1 | /********** |
2 | This library is free software; you can redistribute it and/or modify it under |
3 | the terms of the GNU Lesser General Public License as published by the |
4 | Free Software Foundation; either version 3 of the License, or (at your |
5 | option) any later version. (See <http://www.gnu.org/copyleft/lesser.html>.) |
6 | |
7 | This library is distributed in the hope that it will be useful, but WITHOUT |
8 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
9 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for |
10 | more details. |
11 | |
12 | You should have received a copy of the GNU Lesser General Public License |
13 | along with this library; if not, write to the Free Software Foundation, Inc., |
14 | 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
15 | **********/ |
16 | // "liveMedia" |
17 | // Copyright (c) 1996-2020 Live Networks, Inc. All rights reserved. |
18 | // MP3 internal implementation details (Huffman encoding) |
19 | // Implementation |
20 | |
21 | #include "MP3InternalsHuffman.hh" |
22 | #include <stdio.h> |
23 | #include <string.h> |
24 | #include <stdlib.h> |
25 | |
26 | MP3HuffmanEncodingInfo |
27 | ::MP3HuffmanEncodingInfo(Boolean includeDecodedValues) { |
28 | if (includeDecodedValues) { |
29 | decodedValues = new unsigned[(SBLIMIT*SSLIMIT + 1)*4]; |
30 | } else { |
31 | decodedValues = NULL; |
32 | } |
33 | } |
34 | |
35 | MP3HuffmanEncodingInfo::~MP3HuffmanEncodingInfo() { |
36 | delete[] decodedValues; |
37 | } |
38 | |
39 | // This is crufty old code that needs to be cleaned up ##### |
40 | |
41 | static unsigned debugCount = 0; /* for debugging */ |
42 | |
43 | #define TRUNC_FAVORa |
44 | |
45 | void updateSideInfoForHuffman(MP3SideInfo& sideInfo, Boolean isMPEG2, |
46 | unsigned char const* mainDataPtr, |
47 | unsigned p23L0, unsigned p23L1, |
48 | unsigned& part23Length0a, |
49 | unsigned& part23Length0aTruncation, |
50 | unsigned& part23Length0b, |
51 | unsigned& part23Length0bTruncation, |
52 | unsigned& part23Length1a, |
53 | unsigned& part23Length1aTruncation, |
54 | unsigned& part23Length1b, |
55 | unsigned& part23Length1bTruncation) { |
56 | int i, j; |
57 | unsigned sfLength, origTotABsize, adjustment; |
58 | MP3SideInfo::gr_info_s_t* gr; |
59 | |
60 | /* First, Huffman-decode each part of the segment's main data, |
61 | to see at which bit-boundaries the samples appear: |
62 | */ |
63 | MP3HuffmanEncodingInfo hei; |
64 | |
65 | ++debugCount; |
66 | #ifdef DEBUG |
67 | fprintf(stderr, "usifh-start: p23L0: %d, p23L1: %d\n" , p23L0, p23L1); |
68 | #endif |
69 | |
70 | /* Process granule 0 */ |
71 | { |
72 | gr = &(sideInfo.ch[0].gr[0]); |
73 | origTotABsize = gr->part2_3_length; |
74 | |
75 | MP3HuffmanDecode(gr, isMPEG2, mainDataPtr, 0, origTotABsize, sfLength, hei); |
76 | |
77 | /* Begin by computing new sizes for parts a & b (& their truncations) */ |
78 | #ifdef DEBUG |
79 | fprintf(stderr, "usifh-0: %d, %d:%d, %d:%d, %d:%d, %d:%d, %d:%d\n" , |
80 | hei.numSamples, |
81 | sfLength/8, sfLength%8, |
82 | hei.reg1Start/8, hei.reg1Start%8, |
83 | hei.reg2Start/8, hei.reg2Start%8, |
84 | hei.bigvalStart/8, hei.bigvalStart%8, |
85 | origTotABsize/8, origTotABsize%8); |
86 | #endif |
87 | if (p23L0 < sfLength) { |
88 | /* We can't use this, so give it all to the next granule: */ |
89 | p23L1 += p23L0; |
90 | p23L0 = 0; |
91 | } |
92 | |
93 | part23Length0a = hei.bigvalStart; |
94 | part23Length0b = origTotABsize - hei.bigvalStart; |
95 | part23Length0aTruncation = part23Length0bTruncation = 0; |
96 | if (origTotABsize > p23L0) { |
97 | /* We need to shorten one or both of fields a & b */ |
98 | unsigned truncation = origTotABsize - p23L0; |
99 | #ifdef TRUNC_FAIRLY |
100 | part23Length0aTruncation = (truncation*(part23Length0a-sfLength)) |
101 | /(origTotABsize-sfLength); |
102 | part23Length0bTruncation = truncation - part23Length0aTruncation; |
103 | #endif |
104 | #ifdef TRUNC_FAVORa |
105 | part23Length0bTruncation |
106 | = (truncation > part23Length0b) ? part23Length0b : truncation; |
107 | part23Length0aTruncation = truncation - part23Length0bTruncation; |
108 | #endif |
109 | #ifdef TRUNC_FAVORb |
