| 1 | #pragma once |
| 2 | |
| 3 | #include <array> // array |
| 4 | #include <cassert> // assert |
| 5 | #include <ciso646> // or, and, not |
| 6 | #include <cmath> // signbit, isfinite |
| 7 | #include <cstdint> // intN_t, uintN_t |
| 8 | #include <cstring> // memcpy, memmove |
| 9 | #include <limits> // numeric_limits |
| 10 | #include <type_traits> // conditional |
| 11 | #include <nlohmann/detail/macro_scope.hpp> |
| 12 | |
| 13 | namespace nlohmann |
| 14 | { |
| 15 | namespace detail |
| 16 | { |
| 17 | |
| 18 | /*! |
| 19 | @brief implements the Grisu2 algorithm for binary to decimal floating-point |
| 20 | conversion. |
| 21 | |
| 22 | This implementation is a slightly modified version of the reference |
| 23 | implementation which may be obtained from |
| 24 | http://florian.loitsch.com/publications (bench.tar.gz). |
| 25 | |
| 26 | The code is distributed under the MIT license, Copyright (c) 2009 Florian Loitsch. |
| 27 | |
| 28 | For a detailed description of the algorithm see: |
| 29 | |
| 30 | [1] Loitsch, "Printing Floating-Point Numbers Quickly and Accurately with |
| 31 | Integers", Proceedings of the ACM SIGPLAN 2010 Conference on Programming |
| 32 | Language Design and Implementation, PLDI 2010 |
| 33 | [2] Burger, Dybvig, "Printing Floating-Point Numbers Quickly and Accurately", |
| 34 | Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language |
| 35 | Design and Implementation, PLDI 1996 |
| 36 | */ |
| 37 | namespace dtoa_impl |
| 38 | { |
| 39 | |
| 40 | template <typename Target, typename Source> |
| 41 | Target reinterpret_bits(const Source source) |
| 42 | { |
| 43 | static_assert(sizeof(Target) == sizeof(Source), "size mismatch" ); |
| 44 | |
| 45 | Target target; |
| 46 | std::memcpy(&target, &source, sizeof(Source)); |
| 47 | return target; |
| 48 | } |
| 49 | |
| 50 | struct diyfp // f * 2^e |
| 51 | { |
| 52 | static constexpr int kPrecision = 64; // = q |
| 53 | |
| 54 | std::uint64_t f = 0; |
| 55 | int e = 0; |
| 56 | |
| 57 | constexpr diyfp(std::uint64_t f_, int e_) noexcept : f(f_), e(e_) {} |
| 58 | |
| 59 | /*! |
| 60 | @brief returns x - y |
| 61 | @pre x.e == y.e and x.f >= y.f |
| 62 | */ |
| 63 | static diyfp sub(const diyfp& x, const diyfp& y) noexcept |
| 64 | { |
| 65 | assert(x.e == y.e); |
| 66 | assert(x.f >= y.f); |
| 67 | |
| 68 | return {x.f - y.f, x.e}; |
| 69 | } |
| 70 | |
| 71 | /*! |
| 72 | @brief returns x * y |
| 73 | @note The result is rounded. (Only the upper q bits are returned.) |
| 74 | */ |
| 75 | static diyfp mul(const diyfp& x, const diyfp& y) noexcept |
| 76 | { |
| 77 | static_assert(kPrecision == 64, "internal error" ); |
| 78 | |
| 79 | // Computes: |
| 80 | // f = round((x.f * y.f) / 2^q) |
| 81 | // e = x.e + y.e + q |
| 82 | |
| 83 | // Emulate the 64-bit * 64-bit multiplication: |
| 84 | // |
| 85 | // p = u * v |
| 86 | // = (u_lo + 2^32 u_hi) (v_lo + 2^32 v_hi) |
| 87 | // = (u_lo v_lo ) + 2^32 ((u_lo v_hi ) + (u_hi v_lo )) + 2^64 (u_hi v_hi ) |
| 88 | // = (p0 ) + 2^32 ((p1 ) + (p2 )) + 2^64 (p3 ) |
| 89 | // = (p0_lo + 2^32 p0_hi) + 2^32 ((p1_lo + 2^32 p1_hi) + (p2_lo + 2^32 p2_hi)) + 2^64 (p3 ) |
| 90 | // = (p0_lo ) + 2^32 (p0_hi + p1_lo + p2_lo ) + 2^64 (p1_hi + p2_hi + p3) |
| 91 | // = (p0_lo ) + 2^32 (Q ) + 2^64 (H ) |
| 92 | // = (p0_lo ) + 2^32 (Q_lo + 2^32 Q_hi ) + 2^64 (H ) |
| 93 | // |
| 94 | // (Since Q might be larger than 2^32 - 1) |
| 95 | // |
| 96 | // = (p0_lo + 2^32 Q_lo) + 2^64 (Q_hi + H) |
| 97 | // |
| 98 | // (Q_hi + H does not overflow a 64-bit int) |
| 99 | // |
| 100 | // = p_lo + 2^64 p_hi |
| 101 | |
| 102 | const std::uint64_t u_lo = x.f & 0xFFFFFFFFu; |
| 103 | const std::uint64_t u_hi = x.f >> 32u; |
| 104 | const std::uint64_t v_lo = y.f & 0xFFFFFFFFu; |
| 105 | const std::uint64_t v_hi = y.f >> 32u; |
| 106 | |
| 107 | const std::uint64_t p0 = u_lo * v_lo; |
| 108 | const std::uint64_t p1 = u_lo * v_hi; |
| 109 | const std::uint64_t p2 = u_hi * v_lo; |
| 110 | const std::uint64_t p3 = u_hi * v_hi; |
| 111 | |
| 112 | const std::uint64_t p0_hi = p0 >> 32u; |
| 113 | const std::uint64_t p1_lo = p1 & 0xFFFFFFFFu; |
| 114 | const std::uint64_t p1_hi = p1 >> 32u; |
| 115 | const std::uint64_t p2_lo = p2 & 0xFFFFFFFFu; |
| 116 | const std::uint64_t p2_hi = p2 >> 32u; |
| 117 | |
| 118 | std::uint64_t Q = p0_hi + p1_lo + p2_lo; |
| 119 | |
| 120 | // The full product might now be computed as |
| 121 | // |
| 122 | // p_hi = p3 + p2_hi + p1_hi + (Q >> 32) |
| 123 | // p_lo = p0_lo + (Q << 32) |
| 124 | // |
| 125 | // But in this particular case here, the full p_lo is not required. |
| 126 | // Effectively we only need to add the highest bit in p_lo to p_hi (and |
| 127 | // Q_hi + 1 does not overflow). |
| 128 | |
| 129 | Q += std::uint64_t{1} << (64u - 32u - 1u); // round, ties up |
| 130 | |
| 131 | const std::uint64_t h = p3 + p2_hi + p1_hi + (Q >> 32u); |
| 132 | |
| 133 | return {h, x.e + y.e + 64}; |
| 134 | } |
| 135 | |
| 136 | /*! |
| 137 | @brief normalize x such that the significand is >= 2^(q-1) |
| 138 | @pre x.f != 0 |
| 139 | */ |
| 140 | static diyfp normalize(diyfp x) noexcept |
| 141 | { |
| 142 | assert(x.f != 0); |
| 143 | |
| 144 | while ((x.f >> 63u) == 0) |
