| 1 | /********** |
| 2 | This library is free software; you can redistribute it and/or modify it under |
| 3 | the terms of the GNU Lesser General Public License as published by the |
| 4 | Free Software Foundation; either version 3 of the License, or (at your |
| 5 | option) any later version. (See <http://www.gnu.org/copyleft/lesser.html>.) |
| 6 | |
| 7 | This library is distributed in the hope that it will be useful, but WITHOUT |
| 8 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 9 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for |
| 10 | more details. |
| 11 | |
| 12 | You should have received a copy of the GNU Lesser General Public License |
| 13 | along with this library; if not, write to the Free Software Foundation, Inc., |
| 14 | 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| 15 | **********/ |
| 16 | // "liveMedia" |
| 17 | // Copyright (c) 1996-2020 Live Networks, Inc. All rights reserved. |
| 18 | // MP3 internal implementation details (Huffman encoding) |
| 19 | // Implementation |
| 20 | |
| 21 | #include "MP3InternalsHuffman.hh" |
| 22 | #include <stdio.h> |
| 23 | #include <string.h> |
| 24 | #include <stdlib.h> |
| 25 | |
| 26 | MP3HuffmanEncodingInfo |
| 27 | ::MP3HuffmanEncodingInfo(Boolean includeDecodedValues) { |
| 28 | if (includeDecodedValues) { |
| 29 | decodedValues = new unsigned[(SBLIMIT*SSLIMIT + 1)*4]; |
| 30 | } else { |
| 31 | decodedValues = NULL; |
| 32 | } |
| 33 | } |
| 34 | |
| 35 | MP3HuffmanEncodingInfo::~MP3HuffmanEncodingInfo() { |
| 36 | delete[] decodedValues; |
| 37 | } |
| 38 | |
| 39 | // This is crufty old code that needs to be cleaned up ##### |
| 40 | |
| 41 | static unsigned debugCount = 0; /* for debugging */ |
| 42 | |
| 43 | #define TRUNC_FAVORa |
| 44 | |
| 45 | void updateSideInfoForHuffman(MP3SideInfo& sideInfo, Boolean isMPEG2, |
| 46 | unsigned char const* mainDataPtr, |
| 47 | unsigned p23L0, unsigned p23L1, |
| 48 | unsigned& part23Length0a, |
| 49 | unsigned& part23Length0aTruncation, |
| 50 | unsigned& part23Length0b, |
| 51 | unsigned& part23Length0bTruncation, |
| 52 | unsigned& part23Length1a, |
| 53 | unsigned& part23Length1aTruncation, |
| 54 | unsigned& part23Length1b, |
| 55 | unsigned& part23Length1bTruncation) { |
| 56 | int i, j; |
| 57 | unsigned sfLength, origTotABsize, adjustment; |
| 58 | MP3SideInfo::gr_info_s_t* gr; |
| 59 | |
| 60 | /* First, Huffman-decode each part of the segment's main data, |
| 61 | to see at which bit-boundaries the samples appear: |
| 62 | */ |
| 63 | MP3HuffmanEncodingInfo hei; |
| 64 | |
| 65 | ++debugCount; |
| 66 | #ifdef DEBUG |
| 67 | fprintf(stderr, "usifh-start: p23L0: %d, p23L1: %d\n" , p23L0, p23L1); |
| 68 | #endif |
| 69 | |
| 70 | /* Process granule 0 */ |
| 71 | { |
| 72 | gr = &(sideInfo.ch[0].gr[0]); |
| 73 | origTotABsize = gr->part2_3_length; |
| 74 | |
| 75 | MP3HuffmanDecode(gr, isMPEG2, mainDataPtr, 0, origTotABsize, sfLength, hei); |
| 76 | |
| 77 | /* Begin by computing new sizes for parts a & b (& their truncations) */ |
| 78 | #ifdef DEBUG |
| 79 | fprintf(stderr, "usifh-0: %d, %d:%d, %d:%d, %d:%d, %d:%d, %d:%d\n" , |
| 80 | hei.numSamples, |
| 81 | sfLength/8, sfLength%8, |
| 82 | hei.reg1Start/8, hei.reg1Start%8, |
| 83 | hei.reg2Start/8, hei.reg2Start%8, |
| 84 | hei.bigvalStart/8, hei.bigvalStart%8, |
| 85 | origTotABsize/8, origTotABsize%8); |
| 86 | #endif |
| 87 | if (p23L0 < sfLength) { |
| 88 | /* We can't use this, so give it all to the next granule: */ |
| 89 | p23L1 += p23L0; |
| 90 | p23L0 = 0; |
| 91 | } |
| 92 | |
| 93 | part23Length0a = hei.bigvalStart; |
| 94 | part23Length0b = origTotABsize - hei.bigvalStart; |
| 95 | part23Length0aTruncation = part23Length0bTruncation = 0; |
| 96 | if (origTotABsize > p23L0) { |
| 97 | /* We need to shorten one or both of fields a & b */ |
| 98 | unsigned truncation = origTotABsize - p23L0; |
| 99 | #ifdef TRUNC_FAIRLY |
| 100 | part23Length0aTruncation = (truncation*(part23Length0a-sfLength)) |
| 101 | /(origTotABsize-sfLength); |
| 102 | part23Length0bTruncation = truncation - part23Length0aTruncation; |
| 103 | #endif |
| 104 | #ifdef TRUNC_FAVORa |
| 105 | part23Length0bTruncation |
| 106 | = (truncation > part23Length0b) ? part23Length0b : truncation; |
| 107 | part23Length0aTruncation = truncation - part23Length0bTruncation; |
| 108 | #endif |
| 109 | #ifdef TRUNC_FAVORb |
| 110 | part23Length0aTruncation = (truncation > part23Length0a-sfLength) |
