1 | /*************************************************************************** |
2 | * _ _ ____ _ |
3 | * Project ___| | | | _ \| | |
4 | * / __| | | | |_) | | |
5 | * | (__| |_| | _ <| |___ |
6 | * \___|\___/|_| \_\_____| |
7 | * |
8 | * Copyright (C) Daniel Stenberg, <daniel@haxx.se>, et al. |
9 | * |
10 | * This software is licensed as described in the file COPYING, which |
11 | * you should have received as part of this distribution. The terms |
12 | * are also available at https://curl.se/docs/copyright.html. |
13 | * |
14 | * You may opt to use, copy, modify, merge, publish, distribute and/or sell |
15 | * copies of the Software, and permit persons to whom the Software is |
16 | * furnished to do so, under the terms of the COPYING file. |
17 | * |
18 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY |
19 | * KIND, either express or implied. |
20 | * |
21 | * SPDX-License-Identifier: curl |
22 | * |
23 | ***************************************************************************/ |
24 | |
25 | #include "curl_setup.h" |
26 | |
27 | #include <curl/curl.h> |
28 | |
29 | #include "urldata.h" |
30 | #include "transfer.h" |
31 | #include "url.h" |
32 | #include "cfilters.h" |
33 | #include "connect.h" |
34 | #include "progress.h" |
35 | #include "easyif.h" |
36 | #include "share.h" |
37 | #include "psl.h" |
38 | #include "multiif.h" |
39 | #include "sendf.h" |
40 | #include "timeval.h" |
41 | #include "http.h" |
42 | #include "select.h" |
43 | #include "warnless.h" |
44 | #include "speedcheck.h" |
45 | #include "conncache.h" |
46 | #include "multihandle.h" |
47 | #include "sigpipe.h" |
48 | #include "vtls/vtls.h" |
49 | #include "http_proxy.h" |
50 | #include "http2.h" |
51 | #include "socketpair.h" |
52 | #include "socks.h" |
53 | /* The last 3 #include files should be in this order */ |
54 | #include "curl_printf.h" |
55 | #include "curl_memory.h" |
56 | #include "memdebug.h" |
57 | |
58 | #ifdef __APPLE__ |
59 | |
60 | #define wakeup_write write |
61 | #define wakeup_read read |
62 | #define wakeup_close close |
63 | #define wakeup_create pipe |
64 | |
65 | #else /* __APPLE__ */ |
66 | |
67 | #define wakeup_write swrite |
68 | #define wakeup_read sread |
69 | #define wakeup_close sclose |
70 | #define wakeup_create(p) Curl_socketpair(AF_UNIX, SOCK_STREAM, 0, p) |
71 | |
72 | #endif /* __APPLE__ */ |
73 | |
74 | /* |
75 | CURL_SOCKET_HASH_TABLE_SIZE should be a prime number. Increasing it from 97 |
76 | to 911 takes on a 32-bit machine 4 x 804 = 3211 more bytes. Still, every |
77 | CURL handle takes 45-50 K memory, therefore this 3K are not significant. |
78 | */ |
79 | #ifndef CURL_SOCKET_HASH_TABLE_SIZE |
80 | #define CURL_SOCKET_HASH_TABLE_SIZE 911 |
81 | #endif |
82 | |
83 | #ifndef CURL_CONNECTION_HASH_SIZE |
84 | #define CURL_CONNECTION_HASH_SIZE 97 |
85 | #endif |
86 | |
87 | #ifndef CURL_DNS_HASH_SIZE |
88 | #define CURL_DNS_HASH_SIZE 71 |
89 | #endif |
90 | |
91 | #define CURL_MULTI_HANDLE 0x000bab1e |
92 | |
93 | #ifdef DEBUGBUILD |
94 | /* On a debug build, we want to fail hard on multi handles that |
95 | * are not NULL, but no longer have the MAGIC touch. This gives |
96 | * us early warning on things only discovered by valgrind otherwise. */ |
97 | #define GOOD_MULTI_HANDLE(x) \ |
98 | (((x) && (x)->magic == CURL_MULTI_HANDLE)? TRUE: \ |
99 | (DEBUGASSERT(!(x)), FALSE)) |
100 | #else |
101 | #define GOOD_MULTI_HANDLE(x) \ |
102 | ((x) && (x)->magic == CURL_MULTI_HANDLE) |
103 | #endif |
104 | |
105 | static CURLMcode singlesocket(struct Curl_multi *multi, |
106 | struct Curl_easy *data); |
107 | static CURLMcode add_next_timeout(struct curltime now, |
108 | struct Curl_multi *multi, |
109 | struct Curl_easy *d); |
110 | static CURLMcode multi_timeout(struct Curl_multi *multi, |
111 | long *timeout_ms); |
112 | static void process_pending_handles(struct Curl_multi *multi); |
113 | |
114 | #ifdef DEBUGBUILD |
115 | static const char * const multi_statename[]={ |
116 | "INIT" , |
117 | "PENDING" , |
118 | "CONNECT" , |
119 | "RESOLVING" , |
120 | "CONNECTING" , |
121 | "TUNNELING" , |
122 | "PROTOCONNECT" , |
123 | "PROTOCONNECTING" , |
124 | "DO" , |
125 | "DOING" , |
126 | "DOING_MORE" , |
127 | "DID" , |
128 | "PERFORMING" , |
129 | "RATELIMITING" , |
130 | "DONE" , |
131 | "COMPLETED" , |
132 | "MSGSENT" , |
133 | }; |
134 | #endif |
135 | |
136 | /* function pointer called once when switching TO a state */ |
137 | typedef void (*init_multistate_func)(struct Curl_easy *data); |
138 | |
139 | /* called in DID state, before PERFORMING state */ |
140 | static void before_perform(struct Curl_easy *data) |
141 | { |
142 | data->req.chunk = FALSE; |
143 | Curl_pgrsTime(data, timer: TIMER_PRETRANSFER); |
144 | } |
145 | |
146 | static void init_completed(struct Curl_easy *data) |
147 | { |
148 | /* this is a completed transfer */ |
149 | |
150 | /* Important: reset the conn pointer so that we don't point to memory |
151 | that could be freed anytime */ |
152 | Curl_detach_connection(data); |
153 | Curl_expire_clear(data); /* stop all timers */ |
154 | } |
155 | |
156 | /* always use this function to change state, to make debugging easier */ |
157 | static void mstate(struct Curl_easy *data, CURLMstate state |
158 | #ifdef DEBUGBUILD |
159 | , int lineno |
160 | #endif |
161 | ) |
162 | { |
163 | CURLMstate oldstate = data->mstate; |
164 | static const init_multistate_func finit[MSTATE_LAST] = { |
165 | NULL, /* INIT */ |
166 | NULL, /* PENDING */ |
167 | Curl_init_CONNECT, /* CONNECT */ |
168 | NULL, /* RESOLVING */ |
169 | NULL, /* CONNECTING */ |
170 | NULL, /* TUNNELING */ |
171 | NULL, /* PROTOCONNECT */ |
172 | NULL, /* PROTOCONNECTING */ |
173 | NULL, /* DO */ |
174 | NULL, /* DOING */ |
175 | NULL, /* DOING_MORE */ |
176 | before_perform, /* DID */ |
177 | NULL, /* PERFORMING */ |
178 | NULL, /* RATELIMITING */ |
179 | NULL, /* DONE */ |
180 | init_completed, /* COMPLETED */ |
181 | NULL /* MSGSENT */ |
182 | }; |
183 | |
184 | #if defined(DEBUGBUILD) && defined(CURL_DISABLE_VERBOSE_STRINGS) |
185 | (void) lineno; |
186 | #endif |
187 | |
188 | if(oldstate == state) |
189 | /* don't bother when the new state is the same as the old state */ |
190 | return; |
191 | |
192 | data->mstate = state; |
193 | |
194 | #if defined(DEBUGBUILD) && !defined(CURL_DISABLE_VERBOSE_STRINGS) |
195 | if(data->mstate >= MSTATE_PENDING && |
196 | data->mstate < MSTATE_COMPLETED) { |
197 | infof(data, |
198 | "STATE: %s => %s handle %p; line %d" , |
199 | multi_statename[oldstate], multi_statename[data->mstate], |
200 | (void *)data, lineno); |
201 | } |
202 | #endif |
203 | |
204 | if(state == MSTATE_COMPLETED) { |
205 | /* changing to COMPLETED means there's one less easy handle 'alive' */ |
206 | DEBUGASSERT(data->multi->num_alive > 0); |
207 | data->multi->num_alive--; |
208 | } |
209 | |
210 | /* if this state has an init-function, run it */ |
211 | if(finit[state]) |
212 | finit[state](data); |
213 | } |
214 | |
215 | #ifndef DEBUGBUILD |
216 | #define multistate(x,y) mstate(x,y) |
217 | #else |
218 | #define multistate(x,y) mstate(x,y, __LINE__) |
219 | #endif |
220 | |
221 | /* |
222 | * We add one of these structs to the sockhash for each socket |
223 | */ |
224 | |
225 | struct Curl_sh_entry { |
226 | struct Curl_hash transfers; /* hash of transfers using this socket */ |
227 | unsigned int action; /* what combined action READ/WRITE this socket waits |
228 | for */ |
229 | unsigned int users; /* number of transfers using this */ |
230 | void *socketp; /* settable by users with curl_multi_assign() */ |
231 | unsigned int readers; /* this many transfers want to read */ |
232 | unsigned int writers; /* this many transfers want to write */ |
233 | }; |
234 | /* bits for 'action' having no bits means this socket is not expecting any |
235 | action */ |
236 | #define SH_READ 1 |
237 | #define SH_WRITE 2 |
238 | |
239 | /* look up a given socket in the socket hash, skip invalid sockets */ |
240 | static struct Curl_sh_entry *sh_getentry(struct Curl_hash *sh, |
241 | curl_socket_t s) |
242 | { |
243 | if(s != CURL_SOCKET_BAD) { |
244 | /* only look for proper sockets */ |
245 | return Curl_hash_pick(sh, key: (char *)&s, key_len: sizeof(curl_socket_t)); |
246 | } |
247 | return NULL; |
248 | } |
249 | |
250 | #define TRHASH_SIZE 13 |
251 | static size_t trhash(void *key, size_t key_length, size_t slots_num) |
252 | { |
253 | size_t keyval = (size_t)*(struct Curl_easy **)key; |
254 | (void) key_length; |
255 | |
256 | return (keyval % slots_num); |
257 | } |
258 | |
259 | static size_t trhash_compare(void *k1, size_t k1_len, void *k2, size_t k2_len) |
260 | { |
261 | (void)k1_len; |
262 | (void)k2_len; |
263 | |
264 | return *(struct Curl_easy **)k1 == *(struct Curl_easy **)k2; |
265 | } |
266 | |
267 | static void trhash_dtor(void *nada) |
268 | { |
269 | (void)nada; |
270 | } |
271 | |
272 | /* |
273 | * The sockhash has its own separate subhash in each entry that need to be |
274 | * safely destroyed first. |
275 | */ |
276 | static void sockhash_destroy(struct Curl_hash *h) |
277 | { |
278 | struct Curl_hash_iterator iter; |
279 | struct Curl_hash_element *he; |
280 | |
281 | DEBUGASSERT(h); |
282 | Curl_hash_start_iterate(hash: h, iter: &iter); |
283 | he = Curl_hash_next_element(iter: &iter); |
284 | while(he) { |
285 | struct Curl_sh_entry *sh = (struct Curl_sh_entry *)he->ptr; |
286 | Curl_hash_destroy(h: &sh->transfers); |
287 | he = Curl_hash_next_element(iter: &iter); |
288 | } |
289 | Curl_hash_destroy(h); |
290 | } |
291 | |
292 | |
293 | /* make sure this socket is present in the hash for this handle */ |
294 | static struct Curl_sh_entry *sh_addentry(struct Curl_hash *sh, |
295 | curl_socket_t s) |
296 | { |
297 | struct Curl_sh_entry *there = sh_getentry(sh, s); |
298 | struct Curl_sh_entry *check; |
299 | |
300 | if(there) { |
301 | /* it is present, return fine */ |
302 | return there; |
303 | } |
304 | |
305 | /* not present, add it */ |
306 | check = calloc(1, sizeof(struct Curl_sh_entry)); |
307 | if(!check) |
308 | return NULL; /* major failure */ |
309 | |
310 | Curl_hash_init(h: &check->transfers, TRHASH_SIZE, hfunc: trhash, comparator: trhash_compare, |
311 | dtor: trhash_dtor); |
312 | |
313 | /* make/add new hash entry */ |
314 | if(!Curl_hash_add(h: sh, key: (char *)&s, key_len: sizeof(curl_socket_t), p: check)) { |
315 | Curl_hash_destroy(h: &check->transfers); |
316 | free(check); |
317 | return NULL; /* major failure */ |
318 | } |
319 | |
320 | return check; /* things are good in sockhash land */ |
321 | } |
322 | |
323 | |
324 | /* delete the given socket + handle from the hash */ |
325 | static void sh_delentry(struct Curl_sh_entry *entry, |
326 | struct Curl_hash *sh, curl_socket_t s) |
327 | { |
328 | Curl_hash_destroy(h: &entry->transfers); |
329 | |
330 | /* We remove the hash entry. This will end up in a call to |
331 | sh_freeentry(). */ |
332 | Curl_hash_delete(h: sh, key: (char *)&s, key_len: sizeof(curl_socket_t)); |
333 | } |
334 | |
335 | /* |
336 | * free a sockhash entry |
337 | */ |
338 | static void sh_freeentry(void *freethis) |
339 | { |
340 | struct Curl_sh_entry *p = (struct Curl_sh_entry *) freethis; |
341 | |
342 | free(p); |
343 | } |
344 | |
345 | static size_t fd_key_compare(void *k1, size_t k1_len, void *k2, size_t k2_len) |
346 | { |
347 | (void) k1_len; (void) k2_len; |
348 | |
349 | return (*((curl_socket_t *) k1)) == (*((curl_socket_t *) k2)); |
350 | } |
351 | |
352 | static size_t hash_fd(void *key, size_t key_length, size_t slots_num) |
353 | { |
354 | curl_socket_t fd = *((curl_socket_t *) key); |
355 | (void) key_length; |
356 | |
357 | return (fd % slots_num); |
358 | } |
359 | |
360 | /* |
361 | * sh_init() creates a new socket hash and returns the handle for it. |
362 | * |
363 | * Quote from README.multi_socket: |
364 | * |
365 | * "Some tests at 7000 and 9000 connections showed that the socket hash lookup |
366 | * is somewhat of a bottle neck. Its current implementation may be a bit too |
367 | * limiting. It simply has a fixed-size array, and on each entry in the array |
368 | * it has a linked list with entries. So the hash only checks which list to |
369 | * scan through. The code I had used so for used a list with merely 7 slots |
370 | * (as that is what the DNS hash uses) but with 7000 connections that would |
371 | * make an average of 1000 nodes in each list to run through. I upped that to |
372 | * 97 slots (I believe a prime is suitable) and noticed a significant speed |
373 | * increase. I need to reconsider the hash implementation or use a rather |
374 | * large default value like this. At 9000 connections I was still below 10us |
375 | * per call." |
376 | * |
377 | */ |
378 | static void sh_init(struct Curl_hash *hash, int hashsize) |
379 | { |
380 | Curl_hash_init(h: hash, slots: hashsize, hfunc: hash_fd, comparator: fd_key_compare, |