| 145 | { |
| 146 | x.f <<= 1u; |
| 147 | x.e--; |
| 148 | } |
| 149 | |
| 150 | return x; |
| 151 | } |
| 152 | |
| 153 | /*! |
| 154 | @brief normalize x such that the result has the exponent E |
| 155 | @pre e >= x.e and the upper e - x.e bits of x.f must be zero. |
| 156 | */ |
| 157 | static diyfp normalize_to(const diyfp& x, const int target_exponent) noexcept |
| 158 | { |
| 159 | const int delta = x.e - target_exponent; |
| 160 | |
| 161 | assert(delta >= 0); |
| 162 | assert(((x.f << delta) >> delta) == x.f); |
| 163 | |
| 164 | return {x.f << delta, target_exponent}; |
| 165 | } |
| 166 | }; |
| 167 | |
| 168 | struct boundaries |
| 169 | { |
| 170 | diyfp w; |
| 171 | diyfp minus; |
| 172 | diyfp plus; |
| 173 | }; |
| 174 | |
| 175 | /*! |
| 176 | Compute the (normalized) diyfp representing the input number 'value' and its |
| 177 | boundaries. |
| 178 | |
| 179 | @pre value must be finite and positive |
| 180 | */ |
| 181 | template <typename FloatType> |
| 182 | boundaries compute_boundaries(FloatType value) |
| 183 | { |
| 184 | assert(std::isfinite(value)); |
| 185 | assert(value > 0); |
| 186 | |
| 187 | // Convert the IEEE representation into a diyfp. |
| 188 | // |
| 189 | // If v is denormal: |
| 190 | // value = 0.F * 2^(1 - bias) = ( F) * 2^(1 - bias - (p-1)) |
| 191 | // If v is normalized: |
| 192 | // value = 1.F * 2^(E - bias) = (2^(p-1) + F) * 2^(E - bias - (p-1)) |
| 193 | |
| 194 | static_assert(std::numeric_limits<FloatType>::is_iec559, |
| 195 | "internal error: dtoa_short requires an IEEE-754 floating-point implementation" ); |
| 196 | |
| 197 | constexpr int kPrecision = std::numeric_limits<FloatType>::digits; // = p (includes the hidden bit) |
| 198 | constexpr int kBias = std::numeric_limits<FloatType>::max_exponent - 1 + (kPrecision - 1); |
| 199 | constexpr int kMinExp = 1 - kBias; |
| 200 | constexpr std::uint64_t kHiddenBit = std::uint64_t{1} << (kPrecision - 1); // = 2^(p-1) |
| 201 | |
| 202 | using bits_type = typename std::conditional<kPrecision == 24, std::uint32_t, std::uint64_t >::type; |
| 203 | |
| 204 | const std::uint64_t bits = reinterpret_bits<bits_type>(value); |
| 205 | const std::uint64_t E = bits >> (kPrecision - 1); |
| 206 | const std::uint64_t F = bits & (kHiddenBit - 1); |
| 207 | |
| 208 | const bool is_denormal = E == 0; |
| 209 | const diyfp v = is_denormal |
| 210 | ? diyfp(F, kMinExp) |
| 211 | : diyfp(F + kHiddenBit, static_cast<int>(E) - kBias); |
| 212 | |
| 213 | // Compute the boundaries m- and m+ of the floating-point value |
| 214 | // v = f * 2^e. |
| 215 | // |
| 216 | // Determine v- and v+, the floating-point predecessor and successor if v, |
| 217 | // respectively. |
| 218 | // |
| 219 | // v- = v - 2^e if f != 2^(p-1) or e == e_min (A) |
| 220 | // = v - 2^(e-1) if f == 2^(p-1) and e > e_min (B) |
| 221 | // |
| 222 | // v+ = v + 2^e |
| 223 | // |
| 224 | // Let m- = (v- + v) / 2 and m+ = (v + v+) / 2. All real numbers _strictly_ |
| 225 | // between m- and m+ round to v, regardless of how the input rounding |
| 226 | // algorithm breaks ties. |
| 227 | // |
| 228 | // ---+-------------+-------------+-------------+-------------+--- (A) |
| 229 | // v- m- v m+ v+ |
| 230 | // |
| 231 | // -----------------+------+------+-------------+-------------+--- (B) |
| 232 | // v- m- v m+ v+ |
| 233 | |
| 234 | const bool lower_boundary_is_closer = F == 0 and E > 1; |
| 235 | const diyfp m_plus = diyfp(2 * v.f + 1, v.e - 1); |
| 236 | const diyfp m_minus = lower_boundary_is_closer |
| 237 | ? diyfp(4 * v.f - 1, v.e - 2) // (B) |
| 238 | : diyfp(2 * v.f - 1, v.e - 1); // (A) |
| 239 | |
| 240 | // Determine the normalized w+ = m+. |
| 241 | const diyfp w_plus = diyfp::normalize(m_plus); |
| 242 | |
| 243 | // Determine w- = m- such that e_(w-) = e_(w+). |
| 244 | const diyfp w_minus = diyfp::normalize_to(m_minus, w_plus.e); |
| 245 | |
| 246 | return {diyfp::normalize(v), w_minus, w_plus}; |
| 247 | } |
| 248 | |
| 249 | // Given normalized diyfp w, Grisu needs to find a (normalized) cached |
| 250 | // power-of-ten c, such that the exponent of the product c * w = f * 2^e lies |
| 251 | // within a certain range [alpha, gamma] (Definition 3.2 from [1]) |
| 252 | // |
| 253 | // alpha <= e = e_c + e_w + q <= gamma |
| 254 | // |
| 255 | // or |
| 256 | // |
| 257 | // f_c * f_w * 2^alpha <= f_c 2^(e_c) * f_w 2^(e_w) * 2^q |
| 258 | // <= f_c * f_w * 2^gamma |
| 259 | // |
| 260 | // Since c and w are normalized, i.e. 2^(q-1) <= f < 2^q, this implies |
| 261 | // |
| 262 | // 2^(q-1) * 2^(q-1) * 2^alpha <= c * w * 2^q < 2^q * 2^q * 2^gamma |
| 263 | // |
| 264 | // or |
| 265 | // |
| 266 | // 2^(q - 2 + alpha) <= c * w < 2^(q + gamma) |
| 267 | // |
| 268 | // The choice of (alpha,gamma) determines the size of the table and the form of |
| 269 | // the digit generation procedure. Using (alpha,gamma)=(-60,-32) works out well |
| 270 | // in practice: |
| 271 | // |
| 272 | // The idea is to cut the number c * w = f * 2^e into two parts, which can be |
| 273 | // processed independently: An integral part p1, and a fractional part p2: |
| 274 | // |
| 275 | // f * 2^e = ( (f div 2^-e) * 2^-e + (f mod 2^-e) ) * 2^e |