| 111 | ? (part23Length0a-sfLength) : truncation; |
| 112 | part23Length0bTruncation = truncation - part23Length0aTruncation; |
| 113 | #endif |
| 114 | } |
| 115 | /* ASSERT: part23Length0xTruncation <= part23Length0x */ |
| 116 | part23Length0a -= part23Length0aTruncation; |
| 117 | part23Length0b -= part23Length0bTruncation; |
| 118 | #ifdef DEBUG |
| 119 | fprintf(stderr, "usifh-0: interim sizes: %d (%d), %d (%d)\n" , |
| 120 | part23Length0a, part23Length0aTruncation, |
| 121 | part23Length0b, part23Length0bTruncation); |
| 122 | #endif |
| 123 | |
| 124 | /* Adjust these new lengths so they end on sample bit boundaries: */ |
| 125 | for (i = 0; i < (int)hei.numSamples; ++i) { |
| 126 | if (hei.allBitOffsets[i] == part23Length0a) break; |
| 127 | else if (hei.allBitOffsets[i] > part23Length0a) {--i; break;} |
| 128 | } |
| 129 | if (i < 0) { /* should happen only if we couldn't fit sfLength */ |
| 130 | i = 0; adjustment = 0; |
| 131 | } else { |
| 132 | adjustment = part23Length0a - hei.allBitOffsets[i]; |
| 133 | } |
| 134 | #ifdef DEBUG |
| 135 | fprintf(stderr, "%d usifh-0: adjustment 1: %d\n" , debugCount, adjustment); |
| 136 | #endif |
| 137 | part23Length0a -= adjustment; |
| 138 | part23Length0aTruncation += adjustment; |
| 139 | /* Assign the bits we just shaved to field b and granule 1: */ |
| 140 | if (part23Length0bTruncation < adjustment) { |
| 141 | p23L1 += (adjustment - part23Length0bTruncation); |
| 142 | adjustment = part23Length0bTruncation; |
| 143 | } |
| 144 | part23Length0b += adjustment; |
| 145 | part23Length0bTruncation -= adjustment; |
| 146 | for (j = i; j < (int)hei.numSamples; ++j) { |
| 147 | if (hei.allBitOffsets[j] |
| 148 | == part23Length0a + part23Length0aTruncation + part23Length0b) |
| 149 | break; |
| 150 | else if (hei.allBitOffsets[j] |
| 151 | > part23Length0a + part23Length0aTruncation + part23Length0b) |
| 152 | {--j; break;} |
| 153 | } |
| 154 | if (j < 0) { /* should happen only if we couldn't fit sfLength */ |
| 155 | j = 0; adjustment = 0; |
| 156 | } else { |
| 157 | adjustment = part23Length0a+part23Length0aTruncation+part23Length0b |
| 158 | - hei.allBitOffsets[j]; |
| 159 | } |
| 160 | #ifdef DEBUG |
| 161 | fprintf(stderr, "%d usifh-0: adjustment 2: %d\n" , debugCount, adjustment); |
| 162 | #endif |
| 163 | if (adjustment > part23Length0b) adjustment = part23Length0b; /*sanity*/ |
| 164 | part23Length0b -= adjustment; |
| 165 | part23Length0bTruncation += adjustment; |
| 166 | /* Assign the bits we just shaved to granule 1 */ |
| 167 | p23L1 += adjustment; |
| 168 | |
| 169 | if (part23Length0aTruncation > 0) { |
| 170 | /* Change the granule's 'big_values' field to reflect the truncation */ |
| 171 | gr->big_values = i; |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | /* Process granule 1 (MPEG-1 only) */ |
| 176 | |
| 177 | if (isMPEG2) { |
| 178 | part23Length1a = part23Length1b = 0; |
| 179 | part23Length1aTruncation = part23Length1bTruncation = 0; |
| 180 | } else { |
| 181 | unsigned granule1Offset |
| 182 | = origTotABsize + sideInfo.ch[1].gr[0].part2_3_length; |
| 183 | |
| 184 | gr = &(sideInfo.ch[0].gr[1]); |
| 185 | origTotABsize = gr->part2_3_length; |
| 186 | |
| 187 | MP3HuffmanDecode(gr, isMPEG2, mainDataPtr, granule1Offset, |
| 188 | origTotABsize, sfLength, hei); |
| 189 | |
| 190 | /* Begin by computing new sizes for parts a & b (& their truncations) */ |
| 191 | #ifdef DEBUG |
| 192 | fprintf(stderr, "usifh-1: %d, %d:%d, %d:%d, %d:%d, %d:%d, %d:%d\n" , |
| 193 | hei.numSamples, |
| 194 | sfLength/8, sfLength%8, |
| 195 | hei.reg1Start/8, hei.reg1Start%8, |
| 196 | hei.reg2Start/8, hei.reg2Start%8, |
| 197 | hei.bigvalStart/8, hei.bigvalStart%8, |
| 198 | origTotABsize/8, origTotABsize%8); |
| 199 | #endif |
| 200 | if (p23L1 < sfLength) { |
| 201 | /* We can't use this, so give up on this granule: */ |
| 202 | p23L1 = 0; |
| 203 | } |
| 204 | |
| 205 | part23Length1a = hei.bigvalStart; |
| 206 | part23Length1b = origTotABsize - hei.bigvalStart; |
| 207 | part23Length1aTruncation = part23Length1bTruncation = 0; |
| 208 | if (origTotABsize > p23L1) { |
| 209 | /* We need to shorten one or both of fields a & b */ |
| 210 | unsigned truncation = origTotABsize - p23L1; |
| 211 | #ifdef TRUNC_FAIRLY |
| 212 | part23Length1aTruncation = (truncation*(part23Length1a-sfLength)) |
| 213 | /(origTotABsize-sfLength); |