110 | part23Length0aTruncation = (truncation > part23Length0a-sfLength) |
111 | ? (part23Length0a-sfLength) : truncation; |
112 | part23Length0bTruncation = truncation - part23Length0aTruncation; |
113 | #endif |
114 | } |
115 | /* ASSERT: part23Length0xTruncation <= part23Length0x */ |
116 | part23Length0a -= part23Length0aTruncation; |
117 | part23Length0b -= part23Length0bTruncation; |
118 | #ifdef DEBUG |
119 | fprintf(stderr, "usifh-0: interim sizes: %d (%d), %d (%d)\n" , |
120 | part23Length0a, part23Length0aTruncation, |
121 | part23Length0b, part23Length0bTruncation); |
122 | #endif |
123 | |
124 | /* Adjust these new lengths so they end on sample bit boundaries: */ |
125 | for (i = 0; i < (int)hei.numSamples; ++i) { |
126 | if (hei.allBitOffsets[i] == part23Length0a) break; |
127 | else if (hei.allBitOffsets[i] > part23Length0a) {--i; break;} |
128 | } |
129 | if (i < 0) { /* should happen only if we couldn't fit sfLength */ |
130 | i = 0; adjustment = 0; |
131 | } else { |
132 | adjustment = part23Length0a - hei.allBitOffsets[i]; |
133 | } |
134 | #ifdef DEBUG |
135 | fprintf(stderr, "%d usifh-0: adjustment 1: %d\n" , debugCount, adjustment); |
136 | #endif |
137 | part23Length0a -= adjustment; |
138 | part23Length0aTruncation += adjustment; |
139 | /* Assign the bits we just shaved to field b and granule 1: */ |
140 | if (part23Length0bTruncation < adjustment) { |
141 | p23L1 += (adjustment - part23Length0bTruncation); |
142 | adjustment = part23Length0bTruncation; |
143 | } |
144 | part23Length0b += adjustment; |
145 | part23Length0bTruncation -= adjustment; |
146 | for (j = i; j < (int)hei.numSamples; ++j) { |
147 | if (hei.allBitOffsets[j] |
148 | == part23Length0a + part23Length0aTruncation + part23Length0b) |
149 | break; |
150 | else if (hei.allBitOffsets[j] |
151 | > part23Length0a + part23Length0aTruncation + part23Length0b) |
152 | {--j; break;} |
153 | } |
154 | if (j < 0) { /* should happen only if we couldn't fit sfLength */ |
155 | j = 0; adjustment = 0; |
156 | } else { |
157 | adjustment = part23Length0a+part23Length0aTruncation+part23Length0b |
158 | - hei.allBitOffsets[j]; |
159 | } |
160 | #ifdef DEBUG |
161 | fprintf(stderr, "%d usifh-0: adjustment 2: %d\n" , debugCount, adjustment); |
162 | #endif |
163 | if (adjustment > part23Length0b) adjustment = part23Length0b; /*sanity*/ |
164 | part23Length0b -= adjustment; |
165 | part23Length0bTruncation += adjustment; |
166 | /* Assign the bits we just shaved to granule 1 */ |
167 | p23L1 += adjustment; |
168 | |
169 | if (part23Length0aTruncation > 0) { |
170 | /* Change the granule's 'big_values' field to reflect the truncation */ |
171 | gr->big_values = i; |
172 | } |
173 | } |
174 | |
175 | /* Process granule 1 (MPEG-1 only) */ |
176 | |
177 | if (isMPEG2) { |
178 | part23Length1a = part23Length1b = 0; |
179 | part23Length1aTruncation = part23Length1bTruncation = 0; |
180 | } else { |
181 | unsigned granule1Offset |
182 | = origTotABsize + sideInfo.ch[1].gr[0].part2_3_length; |
183 | |
184 | gr = &(sideInfo.ch[0].gr[1]); |
185 | origTotABsize = gr->part2_3_length; |
186 | |
187 | MP3HuffmanDecode(gr, isMPEG2, mainDataPtr, granule1Offset, |
188 | origTotABsize, sfLength, hei); |
189 | |
190 | /* Begin by computing new sizes for parts a & b (& their truncations) */ |
191 | #ifdef DEBUG |
192 | fprintf(stderr, "usifh-1: %d, %d:%d, %d:%d, %d:%d, %d:%d, %d:%d\n" , |
193 | hei.numSamples, |
194 | sfLength/8, sfLength%8, |
195 | hei.reg1Start/8, hei.reg1Start%8, |
196 | hei.reg2Start/8, hei.reg2Start%8, |
197 | hei.bigvalStart/8, hei.bigvalStart%8, |
198 | origTotABsize/8, origTotABsize%8); |
199 | #endif |
200 | if (p23L1 < sfLength) { |
201 | /* We can't use this, so give up on this granule: */ |
202 | p23L1 = 0; |
203 | } |
204 | |
205 | part23Length1a = hei.bigvalStart; |
206 | part23Length1b = origTotABsize - hei.bigvalStart; |
207 | part23Length1aTruncation = part23Length1bTruncation = 0; |
208 | if (origTotABsize > p23L1) { |
209 | /* We need to shorten one or both of fields a & b */ |
210 | unsigned truncation = origTotABsize - p23L1; |
211 | #ifdef TRUNC_FAIRLY |
212 | part23Length1aTruncation = (truncation*(part23Length1a-sfLength)) |