| 276 | // = (f div 2^-e) + (f mod 2^-e) * 2^e |
| 277 | // = p1 + p2 * 2^e |
| 278 | // |
| 279 | // The conversion of p1 into decimal form requires a series of divisions and |
| 280 | // modulos by (a power of) 10. These operations are faster for 32-bit than for |
| 281 | // 64-bit integers, so p1 should ideally fit into a 32-bit integer. This can be |
| 282 | // achieved by choosing |
| 283 | // |
| 284 | // -e >= 32 or e <= -32 := gamma |
| 285 | // |
| 286 | // In order to convert the fractional part |
| 287 | // |
| 288 | // p2 * 2^e = p2 / 2^-e = d[-1] / 10^1 + d[-2] / 10^2 + ... |
| 289 | // |
| 290 | // into decimal form, the fraction is repeatedly multiplied by 10 and the digits |
| 291 | // d[-i] are extracted in order: |
| 292 | // |
| 293 | // (10 * p2) div 2^-e = d[-1] |
| 294 | // (10 * p2) mod 2^-e = d[-2] / 10^1 + ... |
| 295 | // |
| 296 | // The multiplication by 10 must not overflow. It is sufficient to choose |
| 297 | // |
| 298 | // 10 * p2 < 16 * p2 = 2^4 * p2 <= 2^64. |
| 299 | // |
| 300 | // Since p2 = f mod 2^-e < 2^-e, |
| 301 | // |
| 302 | // -e <= 60 or e >= -60 := alpha |
| 303 | |
| 304 | constexpr int kAlpha = -60; |
| 305 | constexpr int kGamma = -32; |
| 306 | |
| 307 | struct cached_power // c = f * 2^e ~= 10^k |
| 308 | { |
| 309 | std::uint64_t f; |
| 310 | int e; |
| 311 | int k; |
| 312 | }; |
| 313 | |
| 314 | /*! |
| 315 | For a normalized diyfp w = f * 2^e, this function returns a (normalized) cached |
| 316 | power-of-ten c = f_c * 2^e_c, such that the exponent of the product w * c |
| 317 | satisfies (Definition 3.2 from [1]) |
| 318 | |
| 319 | alpha <= e_c + e + q <= gamma. |
| 320 | */ |
| 321 | inline cached_power get_cached_power_for_binary_exponent(int e) |
| 322 | { |
| 323 | // Now |
| 324 | // |
| 325 | // alpha <= e_c + e + q <= gamma (1) |
| 326 | // ==> f_c * 2^alpha <= c * 2^e * 2^q |
| 327 | // |
| 328 | // and since the c's are normalized, 2^(q-1) <= f_c, |
| 329 | // |
| 330 | // ==> 2^(q - 1 + alpha) <= c * 2^(e + q) |
| 331 | // ==> 2^(alpha - e - 1) <= c |
| 332 | // |
| 333 | // If c were an exact power of ten, i.e. c = 10^k, one may determine k as |
| 334 | // |
| 335 | // k = ceil( log_10( 2^(alpha - e - 1) ) ) |
| 336 | // = ceil( (alpha - e - 1) * log_10(2) ) |
| 337 | // |
| 338 | // From the paper: |
| 339 | // "In theory the result of the procedure could be wrong since c is rounded, |
| 340 | // and the computation itself is approximated [...]. In practice, however, |
| 341 | // this simple function is sufficient." |
| 342 | // |
| 343 | // For IEEE double precision floating-point numbers converted into |
| 344 | // normalized diyfp's w = f * 2^e, with q = 64, |
| 345 | // |
| 346 | // e >= -1022 (min IEEE exponent) |
| 347 | // -52 (p - 1) |
| 348 | // -52 (p - 1, possibly normalize denormal IEEE numbers) |
| 349 | // -11 (normalize the diyfp) |
| 350 | // = -1137 |
| 351 | // |
| 352 | // and |
| 353 | // |
| 354 | // e <= +1023 (max IEEE exponent) |
| 355 | // -52 (p - 1) |
| 356 | // -11 (normalize the diyfp) |
| 357 | // = 960 |
| 358 | // |
| 359 | // This binary exponent range [-1137,960] results in a decimal exponent |
| 360 | // range [-307,324]. One does not need to store a cached power for each |
| 361 | // k in this range. For each such k it suffices to find a cached power |
| 362 | // such that the exponent of the product lies in [alpha,gamma]. |
| 363 | // This implies that the difference of the decimal exponents of adjacent |
| 364 | // table entries must be less than or equal to |
| 365 | // |
| 366 | // floor( (gamma - alpha) * log_10(2) ) = 8. |
| 367 | // |
| 368 | // (A smaller distance gamma-alpha would require a larger table.) |
| 369 | |
| 370 | // NB: |
| 371 | // Actually this function returns c, such that -60 <= e_c + e + 64 <= -34. |
| 372 | |
| 373 | constexpr int kCachedPowersMinDecExp = -300; |
| 374 | constexpr int kCachedPowersDecStep = 8; |
| 375 | |
| 376 | static constexpr std::array<cached_power, 79> kCachedPowers = |
| 377 | { |
| 378 | { |
| 379 | { 0xAB70FE17C79AC6CA, -1060, -300 }, |
| 380 | { 0xFF77B1FCBEBCDC4F, -1034, -292 }, |
| 381 | { 0xBE5691EF416BD60C, -1007, -284 }, |
| 382 | { 0x8DD01FAD907FFC3C, -980, -276 }, |
| 383 | { 0xD3515C2831559A83, -954, -268 }, |
| 384 | { 0x9D71AC8FADA6C9B5, -927, -260 }, |
| 385 | { 0xEA9C227723EE8BCB, -901, -252 }, |
| 386 | { 0xAECC49914078536D, -874, -244 }, |
| 387 | { 0x823C12795DB6CE57, -847, -236 }, |
| 388 | { 0xC21094364DFB5637, -821, -228 }, |
| 389 | { 0x9096EA6F3848984F, -794, -220 }, |
| 390 | { 0xD77485CB25823AC7, -768, -212 }, |
| 391 | { 0xA086CFCD97BF97F4, -741, -204 }, |
| 392 | { 0xEF340A98172AACE5, -715, -196 }, |
| 393 | { 0xB23867FB2A35B28E, -688, -188 }, |
| 394 | { 0x84C8D4DFD2C63F3B, -661, -180 }, |
| 395 | { 0xC5DD44271AD3CDBA, -635, -172 }, |
| 396 | { 0x936B9FCEBB25C996, -608, -164 }, |
| 397 | { 0xDBAC6C247D62A584, -582, -156 }, |
| 398 | { 0xA3AB66580D5FDAF6, -555, -148 }, |
| 399 | { 0xF3E2F893DEC3F126, -529, -140 }, |
| 400 | { 0xB5B5ADA8AAFF80B8, -502, -132 }, |
| 401 | { 0x87625F056C7C4A8B, -475, -124 }, |
| 402 | { 0xC9BCFF6034C13053, -449, -116 }, |
| 403 | { 0x964E858C91BA2655, -422, -108 }, |