| 214 | part23Length1bTruncation = truncation - part23Length1aTruncation; |
| 215 | #endif |
| 216 | #ifdef TRUNC_FAVORa |
| 217 | part23Length1bTruncation |
| 218 | = (truncation > part23Length1b) ? part23Length1b : truncation; |
| 219 | part23Length1aTruncation = truncation - part23Length1bTruncation; |
| 220 | #endif |
| 221 | #ifdef TRUNC_FAVORb |
| 222 | part23Length1aTruncation = (truncation > part23Length1a-sfLength) |
| 223 | ? (part23Length1a-sfLength) : truncation; |
| 224 | part23Length1bTruncation = truncation - part23Length1aTruncation; |
| 225 | #endif |
| 226 | } |
| 227 | /* ASSERT: part23Length1xTruncation <= part23Length1x */ |
| 228 | part23Length1a -= part23Length1aTruncation; |
| 229 | part23Length1b -= part23Length1bTruncation; |
| 230 | #ifdef DEBUG |
| 231 | fprintf(stderr, "usifh-1: interim sizes: %d (%d), %d (%d)\n" , |
| 232 | part23Length1a, part23Length1aTruncation, |
| 233 | part23Length1b, part23Length1bTruncation); |
| 234 | #endif |
| 235 | |
| 236 | /* Adjust these new lengths so they end on sample bit boundaries: */ |
| 237 | for (i = 0; i < (int)hei.numSamples; ++i) { |
| 238 | if (hei.allBitOffsets[i] == part23Length1a) break; |
| 239 | else if (hei.allBitOffsets[i] > part23Length1a) {--i; break;} |
| 240 | } |
| 241 | if (i < 0) { /* should happen only if we couldn't fit sfLength */ |
| 242 | i = 0; adjustment = 0; |
| 243 | } else { |
| 244 | adjustment = part23Length1a - hei.allBitOffsets[i]; |
| 245 | } |
| 246 | #ifdef DEBUG |
| 247 | fprintf(stderr, "%d usifh-1: adjustment 0: %d\n" , debugCount, adjustment); |
| 248 | #endif |
| 249 | part23Length1a -= adjustment; |
| 250 | part23Length1aTruncation += adjustment; |
| 251 | /* Assign the bits we just shaved to field b: */ |
| 252 | if (part23Length1bTruncation < adjustment) { |
| 253 | adjustment = part23Length1bTruncation; |
| 254 | } |
| 255 | part23Length1b += adjustment; |
| 256 | part23Length1bTruncation -= adjustment; |
| 257 | for (j = i; j < (int)hei.numSamples; ++j) { |
| 258 | if (hei.allBitOffsets[j] |
| 259 | == part23Length1a + part23Length1aTruncation + part23Length1b) |
| 260 | break; |
| 261 | else if (hei.allBitOffsets[j] |
| 262 | > part23Length1a + part23Length1aTruncation + part23Length1b) |
| 263 | {--j; break;} |
| 264 | } |
| 265 | if (j < 0) { /* should happen only if we couldn't fit sfLength */ |
| 266 | j = 0; adjustment = 0; |
| 267 | } else { |
| 268 | adjustment = part23Length1a+part23Length1aTruncation+part23Length1b |
| 269 | - hei.allBitOffsets[j]; |
| 270 | } |
| 271 | #ifdef DEBUG |
| 272 | fprintf(stderr, "%d usifh-1: adjustment 1: %d\n" , debugCount, adjustment); |
| 273 | #endif |
| 274 | if (adjustment > part23Length1b) adjustment = part23Length1b; /*sanity*/ |
| 275 | part23Length1b -= adjustment; |
| 276 | part23Length1bTruncation += adjustment; |
| 277 | |
| 278 | if (part23Length1aTruncation > 0) { |
| 279 | /* Change the granule's 'big_values' field to reflect the truncation */ |
| 280 | gr->big_values = i; |
| 281 | } |
| 282 | } |
| 283 | #ifdef DEBUG |
| 284 | fprintf(stderr, "usifh-end, new vals: %d (%d), %d (%d), %d (%d), %d (%d)\n" , |
| 285 | part23Length0a, part23Length0aTruncation, |
| 286 | part23Length0b, part23Length0bTruncation, |
| 287 | part23Length1a, part23Length1aTruncation, |
| 288 | part23Length1b, part23Length1bTruncation); |
| 289 | #endif |
| 290 | } |
| 291 | |
| 292 | static void rsf_getline(char* line, unsigned max, unsigned char**fi) { |
| 293 | unsigned i; |
| 294 | for (i = 0; i < max; ++i) { |
| 295 | line[i] = *(*fi)++; |
| 296 | if (line[i] == '\n') { |
| 297 | line[i++] = '\0'; |
| 298 | return; |
| 299 | } |
| 300 | } |
| 301 | line[i] = '\0'; |
| 302 | } |
| 303 | |
| 304 | static void rsfscanf(unsigned char **fi, unsigned int* v) { |
| 305 | while (sscanf((char*)*fi, "%x" , v) == 0) { |
| 306 | /* skip past the next '\0' */ |
| 307 | while (*(*fi)++ != '\0') {} |
| 308 | } |
| 309 | |
| 310 | /* skip past any white-space before the value: */ |
| 311 | while (*(*fi) <= ' ') ++(*fi); |
| 312 | |
| 313 | /* skip past the value: */ |
| 314 | while (*(*fi) > ' ') ++(*fi); |
| 315 | } |
| 316 | |
| 317 | #define HUFFBITS unsigned long int |
| 318 | #define SIZEOF_HUFFBITS 4 |
| 319 | #define HTN 34 |
| 320 | #define MXOFF 250 |
| 321 | |
| 322 | struct huffcodetab { |
| 323 | char tablename[3]; /*string, containing table_description */ |
| 324 | unsigned int xlen; /*max. x-index+ */ |
