1 | /* |
2 | Copyright (c) 2012, Broadcom Europe Ltd |
3 | All rights reserved. |
4 | |
5 | Redistribution and use in source and binary forms, with or without |
6 | modification, are permitted provided that the following conditions are met: |
7 | * Redistributions of source code must retain the above copyright |
8 | notice, this list of conditions and the following disclaimer. |
9 | * Redistributions in binary form must reproduce the above copyright |
10 | notice, this list of conditions and the following disclaimer in the |
11 | documentation and/or other materials provided with the distribution. |
12 | * Neither the name of the copyright holder nor the |
13 | names of its contributors may be used to endorse or promote products |
14 | derived from this software without specific prior written permission. |
15 | |
16 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
17 | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
18 | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
19 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY |
20 | DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
21 | (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
22 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
23 | ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
24 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
25 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
26 | */ |
27 | |
28 | /* |
29 | ------------------------------------------------------------------------------- |
30 | These are functions for producing 32-bit hashes for hash table lookup. |
31 | khrn_hashword(), khrn_hashlittle(), hashlittle2(), hashbig(), mix(), and final() |
32 | are externally useful functions. Routines to test the hash are included |
33 | if SELF_TEST is defined. You can use this free for any purpose. It's in |
34 | the public domain. It has no warranty. |
35 | |
36 | You probably want to use khrn_hashlittle(). khrn_hashlittle() and hashbig() |
37 | hash byte arrays. khrn_hashlittle() is is faster than hashbig() on |
38 | little-endian machines. Intel and AMD are little-endian machines. |
39 | On second thought, you probably want hashlittle2(), which is identical to |
40 | khrn_hashlittle() except it returns two 32-bit hashes for the price of one. |
41 | You could implement hashbig2() if you wanted but I haven't bothered here. |
42 | |
43 | If you want to find a hash of, say, exactly 7 integers, do |
44 | a = i1; b = i2; c = i3; |
45 | mix(a,b,c); |
46 | a += i4; b += i5; c += i6; |
47 | mix(a,b,c); |
48 | a += i7; |
49 | final(a,b,c); |
50 | then use c as the hash value. If you have a variable length array of |
51 | 4-byte integers to hash, use khrn_hashword(). If you have a byte array (like |
52 | a character string), use khrn_hashlittle(). If you have several byte arrays, or |
53 | a mix of things, see the comments above khrn_hashlittle(). |
54 | |
55 | Why is this so big? I read 12 bytes at a time into 3 4-byte integers, |
56 | then mix those integers. This is fast (you can do a lot more thorough |
57 | mixing with 12*3 instructions on 3 integers than you can with 3 instructions |
58 | on 1 byte), but shoehorning those bytes into integers efficiently is messy. |
59 | ------------------------------------------------------------------------------- |
60 | */ |
61 | |
62 | #include "interface/khronos/common/khrn_int_common.h" |
63 | |
64 | #include "interface/khronos/common/khrn_int_hash.h" // get definitions of rot, mix and final |
65 | |
66 | # define HASH_LITTLE_ENDIAN 1 |
67 | # define HASH_BIG_ENDIAN 0 |
68 | |
69 | #ifndef __arm__ // Use the version in khrn_int_hash_asm.s instead |
70 | /* |
71 | -------------------------------------------------------------------- |
72 | This works on all machines. To be useful, it requires |
73 | -- that the key be an array of uint32_t's, and |
74 | -- that the length be the number of uint32_t's in the key |
75 | |
76 | The function khrn_hashword() is identical to khrn_hashlittle() on little-endian |
77 | machines, and identical to hashbig() on big-endian machines, |
78 | except that the length has to be measured in uint32_ts rather than in |
79 | bytes. khrn_hashlittle() is more complicated than khrn_hashword() only because |
80 | khrn_hashlittle() has to dance around fitting the key bytes into registers. |