| 404 | { 0xDFF9772470297EBD, -396, -100 }, |
| 405 | { 0xA6DFBD9FB8E5B88F, -369, -92 }, |
| 406 | { 0xF8A95FCF88747D94, -343, -84 }, |
| 407 | { 0xB94470938FA89BCF, -316, -76 }, |
| 408 | { 0x8A08F0F8BF0F156B, -289, -68 }, |
| 409 | { 0xCDB02555653131B6, -263, -60 }, |
| 410 | { 0x993FE2C6D07B7FAC, -236, -52 }, |
| 411 | { 0xE45C10C42A2B3B06, -210, -44 }, |
| 412 | { 0xAA242499697392D3, -183, -36 }, |
| 413 | { 0xFD87B5F28300CA0E, -157, -28 }, |
| 414 | { 0xBCE5086492111AEB, -130, -20 }, |
| 415 | { 0x8CBCCC096F5088CC, -103, -12 }, |
| 416 | { 0xD1B71758E219652C, -77, -4 }, |
| 417 | { 0x9C40000000000000, -50, 4 }, |
| 418 | { 0xE8D4A51000000000, -24, 12 }, |
| 419 | { 0xAD78EBC5AC620000, 3, 20 }, |
| 420 | { 0x813F3978F8940984, 30, 28 }, |
| 421 | { 0xC097CE7BC90715B3, 56, 36 }, |
| 422 | { 0x8F7E32CE7BEA5C70, 83, 44 }, |
| 423 | { 0xD5D238A4ABE98068, 109, 52 }, |
| 424 | { 0x9F4F2726179A2245, 136, 60 }, |
| 425 | { 0xED63A231D4C4FB27, 162, 68 }, |
| 426 | { 0xB0DE65388CC8ADA8, 189, 76 }, |
| 427 | { 0x83C7088E1AAB65DB, 216, 84 }, |
| 428 | { 0xC45D1DF942711D9A, 242, 92 }, |
| 429 | { 0x924D692CA61BE758, 269, 100 }, |
| 430 | { 0xDA01EE641A708DEA, 295, 108 }, |
| 431 | { 0xA26DA3999AEF774A, 322, 116 }, |
| 432 | { 0xF209787BB47D6B85, 348, 124 }, |
| 433 | { 0xB454E4A179DD1877, 375, 132 }, |
| 434 | { 0x865B86925B9BC5C2, 402, 140 }, |
| 435 | { 0xC83553C5C8965D3D, 428, 148 }, |
| 436 | { 0x952AB45CFA97A0B3, 455, 156 }, |
| 437 | { 0xDE469FBD99A05FE3, 481, 164 }, |
| 438 | { 0xA59BC234DB398C25, 508, 172 }, |
| 439 | { 0xF6C69A72A3989F5C, 534, 180 }, |
| 440 | { 0xB7DCBF5354E9BECE, 561, 188 }, |
| 441 | { 0x88FCF317F22241E2, 588, 196 }, |
| 442 | { 0xCC20CE9BD35C78A5, 614, 204 }, |
| 443 | { 0x98165AF37B2153DF, 641, 212 }, |
| 444 | { 0xE2A0B5DC971F303A, 667, 220 }, |
| 445 | { 0xA8D9D1535CE3B396, 694, 228 }, |
| 446 | { 0xFB9B7CD9A4A7443C, 720, 236 }, |
| 447 | { 0xBB764C4CA7A44410, 747, 244 }, |
| 448 | { 0x8BAB8EEFB6409C1A, 774, 252 }, |
| 449 | { 0xD01FEF10A657842C, 800, 260 }, |
| 450 | { 0x9B10A4E5E9913129, 827, 268 }, |
| 451 | { 0xE7109BFBA19C0C9D, 853, 276 }, |
| 452 | { 0xAC2820D9623BF429, 880, 284 }, |
| 453 | { 0x80444B5E7AA7CF85, 907, 292 }, |
| 454 | { 0xBF21E44003ACDD2D, 933, 300 }, |
| 455 | { 0x8E679C2F5E44FF8F, 960, 308 }, |
| 456 | { 0xD433179D9C8CB841, 986, 316 }, |
| 457 | { 0x9E19DB92B4E31BA9, 1013, 324 }, |
| 458 | } |
| 459 | }; |
| 460 | |
| 461 | // This computation gives exactly the same results for k as |
| 462 | // k = ceil((kAlpha - e - 1) * 0.30102999566398114) |
| 463 | // for |e| <= 1500, but doesn't require floating-point operations. |
| 464 | // NB: log_10(2) ~= 78913 / 2^18 |
| 465 | assert(e >= -1500); |
| 466 | assert(e <= 1500); |
| 467 | const int f = kAlpha - e - 1; |
| 468 | const int k = (f * 78913) / (1 << 18) + static_cast<int>(f > 0); |
| 469 | |
| 470 | const int index = (-kCachedPowersMinDecExp + k + (kCachedPowersDecStep - 1)) / kCachedPowersDecStep; |
| 471 | assert(index >= 0); |
| 472 | assert(static_cast<std::size_t>(index) < kCachedPowers.size()); |
| 473 | |
| 474 | const cached_power cached = kCachedPowers[static_cast<std::size_t>(index)]; |
| 475 | assert(kAlpha <= cached.e + e + 64); |
| 476 | assert(kGamma >= cached.e + e + 64); |
| 477 | |
| 478 | return cached; |
| 479 | } |
| 480 | |
| 481 | /*! |
| 482 | For n != 0, returns k, such that pow10 := 10^(k-1) <= n < 10^k. |
| 483 | For n == 0, returns 1 and sets pow10 := 1. |
| 484 | */ |
| 485 | inline int find_largest_pow10(const std::uint32_t n, std::uint32_t& pow10) |
| 486 | { |
| 487 | // LCOV_EXCL_START |
| 488 | if (n >= 1000000000) |
| 489 | { |
| 490 | pow10 = 1000000000; |
| 491 | return 10; |
| 492 | } |
| 493 | // LCOV_EXCL_STOP |
| 494 | else if (n >= 100000000) |
| 495 | { |
| 496 | pow10 = 100000000; |
| 497 | return 9; |
| 498 | } |
| 499 | else if (n >= 10000000) |
| 500 | { |
| 501 | pow10 = 10000000; |
| 502 | return 8; |
| 503 | } |
| 504 | else if (n >= 1000000) |
| 505 | { |
| 506 | pow10 = 1000000; |
| 507 | return 7; |
| 508 | } |
| 509 | else if (n >= 100000) |
| 510 | { |
| 511 | pow10 = 100000; |
| 512 | return 6; |
| 513 | } |
| 514 | else if (n >= 10000) |
| 515 | { |
| 516 | pow10 = 10000; |
| 517 | return 5; |
| 518 | } |
| 519 | else if (n >= 1000) |
| 520 | { |
| 521 | pow10 = 1000; |
| 522 | return 4; |
| 523 | } |
| 524 | else if (n >= 100) |
| 525 | { |
| 526 | pow10 = 100; |
| 527 | return 3; |
| 528 | } |
| 529 | else if (n >= 10) |
| 530 | { |
| 531 | pow10 = 10; |
| 532 | return 2; |
| 533 | } |
| 534 | else |
| 535 | { |
| 536 | pow10 = 1; |
| 537 | return 1; |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | inline void grisu2_round(char* buf, int len, std::uint64_t dist, std::uint64_t delta, |
| 542 | std::uint64_t rest, std::uint64_t ten_k) |
| 543 | { |
| 544 | assert(len >= 1); |
| 545 | assert(dist <= delta); |
| 546 | assert(rest <= delta); |
| 547 | assert(ten_k > 0); |
| 548 | |
| 549 | // <--------------------------- delta ----> |
| 550 | // <---- dist ---------> |
| 551 | // --------------[------------------+-------------------]-------------- |
| 552 | // M- w M+ |
| 553 | // |
| 554 | // ten_k |
| 555 | // <------> |