| 325 | unsigned int ylen; /*max. y-index+ */ |
| 326 | unsigned int linbits; /*number of linbits */ |
| 327 | unsigned int linmax; /*max number to be stored in linbits */ |
| 328 | int ref; /*a positive value indicates a reference*/ |
| 329 | HUFFBITS *table; /*pointer to array[xlen][ylen] */ |
| 330 | unsigned char *hlen; /*pointer to array[xlen][ylen] */ |
| 331 | unsigned char(*val)[2];/*decoder tree */ |
| 332 | unsigned int treelen; /*length of decoder tree */ |
| 333 | }; |
| 334 | |
| 335 | static struct huffcodetab rsf_ht[HTN]; // array of all huffcodetable headers |
| 336 | /* 0..31 Huffman code table 0..31 */ |
| 337 | /* 32,33 count1-tables */ |
| 338 | |
| 339 | /* read the huffman decoder table */ |
| 340 | static int read_decoder_table(unsigned char* fi) { |
| 341 | int n,i,nn,t; |
| 342 | unsigned int v0,v1; |
| 343 | char command[100],line[100]; |
| 344 | for (n=0;n<HTN;n++) { |
| 345 | rsf_ht[n].table = NULL; |
| 346 | rsf_ht[n].hlen = NULL; |
| 347 | |
| 348 | /* .table number treelen xlen ylen linbits */ |
| 349 | do { |
| 350 | rsf_getline(line,99,&fi); |
| 351 | } while ((line[0] == '#') || (line[0] < ' ')); |
| 352 | |
| 353 | sscanf(line,"%s %s %u %u %u %u" ,command,rsf_ht[n].tablename, |
| 354 | &rsf_ht[n].treelen, &rsf_ht[n].xlen, &rsf_ht[n].ylen, &rsf_ht[n].linbits); |
| 355 | if (strcmp(command,".end" )==0) |
| 356 | return n; |
| 357 | else if (strcmp(command,".table" )!=0) { |
| 358 | #ifdef DEBUG |
| 359 | fprintf(stderr,"huffman table %u data corrupted\n" ,n); |
| 360 | #endif |
| 361 | return -1; |
| 362 | } |
| 363 | rsf_ht[n].linmax = (1<<rsf_ht[n].linbits)-1; |
| 364 | |
| 365 | sscanf(rsf_ht[n].tablename,"%u" ,&nn); |
| 366 | if (nn != n) { |
| 367 | #ifdef DEBUG |
| 368 | fprintf(stderr,"wrong table number %u\n" ,n); |
| 369 | #endif |
| 370 | return(-2); |
| 371 | } |
| 372 | do { |
| 373 | rsf_getline(line,99,&fi); |
| 374 | } while ((line[0] == '#') || (line[0] < ' ')); |
| 375 | |
| 376 | sscanf(line,"%s %u" ,command,&t); |
| 377 | if (strcmp(command,".reference" )==0) { |
| 378 | rsf_ht[n].ref = t; |
| 379 | rsf_ht[n].val = rsf_ht[t].val; |
| 380 | rsf_ht[n].treelen = rsf_ht[t].treelen; |
| 381 | if ( (rsf_ht[n].xlen != rsf_ht[t].xlen) || |
| 382 | (rsf_ht[n].ylen != rsf_ht[t].ylen) ) { |
| 383 | #ifdef DEBUG |
| 384 | fprintf(stderr,"wrong table %u reference\n" ,n); |
| 385 | #endif |
| 386 | return (-3); |
| 387 | }; |
| 388 | while ((line[0] == '#') || (line[0] < ' ') ) { |
| 389 | rsf_getline(line,99,&fi); |
| 390 | } |
| 391 | } |
| 392 | else if (strcmp(command,".treedata" )==0) { |
| 393 | rsf_ht[n].ref = -1; |
| 394 | rsf_ht[n].val = (unsigned char (*)[2]) |
| 395 | new unsigned char[2*(rsf_ht[n].treelen)]; |
| 396 | if ((rsf_ht[n].val == NULL) && ( rsf_ht[n].treelen != 0 )){ |
| 397 | #ifdef DEBUG |
| 398 | fprintf(stderr, "heaperror at table %d\n" ,n); |
| 399 | #endif |
| 400 | return -1; |
| 401 | } |
| 402 | for (i=0;(unsigned)i<rsf_ht[n].treelen; i++) { |
| 403 | rsfscanf(&fi, &v0); |
| 404 | rsfscanf(&fi, &v1); |
| 405 | /*replaces fscanf(fi,"%x %x",&v0, &v1);*/ |
| 406 | rsf_ht[n].val[i][0]=(unsigned char)v0; |
| 407 | rsf_ht[n].val[i][1]=(unsigned char)v1; |
| 408 | } |
| 409 | rsf_getline(line,99,&fi); /* read the rest of the line */ |
| 410 | } |
| 411 | else { |
| 412 | #ifdef DEBUG |
| 413 | fprintf(stderr,"huffman decodertable error at table %d\n" ,n); |
| 414 | #endif |
| 415 | } |
| 416 | } |
| 417 | return n; |
| 418 | } |
| 419 | |
| 420 | static void initialize_huffman() { |
| 421 | static Boolean huffman_initialized = False; |
| 422 | |
| 423 | if (huffman_initialized) return; |
| 424 | |
| 425 | if (read_decoder_table(huffdec) != HTN) { |
| 426 | #ifdef DEBUG |
| 427 | fprintf(stderr,"decoder table read error\n" ); |
| 428 | #endif |
| 429 | return; |
| 430 | } |
| 431 | huffman_initialized = True; |
| 432 | } |
| 433 | |
| 434 | static unsigned char const slen[2][16] = { |
| 435 | {0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4}, |
| 436 | {0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3} |
| 437 | }; |
| 438 | |
| 439 | static unsigned char const stab[3][6][4] = { |
| 440 | { { 6, 5, 5,5 } , { 6, 5, 7,3 } , { 11,10,0,0} , |
| 441 | { 7, 7, 7,0 } , { 6, 6, 6,3 } , { 8, 8,5,0} } , |
| 442 | { { 9, 9, 9,9 } , { 9, 9,12,6 } , { 18,18,0,0} , |
| 443 | {12,12,12,0 } , {12, 9, 9,6 } , { 15,12,9,0} } , |
| 444 | { { 6, 9, 9,9 } , { 6, 9,12,6 } , { 15,18,0,0} , |
