| 1 | /* |
| 2 | Copyright (c) 2012, Broadcom Europe Ltd |
| 3 | All rights reserved. |
| 4 | |
| 5 | Redistribution and use in source and binary forms, with or without |
| 6 | modification, are permitted provided that the following conditions are met: |
| 7 | * Redistributions of source code must retain the above copyright |
| 8 | notice, this list of conditions and the following disclaimer. |
| 9 | * Redistributions in binary form must reproduce the above copyright |
| 10 | notice, this list of conditions and the following disclaimer in the |
| 11 | documentation and/or other materials provided with the distribution. |
| 12 | * Neither the name of the copyright holder nor the |
| 13 | names of its contributors may be used to endorse or promote products |
| 14 | derived from this software without specific prior written permission. |
| 15 | |
| 16 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
| 17 | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 18 | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 19 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY |
| 20 | DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 21 | (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 22 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 23 | ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 24 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 25 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 26 | */ |
| 27 | |
| 28 | /* |
| 29 | ------------------------------------------------------------------------------- |
| 30 | These are functions for producing 32-bit hashes for hash table lookup. |
| 31 | khrn_hashword(), khrn_hashlittle(), hashlittle2(), hashbig(), mix(), and final() |
| 32 | are externally useful functions. Routines to test the hash are included |
| 33 | if SELF_TEST is defined. You can use this free for any purpose. It's in |
| 34 | the public domain. It has no warranty. |
| 35 | |
| 36 | You probably want to use khrn_hashlittle(). khrn_hashlittle() and hashbig() |
| 37 | hash byte arrays. khrn_hashlittle() is is faster than hashbig() on |
| 38 | little-endian machines. Intel and AMD are little-endian machines. |
| 39 | On second thought, you probably want hashlittle2(), which is identical to |
| 40 | khrn_hashlittle() except it returns two 32-bit hashes for the price of one. |
| 41 | You could implement hashbig2() if you wanted but I haven't bothered here. |
| 42 | |
| 43 | If you want to find a hash of, say, exactly 7 integers, do |
| 44 | a = i1; b = i2; c = i3; |
| 45 | mix(a,b,c); |
| 46 | a += i4; b += i5; c += i6; |
| 47 | mix(a,b,c); |
| 48 | a += i7; |
| 49 | final(a,b,c); |
| 50 | then use c as the hash value. If you have a variable length array of |
| 51 | 4-byte integers to hash, use khrn_hashword(). If you have a byte array (like |
| 52 | a character string), use khrn_hashlittle(). If you have several byte arrays, or |
| 53 | a mix of things, see the comments above khrn_hashlittle(). |
| 54 | |
| 55 | Why is this so big? I read 12 bytes at a time into 3 4-byte integers, |
| 56 | then mix those integers. This is fast (you can do a lot more thorough |
| 57 | mixing with 12*3 instructions on 3 integers than you can with 3 instructions |
| 58 | on 1 byte), but shoehorning those bytes into integers efficiently is messy. |
| 59 | ------------------------------------------------------------------------------- |
| 60 | */ |
| 61 | |
| 62 | #include "interface/khronos/common/khrn_int_common.h" |
| 63 | |
| 64 | #include "interface/khronos/common/khrn_int_hash.h" // get definitions of rot, mix and final |
| 65 | |
| 66 | # define HASH_LITTLE_ENDIAN 1 |
| 67 | # define HASH_BIG_ENDIAN 0 |
| 68 | |
| 69 | #ifndef __arm__ // Use the version in khrn_int_hash_asm.s instead |
| 70 | /* |
| 71 | -------------------------------------------------------------------- |
| 72 | This works on all machines. To be useful, it requires |
| 73 | -- that the key be an array of uint32_t's, and |
| 74 | -- that the length be the number of uint32_t's in the key |
| 75 | |
| 76 | The function khrn_hashword() is identical to khrn_hashlittle() on little-endian |
| 77 | machines, and identical to hashbig() on big-endian machines, |
| 78 | except that the length has to be measured in uint32_ts rather than in |
| 79 | bytes. khrn_hashlittle() is more complicated than khrn_hashword() only because |
| 80 | khrn_hashlittle() has to dance around fitting the key bytes into registers. |
| 81 | -------------------------------------------------------------------- |
| 82 | */ |
| 83 | uint32_t khrn_hashword( |