| 556 | // <---- rest ----> |
| 557 | // --------------[------------------+----+--------------]-------------- |
| 558 | // w V |
| 559 | // = buf * 10^k |
| 560 | // |
| 561 | // ten_k represents a unit-in-the-last-place in the decimal representation |
| 562 | // stored in buf. |
| 563 | // Decrement buf by ten_k while this takes buf closer to w. |
| 564 | |
| 565 | // The tests are written in this order to avoid overflow in unsigned |
| 566 | // integer arithmetic. |
| 567 | |
| 568 | while (rest < dist |
| 569 | and delta - rest >= ten_k |
| 570 | and (rest + ten_k < dist or dist - rest > rest + ten_k - dist)) |
| 571 | { |
| 572 | assert(buf[len - 1] != '0'); |
| 573 | buf[len - 1]--; |
| 574 | rest += ten_k; |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | /*! |
| 579 | Generates V = buffer * 10^decimal_exponent, such that M- <= V <= M+. |
| 580 | M- and M+ must be normalized and share the same exponent -60 <= e <= -32. |
| 581 | */ |
| 582 | inline void grisu2_digit_gen(char* buffer, int& length, int& decimal_exponent, |
| 583 | diyfp M_minus, diyfp w, diyfp M_plus) |
| 584 | { |
| 585 | static_assert(kAlpha >= -60, "internal error" ); |
| 586 | static_assert(kGamma <= -32, "internal error" ); |
| 587 | |
| 588 | // Generates the digits (and the exponent) of a decimal floating-point |
| 589 | // number V = buffer * 10^decimal_exponent in the range [M-, M+]. The diyfp's |
| 590 | // w, M- and M+ share the same exponent e, which satisfies alpha <= e <= gamma. |
| 591 | // |
| 592 | // <--------------------------- delta ----> |
| 593 | // <---- dist ---------> |
| 594 | // --------------[------------------+-------------------]-------------- |
| 595 | // M- w M+ |
| 596 | // |
| 597 | // Grisu2 generates the digits of M+ from left to right and stops as soon as |
| 598 | // V is in [M-,M+]. |
| 599 | |
| 600 | assert(M_plus.e >= kAlpha); |
| 601 | assert(M_plus.e <= kGamma); |
| 602 | |
| 603 | std::uint64_t delta = diyfp::sub(M_plus, M_minus).f; // (significand of (M+ - M-), implicit exponent is e) |
| 604 | std::uint64_t dist = diyfp::sub(M_plus, w ).f; // (significand of (M+ - w ), implicit exponent is e) |
| 605 | |
| 606 | // Split M+ = f * 2^e into two parts p1 and p2 (note: e < 0): |
| 607 | // |
| 608 | // M+ = f * 2^e |
| 609 | // = ((f div 2^-e) * 2^-e + (f mod 2^-e)) * 2^e |
| 610 | // = ((p1 ) * 2^-e + (p2 )) * 2^e |
| 611 | // = p1 + p2 * 2^e |
| 612 | |
| 613 | const diyfp one(std::uint64_t{1} << -M_plus.e, M_plus.e); |
| 614 | |
| 615 | auto p1 = static_cast<std::uint32_t>(M_plus.f >> -one.e); // p1 = f div 2^-e (Since -e >= 32, p1 fits into a 32-bit int.) |
| 616 | std::uint64_t p2 = M_plus.f & (one.f - 1); // p2 = f mod 2^-e |
| 617 | |
| 618 | // 1) |
| 619 | // |
| 620 | // Generate the digits of the integral part p1 = d[n-1]...d[1]d[0] |
| 621 | |
| 622 | assert(p1 > 0); |
| 623 | |
| 624 | std::uint32_t pow10; |
| 625 | const int k = find_largest_pow10(p1, pow10); |
| 626 | |
| 627 | // 10^(k-1) <= p1 < 10^k, pow10 = 10^(k-1) |
| 628 | // |
| 629 | // p1 = (p1 div 10^(k-1)) * 10^(k-1) + (p1 mod 10^(k-1)) |
| 630 | // = (d[k-1] ) * 10^(k-1) + (p1 mod 10^(k-1)) |
| 631 | // |
| 632 | // M+ = p1 + p2 * 2^e |
| 633 | // = d[k-1] * 10^(k-1) + (p1 mod 10^(k-1)) + p2 * 2^e |
| 634 | // = d[k-1] * 10^(k-1) + ((p1 mod 10^(k-1)) * 2^-e + p2) * 2^e |
| 635 | // = d[k-1] * 10^(k-1) + ( rest) * 2^e |
| 636 | // |
| 637 | // Now generate the digits d[n] of p1 from left to right (n = k-1,...,0) |
| 638 | // |
| 639 | // p1 = d[k-1]...d[n] * 10^n + d[n-1]...d[0] |
| 640 | // |
| 641 | // but stop as soon as |
| 642 | // |
| 643 | // rest * 2^e = (d[n-1]...d[0] * 2^-e + p2) * 2^e <= delta * 2^e |
| 644 | |
| 645 | int n = k; |
| 646 | while (n > 0) |
| 647 | { |
| 648 | // Invariants: |
| 649 | // M+ = buffer * 10^n + (p1 + p2 * 2^e) (buffer = 0 for n = k) |
| 650 | // pow10 = 10^(n-1) <= p1 < 10^n |
| 651 | // |
| 652 | const std::uint32_t d = p1 / pow10; // d = p1 div 10^(n-1) |
| 653 | const std::uint32_t r = p1 % pow10; // r = p1 mod 10^(n-1) |
| 654 | // |
| 655 | // M+ = buffer * 10^n + (d * 10^(n-1) + r) + p2 * 2^e |
| 656 | // = (buffer * 10 + d) * 10^(n-1) + (r + p2 * 2^e) |
| 657 | // |
| 658 | assert(d <= 9); |
| 659 | buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d |
| 660 | // |
| 661 | // M+ = buffer * 10^(n-1) + (r + p2 * 2^e) |
| 662 | // |
| 663 | p1 = r; |
| 664 | n--; |
| 665 | // |
| 666 | // M+ = buffer * 10^n + (p1 + p2 * 2^e) |
| 667 | // pow10 = 10^n |
| 668 | // |
| 669 | |
| 670 | // Now check if enough digits have been generated. |
| 671 | // Compute |
| 672 | // |
| 673 | // p1 + p2 * 2^e = (p1 * 2^-e + p2) * 2^e = rest * 2^e |
| 674 | // |
| 675 | // Note: |
| 676 | // Since rest and delta share the same exponent e, it suffices to |
| 677 | // compare the significands. |
| 678 | const std::uint64_t rest = (std::uint64_t{p1} << -one.e) + p2; |
| 679 | if (rest <= delta) |
| 680 | { |
| 681 | // V = buffer * 10^n, with M- <= V <= M+. |
| 682 | |
| 683 | decimal_exponent += n; |
| 684 | |
| 685 | // We may now just stop. But instead look if the buffer could be |
| 686 | // decremented to bring V closer to w. |
| 687 | // |