81 | -------------------------------------------------------------------- |
82 | */ |
83 | uint32_t khrn_hashword( |
84 | const uint32_t *k, /* the key, an array of uint32_t values */ |
85 | int length, /* the length of the key, in uint32_ts */ |
86 | uint32_t initval) /* the previous hash, or an arbitrary value */ |
87 | { |
88 | uint32_t a,b,c; |
89 | /* Set up the internal state */ |
90 | a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval; |
91 | /*------------------------------------------------- handle most of the key */ |
92 | while (length > 3) |
93 | { |
94 | a += k[0]; |
95 | b += k[1]; |
96 | c += k[2]; |
97 | mix(a,b,c); |
98 | length -= 3; |
99 | k += 3; |
100 | } |
101 | |
102 | /*------------------------------------------- handle the last 3 uint32_t's */ |
103 | switch(length) /* all the case statements fall through */ |
104 | { |
105 | case 3 : c+=k[2]; |
106 | case 2 : b+=k[1]; |
107 | case 1 : a+=k[0]; |
108 | final(a,b,c); |
109 | case 0: /* case 0: nothing left to add */ |
110 | break; |
111 | } |
112 | /*------------------------------------------------------ report the result */ |
113 | return c; |
114 | } |
115 | |
116 | #endif |
117 | |
118 | /* |
119 | ------------------------------------------------------------------------------- |
120 | khrn_hashlittle() -- hash a variable-length key into a 32-bit value |
121 | k : the key (the unaligned variable-length array of bytes) |
122 | length : the length of the key, counting by bytes |
123 | initval : can be any 4-byte value |
124 | Returns a 32-bit value. Every bit of the key affects every bit of |
125 | the return value. Two keys differing by one or two bits will have |
126 | totally different hash values. |
127 | |
128 | The best hash table sizes are powers of 2. There is no need to do |
129 | mod a prime (mod is sooo slow!). If you need less than 32 bits, |
130 | use a bitmask. For example, if you need only 10 bits, do |
131 | h = (h & hashmask(10)); |
132 | In which case, the hash table should have hashsize(10) elements. |
133 | |
134 | If you are hashing n strings (uint8_t **)k, do it like this: |
135 | for (i=0, h=0; i<n; ++i) h = khrn_hashlittle( k[i], len[i], h); |
136 | |
137 | By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this |
138 | code any way you wish, private, educational, or commercial. It's free. |
139 | |
140 | Use for hash table lookup, or anything where one collision in 2^^32 is |
141 | acceptable. Do NOT use for cryptographic purposes. |
142 | ------------------------------------------------------------------------------- |
143 | */ |
144 | uint32_t khrn_hashlittle( const void *key, int length, uint32_t initval) |
145 | { |
146 | uint32_t a,b,c; /* internal state */ |
147 | union { const void *ptr; int i; } u; /* needed for Mac Powerbook G4 */ |
148 | |
149 | /* Set up the internal state */ |
150 | a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; |
151 | |
152 | u.ptr = key; |
153 | if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { |
154 | const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
155 | |
156 | /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
157 | while (length > 12) |
158 | { |
159 | a += k[0]; |
160 | b += k[1]; |
161 | c += k[2]; |
162 | mix(a,b,c); |
163 | length -= 12; |
164 | k += 3; |
165 | } |
166 | |
167 | /*----------------------------- handle the last (probably partial) block */ |
168 | /* |
169 | * "k[2]&0xffffff" actually reads beyond the end of the string, but |
170 | * then masks off the part it's not allowed to read. Because the |
171 | * string is aligned, the masked-off tail is in the same word as the |
172 | * rest of the string. Every machine with memory protection I've seen |
173 | * does it on word boundaries, so is OK with this. But VALGRIND will |
174 | * still catch it and complain. The masking trick does make the hash |
175 | * noticeably faster for short strings (like English words). |
176 | */ |
177 | #ifndef VALGRIND |
178 | |
179 | switch(length) |
180 | { |
181 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
182 | case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; |
183 | case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; |
184 | case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; |
185 | case 8 : b+=k[1]; a+=k[0]; break; |
186 | case 7 : b+=k[1]&0xffffff; a+=k[0]; break; |
187 | case 6 : b+=k[1]&0xffff; a+=k[0]; break; |