381 | dtor: sh_freeentry); |
382 | } |
383 | |
384 | /* |
385 | * multi_addmsg() |
386 | * |
387 | * Called when a transfer is completed. Adds the given msg pointer to |
388 | * the list kept in the multi handle. |
389 | */ |
390 | static void multi_addmsg(struct Curl_multi *multi, struct Curl_message *msg) |
391 | { |
392 | Curl_llist_insert_next(&multi->msglist, multi->msglist.tail, msg, |
393 | node: &msg->list); |
394 | } |
395 | |
396 | struct Curl_multi *Curl_multi_handle(int hashsize, /* socket hash */ |
397 | int chashsize, /* connection hash */ |
398 | int dnssize) /* dns hash */ |
399 | { |
400 | struct Curl_multi *multi = calloc(1, sizeof(struct Curl_multi)); |
401 | |
402 | if(!multi) |
403 | return NULL; |
404 | |
405 | multi->magic = CURL_MULTI_HANDLE; |
406 | |
407 | Curl_init_dnscache(hash: &multi->hostcache, hashsize: dnssize); |
408 | |
409 | sh_init(hash: &multi->sockhash, hashsize); |
410 | |
411 | if(Curl_conncache_init(&multi->conn_cache, size: chashsize)) |
412 | goto error; |
413 | |
414 | Curl_llist_init(&multi->msglist, NULL); |
415 | Curl_llist_init(&multi->pending, NULL); |
416 | Curl_llist_init(&multi->msgsent, NULL); |
417 | |
418 | multi->multiplexing = TRUE; |
419 | |
420 | /* -1 means it not set by user, use the default value */ |
421 | multi->maxconnects = -1; |
422 | multi->max_concurrent_streams = 100; |
423 | |
424 | #ifdef USE_WINSOCK |
425 | multi->wsa_event = WSACreateEvent(); |
426 | if(multi->wsa_event == WSA_INVALID_EVENT) |
427 | goto error; |
428 | #else |
429 | #ifdef ENABLE_WAKEUP |
430 | if(wakeup_create(multi->wakeup_pair) < 0) { |
431 | multi->wakeup_pair[0] = CURL_SOCKET_BAD; |
432 | multi->wakeup_pair[1] = CURL_SOCKET_BAD; |
433 | } |
434 | else if(curlx_nonblock(sockfd: multi->wakeup_pair[0], TRUE) < 0 || |
435 | curlx_nonblock(sockfd: multi->wakeup_pair[1], TRUE) < 0) { |
436 | wakeup_close(multi->wakeup_pair[0]); |
437 | wakeup_close(multi->wakeup_pair[1]); |
438 | multi->wakeup_pair[0] = CURL_SOCKET_BAD; |
439 | multi->wakeup_pair[1] = CURL_SOCKET_BAD; |
440 | } |
441 | #endif |
442 | #endif |
443 | |
444 | return multi; |
445 | |
446 | error: |
447 | |
448 | sockhash_destroy(h: &multi->sockhash); |
449 | Curl_hash_destroy(h: &multi->hostcache); |
450 | Curl_conncache_destroy(connc: &multi->conn_cache); |
451 | free(multi); |
452 | return NULL; |
453 | } |
454 | |
455 | struct Curl_multi *curl_multi_init(void) |
456 | { |
457 | return Curl_multi_handle(CURL_SOCKET_HASH_TABLE_SIZE, |
458 | CURL_CONNECTION_HASH_SIZE, |
459 | CURL_DNS_HASH_SIZE); |
460 | } |
461 | |
462 | #if defined(DEBUGBUILD) && !defined(CURL_DISABLE_VERBOSE_STRINGS) |
463 | static void multi_warn_debug(struct Curl_multi *multi, struct Curl_easy *data) |
464 | { |
465 | if(!multi->warned) { |
466 | infof(data, "!!! WARNING !!!" ); |
467 | infof(data, "This is a debug build of libcurl, " |
468 | "do not use in production." ); |
469 | multi->warned = true; |
470 | } |
471 | } |
472 | #else |
473 | #define multi_warn_debug(x,y) Curl_nop_stmt |
474 | #endif |
475 | |
476 | /* returns TRUE if the easy handle is supposed to be present in the main link |
477 | list */ |
478 | static bool in_main_list(struct Curl_easy *data) |
479 | { |
480 | return ((data->mstate != MSTATE_PENDING) && |
481 | (data->mstate != MSTATE_MSGSENT)); |
482 | } |
483 | |
484 | static void link_easy(struct Curl_multi *multi, |
485 | struct Curl_easy *data) |
486 | { |
487 | /* We add the new easy entry last in the list. */ |
488 | data->next = NULL; /* end of the line */ |
489 | if(multi->easyp) { |
490 | struct Curl_easy *last = multi->easylp; |
491 | last->next = data; |
492 | data->prev = last; |
493 | multi->easylp = data; /* the new last node */ |
494 | } |
495 | else { |
496 | /* first node, make prev NULL! */ |
497 | data->prev = NULL; |
498 | multi->easylp = multi->easyp = data; /* both first and last */ |
499 | } |
500 | } |
501 | |
502 | /* unlink the given easy handle from the linked list of easy handles */ |
503 | static void unlink_easy(struct Curl_multi *multi, |
504 | struct Curl_easy *data) |
505 | { |
506 | /* make the previous node point to our next */ |
507 | if(data->prev) |
508 | data->prev->next = data->next; |
509 | else |
510 | multi->easyp = data->next; /* point to first node */ |
511 | |
512 | /* make our next point to our previous node */ |
513 | if(data->next) |
514 | data->next->prev = data->prev; |
515 | else |
516 | multi->easylp = data->prev; /* point to last node */ |
517 | |
518 | data->prev = data->next = NULL; |
519 | } |
520 | |
521 | |
522 | CURLMcode curl_multi_add_handle(struct Curl_multi *multi, |
523 | struct Curl_easy *data) |
524 | { |
525 | CURLMcode rc; |
526 | /* First, make some basic checks that the CURLM handle is a good handle */ |
527 | if(!GOOD_MULTI_HANDLE(multi)) |
528 | return CURLM_BAD_HANDLE; |
529 | |
530 | /* Verify that we got a somewhat good easy handle too */ |
531 | if(!GOOD_EASY_HANDLE(data)) |
532 | return CURLM_BAD_EASY_HANDLE; |
533 | |
534 | /* Prevent users from adding same easy handle more than once and prevent |
535 | adding to more than one multi stack */ |
536 | if(data->multi) |
537 | return CURLM_ADDED_ALREADY; |
538 | |
539 | if(multi->in_callback) |
540 | return CURLM_RECURSIVE_API_CALL; |
541 | |
542 | if(multi->dead) { |
543 | /* a "dead" handle cannot get added transfers while any existing easy |
544 | handles are still alive - but if there are none alive anymore, it is |
545 | fine to start over and unmark the "deadness" of this handle */ |
546 | if(multi->num_alive) |
547 | return CURLM_ABORTED_BY_CALLBACK; |
548 | multi->dead = FALSE; |
549 | } |
550 | |
551 | /* Initialize timeout list for this handle */ |
552 | Curl_llist_init(&data->state.timeoutlist, NULL); |
553 | |
554 | /* |
555 | * No failure allowed in this function beyond this point. And no |
556 | * modification of easy nor multi handle allowed before this except for |
557 | * potential multi's connection cache growing which won't be undone in this |
558 | * function no matter what. |
559 | */ |
560 | if(data->set.errorbuffer) |
561 | data->set.errorbuffer[0] = 0; |
562 | |
563 | /* make the Curl_easy refer back to this multi handle - before Curl_expire() |
564 | is called. */ |
565 | data->multi = multi; |
566 | |
567 | /* Set the timeout for this handle to expire really soon so that it will |
568 | be taken care of even when this handle is added in the midst of operation |
569 | when only the curl_multi_socket() API is used. During that flow, only |
570 | sockets that time-out or have actions will be dealt with. Since this |
571 | handle has no action yet, we make sure it times out to get things to |
572 | happen. */ |
573 | Curl_expire(data, milli: 0, EXPIRE_RUN_NOW); |
574 | |
575 | /* A somewhat crude work-around for a little glitch in Curl_update_timer() |
576 | that happens if the lastcall time is set to the same time when the handle |
577 | is removed as when the next handle is added, as then the check in |
578 | Curl_update_timer() that prevents calling the application multiple times |
579 | with the same timer info will not trigger and then the new handle's |
580 | timeout will not be notified to the app. |
581 | |
582 | The work-around is thus simply to clear the 'lastcall' variable to force |
583 | Curl_update_timer() to always trigger a callback to the app when a new |
584 | easy handle is added */ |
585 | memset(s: &multi->timer_lastcall, c: 0, n: sizeof(multi->timer_lastcall)); |
586 | |
587 | rc = Curl_update_timer(multi); |
588 | if(rc) |
589 | return rc; |
590 | |
591 | /* set the easy handle */ |
592 | multistate(data, MSTATE_INIT); |
593 | |
594 | /* for multi interface connections, we share DNS cache automatically if the |
595 | easy handle's one is currently not set. */ |
596 | if(!data->dns.hostcache || |
597 | (data->dns.hostcachetype == HCACHE_NONE)) { |
598 | data->dns.hostcache = &multi->hostcache; |
599 | data->dns.hostcachetype = HCACHE_MULTI; |
600 | } |
601 | |
602 | /* Point to the shared or multi handle connection cache */ |
603 | if(data->share && (data->share->specifier & (1<< CURL_LOCK_DATA_CONNECT))) |
604 | data->state.conn_cache = &data->share->conn_cache; |
605 | else |
606 | data->state.conn_cache = &multi->conn_cache; |
607 | data->state.lastconnect_id = -1; |
608 | |
609 | #ifdef USE_LIBPSL |
610 | /* Do the same for PSL. */ |
611 | if(data->share && (data->share->specifier & (1 << CURL_LOCK_DATA_PSL))) |
612 | data->psl = &data->share->psl; |
613 | else |
614 | data->psl = &multi->psl; |
615 | #endif |
616 | |
617 | link_easy(multi, data); |
618 | |
619 | /* increase the node-counter */ |
620 | multi->num_easy++; |
621 | |
622 | /* increase the alive-counter */ |
623 | multi->num_alive++; |
624 | |
625 | CONNCACHE_LOCK(data); |
626 | /* The closure handle only ever has default timeouts set. To improve the |
627 | state somewhat we clone the timeouts from each added handle so that the |
628 | closure handle always has the same timeouts as the most recently added |
629 | easy handle. */ |
630 | data->state.conn_cache->closure_handle->set.timeout = data->set.timeout; |
631 | data->state.conn_cache->closure_handle->set.server_response_timeout = |
632 | data->set.server_response_timeout; |
633 | data->state.conn_cache->closure_handle->set.no_signal = |
634 | data->set.no_signal; |
635 | data->id = data->state.conn_cache->next_easy_id++; |
636 | if(data->state.conn_cache->next_easy_id <= 0) |
637 | data->state.conn_cache->next_easy_id = 0; |
638 | CONNCACHE_UNLOCK(data); |
639 | |
640 | multi_warn_debug(multi, data); |
641 | |
642 | return CURLM_OK; |
643 | } |
644 | |
645 | #if 0 |
646 | /* Debug-function, used like this: |
647 | * |
648 | * Curl_hash_print(&multi->sockhash, debug_print_sock_hash); |
649 | * |
650 | * Enable the hash print function first by editing hash.c |
651 | */ |
652 | static void debug_print_sock_hash(void *p) |
653 | { |
654 | struct Curl_sh_entry *sh = (struct Curl_sh_entry *)p; |
655 | |
656 | fprintf(stderr, " [readers %u][writers %u]" , |
657 | sh->readers, sh->writers); |
658 | } |
659 | #endif |
660 | |
661 | static CURLcode multi_done(struct Curl_easy *data, |
662 | CURLcode status, /* an error if this is called |
663 | after an error was detected */ |
664 | bool premature) |
665 | { |
666 | CURLcode result; |
667 | struct connectdata *conn = data->conn; |
668 | |
669 | #if defined(DEBUGBUILD) && !defined(CURL_DISABLE_VERBOSE_STRINGS) |
670 | DEBUGF(infof(data, "multi_done[%s]: status: %d prem: %d done: %d" , |
671 | multi_statename[data->mstate], |
672 | (int)status, (int)premature, data->state.done)); |
673 | #else |
674 | DEBUGF(infof(data, "multi_done: status: %d prem: %d done: %d" , |
675 | (int)status, (int)premature, data->state.done)); |
676 | #endif |
677 | |
678 | if(data->state.done) |
679 | /* Stop if multi_done() has already been called */ |
680 | return CURLE_OK; |
681 | |
682 | /* Stop the resolver and free its own resources (but not dns_entry yet). */ |
683 | Curl_resolver_kill(data); |
684 | |
685 | /* Cleanup possible redirect junk */ |
686 | Curl_safefree(data->req.newurl); |
687 | Curl_safefree(data->req.location); |
688 | |
689 | switch(status) { |
690 | case CURLE_ABORTED_BY_CALLBACK: |
691 | case CURLE_READ_ERROR: |
692 | case CURLE_WRITE_ERROR: |
693 | /* When we're aborted due to a callback return code it basically have to |
694 | be counted as premature as there is trouble ahead if we don't. We have |
695 | many callbacks and protocols work differently, we could potentially do |
696 | this more fine-grained in the future. */ |
697 | premature = TRUE; |
698 | default: |
699 | break; |
700 | } |
701 | |
702 | /* this calls the protocol-specific function pointer previously set */ |
703 | if(conn->handler->done) |
704 | result = conn->handler->done(data, status, premature); |
705 | else |
706 | result = status; |
707 | |
708 | if(CURLE_ABORTED_BY_CALLBACK != result) { |
709 | /* avoid this if we already aborted by callback to avoid this calling |
710 | another callback */ |
711 | int rc = Curl_pgrsDone(data); |
712 | if(!result && rc) |
713 | result = CURLE_ABORTED_BY_CALLBACK; |
714 | } |
715 | |
716 | /* Inform connection filters that this transfer is done */ |
717 | Curl_conn_ev_data_done(data, premature); |
718 | |
719 | process_pending_handles(multi: data->multi); /* connection / multiplex */ |
720 | |
721 | Curl_safefree(data->state.ulbuf); |
722 | |
723 | Curl_client_cleanup(data); |
724 | |
725 | CONNCACHE_LOCK(data); |
726 | Curl_detach_connection(data); |
727 | if(CONN_INUSE(conn)) { |
728 | /* Stop if still used. */ |
729 | CONNCACHE_UNLOCK(data); |
730 | DEBUGF(infof(data, "Connection still in use %zu, " |
731 | "no more multi_done now!" , |
732 | conn->easyq.size)); |
733 | return CURLE_OK; |
734 | } |
735 | |
736 | data->state.done = TRUE; /* called just now! */ |
737 | |