| 84 | const uint32_t *k, /* the key, an array of uint32_t values */ |
| 85 | int length, /* the length of the key, in uint32_ts */ |
| 86 | uint32_t initval) /* the previous hash, or an arbitrary value */ |
| 87 | { |
| 88 | uint32_t a,b,c; |
| 89 | /* Set up the internal state */ |
| 90 | a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval; |
| 91 | /*------------------------------------------------- handle most of the key */ |
| 92 | while (length > 3) |
| 93 | { |
| 94 | a += k[0]; |
| 95 | b += k[1]; |
| 96 | c += k[2]; |
| 97 | mix(a,b,c); |
| 98 | length -= 3; |
| 99 | k += 3; |
| 100 | } |
| 101 | |
| 102 | /*------------------------------------------- handle the last 3 uint32_t's */ |
| 103 | switch(length) /* all the case statements fall through */ |
| 104 | { |
| 105 | case 3 : c+=k[2]; |
| 106 | case 2 : b+=k[1]; |
| 107 | case 1 : a+=k[0]; |
| 108 | final(a,b,c); |
| 109 | case 0: /* case 0: nothing left to add */ |
| 110 | break; |
| 111 | } |
| 112 | /*------------------------------------------------------ report the result */ |
| 113 | return c; |
| 114 | } |
| 115 | |
| 116 | #endif |
| 117 | |
| 118 | /* |
| 119 | ------------------------------------------------------------------------------- |
| 120 | khrn_hashlittle() -- hash a variable-length key into a 32-bit value |
| 121 | k : the key (the unaligned variable-length array of bytes) |
| 122 | length : the length of the key, counting by bytes |
| 123 | initval : can be any 4-byte value |
| 124 | Returns a 32-bit value. Every bit of the key affects every bit of |
| 125 | the return value. Two keys differing by one or two bits will have |
| 126 | totally different hash values. |
| 127 | |
| 128 | The best hash table sizes are powers of 2. There is no need to do |
| 129 | mod a prime (mod is sooo slow!). If you need less than 32 bits, |
| 130 | use a bitmask. For example, if you need only 10 bits, do |
| 131 | h = (h & hashmask(10)); |
| 132 | In which case, the hash table should have hashsize(10) elements. |
| 133 | |
| 134 | If you are hashing n strings (uint8_t **)k, do it like this: |
| 135 | for (i=0, h=0; i<n; ++i) h = khrn_hashlittle( k[i], len[i], h); |
| 136 | |
| 137 | By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this |
| 138 | code any way you wish, private, educational, or commercial. It's free. |
| 139 | |
| 140 | Use for hash table lookup, or anything where one collision in 2^^32 is |
| 141 | acceptable. Do NOT use for cryptographic purposes. |
| 142 | ------------------------------------------------------------------------------- |
| 143 | */ |
| 144 | uint32_t khrn_hashlittle( const void *key, int length, uint32_t initval) |
| 145 | { |
| 146 | uint32_t a,b,c; /* internal state */ |
| 147 | union { const void *ptr; int i; } u; /* needed for Mac Powerbook G4 */ |
| 148 | |
| 149 | /* Set up the internal state */ |
| 150 | a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; |
| 151 | |
| 152 | u.ptr = key; |
| 153 | if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { |
| 154 | const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
| 155 | |
| 156 | /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
| 157 | while (length > 12) |
| 158 | { |
| 159 | a += k[0]; |
| 160 | b += k[1]; |
| 161 | c += k[2]; |
| 162 | mix(a,b,c); |
| 163 | length -= 12; |
| 164 | k += 3; |
| 165 | } |
| 166 | |
| 167 | /*----------------------------- handle the last (probably partial) block */ |
| 168 | /* |
| 169 | * "k[2]&0xffffff" actually reads beyond the end of the string, but |
| 170 | * then masks off the part it's not allowed to read. Because the |
| 171 | * string is aligned, the masked-off tail is in the same word as the |
| 172 | * rest of the string. Every machine with memory protection I've seen |
| 173 | * does it on word boundaries, so is OK with this. But VALGRIND will |
| 174 | * still catch it and complain. The masking trick does make the hash |
| 175 | * noticeably faster for short strings (like English words). |
| 176 | */ |
| 177 | #ifndef VALGRIND |
| 178 | |
| 179 | switch(length) |
| 180 | { |
| 181 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
| 182 | case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; |
| 183 | case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; |
| 184 | case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; |
| 185 | case 8 : b+=k[1]; a+=k[0]; break; |
| 186 | case 7 : b+=k[1]&0xffffff; a+=k[0]; break; |
| 187 | case 6 : b+=k[1]&0xffff; a+=k[0]; break; |
| 188 | case 5 : b+=k[1]&0xff; a+=k[0]; break; |
| 189 | case 4 : a+=k[0]; break; |