213 | /(origTotABsize-sfLength); |
214 | part23Length1bTruncation = truncation - part23Length1aTruncation; |
215 | #endif |
216 | #ifdef TRUNC_FAVORa |
217 | part23Length1bTruncation |
218 | = (truncation > part23Length1b) ? part23Length1b : truncation; |
219 | part23Length1aTruncation = truncation - part23Length1bTruncation; |
220 | #endif |
221 | #ifdef TRUNC_FAVORb |
222 | part23Length1aTruncation = (truncation > part23Length1a-sfLength) |
223 | ? (part23Length1a-sfLength) : truncation; |
224 | part23Length1bTruncation = truncation - part23Length1aTruncation; |
225 | #endif |
226 | } |
227 | /* ASSERT: part23Length1xTruncation <= part23Length1x */ |
228 | part23Length1a -= part23Length1aTruncation; |
229 | part23Length1b -= part23Length1bTruncation; |
230 | #ifdef DEBUG |
231 | fprintf(stderr, "usifh-1: interim sizes: %d (%d), %d (%d)\n" , |
232 | part23Length1a, part23Length1aTruncation, |
233 | part23Length1b, part23Length1bTruncation); |
234 | #endif |
235 | |
236 | /* Adjust these new lengths so they end on sample bit boundaries: */ |
237 | for (i = 0; i < (int)hei.numSamples; ++i) { |
238 | if (hei.allBitOffsets[i] == part23Length1a) break; |
239 | else if (hei.allBitOffsets[i] > part23Length1a) {--i; break;} |
240 | } |
241 | if (i < 0) { /* should happen only if we couldn't fit sfLength */ |
242 | i = 0; adjustment = 0; |
243 | } else { |
244 | adjustment = part23Length1a - hei.allBitOffsets[i]; |
245 | } |
246 | #ifdef DEBUG |
247 | fprintf(stderr, "%d usifh-1: adjustment 0: %d\n" , debugCount, adjustment); |
248 | #endif |
249 | part23Length1a -= adjustment; |
250 | part23Length1aTruncation += adjustment; |
251 | /* Assign the bits we just shaved to field b: */ |
252 | if (part23Length1bTruncation < adjustment) { |
253 | adjustment = part23Length1bTruncation; |
254 | } |
255 | part23Length1b += adjustment; |
256 | part23Length1bTruncation -= adjustment; |
257 | for (j = i; j < (int)hei.numSamples; ++j) { |
258 | if (hei.allBitOffsets[j] |
259 | == part23Length1a + part23Length1aTruncation + part23Length1b) |
260 | break; |
261 | else if (hei.allBitOffsets[j] |
262 | > part23Length1a + part23Length1aTruncation + part23Length1b) |
263 | {--j; break;} |
264 | } |
265 | if (j < 0) { /* should happen only if we couldn't fit sfLength */ |
266 | j = 0; adjustment = 0; |
267 | } else { |
268 | adjustment = part23Length1a+part23Length1aTruncation+part23Length1b |
269 | - hei.allBitOffsets[j]; |
270 | } |
271 | #ifdef DEBUG |
272 | fprintf(stderr, "%d usifh-1: adjustment 1: %d\n" , debugCount, adjustment); |
273 | #endif |
274 | if (adjustment > part23Length1b) adjustment = part23Length1b; /*sanity*/ |
275 | part23Length1b -= adjustment; |
276 | part23Length1bTruncation += adjustment; |
277 | |
278 | if (part23Length1aTruncation > 0) { |
279 | /* Change the granule's 'big_values' field to reflect the truncation */ |
280 | gr->big_values = i; |
281 | } |
282 | } |
283 | #ifdef DEBUG |
284 | fprintf(stderr, "usifh-end, new vals: %d (%d), %d (%d), %d (%d), %d (%d)\n" , |
285 | part23Length0a, part23Length0aTruncation, |
286 | part23Length0b, part23Length0bTruncation, |
287 | part23Length1a, part23Length1aTruncation, |
288 | part23Length1b, part23Length1bTruncation); |
289 | #endif |
290 | } |
291 | |
292 | static void rsf_getline(char* line, unsigned max, unsigned char**fi) { |
293 | unsigned i; |
294 | for (i = 0; i < max; ++i) { |
295 | line[i] = *(*fi)++; |
296 | if (line[i] == '\n') { |
297 | line[i++] = '\0'; |
298 | return; |
299 | } |
300 | } |
301 | line[i] = '\0'; |
302 | } |
303 | |
304 | static void rsfscanf(unsigned char **fi, unsigned int* v) { |
305 | while (sscanf((char*)*fi, "%x" , v) == 0) { |
306 | /* skip past the next '\0' */ |
307 | while (*(*fi)++ != '\0') {} |
308 | } |
309 | |
310 | /* skip past any white-space before the value: */ |
311 | while (*(*fi) <= ' ') ++(*fi); |
312 | |
313 | /* skip past the value: */ |
314 | while (*(*fi) > ' ') ++(*fi); |
315 | } |
316 | |
317 | #define HUFFBITS unsigned long int |
318 | #define SIZEOF_HUFFBITS 4 |
319 | #define HTN 34 |
320 | #define MXOFF 250 |
321 | |
322 | struct huffcodetab { |
323 | char tablename[3]; /*string, containing table_description */ |
