| 1 | /********** |
| 2 | This library is free software; you can redistribute it and/or modify it under |
| 3 | the terms of the GNU Lesser General Public License as published by the |
| 4 | Free Software Foundation; either version 3 of the License, or (at your |
| 5 | option) any later version. (See <http://www.gnu.org/copyleft/lesser.html>.) |
| 6 | |
| 7 | This library is distributed in the hope that it will be useful, but WITHOUT |
| 8 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 9 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for |
| 10 | more details. |
| 11 | |
| 12 | You should have received a copy of the GNU Lesser General Public License |
| 13 | along with this library; if not, write to the Free Software Foundation, Inc., |
| 14 | 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| 15 | **********/ |
| 16 | // "liveMedia" |
| 17 | // Copyright (c) 1996-2020 Live Networks, Inc. All rights reserved. |
| 18 | // RTP sink for a common kind of payload format: Those which pack multiple, |
| 19 | // complete codec frames (as many as possible) into each RTP packet. |
| 20 | // Implementation |
| 21 | |
| 22 | #include "MultiFramedRTPSink.hh" |
| 23 | #include "GroupsockHelper.hh" |
| 24 | |
| 25 | ////////// MultiFramedRTPSink ////////// |
| 26 | |
| 27 | void MultiFramedRTPSink::setPacketSizes(unsigned preferredPacketSize, |
| 28 | unsigned maxPacketSize) { |
| 29 | if (preferredPacketSize > maxPacketSize || preferredPacketSize == 0) return; |
| 30 | // sanity check |
| 31 | |
| 32 | delete fOutBuf; |
| 33 | fOutBuf = new OutPacketBuffer(preferredPacketSize, maxPacketSize); |
| 34 | fOurMaxPacketSize = maxPacketSize; // save value, in case subclasses need it |
| 35 | } |
| 36 | |
| 37 | #ifndef RTP_PAYLOAD_MAX_SIZE |
| 38 | #define RTP_PAYLOAD_MAX_SIZE 1456 |
| 39 | // Default max packet size (1500, minus allowance for IP, UDP, UMTP headers) |
| 40 | // (Also, make it a multiple of 4 bytes, just in case that matters.) |
| 41 | #endif |
| 42 | #ifndef RTP_PAYLOAD_PREFERRED_SIZE |
| 43 | #define RTP_PAYLOAD_PREFERRED_SIZE ((RTP_PAYLOAD_MAX_SIZE) < 1000 ? (RTP_PAYLOAD_MAX_SIZE) : 1000) |
| 44 | #endif |
| 45 | |
| 46 | MultiFramedRTPSink::MultiFramedRTPSink(UsageEnvironment& env, |
| 47 | Groupsock* rtpGS, |
| 48 | unsigned char rtpPayloadType, |
| 49 | unsigned rtpTimestampFrequency, |
| 50 | char const* rtpPayloadFormatName, |
| 51 | unsigned numChannels) |
| 52 | : RTPSink(env, rtpGS, rtpPayloadType, rtpTimestampFrequency, |
| 53 | rtpPayloadFormatName, numChannels), |
| 54 | fOutBuf(NULL), fCurFragmentationOffset(0), fPreviousFrameEndedFragmentation(False), |
| 55 | fOnSendErrorFunc(NULL), fOnSendErrorData(NULL) { |
| 56 | setPacketSizes((RTP_PAYLOAD_PREFERRED_SIZE), (RTP_PAYLOAD_MAX_SIZE)); |
| 57 | } |
| 58 | |
| 59 | MultiFramedRTPSink::~MultiFramedRTPSink() { |
| 60 | delete fOutBuf; |
| 61 | } |
| 62 | |
| 63 | void MultiFramedRTPSink |
| 64 | ::doSpecialFrameHandling(unsigned /*fragmentationOffset*/, |
| 65 | unsigned char* /*frameStart*/, |
| 66 | unsigned /*numBytesInFrame*/, |
| 67 | struct timeval framePresentationTime, |
| 68 | unsigned /*numRemainingBytes*/) { |
| 69 | // default implementation: If this is the first frame in the packet, |