738 | if(conn->dns_entry) { |
739 | Curl_resolv_unlock(data, dns: conn->dns_entry); /* done with this */ |
740 | conn->dns_entry = NULL; |
741 | } |
742 | Curl_hostcache_prune(data); |
743 | |
744 | /* if data->set.reuse_forbid is TRUE, it means the libcurl client has |
745 | forced us to close this connection. This is ignored for requests taking |
746 | place in a NTLM/NEGOTIATE authentication handshake |
747 | |
748 | if conn->bits.close is TRUE, it means that the connection should be |
749 | closed in spite of all our efforts to be nice, due to protocol |
750 | restrictions in our or the server's end |
751 | |
752 | if premature is TRUE, it means this connection was said to be DONE before |
753 | the entire request operation is complete and thus we can't know in what |
754 | state it is for reusing, so we're forced to close it. In a perfect world |
755 | we can add code that keep track of if we really must close it here or not, |
756 | but currently we have no such detail knowledge. |
757 | */ |
758 | |
759 | data->state.recent_conn_id = conn->connection_id; |
760 | if((data->set.reuse_forbid |
761 | #if defined(USE_NTLM) |
762 | && !(conn->http_ntlm_state == NTLMSTATE_TYPE2 || |
763 | conn->proxy_ntlm_state == NTLMSTATE_TYPE2) |
764 | #endif |
765 | #if defined(USE_SPNEGO) |
766 | && !(conn->http_negotiate_state == GSS_AUTHRECV || |
767 | conn->proxy_negotiate_state == GSS_AUTHRECV) |
768 | #endif |
769 | ) || conn->bits.close |
770 | || (premature && !Curl_conn_is_multiplex(conn, FIRSTSOCKET))) { |
771 | DEBUGF(infof(data, "multi_done, not reusing connection=%" |
772 | CURL_FORMAT_CURL_OFF_T ", forbid=%d" |
773 | ", close=%d, premature=%d, conn_multiplex=%d" , |
774 | conn->connection_id, |
775 | data->set.reuse_forbid, conn->bits.close, premature, |
776 | Curl_conn_is_multiplex(conn, FIRSTSOCKET))); |
777 | connclose(conn, "disconnecting" ); |
778 | Curl_conncache_remove_conn(data, conn, FALSE); |
779 | CONNCACHE_UNLOCK(data); |
780 | Curl_disconnect(data, conn, dead_connection: premature); |
781 | } |
782 | else { |
783 | char buffer[256]; |
784 | const char *host = |
785 | #ifndef CURL_DISABLE_PROXY |
786 | conn->bits.socksproxy ? |
787 | conn->socks_proxy.host.dispname : |
788 | conn->bits.httpproxy ? conn->http_proxy.host.dispname : |
789 | #endif |
790 | conn->bits.conn_to_host ? conn->conn_to_host.dispname : |
791 | conn->host.dispname; |
792 | /* create string before returning the connection */ |
793 | curl_off_t connection_id = conn->connection_id; |
794 | msnprintf(buffer, maxlength: sizeof(buffer), |
795 | format: "Connection #%" CURL_FORMAT_CURL_OFF_T " to host %s left intact" , |
796 | connection_id, host); |
797 | /* the connection is no longer in use by this transfer */ |
798 | CONNCACHE_UNLOCK(data); |
799 | if(Curl_conncache_return_conn(data, conn)) { |
800 | /* remember the most recently used connection */ |
801 | data->state.lastconnect_id = connection_id; |
802 | data->state.recent_conn_id = connection_id; |
803 | infof(data, "%s" , buffer); |
804 | } |
805 | else |
806 | data->state.lastconnect_id = -1; |
807 | } |
808 | |
809 | Curl_safefree(data->state.buffer); |
810 | return result; |
811 | } |
812 | |
813 | static int close_connect_only(struct Curl_easy *data, |
814 | struct connectdata *conn, void *param) |
815 | { |
816 | (void)param; |
817 | if(data->state.lastconnect_id != conn->connection_id) |
818 | return 0; |
819 | |
820 | if(!conn->connect_only) |
821 | return 1; |
822 | |
823 | connclose(conn, "Removing connect-only easy handle" ); |
824 | |
825 | return 1; |
826 | } |
827 | |
828 | CURLMcode curl_multi_remove_handle(struct Curl_multi *multi, |
829 | struct Curl_easy *data) |
830 | { |
831 | struct Curl_easy *easy = data; |
832 | bool premature; |
833 | struct Curl_llist_element *e; |
834 | CURLMcode rc; |
835 | |
836 | /* First, make some basic checks that the CURLM handle is a good handle */ |
837 | if(!GOOD_MULTI_HANDLE(multi)) |
838 | return CURLM_BAD_HANDLE; |
839 | |
840 | /* Verify that we got a somewhat good easy handle too */ |
841 | if(!GOOD_EASY_HANDLE(data)) |
842 | return CURLM_BAD_EASY_HANDLE; |
843 | |
844 | /* Prevent users from trying to remove same easy handle more than once */ |
845 | if(!data->multi) |
846 | return CURLM_OK; /* it is already removed so let's say it is fine! */ |
847 | |
848 | /* Prevent users from trying to remove an easy handle from the wrong multi */ |
849 | if(data->multi != multi) |
850 | return CURLM_BAD_EASY_HANDLE; |
851 | |
852 | if(multi->in_callback) |
853 | return CURLM_RECURSIVE_API_CALL; |
854 | |
855 | premature = (data->mstate < MSTATE_COMPLETED) ? TRUE : FALSE; |
856 | |
857 | /* If the 'state' is not INIT or COMPLETED, we might need to do something |
858 | nice to put the easy_handle in a good known state when this returns. */ |
859 | if(premature) { |
860 | /* this handle is "alive" so we need to count down the total number of |
861 | alive connections when this is removed */ |
862 | multi->num_alive--; |
863 | } |
864 | |
865 | if(data->conn && |
866 | data->mstate > MSTATE_DO && |
867 | data->mstate < MSTATE_COMPLETED) { |
868 | /* Set connection owner so that the DONE function closes it. We can |
869 | safely do this here since connection is killed. */ |
870 | streamclose(data->conn, "Removed with partial response" ); |
871 | } |
872 | |
873 | if(data->conn) { |
874 | /* multi_done() clears the association between the easy handle and the |
875 | connection. |
876 | |
877 | Note that this ignores the return code simply because there's |
878 | nothing really useful to do with it anyway! */ |
879 | (void)multi_done(data, status: data->result, premature); |
880 | } |
881 | |
882 | /* The timer must be shut down before data->multi is set to NULL, else the |
883 | timenode will remain in the splay tree after curl_easy_cleanup is |
884 | called. Do it after multi_done() in case that sets another time! */ |
885 | Curl_expire_clear(data); |
886 | |
887 | if(data->connect_queue.ptr) { |
888 | /* the handle is in the pending or msgsent lists, so go ahead and remove |
889 | it */ |
890 | if(data->mstate == MSTATE_PENDING) |
891 | Curl_llist_remove(&multi->pending, &data->connect_queue, NULL); |
892 | else |
893 | Curl_llist_remove(&multi->msgsent, &data->connect_queue, NULL); |
894 | } |
895 | if(in_main_list(data)) |
896 | unlink_easy(multi, data); |
897 | |
898 | if(data->dns.hostcachetype == HCACHE_MULTI) { |
899 | /* stop using the multi handle's DNS cache, *after* the possible |
900 | multi_done() call above */ |
901 | data->dns.hostcache = NULL; |
902 | data->dns.hostcachetype = HCACHE_NONE; |
903 | } |
904 | |
905 | Curl_wildcard_dtor(&data->wildcard); |
906 | |
907 | /* change state without using multistate(), only to make singlesocket() do |
908 | what we want */ |
909 | data->mstate = MSTATE_COMPLETED; |
910 | |
911 | /* This ignores the return code even in case of problems because there's |
912 | nothing more to do about that, here */ |
913 | (void)singlesocket(multi, data: easy); /* to let the application know what sockets |
914 | that vanish with this handle */ |
915 | |
916 | /* Remove the association between the connection and the handle */ |
917 | Curl_detach_connection(data); |
918 | |
919 | if(data->set.connect_only && !data->multi_easy) { |
920 | /* This removes a handle that was part the multi interface that used |
921 | CONNECT_ONLY, that connection is now left alive but since this handle |
922 | has bits.close set nothing can use that transfer anymore and it is |
923 | forbidden from reuse. And this easy handle cannot find the connection |
924 | anymore once removed from the multi handle |
925 | |
926 | Better close the connection here, at once. |
927 | */ |
928 | struct connectdata *c; |
929 | curl_socket_t s; |
930 | s = Curl_getconnectinfo(data, connp: &c); |
931 | if((s != CURL_SOCKET_BAD) && c) { |
932 | Curl_conncache_remove_conn(data, conn: c, TRUE); |
933 | Curl_disconnect(data, c, TRUE); |
934 | } |
935 | } |
936 | |
937 | if(data->state.lastconnect_id != -1) { |
938 | /* Mark any connect-only connection for closure */ |
939 | Curl_conncache_foreach(data, connc: data->state.conn_cache, |
940 | NULL, func: close_connect_only); |
941 | } |
942 | |
943 | #ifdef USE_LIBPSL |
944 | /* Remove the PSL association. */ |
945 | if(data->psl == &multi->psl) |
946 | data->psl = NULL; |
947 | #endif |
948 | |
949 | /* as this was using a shared connection cache we clear the pointer to that |
950 | since we're not part of that multi handle anymore */ |
951 | data->state.conn_cache = NULL; |
952 | |
953 | data->multi = NULL; /* clear the association to this multi handle */ |
954 | |
955 | /* make sure there's no pending message in the queue sent from this easy |
956 | handle */ |
957 | for(e = multi->msglist.head; e; e = e->next) { |
958 | struct Curl_message *msg = e->ptr; |
959 | |
960 | if(msg->extmsg.easy_handle == easy) { |
961 | Curl_llist_remove(&multi->msglist, e, NULL); |
962 | /* there can only be one from this specific handle */ |
963 | break; |
964 | } |
965 | } |
966 | |
967 | /* NOTE NOTE NOTE |
968 | We do not touch the easy handle here! */ |
969 | multi->num_easy--; /* one less to care about now */ |
970 | |
971 | process_pending_handles(multi); |
972 | |
973 | rc = Curl_update_timer(multi); |
974 | if(rc) |
975 | return rc; |
976 | return CURLM_OK; |
977 | } |
978 | |
979 | /* Return TRUE if the application asked for multiplexing */ |
980 | bool Curl_multiplex_wanted(const struct Curl_multi *multi) |
981 | { |
982 | return (multi && (multi->multiplexing)); |
983 | } |
984 | |
985 | /* |
986 | * Curl_detach_connection() removes the given transfer from the connection. |
987 | * |
988 | * This is the only function that should clear data->conn. This will |
989 | * occasionally be called with the data->conn pointer already cleared. |
990 | */ |
991 | void Curl_detach_connection(struct Curl_easy *data) |
992 | { |
993 | struct connectdata *conn = data->conn; |
994 | if(conn) { |
995 | Curl_conn_ev_data_detach(conn, data); |
996 | Curl_llist_remove(&conn->easyq, &data->conn_queue, NULL); |
997 | } |
998 | data->conn = NULL; |
999 | } |
1000 | |
1001 | /* |
1002 | * Curl_attach_connection() attaches this transfer to this connection. |
1003 | * |
1004 | * This is the only function that should assign data->conn |
1005 | */ |
1006 | void Curl_attach_connection(struct Curl_easy *data, |
1007 | struct connectdata *conn) |
1008 | { |
1009 | DEBUGASSERT(!data->conn); |
1010 | DEBUGASSERT(conn); |
1011 | data->conn = conn; |
1012 | Curl_llist_insert_next(&conn->easyq, conn->easyq.tail, data, |
1013 | node: &data->conn_queue); |
1014 | if(conn->handler && conn->handler->attach) |
1015 | conn->handler->attach(data, conn); |
1016 | Curl_conn_ev_data_attach(conn, data); |
1017 | } |
1018 | |
1019 | static int domore_getsock(struct Curl_easy *data, |
1020 | struct connectdata *conn, |
1021 | curl_socket_t *socks) |
1022 | { |
1023 | if(conn && conn->handler->domore_getsock) |
1024 | return conn->handler->domore_getsock(data, conn, socks); |
1025 | return GETSOCK_BLANK; |
1026 | } |
1027 | |
1028 | static int doing_getsock(struct Curl_easy *data, |
1029 | struct connectdata *conn, |
1030 | curl_socket_t *socks) |
1031 | { |
1032 | if(conn && conn->handler->doing_getsock) |
1033 | return conn->handler->doing_getsock(data, conn, socks); |
1034 | return GETSOCK_BLANK; |
1035 | } |
1036 | |
1037 | static int protocol_getsock(struct Curl_easy *data, |
1038 | struct connectdata *conn, |
1039 | curl_socket_t *socks) |
1040 | { |
1041 | if(conn->handler->proto_getsock) |
1042 | return conn->handler->proto_getsock(data, conn, socks); |
1043 | return Curl_conn_get_select_socks(data, FIRSTSOCKET, socks); |
1044 | } |
1045 | |
1046 | /* returns bitmapped flags for this handle and its sockets. The 'socks[]' |
1047 | array contains MAX_SOCKSPEREASYHANDLE entries. */ |
1048 | static int multi_getsock(struct Curl_easy *data, |
1049 | curl_socket_t *socks) |
1050 | { |
1051 | struct connectdata *conn = data->conn; |
1052 | /* The no connection case can happen when this is called from |
1053 | curl_multi_remove_handle() => singlesocket() => multi_getsock(). |
1054 | */ |
1055 | if(!conn) |
1056 | return 0; |
1057 | |
1058 | switch(data->mstate) { |
1059 | default: |
1060 | return 0; |
1061 | |
1062 | case MSTATE_RESOLVING: |
1063 | return Curl_resolv_getsock(data, socks); |
1064 | |
1065 | case MSTATE_PROTOCONNECTING: |
1066 | case MSTATE_PROTOCONNECT: |
1067 | return protocol_getsock(data, conn, socks); |
1068 | |
1069 | case MSTATE_DO: |
1070 | case MSTATE_DOING: |
1071 | return doing_getsock(data, conn, socks); |
1072 | |
1073 | case MSTATE_TUNNELING: |
1074 | case MSTATE_CONNECTING: |
1075 | return Curl_conn_get_select_socks(data, FIRSTSOCKET, socks); |
1076 | |
1077 | case MSTATE_DOING_MORE: |
1078 | return domore_getsock(data, conn, socks); |
1079 | |