324 | unsigned int xlen; /*max. x-index+ */ |
325 | unsigned int ylen; /*max. y-index+ */ |
326 | unsigned int linbits; /*number of linbits */ |
327 | unsigned int linmax; /*max number to be stored in linbits */ |
328 | int ref; /*a positive value indicates a reference*/ |
329 | HUFFBITS *table; /*pointer to array[xlen][ylen] */ |
330 | unsigned char *hlen; /*pointer to array[xlen][ylen] */ |
331 | unsigned char(*val)[2];/*decoder tree */ |
332 | unsigned int treelen; /*length of decoder tree */ |
333 | }; |
334 | |
335 | static struct huffcodetab rsf_ht[HTN]; // array of all huffcodetable headers |
336 | /* 0..31 Huffman code table 0..31 */ |
337 | /* 32,33 count1-tables */ |
338 | |
339 | /* read the huffman decoder table */ |
340 | static int read_decoder_table(unsigned char* fi) { |
341 | int n,i,nn,t; |
342 | unsigned int v0,v1; |
343 | char command[100],line[100]; |
344 | for (n=0;n<HTN;n++) { |
345 | rsf_ht[n].table = NULL; |
346 | rsf_ht[n].hlen = NULL; |
347 | |
348 | /* .table number treelen xlen ylen linbits */ |
349 | do { |
350 | rsf_getline(line,99,&fi); |
351 | } while ((line[0] == '#') || (line[0] < ' ')); |
352 | |
353 | sscanf(line,"%s %s %u %u %u %u" ,command,rsf_ht[n].tablename, |
354 | &rsf_ht[n].treelen, &rsf_ht[n].xlen, &rsf_ht[n].ylen, &rsf_ht[n].linbits); |
355 | if (strcmp(command,".end" )==0) |
356 | return n; |
357 | else if (strcmp(command,".table" )!=0) { |
358 | #ifdef DEBUG |
359 | fprintf(stderr,"huffman table %u data corrupted\n" ,n); |
360 | #endif |
361 | return -1; |
362 | } |
363 | rsf_ht[n].linmax = (1<<rsf_ht[n].linbits)-1; |
364 | |
365 | sscanf(rsf_ht[n].tablename,"%u" ,&nn); |
366 | if (nn != n) { |
367 | #ifdef DEBUG |
368 | fprintf(stderr,"wrong table number %u\n" ,n); |
369 | #endif |
370 | return(-2); |
371 | } |
372 | do { |
373 | rsf_getline(line,99,&fi); |
374 | } while ((line[0] == '#') || (line[0] < ' ')); |
375 | |
376 | sscanf(line,"%s %u" ,command,&t); |
377 | if (strcmp(command,".reference" )==0) { |
378 | rsf_ht[n].ref = t; |
379 | rsf_ht[n].val = rsf_ht[t].val; |
380 | rsf_ht[n].treelen = rsf_ht[t].treelen; |
381 | if ( (rsf_ht[n].xlen != rsf_ht[t].xlen) || |
382 | (rsf_ht[n].ylen != rsf_ht[t].ylen) ) { |
383 | #ifdef DEBUG |
384 | fprintf(stderr,"wrong table %u reference\n" ,n); |
385 | #endif |
386 | return (-3); |
387 | }; |
388 | while ((line[0] == '#') || (line[0] < ' ') ) { |
389 | rsf_getline(line,99,&fi); |
390 | } |
391 | } |
392 | else if (strcmp(command,".treedata" )==0) { |
393 | rsf_ht[n].ref = -1; |
394 | rsf_ht[n].val = (unsigned char (*)[2]) |
395 | new unsigned char[2*(rsf_ht[n].treelen)]; |
396 | if ((rsf_ht[n].val == NULL) && ( rsf_ht[n].treelen != 0 )){ |
397 | #ifdef DEBUG |
398 | fprintf(stderr, "heaperror at table %d\n" ,n); |
399 | #endif |
400 | return -1; |
401 | } |
402 | for (i=0;(unsigned)i<rsf_ht[n].treelen; i++) { |
403 | rsfscanf(&fi, &v0); |
404 | rsfscanf(&fi, &v1); |
405 | /*replaces fscanf(fi,"%x %x",&v0, &v1);*/ |
406 | rsf_ht[n].val[i][0]=(unsigned char)v0; |
407 | rsf_ht[n].val[i][1]=(unsigned char)v1; |
408 | } |
409 | rsf_getline(line,99,&fi); /* read the rest of the line */ |
410 | } |
411 | else { |
412 | #ifdef DEBUG |
413 | fprintf(stderr,"huffman decodertable error at table %d\n" ,n); |
414 | #endif |
415 | } |
416 | } |
417 | return n; |
418 | } |
419 | |
420 | static void initialize_huffman() { |
421 | static Boolean huffman_initialized = False; |
422 | |
423 | if (huffman_initialized) return; |
424 | |
425 | if (read_decoder_table(huffdec) != HTN) { |
426 | #ifdef DEBUG |
427 | fprintf(stderr,"decoder table read error\n" ); |
428 | #endif |
429 | return; |
430 | } |
431 | huffman_initialized = True; |
432 | } |
433 | |
434 | static unsigned char const slen[2][16] = { |
435 | {0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4}, |
436 | {0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3} |
437 | }; |
438 | |
439 | static unsigned char const stab[3][6][4] = { |
440 | { { 6, 5, 5,5 } , { 6, 5, 7,3 } , { 11,10,0,0} , |
441 | { 7, 7, 7,0 } , { 6, 6, 6,3 } , { 8, 8,5,0} } , |
442 | { { 9, 9, 9,9 } , { 9, 9,12,6 } , { 18,18,0,0} , |
443 | {12,12,12,0 } , {12, 9, 9,6 } , { 15,12,9,0} } , |