| 688 | // pow10 = 10^n is now 1 ulp in the decimal representation V. |
| 689 | // The rounding procedure works with diyfp's with an implicit |
| 690 | // exponent of e. |
| 691 | // |
| 692 | // 10^n = (10^n * 2^-e) * 2^e = ulp * 2^e |
| 693 | // |
| 694 | const std::uint64_t ten_n = std::uint64_t{pow10} << -one.e; |
| 695 | grisu2_round(buffer, length, dist, delta, rest, ten_n); |
| 696 | |
| 697 | return; |
| 698 | } |
| 699 | |
| 700 | pow10 /= 10; |
| 701 | // |
| 702 | // pow10 = 10^(n-1) <= p1 < 10^n |
| 703 | // Invariants restored. |
| 704 | } |
| 705 | |
| 706 | // 2) |
| 707 | // |
| 708 | // The digits of the integral part have been generated: |
| 709 | // |
| 710 | // M+ = d[k-1]...d[1]d[0] + p2 * 2^e |
| 711 | // = buffer + p2 * 2^e |
| 712 | // |
| 713 | // Now generate the digits of the fractional part p2 * 2^e. |
| 714 | // |
| 715 | // Note: |
| 716 | // No decimal point is generated: the exponent is adjusted instead. |
| 717 | // |
| 718 | // p2 actually represents the fraction |
| 719 | // |
| 720 | // p2 * 2^e |
| 721 | // = p2 / 2^-e |
| 722 | // = d[-1] / 10^1 + d[-2] / 10^2 + ... |
| 723 | // |
| 724 | // Now generate the digits d[-m] of p1 from left to right (m = 1,2,...) |
| 725 | // |
| 726 | // p2 * 2^e = d[-1]d[-2]...d[-m] * 10^-m |
| 727 | // + 10^-m * (d[-m-1] / 10^1 + d[-m-2] / 10^2 + ...) |
| 728 | // |
| 729 | // using |
| 730 | // |
| 731 | // 10^m * p2 = ((10^m * p2) div 2^-e) * 2^-e + ((10^m * p2) mod 2^-e) |
| 732 | // = ( d) * 2^-e + ( r) |
| 733 | // |
| 734 | // or |
| 735 | // 10^m * p2 * 2^e = d + r * 2^e |
| 736 | // |
| 737 | // i.e. |
| 738 | // |
| 739 | // M+ = buffer + p2 * 2^e |
| 740 | // = buffer + 10^-m * (d + r * 2^e) |
| 741 | // = (buffer * 10^m + d) * 10^-m + 10^-m * r * 2^e |
| 742 | // |
| 743 | // and stop as soon as 10^-m * r * 2^e <= delta * 2^e |
| 744 | |
| 745 | assert(p2 > delta); |
| 746 | |
| 747 | int m = 0; |
| 748 | for (;;) |
| 749 | { |
| 750 | // Invariant: |
| 751 | // M+ = buffer * 10^-m + 10^-m * (d[-m-1] / 10 + d[-m-2] / 10^2 + ...) * 2^e |
| 752 | // = buffer * 10^-m + 10^-m * (p2 ) * 2^e |
| 753 | // = buffer * 10^-m + 10^-m * (1/10 * (10 * p2) ) * 2^e |
| 754 | // = buffer * 10^-m + 10^-m * (1/10 * ((10*p2 div 2^-e) * 2^-e + (10*p2 mod 2^-e)) * 2^e |
| 755 | // |
| 756 | assert(p2 <= (std::numeric_limits<std::uint64_t>::max)() / 10); |
| 757 | p2 *= 10; |
| 758 | const std::uint64_t d = p2 >> -one.e; // d = (10 * p2) div 2^-e |
| 759 | const std::uint64_t r = p2 & (one.f - 1); // r = (10 * p2) mod 2^-e |
| 760 | // |
| 761 | // M+ = buffer * 10^-m + 10^-m * (1/10 * (d * 2^-e + r) * 2^e |
| 762 | // = buffer * 10^-m + 10^-m * (1/10 * (d + r * 2^e)) |
| 763 | // = (buffer * 10 + d) * 10^(-m-1) + 10^(-m-1) * r * 2^e |
| 764 | // |
| 765 | assert(d <= 9); |
| 766 | buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d |
| 767 | // |
| 768 | // M+ = buffer * 10^(-m-1) + 10^(-m-1) * r * 2^e |
| 769 | // |
| 770 | p2 = r; |
| 771 | m++; |
| 772 | // |
| 773 | // M+ = buffer * 10^-m + 10^-m * p2 * 2^e |
| 774 | // Invariant restored. |
| 775 | |
| 776 | // Check if enough digits have been generated. |
| 777 | // |
| 778 | // 10^-m * p2 * 2^e <= delta * 2^e |
| 779 | // p2 * 2^e <= 10^m * delta * 2^e |
| 780 | // p2 <= 10^m * delta |
| 781 | delta *= 10; |
| 782 | dist *= 10; |
| 783 | if (p2 <= delta) |
| 784 | { |
| 785 | break; |
| 786 | } |
| 787 | } |
| 788 | |
| 789 | // V = buffer * 10^-m, with M- <= V <= M+. |
| 790 | |
| 791 | decimal_exponent -= m; |
| 792 | |
| 793 | // 1 ulp in the decimal representation is now 10^-m. |
| 794 | // Since delta and dist are now scaled by 10^m, we need to do the |
| 795 | // same with ulp in order to keep the units in sync. |
| 796 | // |
| 797 | // 10^m * 10^-m = 1 = 2^-e * 2^e = ten_m * 2^e |
| 798 | // |
| 799 | const std::uint64_t ten_m = one.f; |
| 800 | grisu2_round(buffer, length, dist, delta, p2, ten_m); |
| 801 | |
| 802 | // By construction this algorithm generates the shortest possible decimal |
| 803 | // number (Loitsch, Theorem 6.2) which rounds back to w. |
| 804 | // For an input number of precision p, at least |
| 805 | // |
| 806 | // N = 1 + ceil(p * log_10(2)) |
| 807 | // |
| 808 | // decimal digits are sufficient to identify all binary floating-point |
| 809 | // numbers (Matula, "In-and-Out conversions"). |
| 810 | // This implies that the algorithm does not produce more than N decimal |
| 811 | // digits. |
| 812 | // |
| 813 | // N = 17 for p = 53 (IEEE double precision) |
| 814 | // N = 9 for p = 24 (IEEE single precision) |
| 815 | } |
| 816 | |
| 817 | /*! |
| 818 | v = buf * 10^decimal_exponent |
| 819 | len is the length of the buffer (number of decimal digits) |
| 820 | The buffer must be large enough, i.e. >= max_digits10. |
| 821 | */ |
| 822 | JSON_HEDLEY_NON_NULL(1) |
| 823 | inline void grisu2(char* buf, int& len, int& decimal_exponent, |
| 824 | diyfp m_minus, diyfp v, diyfp m_plus) |
| 825 | { |
| 826 | assert(m_plus.e == m_minus.e); |
| 827 | assert(m_plus.e == v.e); |
| 828 | |
| 829 | // --------(-----------------------+-----------------------)-------- (A) |
| 830 | // m- v m+ |
| 831 | // |
| 832 | // --------------------(-----------+-----------------------)-------- (B) |