1080 | case MSTATE_DID: /* since is set after DO is completed, we switch to |
1081 | waiting for the same as the PERFORMING state */ |
1082 | case MSTATE_PERFORMING: |
1083 | return Curl_single_getsock(data, conn, socks); |
1084 | } |
1085 | |
1086 | } |
1087 | |
1088 | CURLMcode curl_multi_fdset(struct Curl_multi *multi, |
1089 | fd_set *read_fd_set, fd_set *write_fd_set, |
1090 | fd_set *exc_fd_set, int *max_fd) |
1091 | { |
1092 | /* Scan through all the easy handles to get the file descriptors set. |
1093 | Some easy handles may not have connected to the remote host yet, |
1094 | and then we must make sure that is done. */ |
1095 | struct Curl_easy *data; |
1096 | int this_max_fd = -1; |
1097 | curl_socket_t sockbunch[MAX_SOCKSPEREASYHANDLE]; |
1098 | int i; |
1099 | (void)exc_fd_set; /* not used */ |
1100 | |
1101 | if(!GOOD_MULTI_HANDLE(multi)) |
1102 | return CURLM_BAD_HANDLE; |
1103 | |
1104 | if(multi->in_callback) |
1105 | return CURLM_RECURSIVE_API_CALL; |
1106 | |
1107 | for(data = multi->easyp; data; data = data->next) { |
1108 | int bitmap; |
1109 | #ifdef __clang_analyzer_ |
1110 | /* to prevent "The left operand of '>=' is a garbage value" warnings */ |
1111 | memset(sockbunch, 0, sizeof(sockbunch)); |
1112 | #endif |
1113 | bitmap = multi_getsock(data, socks: sockbunch); |
1114 | |
1115 | for(i = 0; i< MAX_SOCKSPEREASYHANDLE; i++) { |
1116 | if((bitmap & GETSOCK_MASK_RW(i)) && VALID_SOCK((sockbunch[i]))) { |
1117 | if(!FDSET_SOCK(sockbunch[i])) |
1118 | /* pretend it doesn't exist */ |
1119 | continue; |
1120 | if(bitmap & GETSOCK_READSOCK(i)) |
1121 | FD_SET(sockbunch[i], read_fd_set); |
1122 | if(bitmap & GETSOCK_WRITESOCK(i)) |
1123 | FD_SET(sockbunch[i], write_fd_set); |
1124 | if((int)sockbunch[i] > this_max_fd) |
1125 | this_max_fd = (int)sockbunch[i]; |
1126 | } |
1127 | else { |
1128 | break; |
1129 | } |
1130 | } |
1131 | } |
1132 | |
1133 | *max_fd = this_max_fd; |
1134 | |
1135 | return CURLM_OK; |
1136 | } |
1137 | |
1138 | #ifdef USE_WINSOCK |
1139 | /* Reset FD_WRITE for TCP sockets. Nothing is actually sent. UDP sockets can't |
1140 | * be reset this way because an empty datagram would be sent. #9203 |
1141 | * |
1142 | * "On Windows the internal state of FD_WRITE as returned from |
1143 | * WSAEnumNetworkEvents is only reset after successful send()." |
1144 | */ |
1145 | static void reset_socket_fdwrite(curl_socket_t s) |
1146 | { |
1147 | int t; |
1148 | int l = (int)sizeof(t); |
1149 | if(!getsockopt(s, SOL_SOCKET, SO_TYPE, (char *)&t, &l) && t == SOCK_STREAM) |
1150 | send(s, NULL, 0, 0); |
1151 | } |
1152 | #endif |
1153 | |
1154 | #define NUM_POLLS_ON_STACK 10 |
1155 | |
1156 | static CURLMcode multi_wait(struct Curl_multi *multi, |
1157 | struct curl_waitfd [], |
1158 | unsigned int , |
1159 | int timeout_ms, |
1160 | int *ret, |
1161 | bool , /* when no socket, wait */ |
1162 | bool use_wakeup) |
1163 | { |
1164 | struct Curl_easy *data; |
1165 | curl_socket_t sockbunch[MAX_SOCKSPEREASYHANDLE]; |
1166 | int bitmap; |
1167 | unsigned int i; |
1168 | unsigned int nfds = 0; |
1169 | unsigned int curlfds; |
1170 | long timeout_internal; |
1171 | int retcode = 0; |
1172 | struct pollfd a_few_on_stack[NUM_POLLS_ON_STACK]; |
1173 | struct pollfd *ufds = &a_few_on_stack[0]; |
1174 | bool ufds_malloc = FALSE; |
1175 | #ifdef USE_WINSOCK |
1176 | WSANETWORKEVENTS wsa_events; |
1177 | DEBUGASSERT(multi->wsa_event != WSA_INVALID_EVENT); |
1178 | #endif |
1179 | #ifndef ENABLE_WAKEUP |
1180 | (void)use_wakeup; |
1181 | #endif |
1182 | |
1183 | if(!GOOD_MULTI_HANDLE(multi)) |
1184 | return CURLM_BAD_HANDLE; |
1185 | |
1186 | if(multi->in_callback) |
1187 | return CURLM_RECURSIVE_API_CALL; |
1188 | |
1189 | if(timeout_ms < 0) |
1190 | return CURLM_BAD_FUNCTION_ARGUMENT; |
1191 | |
1192 | /* Count up how many fds we have from the multi handle */ |
1193 | for(data = multi->easyp; data; data = data->next) { |
1194 | bitmap = multi_getsock(data, socks: sockbunch); |
1195 | |
1196 | for(i = 0; i < MAX_SOCKSPEREASYHANDLE; i++) { |
1197 | if((bitmap & GETSOCK_MASK_RW(i)) && VALID_SOCK((sockbunch[i]))) { |
1198 | ++nfds; |
1199 | } |
1200 | else { |
1201 | break; |
1202 | } |
1203 | } |
1204 | } |
1205 | |
1206 | /* If the internally desired timeout is actually shorter than requested from |
1207 | the outside, then use the shorter time! But only if the internal timer |
1208 | is actually larger than -1! */ |
1209 | (void)multi_timeout(multi, timeout_ms: &timeout_internal); |
1210 | if((timeout_internal >= 0) && (timeout_internal < (long)timeout_ms)) |
1211 | timeout_ms = (int)timeout_internal; |
1212 | |
1213 | curlfds = nfds; /* number of internal file descriptors */ |
1214 | nfds += extra_nfds; /* add the externally provided ones */ |
1215 | |
1216 | #ifdef ENABLE_WAKEUP |
1217 | #ifdef USE_WINSOCK |
1218 | if(use_wakeup) { |
1219 | #else |
1220 | if(use_wakeup && multi->wakeup_pair[0] != CURL_SOCKET_BAD) { |
1221 | #endif |
1222 | ++nfds; |
1223 | } |
1224 | #endif |
1225 | |
1226 | if(nfds > NUM_POLLS_ON_STACK) { |
1227 | /* 'nfds' is a 32 bit value and 'struct pollfd' is typically 8 bytes |
1228 | big, so at 2^29 sockets this value might wrap. When a process gets |
1229 | the capability to actually handle over 500 million sockets this |
1230 | calculation needs a integer overflow check. */ |
1231 | ufds = malloc(nfds * sizeof(struct pollfd)); |
1232 | if(!ufds) |
1233 | return CURLM_OUT_OF_MEMORY; |
1234 | ufds_malloc = TRUE; |
1235 | } |
1236 | nfds = 0; |
1237 | |
1238 | /* only do the second loop if we found descriptors in the first stage run |
1239 | above */ |
1240 | |
1241 | if(curlfds) { |
1242 | /* Add the curl handles to our pollfds first */ |
1243 | for(data = multi->easyp; data; data = data->next) { |
1244 | bitmap = multi_getsock(data, socks: sockbunch); |
1245 | |
1246 | for(i = 0; i < MAX_SOCKSPEREASYHANDLE; i++) { |
1247 | if((bitmap & GETSOCK_MASK_RW(i)) && VALID_SOCK((sockbunch[i]))) { |
1248 | struct pollfd *ufd = &ufds[nfds++]; |
1249 | #ifdef USE_WINSOCK |
1250 | long mask = 0; |
1251 | #endif |
1252 | ufd->fd = sockbunch[i]; |
1253 | ufd->events = 0; |
1254 | if(bitmap & GETSOCK_READSOCK(i)) { |
1255 | #ifdef USE_WINSOCK |
1256 | mask |= FD_READ|FD_ACCEPT|FD_CLOSE; |
1257 | #endif |
1258 | ufd->events |= POLLIN; |
1259 | } |
1260 | if(bitmap & GETSOCK_WRITESOCK(i)) { |
1261 | #ifdef USE_WINSOCK |
1262 | mask |= FD_WRITE|FD_CONNECT|FD_CLOSE; |
1263 | reset_socket_fdwrite(sockbunch[i]); |
1264 | #endif |
1265 | ufd->events |= POLLOUT; |
1266 | } |
1267 | #ifdef USE_WINSOCK |
1268 | if(WSAEventSelect(sockbunch[i], multi->wsa_event, mask) != 0) { |
1269 | if(ufds_malloc) |
1270 | free(ufds); |
1271 | return CURLM_INTERNAL_ERROR; |
1272 | } |
1273 | #endif |
1274 | } |
1275 | else { |
1276 | break; |
1277 | } |
1278 | } |
1279 | } |
1280 | } |
1281 | |
1282 | /* Add external file descriptions from poll-like struct curl_waitfd */ |
1283 | for(i = 0; i < extra_nfds; i++) { |
1284 | #ifdef USE_WINSOCK |
1285 | long mask = 0; |
1286 | if(extra_fds[i].events & CURL_WAIT_POLLIN) |
1287 | mask |= FD_READ|FD_ACCEPT|FD_CLOSE; |
1288 | if(extra_fds[i].events & CURL_WAIT_POLLPRI) |
1289 | mask |= FD_OOB; |
1290 | if(extra_fds[i].events & CURL_WAIT_POLLOUT) { |
1291 | mask |= FD_WRITE|FD_CONNECT|FD_CLOSE; |
1292 | reset_socket_fdwrite(extra_fds[i].fd); |
1293 | } |
1294 | if(WSAEventSelect(extra_fds[i].fd, multi->wsa_event, mask) != 0) { |
1295 | if(ufds_malloc) |
1296 | free(ufds); |
1297 | return CURLM_INTERNAL_ERROR; |
1298 | } |
1299 | #endif |
1300 | ufds[nfds].fd = extra_fds[i].fd; |
1301 | ufds[nfds].events = 0; |
1302 | if(extra_fds[i].events & CURL_WAIT_POLLIN) |
1303 | ufds[nfds].events |= POLLIN; |
1304 | if(extra_fds[i].events & CURL_WAIT_POLLPRI) |
1305 | ufds[nfds].events |= POLLPRI; |
1306 | if(extra_fds[i].events & CURL_WAIT_POLLOUT) |
1307 | ufds[nfds].events |= POLLOUT; |
1308 | ++nfds; |
1309 | } |
1310 | |
1311 | #ifdef ENABLE_WAKEUP |
1312 | #ifndef USE_WINSOCK |
1313 | if(use_wakeup && multi->wakeup_pair[0] != CURL_SOCKET_BAD) { |
1314 | ufds[nfds].fd = multi->wakeup_pair[0]; |
1315 | ufds[nfds].events = POLLIN; |
1316 | ++nfds; |
1317 | } |
1318 | #endif |
1319 | #endif |
1320 | |
1321 | #if defined(ENABLE_WAKEUP) && defined(USE_WINSOCK) |
1322 | if(nfds || use_wakeup) { |
1323 | #else |
1324 | if(nfds) { |
1325 | #endif |
1326 | int pollrc; |
1327 | #ifdef USE_WINSOCK |
1328 | if(nfds) |
1329 | pollrc = Curl_poll(ufds, nfds, 0); /* just pre-check with WinSock */ |
1330 | else |
1331 | pollrc = 0; |
1332 | #else |
1333 | pollrc = Curl_poll(ufds, nfds, timeout_ms); /* wait... */ |
1334 | #endif |
1335 | if(pollrc < 0) |
1336 | return CURLM_UNRECOVERABLE_POLL; |
1337 | |
1338 | if(pollrc > 0) { |
1339 | retcode = pollrc; |
1340 | #ifdef USE_WINSOCK |
1341 | } |
1342 | else { /* now wait... if not ready during the pre-check (pollrc == 0) */ |
1343 | WSAWaitForMultipleEvents(1, &multi->wsa_event, FALSE, timeout_ms, FALSE); |
1344 | } |
1345 | /* With WinSock, we have to run the following section unconditionally |
1346 | to call WSAEventSelect(fd, event, 0) on all the sockets */ |
1347 | { |
1348 | #endif |
1349 | /* copy revents results from the poll to the curl_multi_wait poll |
1350 | struct, the bit values of the actual underlying poll() implementation |
1351 | may not be the same as the ones in the public libcurl API! */ |
1352 | for(i = 0; i < extra_nfds; i++) { |
1353 | unsigned r = ufds[curlfds + i].revents; |
1354 | unsigned short mask = 0; |
1355 | #ifdef USE_WINSOCK |
1356 | curl_socket_t s = extra_fds[i].fd; |
1357 | wsa_events.lNetworkEvents = 0; |
1358 | if(WSAEnumNetworkEvents(s, NULL, &wsa_events) == 0) { |
1359 | if(wsa_events.lNetworkEvents & (FD_READ|FD_ACCEPT|FD_CLOSE)) |
1360 | mask |= CURL_WAIT_POLLIN; |
1361 | if(wsa_events.lNetworkEvents & (FD_WRITE|FD_CONNECT|FD_CLOSE)) |
1362 | mask |= CURL_WAIT_POLLOUT; |
1363 | if(wsa_events.lNetworkEvents & FD_OOB) |
1364 | mask |= CURL_WAIT_POLLPRI; |
1365 | if(ret && !pollrc && wsa_events.lNetworkEvents) |
1366 | retcode++; |
1367 | } |
1368 | WSAEventSelect(s, multi->wsa_event, 0); |
1369 | if(!pollrc) { |
1370 | extra_fds[i].revents = mask; |
1371 | continue; |
1372 | } |
1373 | #endif |
1374 | if(r & POLLIN) |
1375 | mask |= CURL_WAIT_POLLIN; |
1376 | if(r & POLLOUT) |
1377 | mask |= CURL_WAIT_POLLOUT; |
1378 | if(r & POLLPRI) |
1379 | mask |= CURL_WAIT_POLLPRI; |
1380 | extra_fds[i].revents = mask; |
1381 | } |
1382 | |
1383 | #ifdef USE_WINSOCK |
1384 | /* Count up all our own sockets that had activity, |
1385 | and remove them from the event. */ |
1386 | if(curlfds) { |
1387 | |
1388 | for(data = multi->easyp; data; data = data->next) { |
1389 | bitmap = multi_getsock(data, sockbunch); |
1390 | |
1391 | for(i = 0; i < MAX_SOCKSPEREASYHANDLE; i++) { |
1392 | if(bitmap & (GETSOCK_READSOCK(i) | GETSOCK_WRITESOCK(i))) { |
1393 | wsa_events.lNetworkEvents = 0; |
1394 | if(WSAEnumNetworkEvents(sockbunch[i], NULL, &wsa_events) == 0) { |
1395 | if(ret && !pollrc && wsa_events.lNetworkEvents) |
1396 | retcode++; |
1397 | } |
1398 | WSAEventSelect(sockbunch[i], multi->wsa_event, 0); |
1399 | } |
1400 | else { |
1401 | /* break on entry not checked for being readable or writable */ |
1402 | break; |
1403 | } |
1404 | } |
1405 | } |
1406 | } |
1407 | |
1408 | WSAResetEvent(multi->wsa_event); |
1409 | #else |
1410 | #ifdef ENABLE_WAKEUP |
1411 | if(use_wakeup && multi->wakeup_pair[0] != CURL_SOCKET_BAD) { |
1412 | if(ufds[curlfds + extra_nfds].revents & POLLIN) { |
1413 | char buf[64]; |
1414 | ssize_t nread; |
1415 | while(1) { |
1416 | /* the reading socket is non-blocking, try to read |
1417 | data from it until it receives an error (except EINTR). |
1418 | In normal cases it will get EAGAIN or EWOULDBLOCK |
1419 | when there is no more data, breaking the loop. */ |
1420 | nread = wakeup_read(multi->wakeup_pair[0], buf, sizeof(buf)); |
1421 | if(nread <= 0) { |
1422 | if(nread < 0 && EINTR == SOCKERRNO) |
1423 | continue; |
1424 | break; |
1425 | } |
1426 | } |
1427 | /* do not count the wakeup socket into the returned value */ |
1428 | retcode--; |
1429 | } |
1430 | } |
1431 | #endif |
1432 | #endif |
1433 | } |
1434 | } |
1435 | |
1436 | if(ufds_malloc) |
1437 | free(ufds); |
1438 | if(ret) |
1439 | *ret = retcode; |
1440 | #if defined(ENABLE_WAKEUP) && defined(USE_WINSOCK) |
1441 | if(extrawait && !nfds && !use_wakeup) { |
1442 | #else |
1443 | if(extrawait && !nfds) { |
1444 | #endif |
1445 | long sleep_ms = 0; |
1446 | |
1447 | /* Avoid busy-looping when there's nothing particular to wait for */ |
1448 | if(!curl_multi_timeout(multi_handle: multi, milliseconds: &sleep_ms) && sleep_ms) { |
1449 | if(sleep_ms > timeout_ms) |
1450 | sleep_ms = timeout_ms; |
1451 | /* when there are no easy handles in the multi, this holds a -1 |
1452 | timeout */ |
1453 | else if(sleep_ms < 0) |
1454 | sleep_ms = timeout_ms; |