| 190 | case 3 : a+=k[0]&0xffffff; break; |
| 191 | case 2 : a+=k[0]&0xffff; break; |
| 192 | case 1 : a+=k[0]&0xff; break; |
| 193 | case 0 : return c; /* zero length strings require no mixing */ |
| 194 | } |
| 195 | |
| 196 | #else /* make valgrind happy */ |
| 197 | |
| 198 | k8 = (const uint8_t *)k; |
| 199 | switch(length) |
| 200 | { |
| 201 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
| 202 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
| 203 | case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ |
| 204 | case 9 : c+=k8[8]; /* fall through */ |
| 205 | case 8 : b+=k[1]; a+=k[0]; break; |
| 206 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
| 207 | case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ |
| 208 | case 5 : b+=k8[4]; /* fall through */ |
| 209 | case 4 : a+=k[0]; break; |
| 210 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
| 211 | case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ |
| 212 | case 1 : a+=k8[0]; break; |
| 213 | case 0 : return c; |
| 214 | } |
| 215 | |
| 216 | #endif /* !valgrind */ |
| 217 | |
| 218 | } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { |
| 219 | const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ |
| 220 | const uint8_t *k8; |
| 221 | |
| 222 | /*--------------- all but last block: aligned reads and different mixing */ |
| 223 | while (length > 12) |
| 224 | { |
| 225 | a += k[0] + (((uint32_t)k[1])<<16); |
| 226 | b += k[2] + (((uint32_t)k[3])<<16); |
| 227 | c += k[4] + (((uint32_t)k[5])<<16); |
| 228 | mix(a,b,c); |
| 229 | length -= 12; |
| 230 | k += 6; |
| 231 | } |
| 232 | |
| 233 | /*----------------------------- handle the last (probably partial) block */ |
| 234 | k8 = (const uint8_t *)k; |
| 235 | switch(length) |
| 236 | { |
| 237 | case 12: c+=k[4]+(((uint32_t)k[5])<<16); |
| 238 | b+=k[2]+(((uint32_t)k[3])<<16); |
| 239 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 240 | break; |
| 241 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
| 242 | case 10: c+=k[4]; |
| 243 | b+=k[2]+(((uint32_t)k[3])<<16); |
| 244 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 245 | break; |
| 246 | case 9 : c+=k8[8]; /* fall through */ |
| 247 | case 8 : b+=k[2]+(((uint32_t)k[3])<<16); |
| 248 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 249 | break; |
| 250 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
| 251 | case 6 : b+=k[2]; |
| 252 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 253 | break; |
| 254 | case 5 : b+=k8[4]; /* fall through */ |
| 255 | case 4 : a+=k[0]+(((uint32_t)k[1])<<16); |
| 256 | break; |
| 257 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
| 258 | case 2 : a+=k[0]; |
| 259 | break; |
| 260 | case 1 : a+=k8[0]; |
| 261 | break; |
| 262 | case 0 : return c; /* zero length requires no mixing */ |
| 263 | } |
| 264 | |
| 265 | } else { /* need to read the key one byte at a time */ |
| 266 | const uint8_t *k = (const uint8_t *)key; |
| 267 | |
| 268 | /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ |
| 269 | while (length > 12) |
| 270 | { |
| 271 | a += k[0]; |
| 272 | a += ((uint32_t)k[1])<<8; |
| 273 | a += ((uint32_t)k[2])<<16; |
| 274 | a += ((uint32_t)k[3])<<24; |
| 275 | b += k[4]; |
| 276 | b += ((uint32_t)k[5])<<8; |
| 277 | b += ((uint32_t)k[6])<<16; |
| 278 | b += ((uint32_t)k[7])<<24; |
| 279 | c += k[8]; |
| 280 | c += ((uint32_t)k[9])<<8; |
| 281 | c += ((uint32_t)k[10])<<16; |
| 282 | c += ((uint32_t)k[11])<<24; |
| 283 | mix(a,b,c); |
| 284 | length -= 12; |
| 285 | k += 12; |
| 286 | } |
| 287 | |
| 288 | /*-------------------------------- last block: affect all 32 bits of (c) */ |
| 289 | switch(length) /* all the case statements fall through */ |
| 290 | { /* Comments to pacify Coverity */ |
| 291 | case 12: c+=((uint32_t)k[11])<<24; /* fall through */ |
| 292 | case 11: c+=((uint32_t)k[10])<<16; /* fall through */ |
| 293 | case 10: c+=((uint32_t)k[9])<<8; /* fall through */ |
| 294 | case 9 : c+=k[8]; /* fall through */ |
| 295 | case 8 : b+=((uint32_t)k[7])<<24; /* fall through */ |
| 296 | case 7 : b+=((uint32_t)k[6])<<16; /* fall through */ |
| 297 | case 6 : b+=((uint32_t)k[5])<<8; /* fall through */ |
| 298 | case 5 : b+=k[4]; /* fall through */ |
| 299 | case 4 : a+=((uint32_t)k[3])<<24; /* fall through */ |
| 300 | case 3 : a+=((uint32_t)k[2])<<16; /* fall through */ |
| 301 | case 2 : a+=((uint32_t)k[1])<<8; /* fall through */ |
| 302 | case 1 : a+=k[0]; |
| 303 | break; |
| 304 | case 0 : return c; |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | final(a,b,c); |
| 309 | return c; |
| 310 | } |
| 311 | |