| 833 | // m- v m+ |
| 834 | // |
| 835 | // First scale v (and m- and m+) such that the exponent is in the range |
| 836 | // [alpha, gamma]. |
| 837 | |
| 838 | const cached_power cached = get_cached_power_for_binary_exponent(m_plus.e); |
| 839 | |
| 840 | const diyfp c_minus_k(cached.f, cached.e); // = c ~= 10^-k |
| 841 | |
| 842 | // The exponent of the products is = v.e + c_minus_k.e + q and is in the range [alpha,gamma] |
| 843 | const diyfp w = diyfp::mul(v, c_minus_k); |
| 844 | const diyfp w_minus = diyfp::mul(m_minus, c_minus_k); |
| 845 | const diyfp w_plus = diyfp::mul(m_plus, c_minus_k); |
| 846 | |
| 847 | // ----(---+---)---------------(---+---)---------------(---+---)---- |
| 848 | // w- w w+ |
| 849 | // = c*m- = c*v = c*m+ |
| 850 | // |
| 851 | // diyfp::mul rounds its result and c_minus_k is approximated too. w, w- and |
| 852 | // w+ are now off by a small amount. |
| 853 | // In fact: |
| 854 | // |
| 855 | // w - v * 10^k < 1 ulp |
| 856 | // |
| 857 | // To account for this inaccuracy, add resp. subtract 1 ulp. |
| 858 | // |
| 859 | // --------+---[---------------(---+---)---------------]---+-------- |
| 860 | // w- M- w M+ w+ |
| 861 | // |
| 862 | // Now any number in [M-, M+] (bounds included) will round to w when input, |
| 863 | // regardless of how the input rounding algorithm breaks ties. |
| 864 | // |
| 865 | // And digit_gen generates the shortest possible such number in [M-, M+]. |
| 866 | // Note that this does not mean that Grisu2 always generates the shortest |
| 867 | // possible number in the interval (m-, m+). |
| 868 | const diyfp M_minus(w_minus.f + 1, w_minus.e); |
| 869 | const diyfp M_plus (w_plus.f - 1, w_plus.e ); |
| 870 | |
| 871 | decimal_exponent = -cached.k; // = -(-k) = k |
| 872 | |
| 873 | grisu2_digit_gen(buf, len, decimal_exponent, M_minus, w, M_plus); |
| 874 | } |
| 875 | |
| 876 | /*! |
| 877 | v = buf * 10^decimal_exponent |
| 878 | len is the length of the buffer (number of decimal digits) |
| 879 | The buffer must be large enough, i.e. >= max_digits10. |
| 880 | */ |
| 881 | template <typename FloatType> |
| 882 | JSON_HEDLEY_NON_NULL(1) |
| 883 | void grisu2(char* buf, int& len, int& decimal_exponent, FloatType value) |
| 884 | { |
| 885 | static_assert(diyfp::kPrecision >= std::numeric_limits<FloatType>::digits + 3, |
| 886 | "internal error: not enough precision" ); |
| 887 | |
| 888 | assert(std::isfinite(value)); |
| 889 | assert(value > 0); |
| 890 | |
| 891 | // If the neighbors (and boundaries) of 'value' are always computed for double-precision |
| 892 | // numbers, all float's can be recovered using strtod (and strtof). However, the resulting |
| 893 | // decimal representations are not exactly "short". |
| 894 | // |
| 895 | // The documentation for 'std::to_chars' (https://en.cppreference.com/w/cpp/utility/to_chars) |
| 896 | // says "value is converted to a string as if by std::sprintf in the default ("C") locale" |
| 897 | // and since sprintf promotes float's to double's, I think this is exactly what 'std::to_chars' |
| 898 | // does. |
| 899 | // On the other hand, the documentation for 'std::to_chars' requires that "parsing the |
| 900 | // representation using the corresponding std::from_chars function recovers value exactly". That |
| 901 | // indicates that single precision floating-point numbers should be recovered using |
| 902 | // 'std::strtof'. |
| 903 | // |
| 904 | // NB: If the neighbors are computed for single-precision numbers, there is a single float |
| 905 | // (7.0385307e-26f) which can't be recovered using strtod. The resulting double precision |
| 906 | // value is off by 1 ulp. |
| 907 | #if 0 |
| 908 | const boundaries w = compute_boundaries(static_cast<double>(value)); |
| 909 | #else |
| 910 | const boundaries w = compute_boundaries(value); |
| 911 | #endif |
| 912 | |
| 913 | grisu2(buf, len, decimal_exponent, w.minus, w.w, w.plus); |
| 914 | } |
| 915 | |
| 916 | /*! |
| 917 | @brief appends a decimal representation of e to buf |
| 918 | @return a pointer to the element following the exponent. |
| 919 | @pre -1000 < e < 1000 |
| 920 | */ |
| 921 | JSON_HEDLEY_NON_NULL(1) |
| 922 | JSON_HEDLEY_RETURNS_NON_NULL |
| 923 | inline char* append_exponent(char* buf, int e) |
| 924 | { |
| 925 | assert(e > -1000); |
| 926 | assert(e < 1000); |
| 927 | |
| 928 | if (e < 0) |
| 929 | { |
| 930 | e = -e; |
| 931 | *buf++ = '-'; |
| 932 | } |
| 933 | else |
| 934 | { |
| 935 | *buf++ = '+'; |
| 936 | } |
| 937 | |
| 938 | auto k = static_cast<std::uint32_t>(e); |
| 939 | if (k < 10) |
| 940 | { |
| 941 | // Always print at least two digits in the exponent. |
| 942 | // This is for compatibility with printf("%g"). |
| 943 | *buf++ = '0'; |
| 944 | *buf++ = static_cast<char>('0' + k); |
| 945 | } |
| 946 | else if (k < 100) |
| 947 | { |
| 948 | *buf++ = static_cast<char>('0' + k / 10); |
| 949 | k %= 10; |
| 950 | *buf++ = static_cast<char>('0' + k); |
| 951 | } |
| 952 | else |
| 953 | { |
| 954 | *buf++ = static_cast<char>('0' + k / 100); |
| 955 | k %= 100; |
| 956 | *buf++ = static_cast<char>('0' + k / 10); |
| 957 | k %= 10; |