| 70 | // use its presentationTime for the RTP timestamp: |
| 71 | if (isFirstFrameInPacket()) { |
| 72 | setTimestamp(framePresentationTime); |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | Boolean MultiFramedRTPSink::allowFragmentationAfterStart() const { |
| 77 | return False; // by default |
| 78 | } |
| 79 | |
| 80 | Boolean MultiFramedRTPSink::allowOtherFramesAfterLastFragment() const { |
| 81 | return False; // by default |
| 82 | } |
| 83 | |
| 84 | Boolean MultiFramedRTPSink |
| 85 | ::frameCanAppearAfterPacketStart(unsigned char const* /*frameStart*/, |
| 86 | unsigned /*numBytesInFrame*/) const { |
| 87 | return True; // by default |
| 88 | } |
| 89 | |
| 90 | unsigned MultiFramedRTPSink::() const { |
| 91 | // default implementation: Assume no special header: |
| 92 | return 0; |
| 93 | } |
| 94 | |
| 95 | unsigned MultiFramedRTPSink::() const { |
| 96 | // default implementation: Assume no frame-specific header: |
| 97 | return 0; |
| 98 | } |
| 99 | |
| 100 | unsigned MultiFramedRTPSink::computeOverflowForNewFrame(unsigned newFrameSize) const { |
| 101 | // default implementation: Just call numOverflowBytes() |
| 102 | return fOutBuf->numOverflowBytes(newFrameSize); |
| 103 | } |
| 104 | |
| 105 | void MultiFramedRTPSink::setMarkerBit() { |
| 106 | unsigned rtpHdr = fOutBuf->extractWord(0); |
| 107 | rtpHdr |= 0x00800000; |
| 108 | fOutBuf->insertWord(rtpHdr, 0); |
| 109 | } |
| 110 | |
| 111 | void MultiFramedRTPSink::setTimestamp(struct timeval framePresentationTime) { |
| 112 | // First, convert the presentation time to a 32-bit RTP timestamp: |
| 113 | fCurrentTimestamp = convertToRTPTimestamp(framePresentationTime); |
| 114 | |
| 115 | // Then, insert it into the RTP packet: |
| 116 | fOutBuf->insertWord(fCurrentTimestamp, fTimestampPosition); |
| 117 | } |
| 118 | |
| 119 | void MultiFramedRTPSink::(unsigned word, |
| 120 | unsigned wordPosition) { |
| 121 | fOutBuf->insertWord(word, fSpecialHeaderPosition + 4*wordPosition); |
| 122 | } |
| 123 | |
| 124 | void MultiFramedRTPSink::(unsigned char const* bytes, |
| 125 | unsigned numBytes, |
| 126 | unsigned bytePosition) { |
| 127 | fOutBuf->insert(bytes, numBytes, fSpecialHeaderPosition + bytePosition); |
| 128 | } |
| 129 | |
| 130 | void MultiFramedRTPSink::(unsigned word, |
| 131 | unsigned wordPosition) { |
| 132 | fOutBuf->insertWord(word, fCurFrameSpecificHeaderPosition + 4*wordPosition); |
| 133 | } |
| 134 | |
| 135 | void MultiFramedRTPSink::(unsigned char const* bytes, |
| 136 | unsigned numBytes, |
| 137 | unsigned bytePosition) { |
| 138 | fOutBuf->insert(bytes, numBytes, fCurFrameSpecificHeaderPosition + bytePosition); |
| 139 | } |
| 140 | |
| 141 | void MultiFramedRTPSink::setFramePadding(unsigned numPaddingBytes) { |
| 142 | if (numPaddingBytes > 0) { |
| 143 | // Add the padding bytes (with the last one being the padding size): |
| 144 | unsigned char paddingBuffer[255]; //max padding |
| 145 | memset(paddingBuffer, 0, numPaddingBytes); |
| 146 | paddingBuffer[numPaddingBytes-1] = numPaddingBytes; |
| 147 | fOutBuf->enqueue(paddingBuffer, numPaddingBytes); |
| 148 | |
| 149 | // Set the RTP padding bit: |
| 150 | unsigned rtpHdr = fOutBuf->extractWord(0); |
| 151 | rtpHdr |= 0x20000000; |
