| 1 | /********** |
| 2 | This library is free software; you can redistribute it and/or modify it under |
| 3 | the terms of the GNU Lesser General Public License as published by the |
| 4 | Free Software Foundation; either version 3 of the License, or (at your |
| 5 | option) any later version. (See <http://www.gnu.org/copyleft/lesser.html>.) |
| 6 | |
| 7 | This library is distributed in the hope that it will be useful, but WITHOUT |
| 8 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 9 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for |
| 10 | more details. |
| 11 | |
| 12 | You should have received a copy of the GNU Lesser General Public License |
| 13 | along with this library; if not, write to the Free Software Foundation, Inc., |
| 14 | 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| 15 | **********/ |
| 16 | // "liveMedia" |
| 17 | // Copyright (c) 1996-2020 Live Networks, Inc. All rights reserved. |
| 18 | // Because MD5 may not be implemented (at least, with the same interface) on all systems, |
| 19 | // we have our own implementation. |
| 20 | // Implementation |
| 21 | |
| 22 | #include "ourMD5.hh" |
| 23 | #include <NetCommon.h> // for u_int32_t, u_int64_t |
| 24 | #include <string.h> |
| 25 | |
| 26 | #define DIGEST_SIZE_IN_BYTES 16 |
| 27 | #define DIGEST_SIZE_IN_HEX_DIGITS (2*DIGEST_SIZE_IN_BYTES) |
| 28 | #define DIGEST_SIZE_AS_STRING (DIGEST_SIZE_IN_HEX_DIGITS+1) |
| 29 | |
| 30 | // The state of a MD5 computation in progress: |
| 31 | |
| 32 | class MD5Context { |
| 33 | public: |
| 34 | MD5Context(); |
| 35 | ~MD5Context(); |
| 36 | |
| 37 | void addData(unsigned char const* inputData, unsigned inputDataSize); |
| 38 | void end(char* outputDigest /*must point to an array of size DIGEST_SIZE_AS_STRING*/); |
| 39 | void finalize(unsigned char* outputDigestInBytes); |
| 40 | // Like "end()", except that the argument is a byte array, of size DIGEST_SIZE_IN_BYTES. |
| 41 | // This function is used to implement "end()". |
| 42 | |
| 43 | private: |
| 44 | void zeroize(); // to remove potentially sensitive information |
| 45 | void transform64Bytes(unsigned char const block[64]); // does the actual MD5 transform |
| 46 | |
| 47 | private: |
| 48 | u_int32_t fState[4]; // ABCD |
| 49 | u_int64_t fBitCount; // number of bits, modulo 2^64 |
| 50 | unsigned char fWorkingBuffer[64]; |
| 51 | }; |
| 52 | |
| 53 | char* our_MD5Data(unsigned char const* data, unsigned dataSize, char* outputDigest) { |
| 54 | MD5Context ctx; |
| 55 | |
| 56 | ctx.addData(data, dataSize); |
| 57 | |
| 58 | if (outputDigest == NULL) outputDigest = new char[DIGEST_SIZE_AS_STRING]; |
| 59 | ctx.end(outputDigest); |
| 60 | |
| 61 | return outputDigest; |
| 62 | } |
| 63 | |
| 64 | unsigned char* our_MD5DataRaw(unsigned char const* data, unsigned dataSize, |
| 65 | unsigned char* outputDigest) { |
| 66 | MD5Context ctx; |
| 67 | |
| 68 | ctx.addData(data, dataSize); |
| 69 | |
| 70 | if (outputDigest == NULL) outputDigest = new unsigned char[DIGEST_SIZE_IN_BYTES]; |
| 71 | ctx.finalize(outputDigest); |
| 72 | |
| 73 | return outputDigest; |
| 74 | } |
| 75 | |
| 76 | |
| 77 | ////////// MD5Context implementation ////////// |
| 78 | |
| 79 | MD5Context::MD5Context() |
| 80 | : fBitCount(0) { |
| 81 | // Initialize with magic constants: |
| 82 | fState[0] = 0x67452301; |
| 83 | fState[1] = 0xefcdab89; |
| 84 | fState[2] = 0x98badcfe; |
| 85 | fState[3] = 0x10325476; |
| 86 | } |