1455 | Curl_wait_ms(timeout_ms: sleep_ms); |
1456 | } |
1457 | } |
1458 | |
1459 | return CURLM_OK; |
1460 | } |
1461 | |
1462 | CURLMcode curl_multi_wait(struct Curl_multi *multi, |
1463 | struct curl_waitfd [], |
1464 | unsigned int , |
1465 | int timeout_ms, |
1466 | int *ret) |
1467 | { |
1468 | return multi_wait(multi, extra_fds, extra_nfds, timeout_ms, ret, FALSE, |
1469 | FALSE); |
1470 | } |
1471 | |
1472 | CURLMcode curl_multi_poll(struct Curl_multi *multi, |
1473 | struct curl_waitfd [], |
1474 | unsigned int , |
1475 | int timeout_ms, |
1476 | int *ret) |
1477 | { |
1478 | return multi_wait(multi, extra_fds, extra_nfds, timeout_ms, ret, TRUE, |
1479 | TRUE); |
1480 | } |
1481 | |
1482 | CURLMcode curl_multi_wakeup(struct Curl_multi *multi) |
1483 | { |
1484 | /* this function is usually called from another thread, |
1485 | it has to be careful only to access parts of the |
1486 | Curl_multi struct that are constant */ |
1487 | |
1488 | /* GOOD_MULTI_HANDLE can be safely called */ |
1489 | if(!GOOD_MULTI_HANDLE(multi)) |
1490 | return CURLM_BAD_HANDLE; |
1491 | |
1492 | #ifdef ENABLE_WAKEUP |
1493 | #ifdef USE_WINSOCK |
1494 | if(WSASetEvent(multi->wsa_event)) |
1495 | return CURLM_OK; |
1496 | #else |
1497 | /* the wakeup_pair variable is only written during init and cleanup, |
1498 | making it safe to access from another thread after the init part |
1499 | and before cleanup */ |
1500 | if(multi->wakeup_pair[1] != CURL_SOCKET_BAD) { |
1501 | char buf[1]; |
1502 | buf[0] = 1; |
1503 | while(1) { |
1504 | /* swrite() is not thread-safe in general, because concurrent calls |
1505 | can have their messages interleaved, but in this case the content |
1506 | of the messages does not matter, which makes it ok to call. |
1507 | |
1508 | The write socket is set to non-blocking, this way this function |
1509 | cannot block, making it safe to call even from the same thread |
1510 | that will call curl_multi_wait(). If swrite() returns that it |
1511 | would block, it's considered successful because it means that |
1512 | previous calls to this function will wake up the poll(). */ |
1513 | if(wakeup_write(multi->wakeup_pair[1], buf, sizeof(buf)) < 0) { |
1514 | int err = SOCKERRNO; |
1515 | int return_success; |
1516 | #ifdef USE_WINSOCK |
1517 | return_success = WSAEWOULDBLOCK == err; |
1518 | #else |
1519 | if(EINTR == err) |
1520 | continue; |
1521 | return_success = EWOULDBLOCK == err || EAGAIN == err; |
1522 | #endif |
1523 | if(!return_success) |
1524 | return CURLM_WAKEUP_FAILURE; |
1525 | } |
1526 | return CURLM_OK; |
1527 | } |
1528 | } |
1529 | #endif |
1530 | #endif |
1531 | return CURLM_WAKEUP_FAILURE; |
1532 | } |
1533 | |
1534 | /* |
1535 | * multi_ischanged() is called |
1536 | * |
1537 | * Returns TRUE/FALSE whether the state is changed to trigger a CONNECT_PEND |
1538 | * => CONNECT action. |
1539 | * |
1540 | * Set 'clear' to TRUE to have it also clear the state variable. |
1541 | */ |
1542 | static bool multi_ischanged(struct Curl_multi *multi, bool clear) |
1543 | { |
1544 | bool retval = multi->recheckstate; |
1545 | if(clear) |
1546 | multi->recheckstate = FALSE; |
1547 | return retval; |
1548 | } |
1549 | |
1550 | /* |
1551 | * Curl_multi_connchanged() is called to tell that there is a connection in |
1552 | * this multi handle that has changed state (multiplexing become possible, the |
1553 | * number of allowed streams changed or similar), and a subsequent use of this |
1554 | * multi handle should move CONNECT_PEND handles back to CONNECT to have them |
1555 | * retry. |
1556 | */ |
1557 | void Curl_multi_connchanged(struct Curl_multi *multi) |
1558 | { |
1559 | multi->recheckstate = TRUE; |
1560 | } |
1561 | |
1562 | CURLMcode Curl_multi_add_perform(struct Curl_multi *multi, |
1563 | struct Curl_easy *data, |
1564 | struct connectdata *conn) |
1565 | { |
1566 | CURLMcode rc; |
1567 | |
1568 | if(multi->in_callback) |
1569 | return CURLM_RECURSIVE_API_CALL; |
1570 | |
1571 | rc = curl_multi_add_handle(multi, data); |
1572 | if(!rc) { |
1573 | struct SingleRequest *k = &data->req; |
1574 | |
1575 | /* pass in NULL for 'conn' here since we don't want to init the |
1576 | connection, only this transfer */ |
1577 | Curl_init_do(data, NULL); |
1578 | |
1579 | /* take this handle to the perform state right away */ |
1580 | multistate(data, MSTATE_PERFORMING); |
1581 | Curl_attach_connection(data, conn); |
1582 | k->keepon |= KEEP_RECV; /* setup to receive! */ |
1583 | } |
1584 | return rc; |
1585 | } |
1586 | |
1587 | static CURLcode multi_do(struct Curl_easy *data, bool *done) |
1588 | { |
1589 | CURLcode result = CURLE_OK; |
1590 | struct connectdata *conn = data->conn; |
1591 | |
1592 | DEBUGASSERT(conn); |
1593 | DEBUGASSERT(conn->handler); |
1594 | |
1595 | if(conn->handler->do_it) |
1596 | result = conn->handler->do_it(data, done); |
1597 | |
1598 | return result; |
1599 | } |
1600 | |
1601 | /* |
1602 | * multi_do_more() is called during the DO_MORE multi state. It is basically a |
1603 | * second stage DO state which (wrongly) was introduced to support FTP's |
1604 | * second connection. |
1605 | * |
1606 | * 'complete' can return 0 for incomplete, 1 for done and -1 for go back to |
1607 | * DOING state there's more work to do! |
1608 | */ |
1609 | |
1610 | static CURLcode multi_do_more(struct Curl_easy *data, int *complete) |
1611 | { |
1612 | CURLcode result = CURLE_OK; |
1613 | struct connectdata *conn = data->conn; |
1614 | |
1615 | *complete = 0; |
1616 | |
1617 | if(conn->handler->do_more) |
1618 | result = conn->handler->do_more(data, complete); |
1619 | |
1620 | return result; |
1621 | } |
1622 | |
1623 | /* |
1624 | * Check whether a timeout occurred, and handle it if it did |
1625 | */ |
1626 | static bool multi_handle_timeout(struct Curl_easy *data, |
1627 | struct curltime *now, |
1628 | bool *stream_error, |
1629 | CURLcode *result, |
1630 | bool connect_timeout) |
1631 | { |
1632 | timediff_t timeout_ms; |
1633 | timeout_ms = Curl_timeleft(data, nowp: now, duringconnect: connect_timeout); |
1634 | |
1635 | if(timeout_ms < 0) { |
1636 | /* Handle timed out */ |
1637 | if(data->mstate == MSTATE_RESOLVING) |
1638 | failf(data, fmt: "Resolving timed out after %" CURL_FORMAT_TIMEDIFF_T |
1639 | " milliseconds" , |
1640 | Curl_timediff(newer: *now, older: data->progress.t_startsingle)); |
1641 | else if(data->mstate == MSTATE_CONNECTING) |
1642 | failf(data, fmt: "Connection timed out after %" CURL_FORMAT_TIMEDIFF_T |
1643 | " milliseconds" , |
1644 | Curl_timediff(newer: *now, older: data->progress.t_startsingle)); |
1645 | else { |
1646 | struct SingleRequest *k = &data->req; |
1647 | if(k->size != -1) { |
1648 | failf(data, fmt: "Operation timed out after %" CURL_FORMAT_TIMEDIFF_T |
1649 | " milliseconds with %" CURL_FORMAT_CURL_OFF_T " out of %" |
1650 | CURL_FORMAT_CURL_OFF_T " bytes received" , |
1651 | Curl_timediff(newer: *now, older: data->progress.t_startsingle), |
1652 | k->bytecount, k->size); |
1653 | } |
1654 | else { |
1655 | failf(data, fmt: "Operation timed out after %" CURL_FORMAT_TIMEDIFF_T |
1656 | " milliseconds with %" CURL_FORMAT_CURL_OFF_T |
1657 | " bytes received" , |
1658 | Curl_timediff(newer: *now, older: data->progress.t_startsingle), |
1659 | k->bytecount); |
1660 | } |
1661 | } |
1662 | |
1663 | /* Force connection closed if the connection has indeed been used */ |
1664 | if(data->mstate > MSTATE_DO) { |
1665 | streamclose(data->conn, "Disconnected with pending data" ); |
1666 | *stream_error = TRUE; |
1667 | } |
1668 | *result = CURLE_OPERATION_TIMEDOUT; |
1669 | (void)multi_done(data, status: *result, TRUE); |
1670 | } |
1671 | |
1672 | return (timeout_ms < 0); |
1673 | } |
1674 | |
1675 | /* |
1676 | * We are doing protocol-specific connecting and this is being called over and |
1677 | * over from the multi interface until the connection phase is done on |
1678 | * protocol layer. |
1679 | */ |
1680 | |
1681 | static CURLcode protocol_connecting(struct Curl_easy *data, bool *done) |
1682 | { |
1683 | CURLcode result = CURLE_OK; |
1684 | struct connectdata *conn = data->conn; |
1685 | |
1686 | if(conn && conn->handler->connecting) { |
1687 | *done = FALSE; |
1688 | result = conn->handler->connecting(data, done); |
1689 | } |
1690 | else |
1691 | *done = TRUE; |
1692 | |
1693 | return result; |
1694 | } |
1695 | |
1696 | /* |
1697 | * We are DOING this is being called over and over from the multi interface |
1698 | * until the DOING phase is done on protocol layer. |
1699 | */ |
1700 | |
1701 | static CURLcode protocol_doing(struct Curl_easy *data, bool *done) |
1702 | { |
1703 | CURLcode result = CURLE_OK; |
1704 | struct connectdata *conn = data->conn; |
1705 | |
1706 | if(conn && conn->handler->doing) { |
1707 | *done = FALSE; |
1708 | result = conn->handler->doing(data, done); |
1709 | } |
1710 | else |
1711 | *done = TRUE; |
1712 | |
1713 | return result; |
1714 | } |
1715 | |
1716 | /* |
1717 | * We have discovered that the TCP connection has been successful, we can now |
1718 | * proceed with some action. |
1719 | * |
1720 | */ |
1721 | static CURLcode protocol_connect(struct Curl_easy *data, |
1722 | bool *protocol_done) |
1723 | { |
1724 | CURLcode result = CURLE_OK; |
1725 | struct connectdata *conn = data->conn; |
1726 | DEBUGASSERT(conn); |
1727 | DEBUGASSERT(protocol_done); |
1728 | |
1729 | *protocol_done = FALSE; |
1730 | |
1731 | if(Curl_conn_is_connected(conn, FIRSTSOCKET) |
1732 | && conn->bits.protoconnstart) { |
1733 | /* We already are connected, get back. This may happen when the connect |
1734 | worked fine in the first call, like when we connect to a local server |
1735 | or proxy. Note that we don't know if the protocol is actually done. |
1736 | |
1737 | Unless this protocol doesn't have any protocol-connect callback, as |
1738 | then we know we're done. */ |
1739 | if(!conn->handler->connecting) |
1740 | *protocol_done = TRUE; |
1741 | |
1742 | return CURLE_OK; |
1743 | } |
1744 | |
1745 | if(!conn->bits.protoconnstart) { |
1746 | if(conn->handler->connect_it) { |
1747 | /* is there a protocol-specific connect() procedure? */ |
1748 | |
1749 | /* Call the protocol-specific connect function */ |
1750 | result = conn->handler->connect_it(data, protocol_done); |
1751 | } |
1752 | else |
1753 | *protocol_done = TRUE; |
1754 | |
1755 | /* it has started, possibly even completed but that knowledge isn't stored |
1756 | in this bit! */ |
1757 | if(!result) |
1758 | conn->bits.protoconnstart = TRUE; |
1759 | } |
1760 | |
1761 | return result; /* pass back status */ |
1762 | } |
1763 | |
1764 | /* |
1765 | * readrewind() rewinds the read stream. This is typically used for HTTP |
1766 | * POST/PUT with multi-pass authentication when a sending was denied and a |
1767 | * resend is necessary. |
1768 | */ |
1769 | static CURLcode readrewind(struct Curl_easy *data) |
1770 | { |
1771 | curl_mimepart *mimepart = &data->set.mimepost; |
1772 | DEBUGASSERT(data->conn); |
1773 | |
1774 | data->state.rewindbeforesend = FALSE; /* we rewind now */ |
1775 | |
1776 | /* explicitly switch off sending data on this connection now since we are |
1777 | about to restart a new transfer and thus we want to avoid inadvertently |
1778 | sending more data on the existing connection until the next transfer |
1779 | starts */ |
1780 | data->req.keepon &= ~KEEP_SEND; |
1781 | |
1782 | /* We have sent away data. If not using CURLOPT_POSTFIELDS or |
1783 | CURLOPT_HTTPPOST, call app to rewind |
1784 | */ |
1785 | #ifndef CURL_DISABLE_HTTP |
1786 | if(data->conn->handler->protocol & PROTO_FAMILY_HTTP) { |
1787 | if(data->state.mimepost) |
1788 | mimepart = data->state.mimepost; |
1789 | } |
1790 | #endif |
1791 | if(data->set.postfields || |
1792 | (data->state.httpreq == HTTPREQ_GET) || |
1793 | (data->state.httpreq == HTTPREQ_HEAD)) |
1794 | ; /* no need to rewind */ |
1795 | else if(data->state.httpreq == HTTPREQ_POST_MIME || |
1796 | data->state.httpreq == HTTPREQ_POST_FORM) { |
1797 | CURLcode result = Curl_mime_rewind(part: mimepart); |
1798 | if(result) { |
1799 | failf(data, fmt: "Cannot rewind mime/post data" ); |
1800 | return result; |
1801 | } |
1802 | } |
1803 | else { |
1804 | if(data->set.seek_func) { |
1805 | int err; |
1806 | |
1807 | Curl_set_in_callback(data, true); |
1808 | err = (data->set.seek_func)(data->set.seek_client, 0, SEEK_SET); |
1809 | Curl_set_in_callback(data, false); |
1810 | if(err) { |
1811 | failf(data, fmt: "seek callback returned error %d" , (int)err); |
1812 | return CURLE_SEND_FAIL_REWIND; |
1813 | } |
1814 | } |
1815 | else if(data->set.ioctl_func) { |
1816 | curlioerr err; |
1817 | |
1818 | Curl_set_in_callback(data, true); |
1819 | err = (data->set.ioctl_func)(data, CURLIOCMD_RESTARTREAD, |
1820 | data->set.ioctl_client); |
1821 | Curl_set_in_callback(data, false); |
1822 | infof(data, "the ioctl callback returned %d" , (int)err); |