| 152 | fOutBuf->insertWord(rtpHdr, 0); |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | Boolean MultiFramedRTPSink::continuePlaying() { |
| 157 | // Send the first packet. |
| 158 | // (This will also schedule any future sends.) |
| 159 | buildAndSendPacket(True); |
| 160 | return True; |
| 161 | } |
| 162 | |
| 163 | void MultiFramedRTPSink::stopPlaying() { |
| 164 | fOutBuf->resetPacketStart(); |
| 165 | fOutBuf->resetOffset(); |
| 166 | fOutBuf->resetOverflowData(); |
| 167 | |
| 168 | // Then call the default "stopPlaying()" function: |
| 169 | MediaSink::stopPlaying(); |
| 170 | } |
| 171 | |
| 172 | void MultiFramedRTPSink::buildAndSendPacket(Boolean isFirstPacket) { |
| 173 | nextTask() = NULL; |
| 174 | fIsFirstPacket = isFirstPacket; |
| 175 | |
| 176 | // Set up the RTP header: |
| 177 | unsigned rtpHdr = 0x80000000; // RTP version 2; marker ('M') bit not set (by default; it can be set later) |
| 178 | rtpHdr |= (fRTPPayloadType<<16); |
| 179 | rtpHdr |= fSeqNo; // sequence number |
| 180 | fOutBuf->enqueueWord(rtpHdr); |
| 181 | |
| 182 | // Note where the RTP timestamp will go. |
| 183 | // (We can't fill this in until we start packing payload frames.) |
| 184 | fTimestampPosition = fOutBuf->curPacketSize(); |
| 185 | fOutBuf->skipBytes(4); // leave a hole for the timestamp |
| 186 | |
| 187 | fOutBuf->enqueueWord(SSRC()); |
| 188 | |
| 189 | // Allow for a special, payload-format-specific header following the |
| 190 | // RTP header: |
| 191 | fSpecialHeaderPosition = fOutBuf->curPacketSize(); |
| 192 | fSpecialHeaderSize = specialHeaderSize(); |
| 193 | fOutBuf->skipBytes(fSpecialHeaderSize); |
| 194 | |
| 195 | // Begin packing as many (complete) frames into the packet as we can: |
| 196 | fTotalFrameSpecificHeaderSizes = 0; |
| 197 | fNoFramesLeft = False; |
| 198 | fNumFramesUsedSoFar = 0; |
| 199 | packFrame(); |
| 200 | } |
| 201 | |
| 202 | void MultiFramedRTPSink::packFrame() { |
| 203 | // Get the next frame. |
| 204 | |
| 205 | // First, skip over the space we'll use for any frame-specific header: |
| 206 | fCurFrameSpecificHeaderPosition = fOutBuf->curPacketSize(); |
| 207 | fCurFrameSpecificHeaderSize = frameSpecificHeaderSize(); |
| 208 | fOutBuf->skipBytes(fCurFrameSpecificHeaderSize); |
| 209 | fTotalFrameSpecificHeaderSizes += fCurFrameSpecificHeaderSize; |
| 210 | |
| 211 | // See if we have an overflow frame that was too big for the last pkt |
| 212 | if (fOutBuf->haveOverflowData()) { |
| 213 | // Use this frame before reading a new one from the source |
| 214 | unsigned frameSize = fOutBuf->overflowDataSize(); |
| 215 | struct timeval presentationTime = fOutBuf->overflowPresentationTime(); |
| 216 | unsigned durationInMicroseconds = fOutBuf->overflowDurationInMicroseconds(); |
| 217 | fOutBuf->useOverflowData(); |
| 218 | |
| 219 | afterGettingFrame1(frameSize, 0, presentationTime, durationInMicroseconds); |
| 220 | } else { |
| 221 | // Normal case: we need to read a new frame from the source |
| 222 | if (fSource == NULL) return; |
| 223 | fSource->getNextFrame(fOutBuf->curPtr(), fOutBuf->totalBytesAvailable(), |
| 224 | afterGettingFrame, this, ourHandleClosure, this); |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | void MultiFramedRTPSink |