| 87 | |
| 88 | MD5Context::~MD5Context() { |
| 89 | zeroize(); |
| 90 | } |
| 91 | |
| 92 | void MD5Context::addData(unsigned char const* inputData, unsigned inputDataSize) { |
| 93 | // Begin by noting how much of our 64-byte working buffer remains unfilled: |
| 94 | u_int64_t const byteCount = fBitCount>>3; |
| 95 | unsigned bufferBytesInUse = (unsigned)(byteCount&0x3F); |
| 96 | unsigned bufferBytesRemaining = 64 - bufferBytesInUse; |
| 97 | |
| 98 | // Then update our bit count: |
| 99 | fBitCount += inputDataSize<<3; |
| 100 | |
| 101 | unsigned i = 0; |
| 102 | if (inputDataSize >= bufferBytesRemaining) { |
| 103 | // We have enough input data to do (64-byte) MD5 transforms. |
| 104 | // Do this now, starting with a transform on our working buffer, then with |
| 105 | // (as many as possible) transforms on rest of the input data. |
| 106 | |
| 107 | memcpy((unsigned char*)&fWorkingBuffer[bufferBytesInUse], (unsigned char*)inputData, bufferBytesRemaining); |
| 108 | transform64Bytes(fWorkingBuffer); |
| 109 | bufferBytesInUse = 0; |
| 110 | |
| 111 | for (i = bufferBytesRemaining; i + 63 < inputDataSize; i += 64) { |
| 112 | transform64Bytes(&inputData[i]); |
| 113 | } |
| 114 | } |
| 115 | |
| 116 | // Copy any remaining (and currently un-transformed) input data into our working buffer: |
| 117 | if (i < inputDataSize) { |
| 118 | memcpy((unsigned char*)&fWorkingBuffer[bufferBytesInUse], (unsigned char*)&inputData[i], inputDataSize - i); |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | void MD5Context::end(char* outputDigest) { |
| 123 | unsigned char digestInBytes[DIGEST_SIZE_IN_BYTES]; |
| 124 | finalize(digestInBytes); |
| 125 | |
| 126 | // Convert the digest from bytes (binary) to hex digits: |
| 127 | static char const hex[]="0123456789abcdef" ; |
| 128 | unsigned i; |
| 129 | for (i = 0; i < DIGEST_SIZE_IN_BYTES; ++i) { |
| 130 | outputDigest[2*i] = hex[digestInBytes[i] >> 4]; |
| 131 | outputDigest[2*i+1] = hex[digestInBytes[i] & 0x0F]; |
| 132 | } |
| 133 | outputDigest[2*i] = '\0'; |
| 134 | } |
| 135 | |
| 136 | // Routines that unpack 32 and 64-bit values into arrays of bytes (in little-endian order). |
| 137 | // (These are used to implement "finalize()".) |
| 138 | |
| 139 | static void unpack32(unsigned char out[4], u_int32_t in) { |
| 140 | for (unsigned i = 0; i < 4; ++i) { |
| 141 | out[i] = (unsigned char)((in>>(8*i))&0xFF); |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | static void unpack64(unsigned char out[8], u_int64_t in) { |
| 146 | for (unsigned i = 0; i < 8; ++i) { |
| 147 | out[i] = (unsigned char)((in>>(8*i))&0xFF); |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | static unsigned char const PADDING[64] = { |
| 152 | 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 153 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 154 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
| 155 | }; |
| 156 | |
| 157 | void MD5Context::finalize(unsigned char* outputDigestInBytes) { |
| 158 | // Unpack our bit count: |
| 159 | unsigned char bitCountInBytes[8]; |
| 160 | unpack64(bitCountInBytes, fBitCount); |
| 161 | |
| 162 | // Before 'finalizing', make sure that we transform any remaining bytes in our working buffer: |
| 163 | u_int64_t const byteCount = fBitCount>>3; |
| 164 | unsigned bufferBytesInUse = (unsigned)(byteCount&0x3F); |
| 165 | unsigned numPaddingBytes |
| 166 | = (bufferBytesInUse < 56) ? (56 - bufferBytesInUse) : (64 + 56 - bufferBytesInUse); |