1823 | |
1824 | if(err) { |
1825 | failf(data, fmt: "ioctl callback returned error %d" , (int)err); |
1826 | return CURLE_SEND_FAIL_REWIND; |
1827 | } |
1828 | } |
1829 | else { |
1830 | /* If no CURLOPT_READFUNCTION is used, we know that we operate on a |
1831 | given FILE * stream and we can actually attempt to rewind that |
1832 | ourselves with fseek() */ |
1833 | if(data->state.fread_func == (curl_read_callback)fread) { |
1834 | if(-1 != fseek(stream: data->state.in, off: 0, SEEK_SET)) |
1835 | /* successful rewind */ |
1836 | return CURLE_OK; |
1837 | } |
1838 | |
1839 | /* no callback set or failure above, makes us fail at once */ |
1840 | failf(data, fmt: "necessary data rewind wasn't possible" ); |
1841 | return CURLE_SEND_FAIL_REWIND; |
1842 | } |
1843 | } |
1844 | return CURLE_OK; |
1845 | } |
1846 | |
1847 | /* |
1848 | * Curl_preconnect() is called immediately before a connect starts. When a |
1849 | * redirect is followed, this is then called multiple times during a single |
1850 | * transfer. |
1851 | */ |
1852 | CURLcode Curl_preconnect(struct Curl_easy *data) |
1853 | { |
1854 | if(!data->state.buffer) { |
1855 | data->state.buffer = malloc(data->set.buffer_size + 1); |
1856 | if(!data->state.buffer) |
1857 | return CURLE_OUT_OF_MEMORY; |
1858 | } |
1859 | |
1860 | return CURLE_OK; |
1861 | } |
1862 | |
1863 | static void set_in_callback(struct Curl_multi *multi, bool value) |
1864 | { |
1865 | multi->in_callback = value; |
1866 | } |
1867 | |
1868 | static CURLMcode multi_runsingle(struct Curl_multi *multi, |
1869 | struct curltime *nowp, |
1870 | struct Curl_easy *data) |
1871 | { |
1872 | struct Curl_message *msg = NULL; |
1873 | bool connected; |
1874 | bool async; |
1875 | bool protocol_connected = FALSE; |
1876 | bool dophase_done = FALSE; |
1877 | bool done = FALSE; |
1878 | CURLMcode rc; |
1879 | CURLcode result = CURLE_OK; |
1880 | timediff_t recv_timeout_ms; |
1881 | timediff_t send_timeout_ms; |
1882 | int control; |
1883 | |
1884 | if(!GOOD_EASY_HANDLE(data)) |
1885 | return CURLM_BAD_EASY_HANDLE; |
1886 | |
1887 | if(multi->dead) { |
1888 | /* a multi-level callback returned error before, meaning every individual |
1889 | transfer now has failed */ |
1890 | result = CURLE_ABORTED_BY_CALLBACK; |
1891 | Curl_posttransfer(data); |
1892 | multi_done(data, status: result, FALSE); |
1893 | multistate(data, MSTATE_COMPLETED); |
1894 | } |
1895 | |
1896 | multi_warn_debug(multi, data); |
1897 | |
1898 | do { |
1899 | /* A "stream" here is a logical stream if the protocol can handle that |
1900 | (HTTP/2), or the full connection for older protocols */ |
1901 | bool stream_error = FALSE; |
1902 | rc = CURLM_OK; |
1903 | |
1904 | if(multi_ischanged(multi, TRUE)) { |
1905 | DEBUGF(infof(data, "multi changed, check CONNECT_PEND queue" )); |
1906 | process_pending_handles(multi); /* multiplexed */ |
1907 | } |
1908 | |
1909 | if(data->mstate > MSTATE_CONNECT && |
1910 | data->mstate < MSTATE_COMPLETED) { |
1911 | /* Make sure we set the connection's current owner */ |
1912 | DEBUGASSERT(data->conn); |
1913 | if(!data->conn) |
1914 | return CURLM_INTERNAL_ERROR; |
1915 | } |
1916 | |
1917 | if(data->conn && |
1918 | (data->mstate >= MSTATE_CONNECT) && |
1919 | (data->mstate < MSTATE_COMPLETED)) { |
1920 | /* Check for overall operation timeout here but defer handling the |
1921 | * connection timeout to later, to allow for a connection to be set up |
1922 | * in the window since we last checked timeout. This prevents us |
1923 | * tearing down a completed connection in the case where we were slow |
1924 | * to check the timeout (e.g. process descheduled during this loop). |
1925 | * We set connect_timeout=FALSE to do this. */ |
1926 | |
1927 | /* we need to wait for the connect state as only then is the start time |
1928 | stored, but we must not check already completed handles */ |
1929 | if(multi_handle_timeout(data, now: nowp, stream_error: &stream_error, result: &result, FALSE)) { |
1930 | /* Skip the statemachine and go directly to error handling section. */ |
1931 | goto statemachine_end; |
1932 | } |
1933 | } |
1934 | |
1935 | switch(data->mstate) { |
1936 | case MSTATE_INIT: |
1937 | /* init this transfer. */ |
1938 | result = Curl_pretransfer(data); |
1939 | |
1940 | if(!result) { |
1941 | /* after init, go CONNECT */ |
1942 | multistate(data, MSTATE_CONNECT); |
1943 | *nowp = Curl_pgrsTime(data, timer: TIMER_STARTOP); |
1944 | rc = CURLM_CALL_MULTI_PERFORM; |
1945 | } |
1946 | break; |
1947 | |
1948 | case MSTATE_CONNECT: |
1949 | /* Connect. We want to get a connection identifier filled in. */ |
1950 | /* init this transfer. */ |
1951 | result = Curl_preconnect(data); |
1952 | if(result) |
1953 | break; |
1954 | |
1955 | *nowp = Curl_pgrsTime(data, timer: TIMER_STARTSINGLE); |
1956 | if(data->set.timeout) |
1957 | Curl_expire(data, milli: data->set.timeout, EXPIRE_TIMEOUT); |
1958 | |
1959 | if(data->set.connecttimeout) |
1960 | Curl_expire(data, milli: data->set.connecttimeout, EXPIRE_CONNECTTIMEOUT); |
1961 | |
1962 | result = Curl_connect(data, async: &async, protocol_connect: &connected); |
1963 | if(CURLE_NO_CONNECTION_AVAILABLE == result) { |
1964 | /* There was no connection available. We will go to the pending |
1965 | state and wait for an available connection. */ |
1966 | multistate(data, MSTATE_PENDING); |
1967 | |
1968 | /* add this handle to the list of connect-pending handles */ |
1969 | Curl_llist_insert_next(&multi->pending, multi->pending.tail, data, |
1970 | node: &data->connect_queue); |
1971 | /* unlink from the main list */ |
1972 | unlink_easy(multi, data); |
1973 | result = CURLE_OK; |
1974 | break; |
1975 | } |
1976 | else if(data->state.previouslypending) { |
1977 | /* this transfer comes from the pending queue so try move another */ |
1978 | infof(data, "Transfer was pending, now try another" ); |
1979 | process_pending_handles(multi: data->multi); |
1980 | } |
1981 | |
1982 | if(!result) { |
1983 | if(async) |
1984 | /* We're now waiting for an asynchronous name lookup */ |
1985 | multistate(data, MSTATE_RESOLVING); |
1986 | else { |
1987 | /* after the connect has been sent off, go WAITCONNECT unless the |
1988 | protocol connect is already done and we can go directly to |
1989 | WAITDO or DO! */ |
1990 | rc = CURLM_CALL_MULTI_PERFORM; |
1991 | |
1992 | if(connected) |
1993 | multistate(data, MSTATE_PROTOCONNECT); |
1994 | else { |
1995 | multistate(data, MSTATE_CONNECTING); |
1996 | } |
1997 | } |
1998 | } |
1999 | break; |
2000 | |
2001 | case MSTATE_RESOLVING: |
2002 | /* awaiting an asynch name resolve to complete */ |
2003 | { |
2004 | struct Curl_dns_entry *dns = NULL; |
2005 | struct connectdata *conn = data->conn; |
2006 | const char *hostname; |
2007 | |
2008 | DEBUGASSERT(conn); |
2009 | #ifndef CURL_DISABLE_PROXY |
2010 | if(conn->bits.httpproxy) |
2011 | hostname = conn->http_proxy.host.name; |
2012 | else |
2013 | #endif |
2014 | if(conn->bits.conn_to_host) |
2015 | hostname = conn->conn_to_host.name; |
2016 | else |
2017 | hostname = conn->host.name; |
2018 | |
2019 | /* check if we have the name resolved by now */ |
2020 | dns = Curl_fetch_addr(data, hostname, port: (int)conn->port); |
2021 | |
2022 | if(dns) { |
2023 | #ifdef CURLRES_ASYNCH |
2024 | data->state.async.dns = dns; |
2025 | data->state.async.done = TRUE; |
2026 | #endif |
2027 | result = CURLE_OK; |
2028 | infof(data, "Hostname '%s' was found in DNS cache" , hostname); |
2029 | } |
2030 | |
2031 | if(!dns) |
2032 | result = Curl_resolv_check(data, dns: &dns); |
2033 | |
2034 | /* Update sockets here, because the socket(s) may have been |
2035 | closed and the application thus needs to be told, even if it |
2036 | is likely that the same socket(s) will again be used further |
2037 | down. If the name has not yet been resolved, it is likely |
2038 | that new sockets have been opened in an attempt to contact |
2039 | another resolver. */ |
2040 | rc = singlesocket(multi, data); |
2041 | if(rc) |
2042 | return rc; |
2043 | |
2044 | if(dns) { |
2045 | /* Perform the next step in the connection phase, and then move on |
2046 | to the WAITCONNECT state */ |
2047 | result = Curl_once_resolved(data, protocol_connect: &connected); |
2048 | |
2049 | if(result) |
2050 | /* if Curl_once_resolved() returns failure, the connection struct |
2051 | is already freed and gone */ |
2052 | data->conn = NULL; /* no more connection */ |
2053 | else { |
2054 | /* call again please so that we get the next socket setup */ |
2055 | rc = CURLM_CALL_MULTI_PERFORM; |
2056 | if(connected) |
2057 | multistate(data, MSTATE_PROTOCONNECT); |
2058 | else { |
2059 | multistate(data, MSTATE_CONNECTING); |
2060 | } |
2061 | } |
2062 | } |
2063 | |
2064 | if(result) { |
2065 | /* failure detected */ |
2066 | stream_error = TRUE; |
2067 | break; |
2068 | } |
2069 | } |
2070 | break; |
2071 | |
2072 | #ifndef CURL_DISABLE_HTTP |
2073 | case MSTATE_TUNNELING: |
2074 | /* this is HTTP-specific, but sending CONNECT to a proxy is HTTP... */ |
2075 | DEBUGASSERT(data->conn); |
2076 | result = Curl_http_connect(data, done: &protocol_connected); |
2077 | #ifndef CURL_DISABLE_PROXY |
2078 | if(data->conn->bits.proxy_connect_closed) { |
2079 | rc = CURLM_CALL_MULTI_PERFORM; |
2080 | /* connect back to proxy again */ |
2081 | result = CURLE_OK; |
2082 | multi_done(data, status: CURLE_OK, FALSE); |
2083 | multistate(data, MSTATE_CONNECT); |
2084 | } |
2085 | else |
2086 | #endif |
2087 | if(!result) { |
2088 | rc = CURLM_CALL_MULTI_PERFORM; |
2089 | /* initiate protocol connect phase */ |
2090 | multistate(data, MSTATE_PROTOCONNECT); |
2091 | } |
2092 | else |
2093 | stream_error = TRUE; |
2094 | break; |
2095 | #endif |
2096 | |
2097 | case MSTATE_CONNECTING: |
2098 | /* awaiting a completion of an asynch TCP connect */ |
2099 | DEBUGASSERT(data->conn); |
2100 | result = Curl_conn_connect(data, FIRSTSOCKET, FALSE, done: &connected); |
2101 | if(connected && !result) { |
2102 | rc = CURLM_CALL_MULTI_PERFORM; |
2103 | multistate(data, MSTATE_PROTOCONNECT); |
2104 | } |
2105 | else if(result) { |
2106 | /* failure detected */ |
2107 | Curl_posttransfer(data); |
2108 | multi_done(data, status: result, TRUE); |
2109 | stream_error = TRUE; |
2110 | break; |
2111 | } |
2112 | break; |
2113 | |
2114 | case MSTATE_PROTOCONNECT: |
2115 | if(data->state.rewindbeforesend) |
2116 | result = readrewind(data); |
2117 | |
2118 | if(!result && data->conn->bits.reuse) { |
2119 | /* ftp seems to hang when protoconnect on reused connection |
2120 | * since we handle PROTOCONNECT in general inside the filers, it |
2121 | * seems wrong to restart this on a reused connection. */ |
2122 | multistate(data, MSTATE_DO); |
2123 | rc = CURLM_CALL_MULTI_PERFORM; |
2124 | break; |
2125 | } |
2126 | if(!result) |
2127 | result = protocol_connect(data, protocol_done: &protocol_connected); |
2128 | if(!result && !protocol_connected) { |
2129 | /* switch to waiting state */ |
2130 | multistate(data, MSTATE_PROTOCONNECTING); |
2131 | rc = CURLM_CALL_MULTI_PERFORM; |
2132 | } |
2133 | else if(!result) { |
2134 | /* protocol connect has completed, go WAITDO or DO */ |
2135 | multistate(data, MSTATE_DO); |
2136 | rc = CURLM_CALL_MULTI_PERFORM; |
2137 | } |
2138 | else { |
2139 | /* failure detected */ |
2140 | Curl_posttransfer(data); |
2141 | multi_done(data, status: result, TRUE); |
2142 | stream_error = TRUE; |
2143 | } |
2144 | break; |
2145 | |
2146 | case MSTATE_PROTOCONNECTING: |
2147 | /* protocol-specific connect phase */ |
2148 | result = protocol_connecting(data, done: &protocol_connected); |
2149 | if(!result && protocol_connected) { |
2150 | /* after the connect has completed, go WAITDO or DO */ |
2151 | multistate(data, MSTATE_DO); |
2152 | rc = CURLM_CALL_MULTI_PERFORM; |
2153 | } |
2154 | else if(result) { |
2155 | /* failure detected */ |
2156 | Curl_posttransfer(data); |
2157 | multi_done(data, status: result, TRUE); |
2158 | stream_error = TRUE; |
2159 | } |
2160 | break; |
2161 | |
2162 | case MSTATE_DO: |
2163 | if(data->set.fprereq) { |
2164 | int prereq_rc; |
2165 | |
2166 | /* call the prerequest callback function */ |
2167 | Curl_set_in_callback(data, true); |
2168 | prereq_rc = data->set.fprereq(data->set.prereq_userp, |
2169 | data->info.conn_primary_ip, |
2170 | data->info.conn_local_ip, |
2171 | data->info.conn_primary_port, |
2172 | data->info.conn_local_port); |
2173 | Curl_set_in_callback(data, false); |
2174 | if(prereq_rc != CURL_PREREQFUNC_OK) { |
2175 | failf(data, fmt: "operation aborted by pre-request callback" ); |
2176 | /* failure in pre-request callback - don't do any other processing */ |
2177 | result = CURLE_ABORTED_BY_CALLBACK; |
2178 | Curl_posttransfer(data); |
2179 | multi_done(data, status: result, FALSE); |
2180 | stream_error = TRUE; |
2181 | break; |
2182 | } |
2183 | } |
2184 | |
2185 | if(data->set.connect_only == 1) { |