| 229 | ::afterGettingFrame(void* clientData, unsigned numBytesRead, |
| 230 | unsigned numTruncatedBytes, |
| 231 | struct timeval presentationTime, |
| 232 | unsigned durationInMicroseconds) { |
| 233 | MultiFramedRTPSink* sink = (MultiFramedRTPSink*)clientData; |
| 234 | sink->afterGettingFrame1(numBytesRead, numTruncatedBytes, |
| 235 | presentationTime, durationInMicroseconds); |
| 236 | } |
| 237 | |
| 238 | void MultiFramedRTPSink |
| 239 | ::afterGettingFrame1(unsigned frameSize, unsigned numTruncatedBytes, |
| 240 | struct timeval presentationTime, |
| 241 | unsigned durationInMicroseconds) { |
| 242 | if (fIsFirstPacket) { |
| 243 | // Record the fact that we're starting to play now: |
| 244 | gettimeofday(&fNextSendTime, NULL); |
| 245 | } |
| 246 | |
| 247 | fMostRecentPresentationTime = presentationTime; |
| 248 | if (fInitialPresentationTime.tv_sec == 0 && fInitialPresentationTime.tv_usec == 0) { |
| 249 | fInitialPresentationTime = presentationTime; |
| 250 | } |
| 251 | |
| 252 | if (numTruncatedBytes > 0) { |
| 253 | unsigned const bufferSize = fOutBuf->totalBytesAvailable(); |
| 254 | envir() << "MultiFramedRTPSink::afterGettingFrame1(): The input frame data was too large for our buffer size (" |
| 255 | << bufferSize << "). " |
| 256 | << numTruncatedBytes << " bytes of trailing data was dropped! Correct this by increasing \"OutPacketBuffer::maxSize\" to at least " |
| 257 | << OutPacketBuffer::maxSize + numTruncatedBytes << ", *before* creating this 'RTPSink'. (Current value is " |
| 258 | << OutPacketBuffer::maxSize << ".)\n" ; |
| 259 | } |
| 260 | unsigned curFragmentationOffset = fCurFragmentationOffset; |
| 261 | unsigned numFrameBytesToUse = frameSize; |
| 262 | unsigned overflowBytes = 0; |
| 263 | |
| 264 | // If we have already packed one or more frames into this packet, |
| 265 | // check whether this new frame is eligible to be packed after them. |
| 266 | // (This is independent of whether the packet has enough room for this |
| 267 | // new frame; that check comes later.) |
| 268 | if (fNumFramesUsedSoFar > 0) { |
| 269 | if ((fPreviousFrameEndedFragmentation |
| 270 | && !allowOtherFramesAfterLastFragment()) |
| 271 | || !frameCanAppearAfterPacketStart(fOutBuf->curPtr(), frameSize)) { |
| 272 | // Save away this frame for next time: |
| 273 | numFrameBytesToUse = 0; |
| 274 | fOutBuf->setOverflowData(fOutBuf->curPacketSize(), frameSize, |
| 275 | presentationTime, durationInMicroseconds); |
| 276 | } |
| 277 | } |
| 278 | fPreviousFrameEndedFragmentation = False; |
| 279 | |
| 280 | if (numFrameBytesToUse > 0) { |
| 281 | // Check whether this frame overflows the packet |
| 282 | if (fOutBuf->wouldOverflow(frameSize)) { |
| 283 | // Don't use this frame now; instead, save it as overflow data, and |
| 284 | // send it in the next packet instead. However, if the frame is too |
| 285 | // big to fit in a packet by itself, then we need to fragment it (and |
| 286 | // use some of it in this packet, if the payload format permits this.) |
| 287 | if (isTooBigForAPacket(frameSize) |
| 288 | && (fNumFramesUsedSoFar == 0 || allowFragmentationAfterStart())) { |
| 289 | // We need to fragment this frame, and use some of it now: |
| 290 | overflowBytes = computeOverflowForNewFrame(frameSize); |