| 958 | *buf++ = static_cast<char>('0' + k); |
| 959 | } |
| 960 | |
| 961 | return buf; |
| 962 | } |
| 963 | |
| 964 | /*! |
| 965 | @brief prettify v = buf * 10^decimal_exponent |
| 966 | |
| 967 | If v is in the range [10^min_exp, 10^max_exp) it will be printed in fixed-point |
| 968 | notation. Otherwise it will be printed in exponential notation. |
| 969 | |
| 970 | @pre min_exp < 0 |
| 971 | @pre max_exp > 0 |
| 972 | */ |
| 973 | JSON_HEDLEY_NON_NULL(1) |
| 974 | JSON_HEDLEY_RETURNS_NON_NULL |
| 975 | inline char* format_buffer(char* buf, int len, int decimal_exponent, |
| 976 | int min_exp, int max_exp) |
| 977 | { |
| 978 | assert(min_exp < 0); |
| 979 | assert(max_exp > 0); |
| 980 | |
| 981 | const int k = len; |
| 982 | const int n = len + decimal_exponent; |
| 983 | |
| 984 | // v = buf * 10^(n-k) |
| 985 | // k is the length of the buffer (number of decimal digits) |
| 986 | // n is the position of the decimal point relative to the start of the buffer. |
| 987 | |
| 988 | if (k <= n and n <= max_exp) |
| 989 | { |
| 990 | // digits[000] |
| 991 | // len <= max_exp + 2 |
| 992 | |
| 993 | std::memset(buf + k, '0', static_cast<size_t>(n - k)); |
| 994 | // Make it look like a floating-point number (#362, #378) |
| 995 | buf[n + 0] = '.'; |
| 996 | buf[n + 1] = '0'; |
| 997 | return buf + (n + 2); |
| 998 | } |
| 999 | |
| 1000 | if (0 < n and n <= max_exp) |
| 1001 | { |
| 1002 | // dig.its |
| 1003 | // len <= max_digits10 + 1 |
| 1004 | |
| 1005 | assert(k > n); |
| 1006 | |
| 1007 | std::memmove(buf + (n + 1), buf + n, static_cast<size_t>(k - n)); |
| 1008 | buf[n] = '.'; |
| 1009 | return buf + (k + 1); |
| 1010 | } |
| 1011 | |
| 1012 | if (min_exp < n and n <= 0) |
| 1013 | { |
| 1014 | // 0.[000]digits |
| 1015 | // len <= 2 + (-min_exp - 1) + max_digits10 |
| 1016 | |
| 1017 | std::memmove(buf + (2 + -n), buf, static_cast<size_t>(k)); |
| 1018 | buf[0] = '0'; |
| 1019 | buf[1] = '.'; |
| 1020 | std::memset(buf + 2, '0', static_cast<size_t>(-n)); |
| 1021 | return buf + (2 + (-n) + k); |
| 1022 | } |
| 1023 | |
| 1024 | if (k == 1) |
| 1025 | { |
| 1026 | // dE+123 |
| 1027 | // len <= 1 + 5 |
| 1028 | |
| 1029 | buf += 1; |
| 1030 | } |
| 1031 | else |
| 1032 | { |
| 1033 | // d.igitsE+123 |
| 1034 | // len <= max_digits10 + 1 + 5 |
| 1035 | |
| 1036 | std::memmove(buf + 2, buf + 1, static_cast<size_t>(k - 1)); |
| 1037 | buf[1] = '.'; |
| 1038 | buf += 1 + k; |
| 1039 | } |
| 1040 | |
| 1041 | *buf++ = 'e'; |
| 1042 | return append_exponent(buf, n - 1); |
| 1043 | } |
| 1044 | |
| 1045 | } // namespace dtoa_impl |
| 1046 | |
| 1047 | /*! |
| 1048 | @brief generates a decimal representation of the floating-point number value in [first, last). |
| 1049 | |
| 1050 | The format of the resulting decimal representation is similar to printf's %g |
| 1051 | format. Returns an iterator pointing past-the-end of the decimal representation. |
| 1052 | |
| 1053 | @note The input number must be finite, i.e. NaN's and Inf's are not supported. |
| 1054 | @note The buffer must be large enough. |
| 1055 | @note The result is NOT null-terminated. |
| 1056 | */ |
| 1057 | template <typename FloatType> |
| 1058 | JSON_HEDLEY_NON_NULL(1, 2) |
| 1059 | JSON_HEDLEY_RETURNS_NON_NULL |
| 1060 | char* to_chars(char* first, const char* last, FloatType value) |
| 1061 | { |
| 1062 | static_cast<void>(last); // maybe unused - fix warning |
| 1063 | assert(std::isfinite(value)); |
| 1064 | |
| 1065 | // Use signbit(value) instead of (value < 0) since signbit works for -0. |
| 1066 | if (std::signbit(value)) |
| 1067 | { |
| 1068 | value = -value; |
| 1069 | *first++ = '-'; |
| 1070 | } |
| 1071 | |
| 1072 | if (value == 0) // +-0 |
| 1073 | { |
| 1074 | *first++ = '0'; |
| 1075 | // Make it look like a floating-point number (#362, #378) |
| 1076 | *first++ = '.'; |
| 1077 | *first++ = '0'; |
| 1078 | return first; |
| 1079 | } |
| 1080 | |
| 1081 | assert(last - first >= std::numeric_limits<FloatType>::max_digits10); |
| 1082 | |
| 1083 | // Compute v = buffer * 10^decimal_exponent. |
| 1084 | // The decimal digits are stored in the buffer, which needs to be interpreted |
| 1085 | // as an unsigned decimal integer. |
| 1086 | // len is the length of the buffer, i.e. the number of decimal digits. |
| 1087 | int len = 0; |
| 1088 | int decimal_exponent = 0; |
| 1089 | dtoa_impl::grisu2(first, len, decimal_exponent, value); |
| 1090 | |
| 1091 | assert(len <= std::numeric_limits<FloatType>::max_digits10); |
| 1092 | |
| 1093 | // Format the buffer like printf("%.*g", prec, value) |
| 1094 | constexpr int kMinExp = -4; |
| 1095 | // Use digits10 here to increase compatibility with version 2. |
| 1096 | constexpr int kMaxExp = std::numeric_limits<FloatType>::digits10; |
| 1097 | |
| 1098 | assert(last - first >= kMaxExp + 2); |
| 1099 | assert(last - first >= 2 + (-kMinExp - 1) + std::numeric_limits<FloatType>::max_digits10); |
| 1100 | assert(last - first >= std::numeric_limits<FloatType>::max_digits10 + 6); |
| 1101 | |
| 1102 | return dtoa_impl::format_buffer(first, len, decimal_exponent, kMinExp, kMaxExp); |
| 1103 | } |
| 1104 | |
| 1105 | } // namespace detail |
| 1106 | } // namespace nlohmann |
| 1107 | |