2186 | /* keep connection open for application to use the socket */ |
2187 | connkeep(data->conn, "CONNECT_ONLY" ); |
2188 | multistate(data, MSTATE_DONE); |
2189 | result = CURLE_OK; |
2190 | rc = CURLM_CALL_MULTI_PERFORM; |
2191 | } |
2192 | else { |
2193 | /* Perform the protocol's DO action */ |
2194 | result = multi_do(data, done: &dophase_done); |
2195 | |
2196 | /* When multi_do() returns failure, data->conn might be NULL! */ |
2197 | |
2198 | if(!result) { |
2199 | if(!dophase_done) { |
2200 | #ifndef CURL_DISABLE_FTP |
2201 | /* some steps needed for wildcard matching */ |
2202 | if(data->state.wildcardmatch) { |
2203 | struct WildcardData *wc = data->wildcard; |
2204 | if(wc->state == CURLWC_DONE || wc->state == CURLWC_SKIP) { |
2205 | /* skip some states if it is important */ |
2206 | multi_done(data, CURLE_OK, FALSE); |
2207 | |
2208 | /* if there's no connection left, skip the DONE state */ |
2209 | multistate(data, data->conn ? |
2210 | MSTATE_DONE : MSTATE_COMPLETED); |
2211 | rc = CURLM_CALL_MULTI_PERFORM; |
2212 | break; |
2213 | } |
2214 | } |
2215 | #endif |
2216 | /* DO was not completed in one function call, we must continue |
2217 | DOING... */ |
2218 | multistate(data, MSTATE_DOING); |
2219 | rc = CURLM_CALL_MULTI_PERFORM; |
2220 | } |
2221 | |
2222 | /* after DO, go DO_DONE... or DO_MORE */ |
2223 | else if(data->conn->bits.do_more) { |
2224 | /* we're supposed to do more, but we need to sit down, relax |
2225 | and wait a little while first */ |
2226 | multistate(data, MSTATE_DOING_MORE); |
2227 | rc = CURLM_CALL_MULTI_PERFORM; |
2228 | } |
2229 | else { |
2230 | /* we're done with the DO, now DID */ |
2231 | multistate(data, MSTATE_DID); |
2232 | rc = CURLM_CALL_MULTI_PERFORM; |
2233 | } |
2234 | } |
2235 | else if((CURLE_SEND_ERROR == result) && |
2236 | data->conn->bits.reuse) { |
2237 | /* |
2238 | * In this situation, a connection that we were trying to use |
2239 | * may have unexpectedly died. If possible, send the connection |
2240 | * back to the CONNECT phase so we can try again. |
2241 | */ |
2242 | char *newurl = NULL; |
2243 | followtype follow = FOLLOW_NONE; |
2244 | CURLcode drc; |
2245 | |
2246 | drc = Curl_retry_request(data, url: &newurl); |
2247 | if(drc) { |
2248 | /* a failure here pretty much implies an out of memory */ |
2249 | result = drc; |
2250 | stream_error = TRUE; |
2251 | } |
2252 | |
2253 | Curl_posttransfer(data); |
2254 | drc = multi_done(data, status: result, FALSE); |
2255 | |
2256 | /* When set to retry the connection, we must go back to the CONNECT |
2257 | * state */ |
2258 | if(newurl) { |
2259 | if(!drc || (drc == CURLE_SEND_ERROR)) { |
2260 | follow = FOLLOW_RETRY; |
2261 | drc = Curl_follow(data, newurl, type: follow); |
2262 | if(!drc) { |
2263 | multistate(data, MSTATE_CONNECT); |
2264 | rc = CURLM_CALL_MULTI_PERFORM; |
2265 | result = CURLE_OK; |
2266 | } |
2267 | else { |
2268 | /* Follow failed */ |
2269 | result = drc; |
2270 | } |
2271 | } |
2272 | else { |
2273 | /* done didn't return OK or SEND_ERROR */ |
2274 | result = drc; |
2275 | } |
2276 | } |
2277 | else { |
2278 | /* Have error handler disconnect conn if we can't retry */ |
2279 | stream_error = TRUE; |
2280 | } |
2281 | free(newurl); |
2282 | } |
2283 | else { |
2284 | /* failure detected */ |
2285 | Curl_posttransfer(data); |
2286 | if(data->conn) |
2287 | multi_done(data, status: result, FALSE); |
2288 | stream_error = TRUE; |
2289 | } |
2290 | } |
2291 | break; |
2292 | |
2293 | case MSTATE_DOING: |
2294 | /* we continue DOING until the DO phase is complete */ |
2295 | DEBUGASSERT(data->conn); |
2296 | result = protocol_doing(data, done: &dophase_done); |
2297 | if(!result) { |
2298 | if(dophase_done) { |
2299 | /* after DO, go DO_DONE or DO_MORE */ |
2300 | multistate(data, data->conn->bits.do_more? |
2301 | MSTATE_DOING_MORE : MSTATE_DID); |
2302 | rc = CURLM_CALL_MULTI_PERFORM; |
2303 | } /* dophase_done */ |
2304 | } |
2305 | else { |
2306 | /* failure detected */ |
2307 | Curl_posttransfer(data); |
2308 | multi_done(data, status: result, FALSE); |
2309 | stream_error = TRUE; |
2310 | } |
2311 | break; |
2312 | |
2313 | case MSTATE_DOING_MORE: |
2314 | /* |
2315 | * When we are connected, DOING MORE and then go DID |
2316 | */ |
2317 | DEBUGASSERT(data->conn); |
2318 | result = multi_do_more(data, complete: &control); |
2319 | |
2320 | if(!result) { |
2321 | if(control) { |
2322 | /* if positive, advance to DO_DONE |
2323 | if negative, go back to DOING */ |
2324 | multistate(data, control == 1? |
2325 | MSTATE_DID : MSTATE_DOING); |
2326 | rc = CURLM_CALL_MULTI_PERFORM; |
2327 | } |
2328 | /* else |
2329 | stay in DO_MORE */ |
2330 | } |
2331 | else { |
2332 | /* failure detected */ |
2333 | Curl_posttransfer(data); |
2334 | multi_done(data, status: result, FALSE); |
2335 | stream_error = TRUE; |
2336 | } |
2337 | break; |
2338 | |
2339 | case MSTATE_DID: |
2340 | DEBUGASSERT(data->conn); |
2341 | if(data->conn->bits.multiplex) |
2342 | /* Check if we can move pending requests to send pipe */ |
2343 | process_pending_handles(multi); /* multiplexed */ |
2344 | |
2345 | /* Only perform the transfer if there's a good socket to work with. |
2346 | Having both BAD is a signal to skip immediately to DONE */ |
2347 | if((data->conn->sockfd != CURL_SOCKET_BAD) || |
2348 | (data->conn->writesockfd != CURL_SOCKET_BAD)) |
2349 | multistate(data, MSTATE_PERFORMING); |
2350 | else { |
2351 | #ifndef CURL_DISABLE_FTP |
2352 | if(data->state.wildcardmatch && |
2353 | ((data->conn->handler->flags & PROTOPT_WILDCARD) == 0)) { |
2354 | data->wildcard->state = CURLWC_DONE; |
2355 | } |
2356 | #endif |
2357 | multistate(data, MSTATE_DONE); |
2358 | } |
2359 | rc = CURLM_CALL_MULTI_PERFORM; |
2360 | break; |
2361 | |
2362 | case MSTATE_RATELIMITING: /* limit-rate exceeded in either direction */ |
2363 | DEBUGASSERT(data->conn); |
2364 | /* if both rates are within spec, resume transfer */ |
2365 | if(Curl_pgrsUpdate(data)) |
2366 | result = CURLE_ABORTED_BY_CALLBACK; |
2367 | else |
2368 | result = Curl_speedcheck(data, now: *nowp); |
2369 | |
2370 | if(result) { |
2371 | if(!(data->conn->handler->flags & PROTOPT_DUAL) && |
2372 | result != CURLE_HTTP2_STREAM) |
2373 | streamclose(data->conn, "Transfer returned error" ); |
2374 | |
2375 | Curl_posttransfer(data); |
2376 | multi_done(data, status: result, TRUE); |
2377 | } |
2378 | else { |
2379 | send_timeout_ms = 0; |
2380 | if(data->set.max_send_speed) |
2381 | send_timeout_ms = |
2382 | Curl_pgrsLimitWaitTime(cursize: data->progress.uploaded, |
2383 | startsize: data->progress.ul_limit_size, |
2384 | limit: data->set.max_send_speed, |
2385 | start: data->progress.ul_limit_start, |
2386 | now: *nowp); |
2387 | |
2388 | recv_timeout_ms = 0; |
2389 | if(data->set.max_recv_speed) |
2390 | recv_timeout_ms = |
2391 | Curl_pgrsLimitWaitTime(cursize: data->progress.downloaded, |
2392 | startsize: data->progress.dl_limit_size, |
2393 | limit: data->set.max_recv_speed, |
2394 | start: data->progress.dl_limit_start, |
2395 | now: *nowp); |
2396 | |
2397 | if(!send_timeout_ms && !recv_timeout_ms) { |
2398 | multistate(data, MSTATE_PERFORMING); |
2399 | Curl_ratelimit(data, now: *nowp); |
2400 | } |
2401 | else if(send_timeout_ms >= recv_timeout_ms) |
2402 | Curl_expire(data, milli: send_timeout_ms, EXPIRE_TOOFAST); |
2403 | else |
2404 | Curl_expire(data, milli: recv_timeout_ms, EXPIRE_TOOFAST); |
2405 | } |
2406 | break; |
2407 | |
2408 | case MSTATE_PERFORMING: |
2409 | { |
2410 | char *newurl = NULL; |
2411 | bool retry = FALSE; |
2412 | bool comeback = FALSE; |
2413 | DEBUGASSERT(data->state.buffer); |
2414 | /* check if over send speed */ |
2415 | send_timeout_ms = 0; |
2416 | if(data->set.max_send_speed) |
2417 | send_timeout_ms = Curl_pgrsLimitWaitTime(cursize: data->progress.uploaded, |
2418 | startsize: data->progress.ul_limit_size, |
2419 | limit: data->set.max_send_speed, |
2420 | start: data->progress.ul_limit_start, |
2421 | now: *nowp); |
2422 | |
2423 | /* check if over recv speed */ |
2424 | recv_timeout_ms = 0; |
2425 | if(data->set.max_recv_speed) |
2426 | recv_timeout_ms = Curl_pgrsLimitWaitTime(cursize: data->progress.downloaded, |
2427 | startsize: data->progress.dl_limit_size, |
2428 | limit: data->set.max_recv_speed, |
2429 | start: data->progress.dl_limit_start, |
2430 | now: *nowp); |
2431 | |
2432 | if(send_timeout_ms || recv_timeout_ms) { |
2433 | Curl_ratelimit(data, now: *nowp); |
2434 | multistate(data, MSTATE_RATELIMITING); |
2435 | if(send_timeout_ms >= recv_timeout_ms) |
2436 | Curl_expire(data, milli: send_timeout_ms, EXPIRE_TOOFAST); |
2437 | else |
2438 | Curl_expire(data, milli: recv_timeout_ms, EXPIRE_TOOFAST); |
2439 | break; |
2440 | } |
2441 | |
2442 | /* read/write data if it is ready to do so */ |
2443 | result = Curl_readwrite(conn: data->conn, data, done: &done, comeback: &comeback); |
2444 | |
2445 | if(done || (result == CURLE_RECV_ERROR)) { |
2446 | /* If CURLE_RECV_ERROR happens early enough, we assume it was a race |
2447 | * condition and the server closed the reused connection exactly when |
2448 | * we wanted to use it, so figure out if that is indeed the case. |
2449 | */ |
2450 | CURLcode ret = Curl_retry_request(data, url: &newurl); |
2451 | if(!ret) |
2452 | retry = (newurl)?TRUE:FALSE; |
2453 | else if(!result) |
2454 | result = ret; |
2455 | |
2456 | if(retry) { |
2457 | /* if we are to retry, set the result to OK and consider the |
2458 | request as done */ |
2459 | result = CURLE_OK; |
2460 | done = TRUE; |
2461 | } |
2462 | } |
2463 | else if((CURLE_HTTP2_STREAM == result) && |
2464 | Curl_h2_http_1_1_error(data)) { |
2465 | CURLcode ret = Curl_retry_request(data, url: &newurl); |
2466 | |
2467 | if(!ret) { |
2468 | infof(data, "Downgrades to HTTP/1.1" ); |
2469 | streamclose(data->conn, "Disconnect HTTP/2 for HTTP/1" ); |
2470 | data->state.httpwant = CURL_HTTP_VERSION_1_1; |
2471 | /* clear the error message bit too as we ignore the one we got */ |
2472 | data->state.errorbuf = FALSE; |
2473 | if(!newurl) |
2474 | /* typically for HTTP_1_1_REQUIRED error on first flight */ |
2475 | newurl = strdup(data->state.url); |
2476 | /* if we are to retry, set the result to OK and consider the request |
2477 | as done */ |
2478 | retry = TRUE; |
2479 | result = CURLE_OK; |
2480 | done = TRUE; |
2481 | } |
2482 | else |
2483 | result = ret; |
2484 | } |
2485 | |
2486 | if(result) { |
2487 | /* |
2488 | * The transfer phase returned error, we mark the connection to get |
2489 | * closed to prevent being reused. This is because we can't possibly |
2490 | * know if the connection is in a good shape or not now. Unless it is |
2491 | * a protocol which uses two "channels" like FTP, as then the error |
2492 | * happened in the data connection. |
2493 | */ |
2494 | |
2495 | if(!(data->conn->handler->flags & PROTOPT_DUAL) && |
2496 | result != CURLE_HTTP2_STREAM) |
2497 | streamclose(data->conn, "Transfer returned error" ); |
2498 | |
2499 | Curl_posttransfer(data); |
2500 | multi_done(data, status: result, TRUE); |
2501 | } |
2502 | else if(done) { |
2503 | |
2504 | /* call this even if the readwrite function returned error */ |
2505 | Curl_posttransfer(data); |
2506 | |
2507 | /* When we follow redirects or is set to retry the connection, we must |
2508 | to go back to the CONNECT state */ |
2509 | if(data->req.newurl || retry) { |
2510 | followtype follow = FOLLOW_NONE; |
2511 | if(!retry) { |
2512 | /* if the URL is a follow-location and not just a retried request |
2513 | then figure out the URL here */ |
2514 | free(newurl); |
2515 | newurl = data->req.newurl; |
2516 | data->req.newurl = NULL; |
2517 | follow = FOLLOW_REDIR; |
2518 | } |
2519 | else |
2520 | follow = FOLLOW_RETRY; |
2521 | (void)multi_done(data, status: CURLE_OK, FALSE); |
2522 | /* multi_done() might return CURLE_GOT_NOTHING */ |
2523 | result = Curl_follow(data, newurl, type: follow); |
2524 | if(!result) { |
2525 | multistate(data, MSTATE_CONNECT); |
2526 | rc = CURLM_CALL_MULTI_PERFORM; |
2527 | } |
2528 | free(newurl); |
2529 | } |
2530 | else { |
2531 | /* after the transfer is done, go DONE */ |
2532 | |
2533 | /* but first check to see if we got a location info even though we're |
2534 | not following redirects */ |
2535 | if(data->req.location) { |
2536 | free(newurl); |
2537 | newurl = data->req.location; |
2538 | data->req.location = NULL; |
2539 | result = Curl_follow(data, newurl, type: FOLLOW_FAKE); |
2540 | free(newurl); |
2541 | if(result) { |
2542 | stream_error = TRUE; |
2543 | result = multi_done(data, status: result, TRUE); |
2544 | } |
2545 | } |
2546 | |
2547 | if(!result) { |
2548 | multistate(data, MSTATE_DONE); |
2549 | rc = CURLM_CALL_MULTI_PERFORM; |
2550 | } |
2551 | } |
2552 | } |
2553 | else if(comeback) { |
2554 | /* This avoids CURLM_CALL_MULTI_PERFORM so that a very fast transfer |