| 291 | numFrameBytesToUse -= overflowBytes; |
| 292 | fCurFragmentationOffset += numFrameBytesToUse; |
| 293 | } else { |
| 294 | // We don't use any of this frame now: |
| 295 | overflowBytes = frameSize; |
| 296 | numFrameBytesToUse = 0; |
| 297 | } |
| 298 | fOutBuf->setOverflowData(fOutBuf->curPacketSize() + numFrameBytesToUse, |
| 299 | overflowBytes, presentationTime, durationInMicroseconds); |
| 300 | } else if (fCurFragmentationOffset > 0) { |
| 301 | // This is the last fragment of a frame that was fragmented over |
| 302 | // more than one packet. Do any special handling for this case: |
| 303 | fCurFragmentationOffset = 0; |
| 304 | fPreviousFrameEndedFragmentation = True; |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | if (numFrameBytesToUse == 0 && frameSize > 0) { |
| 309 | // Send our packet now, because we have filled it up: |
| 310 | sendPacketIfNecessary(); |
| 311 | } else { |
| 312 | // Use this frame in our outgoing packet: |
| 313 | unsigned char* frameStart = fOutBuf->curPtr(); |
| 314 | fOutBuf->increment(numFrameBytesToUse); |
| 315 | // do this now, in case "doSpecialFrameHandling()" calls "setFramePadding()" to append padding bytes |
| 316 | |
| 317 | // Here's where any payload format specific processing gets done: |
| 318 | doSpecialFrameHandling(curFragmentationOffset, frameStart, |
| 319 | numFrameBytesToUse, presentationTime, |
| 320 | overflowBytes); |
| 321 | |
| 322 | ++fNumFramesUsedSoFar; |
| 323 | |
| 324 | // Update the time at which the next packet should be sent, based |
| 325 | // on the duration of the frame that we just packed into it. |
| 326 | // However, if this frame has overflow data remaining, then don't |
| 327 | // count its duration yet. |
| 328 | if (overflowBytes == 0) { |
| 329 | fNextSendTime.tv_usec += durationInMicroseconds; |
| 330 | fNextSendTime.tv_sec += fNextSendTime.tv_usec/1000000; |
| 331 | fNextSendTime.tv_usec %= 1000000; |
| 332 | } |
| 333 | |
| 334 | // Send our packet now if (i) it's already at our preferred size, or |
| 335 | // (ii) (heuristic) another frame of the same size as the one we just |
| 336 | // read would overflow the packet, or |
| 337 | // (iii) it contains the last fragment of a fragmented frame, and we |
| 338 | // don't allow anything else to follow this or |
| 339 | // (iv) only one frame per packet is allowed: |
| 340 | if (fOutBuf->isPreferredSize() |
| 341 | || fOutBuf->wouldOverflow(numFrameBytesToUse) |
| 342 | || (fPreviousFrameEndedFragmentation && |
| 343 | !allowOtherFramesAfterLastFragment()) |
| 344 | || !frameCanAppearAfterPacketStart(fOutBuf->curPtr() - frameSize, |
| 345 | frameSize) ) { |
| 346 | // The packet is ready to be sent now |
| 347 | sendPacketIfNecessary(); |
| 348 | } else { |
| 349 | // There's room for more frames; try getting another: |
| 350 | packFrame(); |
| 351 | } |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | static unsigned const = 12; |
| 356 | |
| 357 | Boolean MultiFramedRTPSink::isTooBigForAPacket(unsigned numBytes) const { |
| 358 | // Check whether a 'numBytes'-byte frame - together with a RTP header and |
| 359 | // (possible) special headers - would be too big for an output packet: |
| 360 | // (Later allow for RTP extension header!) ##### |