444 | { { 6, 9, 9,9 } , { 6, 9,12,6 } , { 15,18,0,0} , |
445 | { 6,15,12,0 } , { 6,12, 9,6 } , { 6,18,9,0} } |
446 | }; |
447 | |
448 | static unsigned rsf_get_scale_factors_1(MP3SideInfo::gr_info_s_t *gr_info) { |
449 | int numbits; |
450 | int num0 = slen[0][gr_info->scalefac_compress]; |
451 | int num1 = slen[1][gr_info->scalefac_compress]; |
452 | |
453 | if (gr_info->block_type == 2) |
454 | { |
455 | numbits = (num0 + num1) * 18; |
456 | |
457 | if (gr_info->mixed_block_flag) { |
458 | numbits -= num0; /* num0 * 17 + num1 * 18 */ |
459 | } |
460 | } |
461 | else |
462 | { |
463 | int scfsi = gr_info->scfsi; |
464 | |
465 | if(scfsi < 0) { /* scfsi < 0 => granule == 0 */ |
466 | numbits = (num0 + num1) * 10 + num0; |
467 | } |
468 | else { |
469 | numbits = 0; |
470 | if(!(scfsi & 0x8)) { |
471 | numbits += num0 * 6; |
472 | } |
473 | else { |
474 | } |
475 | |
476 | if(!(scfsi & 0x4)) { |
477 | numbits += num0 * 5; |
478 | } |
479 | else { |
480 | } |
481 | |
482 | if(!(scfsi & 0x2)) { |
483 | numbits += num1 * 5; |
484 | } |
485 | else { |
486 | } |
487 | |
488 | if(!(scfsi & 0x1)) { |
489 | numbits += num1 * 5; |
490 | } |
491 | else { |
492 | } |
493 | } |
494 | } |
495 | |
496 | return numbits; |
497 | } |
498 | |
499 | extern unsigned n_slen2[]; |
500 | extern unsigned i_slen2[]; |
501 | |
502 | static unsigned rsf_get_scale_factors_2(MP3SideInfo::gr_info_s_t *gr_info) { |
503 | unsigned char const* pnt; |
504 | int i; |
505 | unsigned int slen; |
506 | int n = 0; |
507 | int numbits = 0; |
508 | |
509 | slen = n_slen2[gr_info->scalefac_compress]; |
510 | |
511 | gr_info->preflag = (slen>>15) & 0x1; |
512 | |
513 | n = 0; |
514 | if( gr_info->block_type == 2 ) { |
515 | n++; |
516 | if(gr_info->mixed_block_flag) |
517 | n++; |
518 | } |
519 | |
520 | pnt = stab[n][(slen>>12)&0x7]; |
521 | |
522 | for(i=0;i<4;i++) { |
523 | int num = slen & 0x7; |
524 | slen >>= 3; |
525 | numbits += pnt[i] * num; |
526 | } |
527 | |
528 | return numbits; |
529 | } |
530 | |
531 | static unsigned getScaleFactorsLength(MP3SideInfo::gr_info_s_t* gr, |
532 | Boolean isMPEG2) { |
533 | return isMPEG2 ? rsf_get_scale_factors_2(gr) |
534 | : rsf_get_scale_factors_1(gr); |
535 | } |
536 | |
537 | static int rsf_huffman_decoder(BitVector& bv, |
538 | struct huffcodetab const* h, |
539 | int* x, int* y, int* v, int* w); // forward |
540 | |
541 | void MP3HuffmanDecode(MP3SideInfo::gr_info_s_t* gr, Boolean isMPEG2, |
542 | unsigned char const* fromBasePtr, |
543 | unsigned fromBitOffset, unsigned fromLength, |
544 | unsigned& scaleFactorsLength, |
545 | MP3HuffmanEncodingInfo& hei) { |
546 | unsigned i; |
547 | int x, y, v, w; |
548 | struct huffcodetab *h; |
549 | BitVector bv((unsigned char*)fromBasePtr, fromBitOffset, fromLength); |
550 | |
551 | /* Compute the size of the scale factors (& also advance bv): */ |
552 | scaleFactorsLength = getScaleFactorsLength(gr, isMPEG2); |
553 | bv.skipBits(scaleFactorsLength); |
554 | |
555 | initialize_huffman(); |
556 | |
557 | hei.reg1Start = hei.reg2Start = hei.numSamples = 0; |
558 | |
559 | /* Read bigvalues area. */ |
560 | if (gr->big_values < gr->region1start + gr->region2start) { |
561 | gr->big_values = gr->region1start + gr->region2start; /* sanity check */ |
562 | } |
563 | for (i = 0; i < gr->big_values; ++i) { |
564 | if (i < gr->region1start) { |
565 | /* in region 0 */ |
566 | h = &rsf_ht[gr->table_select[0]]; |
567 | } else if (i < gr->region2start) { |
568 | /* in region 1 */ |
569 | h = &rsf_ht[gr->table_select[1]]; |
570 | if (hei.reg1Start == 0) { |
571 | hei.reg1Start = bv.curBitIndex(); |
572 | } |
573 | } else { |
574 | /* in region 2 */ |
575 | h = &rsf_ht[gr->table_select[2]]; |
576 | if (hei.reg2Start == 0) { |
577 | hei.reg2Start = bv.curBitIndex(); |
578 | } |
579 | } |
580 | |
581 | hei.allBitOffsets[i] = bv.curBitIndex(); |
582 | rsf_huffman_decoder(bv, h, &x, &y, &v, &w); |
583 | if (hei.decodedValues != NULL) { |
584 | // Record the decoded values: |
585 | unsigned* ptr = &hei.decodedValues[4*i]; |
586 | ptr[0] = x; ptr[1] = y; ptr[2] = v; ptr[3] = w; |
587 | } |
588 | } |
589 | hei.bigvalStart = bv.curBitIndex(); |