| 167 | addData(PADDING, numPaddingBytes); |
| 168 | |
| 169 | addData(bitCountInBytes, 8); |
| 170 | |
| 171 | // Unpack our 'state' into the output digest: |
| 172 | unpack32(&outputDigestInBytes[0], fState[0]); |
| 173 | unpack32(&outputDigestInBytes[4], fState[1]); |
| 174 | unpack32(&outputDigestInBytes[8], fState[2]); |
| 175 | unpack32(&outputDigestInBytes[12], fState[3]); |
| 176 | |
| 177 | zeroize(); |
| 178 | } |
| 179 | |
| 180 | void MD5Context::zeroize() { |
| 181 | fState[0] = fState[1] = fState[2] = fState[3] = 0; |
| 182 | fBitCount = 0; |
| 183 | for (unsigned i = 0; i < 64; ++i) fWorkingBuffer[i] = 0; |
| 184 | } |
| 185 | |
| 186 | |
| 187 | ////////// Implementation of the MD5 transform ("MD5Context::transform64Bytes()") ////////// |
| 188 | |
| 189 | // Constants for the transform: |
| 190 | #define S11 7 |
| 191 | #define S12 12 |
| 192 | #define S13 17 |
| 193 | #define S14 22 |
| 194 | #define S21 5 |
| 195 | #define S22 9 |
| 196 | #define S23 14 |
| 197 | #define S24 20 |
| 198 | #define S31 4 |
| 199 | #define S32 11 |
| 200 | #define S33 16 |
| 201 | #define S34 23 |
| 202 | #define S41 6 |
| 203 | #define S42 10 |
| 204 | #define S43 15 |
| 205 | #define S44 21 |
| 206 | |
| 207 | // Basic MD5 functions: |
| 208 | #define F(x, y, z) (((x) & (y)) | ((~x) & (z))) |
| 209 | #define G(x, y, z) (((x) & (z)) | ((y) & (~z))) |
| 210 | #define H(x, y, z) ((x) ^ (y) ^ (z)) |
| 211 | #define I(x, y, z) ((y) ^ ((x) | (~z))) |
| 212 | |
| 213 | // Rotate "x" left "n" bits: |
| 214 | #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n)))) |
| 215 | |
| 216 | // Other transforms: |
| 217 | #define FF(a, b, c, d, x, s, ac) { \ |
| 218 | (a) += F((b), (c), (d)) + (x) + (u_int32_t)(ac); \ |
| 219 | (a) = ROTATE_LEFT((a), (s)); \ |
| 220 | (a) += (b); \ |
| 221 | } |
| 222 | #define GG(a, b, c, d, x, s, ac) { \ |
| 223 | (a) += G((b), (c), (d)) + (x) + (u_int32_t)(ac); \ |
| 224 | (a) = ROTATE_LEFT((a), (s)); \ |
| 225 | (a) += (b); \ |
| 226 | } |
| 227 | #define HH(a, b, c, d, x, s, ac) { \ |
| 228 | (a) += H((b), (c), (d)) + (x) + (u_int32_t)(ac); \ |
| 229 | (a) = ROTATE_LEFT((a), (s)); \ |
| 230 | (a) += (b); \ |
| 231 | } |
| 232 | #define II(a, b, c, d, x, s, ac) { \ |
| 233 | (a) += I((b), (c), (d)) + (x) + (u_int32_t)(ac); \ |
| 234 | (a) = ROTATE_LEFT((a), (s)); \ |
| 235 | (a) += (b); \ |
| 236 | } |
| 237 | |
| 238 | void MD5Context::transform64Bytes(unsigned char const block[64]) { |
| 239 | u_int32_t a = fState[0], b = fState[1], c = fState[2], d = fState[3]; |
| 240 | |
| 241 | // Begin by packing "block" into an array ("x") of 16 32-bit values (in little-endian order): |
| 242 | u_int32_t x[16]; |
| 243 | for (unsigned i = 0, j = 0; i < 16; ++i, j += 4) { |
| 244 | x[i] = ((u_int32_t)block[j]) | (((u_int32_t)block[j+1]) << 8) | (((u_int32_t)block[j+2]) << 16) | (((u_int32_t)block[j+3]) << 24); |
| 245 | } |
| 246 | |
| 247 | // Now, perform the transform on the array "x": |
| 248 | |
| 249 | // Round 1 |
| 250 | FF(a, b, c, d, x[0], S11, 0xd76aa478); // 1 |
| 251 | FF(d, a, b, c, x[1], S12, 0xe8c7b756); // 2 |
| 252 | FF(c, d, a, b, x[2], S13, 0x242070db); // 3 |
| 253 | FF(b, c, d, a, x[3], S14, 0xc1bdceee); // 4 |
| 254 | FF(a, b, c, d, x[4], S11, 0xf57c0faf); // 5 |
| 255 | FF(d, a, b, c, x[5], S12, 0x4787c62a); // 6 |
| 256 | FF(c, d, a, b, x[6], S13, 0xa8304613); // 7 |
| 257 | FF(b, c, d, a, x[7], S14, 0xfd469501); // 8 |