| 361 | numBytes += rtpHeaderSize + specialHeaderSize() + frameSpecificHeaderSize(); |
| 362 | return fOutBuf->isTooBigForAPacket(numBytes); |
| 363 | } |
| 364 | |
| 365 | void MultiFramedRTPSink::sendPacketIfNecessary() { |
| 366 | if (fNumFramesUsedSoFar > 0) { |
| 367 | // Send the packet: |
| 368 | #ifdef TEST_LOSS |
| 369 | if ((our_random()%10) != 0) // simulate 10% packet loss ##### |
| 370 | #endif |
| 371 | if (!fRTPInterface.sendPacket(fOutBuf->packet(), fOutBuf->curPacketSize())) { |
| 372 | // if failure handler has been specified, call it |
| 373 | if (fOnSendErrorFunc != NULL) (*fOnSendErrorFunc)(fOnSendErrorData); |
| 374 | } |
| 375 | ++fPacketCount; |
| 376 | fTotalOctetCount += fOutBuf->curPacketSize(); |
| 377 | fOctetCount += fOutBuf->curPacketSize() |
| 378 | - rtpHeaderSize - fSpecialHeaderSize - fTotalFrameSpecificHeaderSizes; |
| 379 | |
| 380 | ++fSeqNo; // for next time |
| 381 | } |
| 382 | |
| 383 | if (fOutBuf->haveOverflowData() |
| 384 | && fOutBuf->totalBytesAvailable() > fOutBuf->totalBufferSize()/2) { |
| 385 | // Efficiency hack: Reset the packet start pointer to just in front of |
| 386 | // the overflow data (allowing for the RTP header and special headers), |
| 387 | // so that we probably don't have to "memmove()" the overflow data |
| 388 | // into place when building the next packet: |
| 389 | unsigned newPacketStart = fOutBuf->curPacketSize() |
| 390 | - (rtpHeaderSize + fSpecialHeaderSize + frameSpecificHeaderSize()); |
| 391 | fOutBuf->adjustPacketStart(newPacketStart); |
| 392 | } else { |
| 393 | // Normal case: Reset the packet start pointer back to the start: |
| 394 | fOutBuf->resetPacketStart(); |
| 395 | } |
| 396 | fOutBuf->resetOffset(); |
| 397 | fNumFramesUsedSoFar = 0; |
| 398 | |
| 399 | if (fNoFramesLeft) { |
| 400 | // We're done: |
| 401 | onSourceClosure(); |
| 402 | } else { |
| 403 | // We have more frames left to send. Figure out when the next frame |
| 404 | // is due to start playing, then make sure that we wait this long before |
| 405 | // sending the next packet. |
| 406 | struct timeval timeNow; |
| 407 | gettimeofday(&timeNow, NULL); |
| 408 | int secsDiff = fNextSendTime.tv_sec - timeNow.tv_sec; |
| 409 | int64_t uSecondsToGo = secsDiff*1000000 + (fNextSendTime.tv_usec - timeNow.tv_usec); |
| 410 | if (uSecondsToGo < 0 || secsDiff < 0) { // sanity check: Make sure that the time-to-delay is non-negative: |
| 411 | uSecondsToGo = 0; |
| 412 | } |
| 413 | |
| 414 | // Delay this amount of time: |
| 415 | nextTask() = envir().taskScheduler().scheduleDelayedTask(uSecondsToGo, (TaskFunc*)sendNext, this); |
| 416 | } |
| 417 | } |
| 418 | |
| 419 | // The following is called after each delay between packet sends: |
| 420 | void MultiFramedRTPSink::sendNext(void* firstArg) { |
| 421 | MultiFramedRTPSink* sink = (MultiFramedRTPSink*)firstArg; |
| 422 | sink->buildAndSendPacket(False); |
| 423 | } |
| 424 | |
| 425 | void MultiFramedRTPSink::ourHandleClosure(void* clientData) { |
| 426 | MultiFramedRTPSink* sink = (MultiFramedRTPSink*)clientData; |
| 427 | // There are no frames left, but we may have a partially built packet |
| 428 | // to send |
| 429 | sink->fNoFramesLeft = True; |
| 430 | sink->sendPacketIfNecessary(); |
| 431 | } |
| 432 | |