590 | |
591 | /* Read count1 area. */ |
592 | h = &rsf_ht[gr->count1table_select+32]; |
593 | while (bv.curBitIndex() < bv.totNumBits() && i < SSLIMIT*SBLIMIT) { |
594 | hei.allBitOffsets[i] = bv.curBitIndex(); |
595 | rsf_huffman_decoder(bv, h, &x, &y, &v, &w); |
596 | if (hei.decodedValues != NULL) { |
597 | // Record the decoded values: |
598 | unsigned* ptr = &hei.decodedValues[4*i]; |
599 | ptr[0] = x; ptr[1] = y; ptr[2] = v; ptr[3] = w; |
600 | } |
601 | ++i; |
602 | } |
603 | |
604 | hei.allBitOffsets[i] = bv.curBitIndex(); |
605 | hei.numSamples = i; |
606 | } |
607 | |
608 | HUFFBITS dmask = 1 << (SIZEOF_HUFFBITS*8-1); |
609 | unsigned int hs = SIZEOF_HUFFBITS*8; |
610 | |
611 | /* do the huffman-decoding */ |
612 | static int rsf_huffman_decoder(BitVector& bv, |
613 | struct huffcodetab const* h, // ptr to huffman code record |
614 | /* unsigned */ int *x, // returns decoded x value |
615 | /* unsigned */ int *y, // returns decoded y value |
616 | int* v, int* w) { |
617 | HUFFBITS level; |
618 | unsigned point = 0; |
619 | int error = 1; |
620 | level = dmask; |
621 | *x = *y = *v = *w = 0; |
622 | if (h->val == NULL) return 2; |
623 | |
624 | /* table 0 needs no bits */ |
625 | if (h->treelen == 0) return 0; |
626 | |
627 | /* Lookup in Huffman table. */ |
628 | |
629 | do { |
630 | if (h->val[point][0]==0) { /*end of tree*/ |
631 | *x = h->val[point][1] >> 4; |
632 | *y = h->val[point][1] & 0xf; |
633 | |
634 | error = 0; |
635 | break; |
636 | } |
637 | if (bv.get1Bit()) { |
638 | while (h->val[point][1] >= MXOFF) point += h->val[point][1]; |
639 | point += h->val[point][1]; |
640 | } |
641 | else { |
642 | while (h->val[point][0] >= MXOFF) point += h->val[point][0]; |
643 | point += h->val[point][0]; |
644 | } |
645 | level >>= 1; |
646 | } while (level || (point < h->treelen) ); |
647 | ///// } while (level || (point < rsf_ht->treelen) ); |
648 | |
649 | /* Check for error. */ |
650 | |
651 | if (error) { /* set x and y to a medium value as a simple concealment */ |
652 | printf("Illegal Huffman code in data.\n" ); |
653 | *x = ((h->xlen-1) << 1); |
654 | *y = ((h->ylen-1) << 1); |
655 | } |
656 | |
657 | /* Process sign encodings for quadruples tables. */ |
658 | |
659 | if (h->tablename[0] == '3' |
660 | && (h->tablename[1] == '2' || h->tablename[1] == '3')) { |
661 | *v = (*y>>3) & 1; |
662 | *w = (*y>>2) & 1; |
663 | *x = (*y>>1) & 1; |
664 | *y = *y & 1; |
665 | |
666 | if (*v) |
667 | if (bv.get1Bit() == 1) *v = -*v; |
668 | if (*w) |
669 | if (bv.get1Bit() == 1) *w = -*w; |
670 | if (*x) |
671 | if (bv.get1Bit() == 1) *x = -*x; |
672 | if (*y) |
673 | if (bv.get1Bit() == 1) *y = -*y; |
674 | } |
675 | |
676 | /* Process sign and escape encodings for dual tables. */ |
677 | |
678 | else { |
679 | if (h->linbits) |
680 | if ((h->xlen-1) == (unsigned)*x) |
681 | *x += bv.getBits(h->linbits); |
682 | if (*x) |
683 | if (bv.get1Bit() == 1) *x = -*x; |
684 | if (h->linbits) |
685 | if ((h->ylen-1) == (unsigned)*y) |
686 | *y += bv.getBits(h->linbits); |
687 | if (*y) |
688 | if (bv.get1Bit() == 1) *y = -*y; |
689 | } |
690 | |
691 | return error; |
692 | } |
693 | |
694 | #ifdef DO_HUFFMAN_ENCODING |
695 | inline int getNextSample(unsigned char const*& fromPtr) { |
696 | int sample |
697 | #ifdef FOUR_BYTE_SAMPLES |
698 | = (fromPtr[0]<<24) | (fromPtr[1]<<16) | (fromPtr[2]<<8) | fromPtr[3]; |
699 | #else |
700 | #ifdef TWO_BYTE_SAMPLES |
701 | = (fromPtr[0]<<8) | fromPtr[1]; |
702 | #else |
703 | // ONE_BYTE_SAMPLES |
704 | = fromPtr[0]; |
705 | #endif |
706 | #endif |
707 | fromPtr += BYTES_PER_SAMPLE_VALUE; |
708 | return sample; |
709 | } |
710 | |
711 | static void rsf_huffman_encoder(BitVector& bv, |
712 | struct huffcodetab* h, |
713 | int x, int y, int v, int w); // forward |
714 | |
715 | unsigned MP3HuffmanEncode(MP3SideInfo::gr_info_s_t const* gr, |
716 | unsigned char const* fromPtr, |
717 | unsigned char* toPtr, unsigned toBitOffset, |
718 | unsigned numHuffBits) { |
719 | unsigned i; |
720 | struct huffcodetab *h; |
721 | int x, y, v, w; |
722 | BitVector bv(toPtr, toBitOffset, numHuffBits); |
723 | |
724 | initialize_huffman(); |
725 | |
726 | // Encode big_values area: |
