |
737 | // |
738 | // This is a very restricted flavor of formatting, intended only for internal |
739 | // use by the VM. Two formatting characters are supported, each of which reads |
740 | // the next argument as a certain type: |
741 | // |
742 | // $ - A C string. |
743 | // @ - A Wren string object. |
744 | Value wrenStringFormat(WrenVM* vm, const char* format, ...); |
745 | |
746 | // Creates a new string containing the UTF-8 encoding of [value]. |
747 | Value wrenStringFromCodePoint(WrenVM* vm, int value); |
748 | |
749 | // Creates a new string from the integer representation of a byte |
750 | Value wrenStringFromByte(WrenVM* vm, uint8_t value); |
751 | |
752 | // Creates a new string containing the code point in [string] starting at byte |
753 | // [index]. If [index] points into the middle of a UTF-8 sequence, returns an |
754 | // empty string. |
755 | Value wrenStringCodePointAt(WrenVM* vm, ObjString* string, uint32_t index); |
756 | |
757 | // Search for the first occurence of [needle] within [haystack] and returns its |
758 | // zero-based offset. Returns `UINT32_MAX` if [haystack] does not contain |
759 | // [needle]. |
760 | uint32_t wrenStringFind(ObjString* haystack, ObjString* needle, |
761 | uint32_t startIndex); |
762 | |
763 | // Returns true if [a] and [b] represent the same string. |
764 | static inline bool wrenStringEqualsCString(const ObjString* a, |
765 | const char* b, size_t length) |
766 | { |
767 | return a->length == length && memcmp(a->value, b, length) == 0; |
768 | } |
769 | |
770 | // Creates a new open upvalue pointing to [value] on the stack. |
771 | ObjUpvalue* wrenNewUpvalue(WrenVM* vm, Value* value); |
772 | |
773 | // Mark [obj] as reachable and still in use. This should only be called |
774 | // during the sweep phase of a garbage collection. |
775 | void wrenGrayObj(WrenVM* vm, Obj* obj); |
776 | |
777 | // Mark [value] as reachable and still in use. This should only be called |
778 | // during the sweep phase of a garbage collection. |
779 | void wrenGrayValue(WrenVM* vm, Value value); |
780 | |
781 | // Mark the values in [buffer] as reachable and still in use. This should only |
782 | // be called during the sweep phase of a garbage collection. |
783 | void wrenGrayBuffer(WrenVM* vm, ValueBuffer* buffer); |
784 | |
785 | // Processes every object in the gray stack until all reachable objects have |
786 | // been marked. After that, all objects are either white (freeable) or black |
787 | // (in use and fully traversed). |
788 | void wrenBlackenObjects(WrenVM* vm); |
789 | |
790 | // Releases all memory owned by [obj], including [obj] itself. |
791 | void wrenFreeObj(WrenVM* vm, Obj* obj); |
792 | |
793 | // Returns the class of [value]. |
794 | // |
795 | // Unlike wrenGetClassInline in wren_vm.h, this is not inlined. Inlining helps |
796 | // performance (significantly) in some cases, but degrades it in others. The |
797 | // ones used by the implementation were chosen to give the best results in the |
798 | // benchmarks. |
799 | ObjClass* wrenGetClass(WrenVM* vm, Value value); |
800 | |
801 | // Returns true if [a] and [b] are strictly the same value. This is identity |
802 | // for object values, and value equality for unboxed values. |
803 | static inline bool wrenValuesSame(Value a, Value b) |
804 | { |
805 | #if WREN_NAN_TAGGING |
806 | // Value types have unique bit representations and we compare object types |
807 | // by identity (i.e. pointer), so all we need to do is compare the bits. |
808 | return a == b; |
809 | #else |
810 | if (a.type != b.type) return false; |
811 | if (a.type == VAL_NUM) return a.as.num == b.as.num; |
812 | return a.as.obj == b.as.obj; |
813 | #endif |
814 | } |
815 | |
816 | // Returns true if [a] and [b] are equivalent. Immutable values (null, bools, |
817 | // numbers, ranges, and strings) are equal if they have the same data. All |
818 | // other values are equal if they are identical objects. |
819 | bool wrenValuesEqual(Value a, Value b); |
820 | |
821 | // Returns true if [value] is a bool. Do not call this directly, instead use |
822 | // [IS_BOOL]. |
823 | static inline bool wrenIsBool(Value value) |
824 | { |
825 | #if WREN_NAN_TAGGING |
826 | return value == TRUE_VAL || value == FALSE_VAL; |
827 | #else |
828 | return value.type == VAL_FALSE || value.type == VAL_TRUE; |
829 | #endif |
830 | } |
831 | |
832 | // Returns true if [value] is an object of type [type]. Do not call this |
833 | // directly, instead use the [IS___] macro for the type in question. |
834 | static inline bool wrenIsObjType(Value value, ObjType type) |
835 | { |
836 | return IS_OBJ(value) && AS_OBJ(value)->type == type; |
837 | } |
838 | |
839 | // Converts the raw object pointer [obj] to a [Value]. |
840 | static inline Value wrenObjectToValue(Obj* obj) |
841 | { |
842 | #if WREN_NAN_TAGGING |
843 | // The triple casting is necessary here to satisfy some compilers: |
844 | // 1. (uintptr_t) Convert the pointer to a number of the right size. |
845 | // 2. (uint64_t) Pad it up to 64 bits in 32-bit builds. |
846 | // 3. Or in the bits to make a tagged Nan. |
847 | // 4. Cast to a typedef'd value. |
848 | return (Value)(SIGN_BIT | QNAN | (uint64_t)(uintptr_t)(obj)); |
849 | #else |
850 | Value value; |
851 | value.type = VAL_OBJ; |
852 | value.as.obj = obj; |
853 | return value; |
854 | #endif |
855 | } |
856 | |
857 | // Interprets [value] as a [double]. |
858 | static inline double wrenValueToNum(Value value) |
859 | { |
860 | #if WREN_NAN_TAGGING |
861 | return wrenDoubleFromBits(value); |
862 | #else |
863 | return value.as.num; |
864 | #endif |
865 | } |
866 | |
867 | // Converts [num] to a [Value]. |
868 | static inline Value wrenNumToValue(double num) |
869 | { |
870 | #if WREN_NAN_TAGGING |
871 | return wrenDoubleToBits(num); |
872 | #else |
873 | Value value; |
874 | value.type = VAL_NUM; |
875 | value.as.num = num; |
876 | return value; |
877 | #endif |
878 | } |
879 | |
880 | static inline bool wrenMapIsValidKey(Value arg) |
881 | { |
882 | return IS_BOOL(arg) |
883 | || IS_CLASS(arg) |
884 | || IS_NULL(arg) |
885 | || IS_NUM(arg) |
886 | || IS_RANGE(arg) |
887 | || IS_STRING(arg); |
888 | } |
889 | |
890 | #endif |
891 | |