1 | /* |
2 | Copyright (c) 2012, Broadcom Europe Ltd |
3 | All rights reserved. |
4 | |
5 | Redistribution and use in source and binary forms, with or without |
6 | modification, are permitted provided that the following conditions are met: |
7 | * Redistributions of source code must retain the above copyright |
8 | notice, this list of conditions and the following disclaimer. |
9 | * Redistributions in binary form must reproduce the above copyright |
10 | notice, this list of conditions and the following disclaimer in the |
11 | documentation and/or other materials provided with the distribution. |
12 | * Neither the name of the copyright holder nor the |
13 | names of its contributors may be used to endorse or promote products |
14 | derived from this software without specific prior written permission. |
15 | |
16 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
17 | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
18 | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
19 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY |
20 | DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
21 | (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
22 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
23 | ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
24 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
25 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
26 | */ |
27 | |
28 | #include <limits.h> |
29 | #include "interface/mmal/util/mmal_util_rational.h" |
30 | |
31 | #define Q16_ONE (1 << 16) |
32 | |
33 | #define ABS(v) (((v) < 0) ? -(v) : (v)) |
34 | |
35 | /** Calculate the greatest common denominator between 2 integers. |
36 | * Avoids division. */ |
37 | static int32_t gcd(int32_t a, int32_t b) |
38 | { |
39 | int shift; |
40 | |
41 | if (a == 0 || b == 0) |
42 | return 1; |
43 | |
44 | a = ABS(a); |
45 | b = ABS(b); |
46 | for (shift = 0; !((a | b) & 0x01); shift++) |
47 | a >>= 1, b >>= 1; |
48 | |
49 | while (a > 0) |
50 | { |
51 | while (!(a & 0x01)) |
52 | a >>= 1; |
53 | while (!(b & 0x01)) |
54 | b >>= 1; |
55 | if (a >= b) |
56 | a = (a - b) >> 1; |
57 | else |
58 | b = (b - a) >> 1; |
59 | } |
60 | return b << shift; |
61 | } |
62 | |
63 | /** Calculate a + b. */ |
64 | MMAL_RATIONAL_T mmal_rational_add(MMAL_RATIONAL_T a, MMAL_RATIONAL_T b) |
65 | { |
66 | MMAL_RATIONAL_T result; |
67 | int32_t g = gcd(a.den, b.den); |
68 | a.den /= g; |
69 | a.num = a.num * (b.den / g) + b.num * a.den; |
70 | g = gcd(a.num, g); |
71 | a.num /= g; |
72 | a.den *= b.den / g; |
73 | |
74 | result.num = a.num; |
75 | result.den = a.den; |
76 | return result; |
77 | } |
78 | |
79 | /** Calculate a - b. */ |
80 | MMAL_RATIONAL_T mmal_rational_subtract(MMAL_RATIONAL_T a, MMAL_RATIONAL_T b) |
81 | { |
82 | b.num = -b.num; |
83 | return mmal_rational_add(a, b); |
84 | } |
85 | |
86 | /** Calculate a * b */ |
87 | MMAL_RATIONAL_T mmal_rational_multiply(MMAL_RATIONAL_T a, MMAL_RATIONAL_T b) |
88 | { |
89 | MMAL_RATIONAL_T result; |
90 | int32_t gcd1 = gcd(a.num, b.den); |
91 | int32_t gcd2 = gcd(b.num, a.den); |
92 | result.num = (a.num / gcd1) * (b.num / gcd2); |
93 | result.den = (a.den / gcd2) * (b.den / gcd1); |
94 | |
95 | return result; |
96 | } |
97 | |
98 | /** Calculate a / b */ |
99 | MMAL_RATIONAL_T mmal_rational_divide(MMAL_RATIONAL_T a, MMAL_RATIONAL_T b) |
100 | { |
101 | MMAL_RATIONAL_T result; |
102 | int32_t gcd1, gcd2; |
103 | |
104 | if (b.num == 0) |
105 | { |
106 | vcos_assert(0); |
107 | return a; |
108 | } |
109 | |
110 | if (a.num == 0) |
111 | return a; |
112 | |
113 | gcd1 = gcd(a.num, b.num); |
114 | gcd2 = gcd(b.den, a.den); |
115 | result.num = (a.num / gcd1) * (b.den / gcd2); |
116 | result.den = (a.den / gcd2) * (b.num / gcd1); |
117 | |
118 | return result; |
119 | } |
120 | |
121 | /** Convert a rational number to a signed 32-bit Q16 number. */ |
122 | int32_t mmal_rational_to_fixed_16_16(MMAL_RATIONAL_T rational) |
123 | { |
124 | int64_t result = (int64_t)rational.num << 16; |
125 | if (rational.den) |
126 | result /= rational.den; |
127 | |
128 | if (result > INT_MAX) |
129 | result = INT_MAX; |
130 | else if (result < INT_MIN) |
131 | result = INT_MIN; |
132 | |
133 | return (int32_t)result; |
134 | } |
135 | |
136 | /** Convert a rational number to a signed 32-bit Q16 number. */ |
137 | MMAL_RATIONAL_T mmal_rational_from_fixed_16_16(int32_t fixed) |
138 | { |
139 | MMAL_RATIONAL_T result = { fixed, Q16_ONE }; |
140 | mmal_rational_simplify(&result); |
141 | return result; |
142 | } |
143 | |
144 | /** Reduce a rational number to it's simplest form. */ |
145 | void mmal_rational_simplify(MMAL_RATIONAL_T *rational) |
146 | { |
147 | int g = gcd(rational->num, rational->den); |
148 | rational->num /= g; |
149 | rational->den /= g; |
150 | } |
151 | |
152 | /** Tests for equality */ |
153 | MMAL_BOOL_T mmal_rational_equal(MMAL_RATIONAL_T a, MMAL_RATIONAL_T b) |
154 | { |
155 | if (a.num != b.num && a.num * (int64_t)b.num == 0) |
156 | return MMAL_FALSE; |
157 | return a.num * (int64_t)b.den == b.num * (int64_t)a.den; |
158 | } |
159 | |