727 | unsigned big_values = gr->big_values; |
728 | if (big_values < gr->region1start + gr->region2start) { |
729 | big_values = gr->region1start + gr->region2start; /* sanity check */ |
730 | } |
731 | for (i = 0; i < big_values; ++i) { |
732 | if (i < gr->region1start) { |
733 | /* in region 0 */ |
734 | h = &rsf_ht[gr->table_select[0]]; |
735 | } else if (i < gr->region2start) { |
736 | /* in region 1 */ |
737 | h = &rsf_ht[gr->table_select[1]]; |
738 | } else { |
739 | /* in region 2 */ |
740 | h = &rsf_ht[gr->table_select[2]]; |
741 | } |
742 | |
743 | x = getNextSample(fromPtr); |
744 | y = getNextSample(fromPtr); |
745 | v = getNextSample(fromPtr); |
746 | w = getNextSample(fromPtr); |
747 | rsf_huffman_encoder(bv, h, x, y, v, w); |
748 | } |
749 | |
750 | // Encode count1 area: |
751 | h = &rsf_ht[gr->count1table_select+32]; |
752 | while (bv.curBitIndex() < bv.totNumBits() && i < SSLIMIT*SBLIMIT) { |
753 | x = getNextSample(fromPtr); |
754 | y = getNextSample(fromPtr); |
755 | v = getNextSample(fromPtr); |
756 | w = getNextSample(fromPtr); |
757 | rsf_huffman_encoder(bv, h, x, y, v, w); |
758 | ++i; |
759 | } |
760 | |
761 | return i; |
762 | } |
763 | |
764 | static Boolean lookupHuffmanTableEntry(struct huffcodetab const* h, |
765 | HUFFBITS bits, unsigned bitsLength, |
766 | unsigned char& xy) { |
767 | unsigned point = 0; |
768 | unsigned mask = 1; |
769 | unsigned numBitsTestedSoFar = 0; |
770 | do { |
771 | if (h->val[point][0]==0) { // end of tree |
772 | xy = h->val[point][1]; |
773 | if (h->hlen[xy] == 0) { // this entry hasn't already been used |
774 | h->table[xy] = bits; |
775 | h->hlen[xy] = bitsLength; |
776 | return True; |
777 | } else { // this entry has already been seen |
778 | return False; |
779 | } |
780 | } |
781 | |
782 | if (numBitsTestedSoFar++ == bitsLength) { |
783 | // We don't yet have enough bits for this prefix |
784 | return False; |
785 | } |
786 | if (bits&mask) { |
787 | while (h->val[point][1] >= MXOFF) point += h->val[point][1]; |
788 | point += h->val[point][1]; |
789 | } else { |
790 | while (h->val[point][0] >= MXOFF) point += h->val[point][0]; |
791 | point += h->val[point][0]; |
792 | } |
793 | mask <<= 1; |
794 | } while (mask || (point < h->treelen)); |
795 | |
796 | return False; |
797 | } |
798 | |
799 | static void buildHuffmanEncodingTable(struct huffcodetab* h) { |
800 | h->table = new unsigned long[256]; |
801 | h->hlen = new unsigned char[256]; |
802 | if (h->table == NULL || h->hlen == NULL) { h->table = NULL; return; } |
803 | for (unsigned i = 0; i < 256; ++i) { |
804 | h->table[i] = 0; h->hlen[i] = 0; |
805 | } |
806 | |
807 | // Look up entries for each possible bit sequence length: |
808 | unsigned maxNumEntries = h->xlen * h->ylen; |
809 | unsigned numEntries = 0; |
810 | unsigned powerOf2 = 1; |
811 | for (unsigned bitsLength = 1; |
812 | bitsLength <= 8*SIZEOF_HUFFBITS; ++bitsLength) { |
813 | powerOf2 *= 2; |
814 | for (HUFFBITS bits = 0; bits < powerOf2; ++bits) { |
815 | // Find the table value - if any - for 'bits' (length 'bitsLength'): |
816 | unsigned char xy; |
817 | if (lookupHuffmanTableEntry(h, bits, bitsLength, xy)) { |
818 | ++numEntries; |
819 | if (numEntries == maxNumEntries) return; // we're done |
820 | } |
821 | } |
822 | } |
823 | #ifdef DEBUG |
824 | fprintf(stderr, "Didn't find enough entries!\n" ); // shouldn't happen |
825 | #endif |
826 | } |
827 | |
828 | static void lookupXYandPutBits(BitVector& bv, struct huffcodetab const* h, |
829 | unsigned char xy) { |
830 | HUFFBITS bits = h->table[xy]; |
831 | unsigned bitsLength = h->hlen[xy]; |
832 | |
833 | // Note that "bits" is in reverse order, so read them from right-to-left: |
834 | while (bitsLength-- > 0) { |
835 | bv.put1Bit(bits&0x00000001); |
836 | bits >>= 1; |
837 | } |
838 | } |
839 | |
840 | static void putLinbits(BitVector& bv, struct huffcodetab const* h, |
841 | HUFFBITS bits) { |
842 | bv.putBits(bits, h->linbits); |
843 | } |
844 | |
845 | static void rsf_huffman_encoder(BitVector& bv, |
846 | struct huffcodetab* h, |
847 | int x, int y, int v, int w) { |
848 | if (h->val == NULL) return; |
849 | |
850 | /* table 0 produces no bits */ |