| 445 | { 6,15,12,0 } , { 6,12, 9,6 } , { 6,18,9,0} } |
| 446 | }; |
| 447 | |
| 448 | static unsigned rsf_get_scale_factors_1(MP3SideInfo::gr_info_s_t *gr_info) { |
| 449 | int numbits; |
| 450 | int num0 = slen[0][gr_info->scalefac_compress]; |
| 451 | int num1 = slen[1][gr_info->scalefac_compress]; |
| 452 | |
| 453 | if (gr_info->block_type == 2) |
| 454 | { |
| 455 | numbits = (num0 + num1) * 18; |
| 456 | |
| 457 | if (gr_info->mixed_block_flag) { |
| 458 | numbits -= num0; /* num0 * 17 + num1 * 18 */ |
| 459 | } |
| 460 | } |
| 461 | else |
| 462 | { |
| 463 | int scfsi = gr_info->scfsi; |
| 464 | |
| 465 | if(scfsi < 0) { /* scfsi < 0 => granule == 0 */ |
| 466 | numbits = (num0 + num1) * 10 + num0; |
| 467 | } |
| 468 | else { |
| 469 | numbits = 0; |
| 470 | if(!(scfsi & 0x8)) { |
| 471 | numbits += num0 * 6; |
| 472 | } |
| 473 | else { |
| 474 | } |
| 475 | |
| 476 | if(!(scfsi & 0x4)) { |
| 477 | numbits += num0 * 5; |
| 478 | } |
| 479 | else { |
| 480 | } |
| 481 | |
| 482 | if(!(scfsi & 0x2)) { |
| 483 | numbits += num1 * 5; |
| 484 | } |
| 485 | else { |
| 486 | } |
| 487 | |
| 488 | if(!(scfsi & 0x1)) { |
| 489 | numbits += num1 * 5; |
| 490 | } |
| 491 | else { |
| 492 | } |
| 493 | } |
| 494 | } |
| 495 | |
| 496 | return numbits; |
| 497 | } |
| 498 | |
| 499 | extern unsigned n_slen2[]; |
| 500 | extern unsigned i_slen2[]; |
| 501 | |
| 502 | static unsigned rsf_get_scale_factors_2(MP3SideInfo::gr_info_s_t *gr_info) { |
| 503 | unsigned char const* pnt; |
| 504 | int i; |
| 505 | unsigned int slen; |
| 506 | int n = 0; |
| 507 | int numbits = 0; |
| 508 | |
| 509 | slen = n_slen2[gr_info->scalefac_compress]; |
| 510 | |
| 511 | gr_info->preflag = (slen>>15) & 0x1; |
| 512 | |
| 513 | n = 0; |
| 514 | if( gr_info->block_type == 2 ) { |
| 515 | n++; |
| 516 | if(gr_info->mixed_block_flag) |
| 517 | n++; |
| 518 | } |
| 519 | |
| 520 | pnt = stab[n][(slen>>12)&0x7]; |
| 521 | |
| 522 | for(i=0;i<4;i++) { |
| 523 | int num = slen & 0x7; |
| 524 | slen >>= 3; |
| 525 | numbits += pnt[i] * num; |
| 526 | } |
| 527 | |
| 528 | return numbits; |
| 529 | } |
| 530 | |
| 531 | static unsigned getScaleFactorsLength(MP3SideInfo::gr_info_s_t* gr, |
| 532 | Boolean isMPEG2) { |
| 533 | return isMPEG2 ? rsf_get_scale_factors_2(gr) |
| 534 | : rsf_get_scale_factors_1(gr); |
| 535 | } |
| 536 | |
| 537 | static int rsf_huffman_decoder(BitVector& bv, |
| 538 | struct huffcodetab const* h, |
| 539 | int* x, int* y, int* v, int* w); // forward |
| 540 | |
| 541 | void MP3HuffmanDecode(MP3SideInfo::gr_info_s_t* gr, Boolean isMPEG2, |
| 542 | unsigned char const* fromBasePtr, |
| 543 | unsigned fromBitOffset, unsigned fromLength, |
| 544 | unsigned& scaleFactorsLength, |
| 545 | MP3HuffmanEncodingInfo& hei) { |
| 546 | unsigned i; |
| 547 | int x, y, v, w; |
| 548 | struct huffcodetab *h; |
| 549 | BitVector bv((unsigned char*)fromBasePtr, fromBitOffset, fromLength); |
| 550 | |
| 551 | /* Compute the size of the scale factors (& also advance bv): */ |
| 552 | scaleFactorsLength = getScaleFactorsLength(gr, isMPEG2); |
| 553 | bv.skipBits(scaleFactorsLength); |
| 554 | |
| 555 | initialize_huffman(); |
| 556 | |
| 557 | hei.reg1Start = hei.reg2Start = hei.numSamples = 0; |
| 558 | |
| 559 | /* Read bigvalues area. */ |
| 560 | if (gr->big_values < gr->region1start + gr->region2start) { |
| 561 | gr->big_values = gr->region1start + gr->region2start; /* sanity check */ |
| 562 | } |
| 563 | for (i = 0; i < gr->big_values; ++i) { |
| 564 | if (i < gr->region1start) { |
| 565 | /* in region 0 */ |
| 566 | h = &rsf_ht[gr->table_select[0]]; |
| 567 | } else if (i < gr->region2start) { |
| 568 | /* in region 1 */ |
| 569 | h = &rsf_ht[gr->table_select[1]]; |
| 570 | if (hei.reg1Start == 0) { |
| 571 | hei.reg1Start = bv.curBitIndex(); |
| 572 | } |
| 573 | } else { |
| 574 | /* in region 2 */ |
| 575 | h = &rsf_ht[gr->table_select[2]]; |
| 576 | if (hei.reg2Start == 0) { |
| 577 | hei.reg2Start = bv.curBitIndex(); |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | hei.allBitOffsets[i] = bv.curBitIndex(); |
| 582 | rsf_huffman_decoder(bv, h, &x, &y, &v, &w); |
| 583 | if (hei.decodedValues != NULL) { |
| 584 | // Record the decoded values: |
| 585 | unsigned* ptr = &hei.decodedValues[4*i]; |
| 586 | ptr[0] = x; ptr[1] = y; ptr[2] = v; ptr[3] = w; |
| 587 | } |
| 588 | } |
| 589 | hei.bigvalStart = bv.curBitIndex(); |
| 590 | |
| 591 | /* Read count1 area. */ |