| 258 | FF(a, b, c, d, x[8], S11, 0x698098d8); // 9 |
| 259 | FF(d, a, b, c, x[9], S12, 0x8b44f7af); // 10 |
| 260 | FF(c, d, a, b, x[10], S13, 0xffff5bb1); // 11 |
| 261 | FF(b, c, d, a, x[11], S14, 0x895cd7be); // 12 |
| 262 | FF(a, b, c, d, x[12], S11, 0x6b901122); // 13 |
| 263 | FF(d, a, b, c, x[13], S12, 0xfd987193); // 14 |
| 264 | FF(c, d, a, b, x[14], S13, 0xa679438e); // 15 |
| 265 | FF(b, c, d, a, x[15], S14, 0x49b40821); // 16 |
| 266 | |
| 267 | // Round 2 |
| 268 | GG(a, b, c, d, x[1], S21, 0xf61e2562); // 17 |
| 269 | GG(d, a, b, c, x[6], S22, 0xc040b340); // 18 |
| 270 | GG(c, d, a, b, x[11], S23, 0x265e5a51); // 19 |
| 271 | GG(b, c, d, a, x[0], S24, 0xe9b6c7aa); // 20 |
| 272 | GG(a, b, c, d, x[5], S21, 0xd62f105d); // 21 |
| 273 | GG(d, a, b, c, x[10], S22, 0x2441453); // 22 |
| 274 | GG(c, d, a, b, x[15], S23, 0xd8a1e681); // 23 |
| 275 | GG(b, c, d, a, x[4], S24, 0xe7d3fbc8); // 24 |
| 276 | GG(a, b, c, d, x[9], S21, 0x21e1cde6); // 25 |
| 277 | GG(d, a, b, c, x[14], S22, 0xc33707d6); // 26 |
| 278 | GG(c, d, a, b, x[3], S23, 0xf4d50d87); // 27 |
| 279 | GG(b, c, d, a, x[8], S24, 0x455a14ed); // 28 |
| 280 | GG(a, b, c, d, x[13], S21, 0xa9e3e905); // 29 |
| 281 | GG(d, a, b, c, x[2], S22, 0xfcefa3f8); // 30 |
| 282 | GG(c, d, a, b, x[7], S23, 0x676f02d9); // 31 |
| 283 | GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); // 32 |
| 284 | |
| 285 | // Round 3 |
| 286 | HH(a, b, c, d, x[5], S31, 0xfffa3942); // 33 |
| 287 | HH(d, a, b, c, x[8], S32, 0x8771f681); // 34 |
| 288 | HH(c, d, a, b, x[11], S33, 0x6d9d6122); // 35 |
| 289 | HH(b, c, d, a, x[14], S34, 0xfde5380c); // 36 |
| 290 | HH(a, b, c, d, x[1], S31, 0xa4beea44); // 37 |
| 291 | HH(d, a, b, c, x[4], S32, 0x4bdecfa9); // 38 |
| 292 | HH(c, d, a, b, x[7], S33, 0xf6bb4b60); // 39 |
| 293 | HH(b, c, d, a, x[10], S34, 0xbebfbc70); // 40 |
| 294 | HH(a, b, c, d, x[13], S31, 0x289b7ec6); // 41 |
| 295 | HH(d, a, b, c, x[0], S32, 0xeaa127fa); // 42 |
| 296 | HH(c, d, a, b, x[3], S33, 0xd4ef3085); // 43 |
| 297 | HH(b, c, d, a, x[6], S34, 0x4881d05); // 44 |
| 298 | HH(a, b, c, d, x[9], S31, 0xd9d4d039); // 45 |
| 299 | HH(d, a, b, c, x[12], S32, 0xe6db99e5); // 46 |
| 300 | HH(c, d, a, b, x[15], S33, 0x1fa27cf8); // 47 |
| 301 | HH(b, c, d, a, x[2], S34, 0xc4ac5665); // 48 |
| 302 | |
| 303 | // Round 4 |
| 304 | II(a, b, c, d, x[0], S41, 0xf4292244); // 49 |
| 305 | II(d, a, b, c, x[7], S42, 0x432aff97); // 50 |
| 306 | II(c, d, a, b, x[14], S43, 0xab9423a7); // 51 |
| 307 | II(b, c, d, a, x[5], S44, 0xfc93a039); // 52 |
| 308 | II(a, b, c, d, x[12], S41, 0x655b59c3); // 53 |
| 309 | II(d, a, b, c, x[3], S42, 0x8f0ccc92); // 54 |
| 310 | II(c, d, a, b, x[10], S43, 0xffeff47d); // 55 |
| 311 | II(b, c, d, a, x[1], S44, 0x85845dd1); // 56 |
| 312 | II(a, b, c, d, x[8], S41, 0x6fa87e4f); // 57 |
| 313 | II(d, a, b, c, x[15], S42, 0xfe2ce6e0); // 58 |
| 314 | II(c, d, a, b, x[6], S43, 0xa3014314); // 59 |
| 315 | II(b, c, d, a, x[13], S44, 0x4e0811a1); // 60 |
| 316 | II(a, b, c, d, x[4], S41, 0xf7537e82); // 61 |
| 317 | II(d, a, b, c, x[11], S42, 0xbd3af235); // 62 |
| 318 | II(c, d, a, b, x[2], S43, 0x2ad7d2bb); // 63 |
| 319 | II(b, c, d, a, x[9], S44, 0xeb86d391); // 64 |
| 320 | |
| 321 | fState[0] += a; fState[1] += b; fState[2] += c; fState[3] += d; |
| 322 | |
| 323 | // Zeroize sensitive information. |
| 324 | for (unsigned k = 0; k < 16; ++k) x[k] = 0; |
| 325 | } |
| 326 | |