851 | if (h->treelen == 0) return; |
852 | |
853 | if (h->table == NULL) { |
854 | // We haven't yet built the encoding array for this table; do it now: |
855 | buildHuffmanEncodingTable(h); |
856 | if (h->table == NULL) return; |
857 | } |
858 | |
859 | Boolean xIsNeg = False, yIsNeg = False, vIsNeg = False, wIsNeg = False; |
860 | unsigned char xy; |
861 | |
862 | #ifdef FOUR_BYTE_SAMPLES |
863 | #else |
864 | #ifdef TWO_BYTE_SAMPLES |
865 | // Convert 2-byte negative numbers to their 4-byte equivalents: |
866 | if (x&0x8000) x |= 0xFFFF0000; |
867 | if (y&0x8000) y |= 0xFFFF0000; |
868 | if (v&0x8000) v |= 0xFFFF0000; |
869 | if (w&0x8000) w |= 0xFFFF0000; |
870 | #else |
871 | // ONE_BYTE_SAMPLES |
872 | // Convert 1-byte negative numbers to their 4-byte equivalents: |
873 | if (x&0x80) x |= 0xFFFFFF00; |
874 | if (y&0x80) y |= 0xFFFFFF00; |
875 | if (v&0x80) v |= 0xFFFFFF00; |
876 | if (w&0x80) w |= 0xFFFFFF00; |
877 | #endif |
878 | #endif |
879 | |
880 | if (h->tablename[0] == '3' |
881 | && (h->tablename[1] == '2' || h->tablename[1] == '3')) {// quad tables |
882 | if (x < 0) { xIsNeg = True; x = -x; } |
883 | if (y < 0) { yIsNeg = True; y = -y; } |
884 | if (v < 0) { vIsNeg = True; v = -v; } |
885 | if (w < 0) { wIsNeg = True; w = -w; } |
886 | |
887 | // Sanity check: x,y,v,w must all be 0 or 1: |
888 | if (x>1 || y>1 || v>1 || w>1) { |
889 | #ifdef DEBUG |
890 | fprintf(stderr, "rsf_huffman_encoder quad sanity check fails: %x,%x,%x,%x\n" , x, y, v, w); |
891 | #endif |
892 | } |
893 | |
894 | xy = (v<<3)|(w<<2)|(x<<1)|y; |
895 | lookupXYandPutBits(bv, h, xy); |
896 | |
897 | if (v) bv.put1Bit(vIsNeg); |
898 | if (w) bv.put1Bit(wIsNeg); |
899 | if (x) bv.put1Bit(xIsNeg); |
900 | if (y) bv.put1Bit(yIsNeg); |
901 | } else { // dual tables |
902 | // Sanity check: v and w must be 0: |
903 | if (v != 0 || w != 0) { |
904 | #ifdef DEBUG |
905 | fprintf(stderr, "rsf_huffman_encoder dual sanity check 1 fails: %x,%x,%x,%x\n" , x, y, v, w); |
906 | #endif |
907 | } |
908 | |
909 | if (x < 0) { xIsNeg = True; x = -x; } |
910 | if (y < 0) { yIsNeg = True; y = -y; } |
911 | |
912 | // Sanity check: x and y must be <= 255: |
913 | if (x > 255 || y > 255) { |
914 | #ifdef DEBUG |
915 | fprintf(stderr, "rsf_huffman_encoder dual sanity check 2 fails: %x,%x,%x,%x\n" , x, y, v, w); |
916 | #endif |
917 | } |
918 | |
919 | int xl1 = h->xlen-1; |
920 | int yl1 = h->ylen-1; |
921 | unsigned linbitsX = 0; unsigned linbitsY = 0; |
922 | |
923 | if (((x < xl1) || (xl1 == 0)) && (y < yl1)) { |
924 | // normal case |
925 | xy = (x<<4)|y; |
926 | lookupXYandPutBits(bv, h, xy); |
927 | if (x) bv.put1Bit(xIsNeg); |
928 | if (y) bv.put1Bit(yIsNeg); |
929 | } else if (x >= xl1) { |
930 | linbitsX = (unsigned)(x - xl1); |
931 | if (linbitsX > h->linmax) { |
932 | #ifdef DEBUG |
933 | fprintf(stderr,"warning: Huffman X table overflow\n" ); |
934 | #endif |
935 | linbitsX = h->linmax; |
936 | }; |
937 | |
938 | if (y >= yl1) { |
939 | xy = (xl1<<4)|yl1; |
940 | lookupXYandPutBits(bv, h, xy); |
941 | linbitsY = (unsigned)(y - yl1); |
942 | if (linbitsY > h->linmax) { |
943 | #ifdef DEBUG |
944 | fprintf(stderr,"warning: Huffman Y table overflow\n" ); |
945 | #endif |
946 | linbitsY = h->linmax; |
947 | }; |
948 | |
949 | if (h->linbits) putLinbits(bv, h, linbitsX); |
950 | if (x) bv.put1Bit(xIsNeg); |
951 | if (h->linbits) putLinbits(bv, h, linbitsY); |
952 | if (y) bv.put1Bit(yIsNeg); |
953 | } else { /* x >= h->xlen, y < h->ylen */ |
954 | xy = (xl1<<4)|y; |
955 | lookupXYandPutBits(bv, h, xy); |
956 | if (h->linbits) putLinbits(bv, h, linbitsX); |
957 | if (x) bv.put1Bit(xIsNeg); |
958 | if (y) bv.put1Bit(yIsNeg); |
959 | } |
960 | } else { /* ((x < h->xlen) && (y >= h->ylen)) */ |
961 | xy = (x<<4)|yl1; |
962 | lookupXYandPutBits(bv, h, xy); |
963 | linbitsY = y-yl1; |
964 | if (linbitsY > h->linmax) { |
965 | #ifdef DEBUG |
966 | fprintf(stderr,"warning: Huffman Y table overflow\n" ); |
967 | #endif |
968 | linbitsY = h->linmax; |
969 | }; |
970 | if (x) bv.put1Bit(xIsNeg); |
971 | if (h->linbits) putLinbits(bv, h, linbitsY); |
972 | if (y) bv.put1Bit(yIsNeg); |
973 | } |
974 | } |
975 | } |
976 | #endif |
977 | |