| 592 | h = &rsf_ht[gr->count1table_select+32]; |
| 593 | while (bv.curBitIndex() < bv.totNumBits() && i < SSLIMIT*SBLIMIT) { |
| 594 | hei.allBitOffsets[i] = bv.curBitIndex(); |
| 595 | rsf_huffman_decoder(bv, h, &x, &y, &v, &w); |
| 596 | if (hei.decodedValues != NULL) { |
| 597 | // Record the decoded values: |
| 598 | unsigned* ptr = &hei.decodedValues[4*i]; |
| 599 | ptr[0] = x; ptr[1] = y; ptr[2] = v; ptr[3] = w; |
| 600 | } |
| 601 | ++i; |
| 602 | } |
| 603 | |
| 604 | hei.allBitOffsets[i] = bv.curBitIndex(); |
| 605 | hei.numSamples = i; |
| 606 | } |
| 607 | |
| 608 | HUFFBITS dmask = 1 << (SIZEOF_HUFFBITS*8-1); |
| 609 | unsigned int hs = SIZEOF_HUFFBITS*8; |
| 610 | |
| 611 | /* do the huffman-decoding */ |
| 612 | static int rsf_huffman_decoder(BitVector& bv, |
| 613 | struct huffcodetab const* h, // ptr to huffman code record |
| 614 | /* unsigned */ int *x, // returns decoded x value |
| 615 | /* unsigned */ int *y, // returns decoded y value |
| 616 | int* v, int* w) { |
| 617 | HUFFBITS level; |
| 618 | unsigned point = 0; |
| 619 | int error = 1; |
| 620 | level = dmask; |
| 621 | *x = *y = *v = *w = 0; |
| 622 | if (h->val == NULL) return 2; |
| 623 | |
| 624 | /* table 0 needs no bits */ |
| 625 | if (h->treelen == 0) return 0; |
| 626 | |
| 627 | /* Lookup in Huffman table. */ |
| 628 | |
| 629 | do { |
| 630 | if (h->val[point][0]==0) { /*end of tree*/ |
| 631 | *x = h->val[point][1] >> 4; |
| 632 | *y = h->val[point][1] & 0xf; |
| 633 | |
| 634 | error = 0; |
| 635 | break; |
| 636 | } |
| 637 | if (bv.get1Bit()) { |
| 638 | while (h->val[point][1] >= MXOFF) point += h->val[point][1]; |
| 639 | point += h->val[point][1]; |
| 640 | } |
| 641 | else { |
| 642 | while (h->val[point][0] >= MXOFF) point += h->val[point][0]; |
| 643 | point += h->val[point][0]; |
| 644 | } |
| 645 | level >>= 1; |
| 646 | } while (level || (point < h->treelen) ); |
| 647 | ///// } while (level || (point < rsf_ht->treelen) ); |
| 648 | |
| 649 | /* Check for error. */ |
| 650 | |
| 651 | if (error) { /* set x and y to a medium value as a simple concealment */ |
| 652 | printf("Illegal Huffman code in data.\n" ); |
| 653 | *x = ((h->xlen-1) << 1); |
| 654 | *y = ((h->ylen-1) << 1); |
| 655 | } |
| 656 | |
| 657 | /* Process sign encodings for quadruples tables. */ |
| 658 | |
| 659 | if (h->tablename[0] == '3' |
| 660 | && (h->tablename[1] == '2' || h->tablename[1] == '3')) { |
| 661 | *v = (*y>>3) & 1; |
| 662 | *w = (*y>>2) & 1; |
| 663 | *x = (*y>>1) & 1; |
| 664 | *y = *y & 1; |
| 665 | |
| 666 | if (*v) |
| 667 | if (bv.get1Bit() == 1) *v = -*v; |
| 668 | if (*w) |
| 669 | if (bv.get1Bit() == 1) *w = -*w; |
| 670 | if (*x) |
| 671 | if (bv.get1Bit() == 1) *x = -*x; |
| 672 | if (*y) |
| 673 | if (bv.get1Bit() == 1) *y = -*y; |
| 674 | } |
| 675 | |
| 676 | /* Process sign and escape encodings for dual tables. */ |
| 677 | |
| 678 | else { |
| 679 | if (h->linbits) |
| 680 | if ((h->xlen-1) == (unsigned)*x) |
| 681 | *x += bv.getBits(h->linbits); |
| 682 | if (*x) |
| 683 | if (bv.get1Bit() == 1) *x = -*x; |
| 684 | if (h->linbits) |
| 685 | if ((h->ylen-1) == (unsigned)*y) |
| 686 | *y += bv.getBits(h->linbits); |
| 687 | if (*y) |
| 688 | if (bv.get1Bit() == 1) *y = -*y; |
| 689 | } |
| 690 | |
| 691 | return error; |
| 692 | } |
| 693 | |
| 694 | #ifdef DO_HUFFMAN_ENCODING |
| 695 | inline int getNextSample(unsigned char const*& fromPtr) { |
| 696 | int sample |
| 697 | #ifdef FOUR_BYTE_SAMPLES |
| 698 | = (fromPtr[0]<<24) | (fromPtr[1]<<16) | (fromPtr[2]<<8) | fromPtr[3]; |
| 699 | #else |
| 700 | #ifdef TWO_BYTE_SAMPLES |
| 701 | = (fromPtr[0]<<8) | fromPtr[1]; |
| 702 | #else |
| 703 | // ONE_BYTE_SAMPLES |
| 704 | = fromPtr[0]; |
| 705 | #endif |
| 706 | #endif |
| 707 | fromPtr += BYTES_PER_SAMPLE_VALUE; |
| 708 | return sample; |
| 709 | } |
| 710 | |
| 711 | static void rsf_huffman_encoder(BitVector& bv, |
| 712 | struct huffcodetab* h, |
| 713 | int x, int y, int v, int w); // forward |
| 714 | |
| 715 | unsigned MP3HuffmanEncode(MP3SideInfo::gr_info_s_t const* gr, |
| 716 | unsigned char const* fromPtr, |
| 717 | unsigned char* toPtr, unsigned toBitOffset, |
| 718 | unsigned numHuffBits) { |
| 719 | unsigned i; |
| 720 | struct huffcodetab *h; |
| 721 | int x, y, v, w; |
| 722 | BitVector bv(toPtr, toBitOffset, numHuffBits); |
| 723 | |
| 724 | initialize_huffman(); |
| 725 | |
| 726 | // Encode big_values area: |