188 | case 5 : b+=k[1]&0xff; a+=k[0]; break; |
189 | case 4 : a+=k[0]; break; |
190 | case 3 : a+=k[0]&0xffffff; break; |
191 | case 2 : a+=k[0]&0xffff; break; |
192 | case 1 : a+=k[0]&0xff; break; |
193 | case 0 : return c; /* zero length strings require no mixing */ |
194 | } |
195 | |
196 | #else /* make valgrind happy */ |
197 | |
198 | k8 = (const uint8_t *)k; |
199 | switch(length) |
200 | { |
201 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
202 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
203 | case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ |
204 | case 9 : c+=k8[8]; /* fall through */ |
205 | case 8 : b+=k[1]; a+=k[0]; break; |
206 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
207 | case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ |
208 | case 5 : b+=k8[4]; /* fall through */ |
209 | case 4 : a+=k[0]; break; |
210 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
211 | case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ |
212 | case 1 : a+=k8[0]; break; |
213 | case 0 : return c; |
214 | } |
215 | |
216 | #endif /* !valgrind */ |
217 | |
218 | } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { |
219 | const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ |
220 | const uint8_t *k8; |
221 | |
222 | /*--------------- all but last block: aligned reads and different mixing */ |
223 | while (length > 12) |
224 | { |
225 | a += k[0] + (((uint32_t)k[1])<<16); |
226 | b += k[2] + (((uint32_t)k[3])<<16); |
227 | c += k[4] + (((uint32_t)k[5])<<16); |
228 | mix(a,b,c); |
229 | length -= 12; |
230 | k += 6; |
231 | } |
232 | |
233 | /*----------------------------- handle the last (probably partial) block */ |
234 | k8 = (const uint8_t *)k; |
235 | switch(length) |
236 | { |
237 | case 12: c+=k[4]+(((uint32_t)k[5])<<16); |
238 | b+=k[2]+(((uint32_t)k[3])<<16); |
239 | a+=k[0]+(((uint32_t)k[1])<<16); |
240 | break; |
241 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
242 | case 10: c+=k[4]; |
243 | b+=k[2]+(((uint32_t)k[3])<<16); |
244 | a+=k[0]+(((uint32_t)k[1])<<16); |
245 | break; |
246 | case 9 : c+=k8[8]; /* fall through */ |
247 | case 8 : b+=k[2]+(((uint32_t)k[3])<<16); |
248 | a+=k[0]+(((uint32_t)k[1])<<16); |
249 | break; |
250 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
251 | case 6 : b+=k[2]; |
252 | a+=k[0]+(((uint32_t)k[1])<<16); |
253 | break; |
254 | case 5 : b+=k8[4]; /* fall through */ |
255 | case 4 : a+=k[0]+(((uint32_t)k[1])<<16); |
256 | break; |
257 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
258 | case 2 : a+=k[0]; |
259 | break; |
260 | case 1 : a+=k8[0]; |
261 | break; |
262 | case 0 : return c; /* zero length requires no mixing */ |
263 | } |
264 | |
265 | } else { /* need to read the key one byte at a time */ |
266 | const uint8_t *k = (const uint8_t *)key; |
267 | |
268 | /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ |
269 | while (length > 12) |
270 | { |
271 | a += k[0]; |
272 | a += ((uint32_t)k[1])<<8; |
273 | a += ((uint32_t)k[2])<<16; |
274 | a += ((uint32_t)k[3])<<24; |
275 | b += k[4]; |
276 | b += ((uint32_t)k[5])<<8; |
277 | b += ((uint32_t)k[6])<<16; |
278 | b += ((uint32_t)k[7])<<24; |
279 | c += k[8]; |
280 | c += ((uint32_t)k[9])<<8; |
281 | c += ((uint32_t)k[10])<<16; |
282 | c += ((uint32_t)k[11])<<24; |
283 | mix(a,b,c); |
284 | length -= 12; |
285 | k += 12; |
286 | } |
287 | |
288 | /*-------------------------------- last block: affect all 32 bits of (c) */ |
289 | switch(length) /* all the case statements fall through */ |
290 | { /* Comments to pacify Coverity */ |
291 | case 12: c+=((uint32_t)k[11])<<24; /* fall through */ |
292 | case 11: c+=((uint32_t)k[10])<<16; /* fall through */ |
293 | case 10: c+=((uint32_t)k[9])<<8; /* fall through */ |
294 | case 9 : c+=k[8]; /* fall through */ |
295 | case 8 : b+=((uint32_t)k[7])<<24; /* fall through */ |
296 | case 7 : b+=((uint32_t)k[6])<<16; /* fall through */ |
297 | case 6 : b+=((uint32_t)k[5])<<8; /* fall through */ |
298 | case 5 : b+=k[4]; /* fall through */ |
299 | case 4 : a+=((uint32_t)k[3])<<24; /* fall through */ |
300 | case 3 : a+=((uint32_t)k[2])<<16; /* fall through */ |
301 | case 2 : a+=((uint32_t)k[1])<<8; /* fall through */ |
302 | case 1 : a+=k[0]; |
303 | break; |
304 | case 0 : return c; |
305 | } |
306 | } |
307 | |
308 | final(a,b,c); |
309 | return c; |
310 | } |
311 | |