| 727 | unsigned big_values = gr->big_values; |
| 728 | if (big_values < gr->region1start + gr->region2start) { |
| 729 | big_values = gr->region1start + gr->region2start; /* sanity check */ |
| 730 | } |
| 731 | for (i = 0; i < big_values; ++i) { |
| 732 | if (i < gr->region1start) { |
| 733 | /* in region 0 */ |
| 734 | h = &rsf_ht[gr->table_select[0]]; |
| 735 | } else if (i < gr->region2start) { |
| 736 | /* in region 1 */ |
| 737 | h = &rsf_ht[gr->table_select[1]]; |
| 738 | } else { |
| 739 | /* in region 2 */ |
| 740 | h = &rsf_ht[gr->table_select[2]]; |
| 741 | } |
| 742 | |
| 743 | x = getNextSample(fromPtr); |
| 744 | y = getNextSample(fromPtr); |
| 745 | v = getNextSample(fromPtr); |
| 746 | w = getNextSample(fromPtr); |
| 747 | rsf_huffman_encoder(bv, h, x, y, v, w); |
| 748 | } |
| 749 | |
| 750 | // Encode count1 area: |
| 751 | h = &rsf_ht[gr->count1table_select+32]; |
| 752 | while (bv.curBitIndex() < bv.totNumBits() && i < SSLIMIT*SBLIMIT) { |
| 753 | x = getNextSample(fromPtr); |
| 754 | y = getNextSample(fromPtr); |
| 755 | v = getNextSample(fromPtr); |
| 756 | w = getNextSample(fromPtr); |
| 757 | rsf_huffman_encoder(bv, h, x, y, v, w); |
| 758 | ++i; |
| 759 | } |
| 760 | |
| 761 | return i; |
| 762 | } |
| 763 | |
| 764 | static Boolean lookupHuffmanTableEntry(struct huffcodetab const* h, |
| 765 | HUFFBITS bits, unsigned bitsLength, |
| 766 | unsigned char& xy) { |
| 767 | unsigned point = 0; |
| 768 | unsigned mask = 1; |
| 769 | unsigned numBitsTestedSoFar = 0; |
| 770 | do { |
| 771 | if (h->val[point][0]==0) { // end of tree |
| 772 | xy = h->val[point][1]; |
| 773 | if (h->hlen[xy] == 0) { // this entry hasn't already been used |
| 774 | h->table[xy] = bits; |
| 775 | h->hlen[xy] = bitsLength; |
| 776 | return True; |
| 777 | } else { // this entry has already been seen |
| 778 | return False; |
| 779 | } |
| 780 | } |
| 781 | |
| 782 | if (numBitsTestedSoFar++ == bitsLength) { |
| 783 | // We don't yet have enough bits for this prefix |
| 784 | return False; |
| 785 | } |
| 786 | if (bits&mask) { |
| 787 | while (h->val[point][1] >= MXOFF) point += h->val[point][1]; |
| 788 | point += h->val[point][1]; |
| 789 | } else { |
| 790 | while (h->val[point][0] >= MXOFF) point += h->val[point][0]; |
| 791 | point += h->val[point][0]; |
| 792 | } |
| 793 | mask <<= 1; |
| 794 | } while (mask || (point < h->treelen)); |
| 795 | |
| 796 | return False; |
| 797 | } |
| 798 | |
| 799 | static void buildHuffmanEncodingTable(struct huffcodetab* h) { |
| 800 | h->table = new unsigned long[256]; |
| 801 | h->hlen = new unsigned char[256]; |
| 802 | if (h->table == NULL || h->hlen == NULL) { h->table = NULL; return; } |
| 803 | for (unsigned i = 0; i < 256; ++i) { |
| 804 | h->table[i] = 0; h->hlen[i] = 0; |
| 805 | } |
| 806 | |
| 807 | // Look up entries for each possible bit sequence length: |
| 808 | unsigned maxNumEntries = h->xlen * h->ylen; |
| 809 | unsigned numEntries = 0; |
| 810 | unsigned powerOf2 = 1; |
| 811 | for (unsigned bitsLength = 1; |
| 812 | bitsLength <= 8*SIZEOF_HUFFBITS; ++bitsLength) { |
| 813 | powerOf2 *= 2; |
| 814 | for (HUFFBITS bits = 0; bits < powerOf2; ++bits) { |
| 815 | // Find the table value - if any - for 'bits' (length 'bitsLength'): |
| 816 | unsigned char xy; |
| 817 | if (lookupHuffmanTableEntry(h, bits, bitsLength, xy)) { |
| 818 | ++numEntries; |
| 819 | if (numEntries == maxNumEntries) return; // we're done |
| 820 | } |
| 821 | } |
| 822 | } |
| 823 | #ifdef DEBUG |
| 824 | fprintf(stderr, "Didn't find enough entries!\n" ); // shouldn't happen |
| 825 | #endif |
| 826 | } |
| 827 | |
| 828 | static void lookupXYandPutBits(BitVector& bv, struct huffcodetab const* h, |
| 829 | unsigned char xy) { |
| 830 | HUFFBITS bits = h->table[xy]; |
| 831 | unsigned bitsLength = h->hlen[xy]; |
| 832 | |
| 833 | // Note that "bits" is in reverse order, so read them from right-to-left: |
| 834 | while (bitsLength-- > 0) { |
| 835 | bv.put1Bit(bits&0x00000001); |
| 836 | bits >>= 1; |
| 837 | } |
| 838 | } |
| 839 | |
| 840 | static void putLinbits(BitVector& bv, struct huffcodetab const* h, |
| 841 | HUFFBITS bits) { |
| 842 | bv.putBits(bits, h->linbits); |
| 843 | } |
| 844 | |
| 845 | static void rsf_huffman_encoder(BitVector& bv, |
| 846 | struct huffcodetab* h, |
| 847 | int x, int y, int v, int w) { |
| 848 | if (h->val == NULL) return; |
| 849 | |
| 850 | /* table 0 produces no bits */ |
| 851 | if (h->treelen == 0) return; |
| 852 | |
| 853 | if (h->table == NULL) { |
| 854 | // We haven't yet built the encoding array for this table; do it now: |
| 855 | buildHuffmanEncodingTable(h); |
| 856 | if (h->table == NULL) return; |
| 857 | } |
| 858 | |
| 859 | Boolean xIsNeg = False, yIsNeg = False, vIsNeg = False, wIsNeg = False; |
| 860 | unsigned char xy; |
| 861 | |
| 862 | #ifdef FOUR_BYTE_SAMPLES |
| 863 | #else |
| 864 | #ifdef TWO_BYTE_SAMPLES |
| 865 | // Convert 2-byte negative numbers to their 4-byte equivalents: |
| 866 | if (x&0x8000) x |= 0xFFFF0000; |
| 867 | if (y&0x8000) y |= 0xFFFF0000; |
| 868 | if (v&0x8000) v |= 0xFFFF0000; |
| 869 | if (w&0x8000) w |= 0xFFFF0000; |
| 870 | #else |
| 871 | // ONE_BYTE_SAMPLES |
| 872 | // Convert 1-byte negative numbers to their 4-byte equivalents: |
| 873 | if (x&0x80) x |= 0xFFFFFF00; |
| 874 | if (y&0x80) y |= 0xFFFFFF00; |
| 875 | if (v&0x80) v |= 0xFFFFFF00; |
| 876 | if (w&0x80) w |= 0xFFFFFF00; |
| 877 | #endif |
| 878 | #endif |
| 879 | |
| 880 | if (h->tablename[0] == '3' |
| 881 | && (h->tablename[1] == '2' || h->tablename[1] == '3')) {// quad tables |
| 882 | if (x < 0) { xIsNeg = True; x = -x; } |
| 883 | if (y < 0) { yIsNeg = True; y = -y; } |
| 884 | if (v < 0) { vIsNeg = True; v = -v; } |
| 885 | if (w < 0) { wIsNeg = True; w = -w; } |
| 886 | |
| 887 | // Sanity check: x,y,v,w must all be 0 or 1: |
| 888 | if (x>1 || y>1 || v>1 || w>1) { |
| 889 | #ifdef DEBUG |
| 890 | fprintf(stderr, "rsf_huffman_encoder quad sanity check fails: %x,%x,%x,%x\n" , x, y, v, w); |
| 891 | #endif |
| 892 | } |
| 893 | |
| 894 | xy = (v<<3)|(w<<2)|(x<<1)|y; |
| 895 | lookupXYandPutBits(bv, h, xy); |
| 896 | |
| 897 | if (v) bv.put1Bit(vIsNeg); |
| 898 | if (w) bv.put1Bit(wIsNeg); |
| 899 | if (x) bv.put1Bit(xIsNeg); |
| 900 | if (y) bv.put1Bit(yIsNeg); |
| 901 | } else { // dual tables |
| 902 | // Sanity check: v and w must be 0: |
| 903 | if (v != 0 || w != 0) { |
| 904 | #ifdef DEBUG |
| 905 | fprintf(stderr, "rsf_huffman_encoder dual sanity check 1 fails: %x,%x,%x,%x\n" , x, y, v, w); |
| 906 | #endif |
| 907 | } |
| 908 | |
| 909 | if (x < 0) { xIsNeg = True; x = -x; } |
| 910 | if (y < 0) { yIsNeg = True; y = -y; } |
| 911 | |
| 912 | // Sanity check: x and y must be <= 255: |
| 913 | if (x > 255 || y > 255) { |
| 914 | #ifdef DEBUG |
| 915 | fprintf(stderr, "rsf_huffman_encoder dual sanity check 2 fails: %x,%x,%x,%x\n" , x, y, v, w); |
| 916 | #endif |
| 917 | } |
| 918 | |
| 919 | int xl1 = h->xlen-1; |
| 920 | int yl1 = h->ylen-1; |
| 921 | unsigned linbitsX = 0; unsigned linbitsY = 0; |
| 922 | |
| 923 | if (((x < xl1) || (xl1 == 0)) && (y < yl1)) { |
| 924 | // normal case |
| 925 | xy = (x<<4)|y; |
| 926 | lookupXYandPutBits(bv, h, xy); |
| 927 | if (x) bv.put1Bit(xIsNeg); |
| 928 | if (y) bv.put1Bit(yIsNeg); |
| 929 | } else if (x >= xl1) { |
| 930 | linbitsX = (unsigned)(x - xl1); |
| 931 | if (linbitsX > h->linmax) { |
| 932 | #ifdef DEBUG |
| 933 | fprintf(stderr,"warning: Huffman X table overflow\n" ); |
| 934 | #endif |
| 935 | linbitsX = h->linmax; |
| 936 | }; |
| 937 | |
| 938 | if (y >= yl1) { |
| 939 | xy = (xl1<<4)|yl1; |
| 940 | lookupXYandPutBits(bv, h, xy); |
| 941 | linbitsY = (unsigned)(y - yl1); |
| 942 | if (linbitsY > h->linmax) { |
| 943 | #ifdef DEBUG |
| 944 | fprintf(stderr,"warning: Huffman Y table overflow\n" ); |
| 945 | #endif |
| 946 | linbitsY = h->linmax; |
| 947 | }; |
| 948 | |
| 949 | if (h->linbits) putLinbits(bv, h, linbitsX); |
| 950 | if (x) bv.put1Bit(xIsNeg); |
| 951 | if (h->linbits) putLinbits(bv, h, linbitsY); |
| 952 | if (y) bv.put1Bit(yIsNeg); |
| 953 | } else { /* x >= h->xlen, y < h->ylen */ |
| 954 | xy = (xl1<<4)|y; |
| 955 | lookupXYandPutBits(bv, h, xy); |
| 956 | if (h->linbits) putLinbits(bv, h, linbitsX); |
| 957 | if (x) bv.put1Bit(xIsNeg); |
| 958 | if (y) bv.put1Bit(yIsNeg); |
| 959 | } |
| 960 | } else { /* ((x < h->xlen) && (y >= h->ylen)) */ |
| 961 | xy = (x<<4)|yl1; |
| 962 | lookupXYandPutBits(bv, h, xy); |
| 963 | linbitsY = y-yl1; |
| 964 | if (linbitsY > h->linmax) { |
| 965 | #ifdef DEBUG |
| 966 | fprintf(stderr,"warning: Huffman Y table overflow\n" ); |
| 967 | #endif |
| 968 | linbitsY = h->linmax; |
| 969 | }; |
| 970 | if (x) bv.put1Bit(xIsNeg); |
| 971 | if (h->linbits) putLinbits(bv, h, linbitsY); |
| 972 | if (y) bv.put1Bit(yIsNeg); |
| 973 | } |
| 974 | } |
| 975 | } |
| 976 | #endif |
| 977 | |