2555 | won't get stuck on this transfer at the expense of other concurrent |
2556 | transfers */ |
2557 | Curl_expire(data, milli: 0, EXPIRE_RUN_NOW); |
2558 | } |
2559 | break; |
2560 | } |
2561 | |
2562 | case MSTATE_DONE: |
2563 | /* this state is highly transient, so run another loop after this */ |
2564 | rc = CURLM_CALL_MULTI_PERFORM; |
2565 | |
2566 | if(data->conn) { |
2567 | CURLcode res; |
2568 | |
2569 | if(data->conn->bits.multiplex) |
2570 | /* Check if we can move pending requests to connection */ |
2571 | process_pending_handles(multi); /* multiplexing */ |
2572 | |
2573 | /* post-transfer command */ |
2574 | res = multi_done(data, status: result, FALSE); |
2575 | |
2576 | /* allow a previously set error code take precedence */ |
2577 | if(!result) |
2578 | result = res; |
2579 | } |
2580 | |
2581 | #ifndef CURL_DISABLE_FTP |
2582 | if(data->state.wildcardmatch) { |
2583 | if(data->wildcard->state != CURLWC_DONE) { |
2584 | /* if a wildcard is set and we are not ending -> lets start again |
2585 | with MSTATE_INIT */ |
2586 | multistate(data, MSTATE_INIT); |
2587 | break; |
2588 | } |
2589 | } |
2590 | #endif |
2591 | /* after we have DONE what we're supposed to do, go COMPLETED, and |
2592 | it doesn't matter what the multi_done() returned! */ |
2593 | multistate(data, MSTATE_COMPLETED); |
2594 | break; |
2595 | |
2596 | case MSTATE_COMPLETED: |
2597 | break; |
2598 | |
2599 | case MSTATE_PENDING: |
2600 | case MSTATE_MSGSENT: |
2601 | /* handles in these states should NOT be in this list */ |
2602 | DEBUGASSERT(0); |
2603 | break; |
2604 | |
2605 | default: |
2606 | return CURLM_INTERNAL_ERROR; |
2607 | } |
2608 | |
2609 | if(data->conn && |
2610 | data->mstate >= MSTATE_CONNECT && |
2611 | data->mstate < MSTATE_DO && |
2612 | rc != CURLM_CALL_MULTI_PERFORM && |
2613 | !multi_ischanged(multi, false)) { |
2614 | /* We now handle stream timeouts if and only if this will be the last |
2615 | * loop iteration. We only check this on the last iteration to ensure |
2616 | * that if we know we have additional work to do immediately |
2617 | * (i.e. CURLM_CALL_MULTI_PERFORM == TRUE) then we should do that before |
2618 | * declaring the connection timed out as we may almost have a completed |
2619 | * connection. */ |
2620 | multi_handle_timeout(data, now: nowp, stream_error: &stream_error, result: &result, TRUE); |
2621 | } |
2622 | |
2623 | statemachine_end: |
2624 | |
2625 | if(data->mstate < MSTATE_COMPLETED) { |
2626 | if(result) { |
2627 | /* |
2628 | * If an error was returned, and we aren't in completed state now, |
2629 | * then we go to completed and consider this transfer aborted. |
2630 | */ |
2631 | |
2632 | /* NOTE: no attempt to disconnect connections must be made |
2633 | in the case blocks above - cleanup happens only here */ |
2634 | |
2635 | /* Check if we can move pending requests to send pipe */ |
2636 | process_pending_handles(multi); /* connection */ |
2637 | |
2638 | if(data->conn) { |
2639 | if(stream_error) { |
2640 | /* Don't attempt to send data over a connection that timed out */ |
2641 | bool dead_connection = result == CURLE_OPERATION_TIMEDOUT; |
2642 | struct connectdata *conn = data->conn; |
2643 | |
2644 | /* This is where we make sure that the conn pointer is reset. |
2645 | We don't have to do this in every case block above where a |
2646 | failure is detected */ |
2647 | Curl_detach_connection(data); |
2648 | |
2649 | /* remove connection from cache */ |
2650 | Curl_conncache_remove_conn(data, conn, TRUE); |
2651 | |
2652 | /* disconnect properly */ |
2653 | Curl_disconnect(data, conn, dead_connection); |
2654 | } |
2655 | } |
2656 | else if(data->mstate == MSTATE_CONNECT) { |
2657 | /* Curl_connect() failed */ |
2658 | (void)Curl_posttransfer(data); |
2659 | } |
2660 | |
2661 | multistate(data, MSTATE_COMPLETED); |
2662 | rc = CURLM_CALL_MULTI_PERFORM; |
2663 | } |
2664 | /* if there's still a connection to use, call the progress function */ |
2665 | else if(data->conn && Curl_pgrsUpdate(data)) { |
2666 | /* aborted due to progress callback return code must close the |
2667 | connection */ |
2668 | result = CURLE_ABORTED_BY_CALLBACK; |
2669 | streamclose(data->conn, "Aborted by callback" ); |
2670 | |
2671 | /* if not yet in DONE state, go there, otherwise COMPLETED */ |
2672 | multistate(data, (data->mstate < MSTATE_DONE)? |
2673 | MSTATE_DONE: MSTATE_COMPLETED); |
2674 | rc = CURLM_CALL_MULTI_PERFORM; |
2675 | } |
2676 | } |
2677 | |
2678 | if(MSTATE_COMPLETED == data->mstate) { |
2679 | if(data->set.fmultidone) { |
2680 | /* signal via callback instead */ |
2681 | data->set.fmultidone(data, result); |
2682 | } |
2683 | else { |
2684 | /* now fill in the Curl_message with this info */ |
2685 | msg = &data->msg; |
2686 | |
2687 | msg->extmsg.msg = CURLMSG_DONE; |
2688 | msg->extmsg.easy_handle = data; |
2689 | msg->extmsg.data.result = result; |
2690 | |
2691 | multi_addmsg(multi, msg); |
2692 | DEBUGASSERT(!data->conn); |
2693 | } |
2694 | multistate(data, MSTATE_MSGSENT); |
2695 | |
2696 | /* add this handle to the list of msgsent handles */ |
2697 | Curl_llist_insert_next(&multi->msgsent, multi->msgsent.tail, data, |
2698 | node: &data->connect_queue); |
2699 | /* unlink from the main list */ |
2700 | unlink_easy(multi, data); |
2701 | return CURLM_OK; |
2702 | } |
2703 | } while((rc == CURLM_CALL_MULTI_PERFORM) || multi_ischanged(multi, FALSE)); |
2704 | |
2705 | data->result = result; |
2706 | return rc; |
2707 | } |
2708 | |
2709 | |
2710 | CURLMcode curl_multi_perform(struct Curl_multi *multi, int *running_handles) |
2711 | { |
2712 | struct Curl_easy *data; |
2713 | CURLMcode returncode = CURLM_OK; |
2714 | struct Curl_tree *t; |
2715 | struct curltime now = Curl_now(); |
2716 | |
2717 | if(!GOOD_MULTI_HANDLE(multi)) |
2718 | return CURLM_BAD_HANDLE; |
2719 | |
2720 | if(multi->in_callback) |
2721 | return CURLM_RECURSIVE_API_CALL; |
2722 | |
2723 | data = multi->easyp; |
2724 | if(data) { |
2725 | CURLMcode result; |
2726 | bool nosig = data->set.no_signal; |
2727 | SIGPIPE_VARIABLE(pipe_st); |
2728 | sigpipe_ignore(data, ig: &pipe_st); |
2729 | /* Do the loop and only alter the signal ignore state if the next handle |
2730 | has a different NO_SIGNAL state than the previous */ |
2731 | do { |
2732 | /* the current node might be unlinked in multi_runsingle(), get the next |
2733 | pointer now */ |
2734 | struct Curl_easy *datanext = data->next; |
2735 | if(data->set.no_signal != nosig) { |
2736 | sigpipe_restore(ig: &pipe_st); |
2737 | sigpipe_ignore(data, ig: &pipe_st); |
2738 | nosig = data->set.no_signal; |
2739 | } |
2740 | result = multi_runsingle(multi, nowp: &now, data); |
2741 | if(result) |
2742 | returncode = result; |
2743 | data = datanext; /* operate on next handle */ |
2744 | } while(data); |
2745 | sigpipe_restore(ig: &pipe_st); |
2746 | } |
2747 | |
2748 | /* |
2749 | * Simply remove all expired timers from the splay since handles are dealt |
2750 | * with unconditionally by this function and curl_multi_timeout() requires |
2751 | * that already passed/handled expire times are removed from the splay. |
2752 | * |
2753 | * It is important that the 'now' value is set at the entry of this function |
2754 | * and not for the current time as it may have ticked a little while since |
2755 | * then and then we risk this loop to remove timers that actually have not |
2756 | * been handled! |
2757 | */ |
2758 | do { |
2759 | multi->timetree = Curl_splaygetbest(key: now, t: multi->timetree, removed: &t); |
2760 | if(t) |
2761 | /* the removed may have another timeout in queue */ |
2762 | (void)add_next_timeout(now, multi, d: t->payload); |
2763 | |
2764 | } while(t); |
2765 | |
2766 | *running_handles = multi->num_alive; |
2767 | |
2768 | if(CURLM_OK >= returncode) |
2769 | returncode = Curl_update_timer(multi); |
2770 | |
2771 | return returncode; |
2772 | } |
2773 | |
2774 | /* unlink_all_msgsent_handles() detaches all those easy handles from this |
2775 | multi handle */ |
2776 | static void unlink_all_msgsent_handles(struct Curl_multi *multi) |
2777 | { |
2778 | struct Curl_llist_element *e = multi->msgsent.head; |
2779 | if(e) { |
2780 | struct Curl_easy *data = e->ptr; |
2781 | DEBUGASSERT(data->mstate == MSTATE_MSGSENT); |
2782 | data->multi = NULL; |
2783 | } |
2784 | } |
2785 | |
2786 | CURLMcode curl_multi_cleanup(struct Curl_multi *multi) |
2787 | { |
2788 | struct Curl_easy *data; |
2789 | struct Curl_easy *nextdata; |
2790 | |
2791 | if(GOOD_MULTI_HANDLE(multi)) { |
2792 | if(multi->in_callback) |
2793 | return CURLM_RECURSIVE_API_CALL; |
2794 | |
2795 | multi->magic = 0; /* not good anymore */ |
2796 | |
2797 | unlink_all_msgsent_handles(multi); |
2798 | process_pending_handles(multi); |
2799 | /* First remove all remaining easy handles */ |
2800 | data = multi->easyp; |
2801 | while(data) { |
2802 | nextdata = data->next; |
2803 | if(!data->state.done && data->conn) |
2804 | /* if DONE was never called for this handle */ |
2805 | (void)multi_done(data, status: CURLE_OK, TRUE); |
2806 | if(data->dns.hostcachetype == HCACHE_MULTI) { |
2807 | /* clear out the usage of the shared DNS cache */ |
2808 | Curl_hostcache_clean(data, hash: data->dns.hostcache); |
2809 | data->dns.hostcache = NULL; |
2810 | data->dns.hostcachetype = HCACHE_NONE; |
2811 | } |
2812 | |
2813 | /* Clear the pointer to the connection cache */ |
2814 | data->state.conn_cache = NULL; |
2815 | data->multi = NULL; /* clear the association */ |
2816 | |
2817 | #ifdef USE_LIBPSL |
2818 | if(data->psl == &multi->psl) |
2819 | data->psl = NULL; |
2820 | #endif |
2821 | |
2822 | data = nextdata; |
2823 | } |
2824 | |
2825 | /* Close all the connections in the connection cache */ |
2826 | Curl_conncache_close_all_connections(connc: &multi->conn_cache); |
2827 | |
2828 | sockhash_destroy(h: &multi->sockhash); |
2829 | Curl_conncache_destroy(connc: &multi->conn_cache); |
2830 | Curl_hash_destroy(h: &multi->hostcache); |
2831 | Curl_psl_destroy(&multi->psl); |
2832 | |
2833 | #ifdef USE_WINSOCK |
2834 | WSACloseEvent(multi->wsa_event); |
2835 | #else |
2836 | #ifdef ENABLE_WAKEUP |
2837 | wakeup_close(multi->wakeup_pair[0]); |
2838 | wakeup_close(multi->wakeup_pair[1]); |
2839 | #endif |
2840 | #endif |
2841 | |
2842 | #ifdef USE_SSL |
2843 | Curl_free_multi_ssl_backend_data(mbackend: multi->ssl_backend_data); |
2844 | #endif |
2845 | |
2846 | free(multi); |
2847 | |
2848 | return CURLM_OK; |
2849 | } |
2850 | return CURLM_BAD_HANDLE; |
2851 | } |
2852 | |
2853 | /* |
2854 | * curl_multi_info_read() |
2855 | * |
2856 | * This function is the primary way for a multi/multi_socket application to |
2857 | * figure out if a transfer has ended. We MUST make this function as fast as |
2858 | * possible as it will be polled frequently and we MUST NOT scan any lists in |
2859 | * here to figure out things. We must scale fine to thousands of handles and |
2860 | * beyond. The current design is fully O(1). |
2861 | */ |
2862 | |
2863 | CURLMsg *curl_multi_info_read(struct Curl_multi *multi, int *msgs_in_queue) |
2864 | { |
2865 | struct Curl_message *msg; |
2866 | |
2867 | *msgs_in_queue = 0; /* default to none */ |
2868 | |
2869 | if(GOOD_MULTI_HANDLE(multi) && |
2870 | !multi->in_callback && |
2871 | Curl_llist_count(&multi->msglist)) { |
2872 | /* there is one or more messages in the list */ |
2873 | struct Curl_llist_element *e; |
2874 | |
2875 | /* extract the head of the list to return */ |
2876 | e = multi->msglist.head; |
2877 | |
2878 | msg = e->ptr; |
2879 | |
2880 | /* remove the extracted entry */ |
2881 | Curl_llist_remove(&multi->msglist, e, NULL); |
2882 | |
2883 | *msgs_in_queue = curlx_uztosi(uznum: Curl_llist_count(&multi->msglist)); |
2884 | |
2885 | return &msg->extmsg; |
2886 | } |
2887 | return NULL; |
2888 | } |
2889 | |
2890 | /* |
2891 | * singlesocket() checks what sockets we deal with and their "action state" |
2892 | * and if we have a different state in any of those sockets from last time we |
2893 | * call the callback accordingly. |
2894 | */ |
2895 | static CURLMcode singlesocket(struct Curl_multi *multi, |
2896 | struct Curl_easy *data) |
2897 | { |
2898 | curl_socket_t socks[MAX_SOCKSPEREASYHANDLE]; |
2899 | int i; |
2900 | struct Curl_sh_entry *entry; |
2901 | curl_socket_t s; |
2902 | int num; |
2903 | unsigned int curraction; |
2904 | unsigned char actions[MAX_SOCKSPEREASYHANDLE]; |
2905 | int rc; |
2906 | |
2907 | for(i = 0; i< MAX_SOCKSPEREASYHANDLE; i++) |
2908 | socks[i] = CURL_SOCKET_BAD; |
2909 | |
2910 | /* Fill in the 'current' struct with the state as it is now: what sockets to |
2911 | supervise and for what actions */ |
2912 | curraction = multi_getsock(data, socks); |
2913 | |
2914 | /* We have 0 .. N sockets already and we get to know about the 0 .. M |
2915 | sockets we should have from now on. Detect the differences, remove no |
2916 | longer supervised ones and add new ones */ |
2917 | |
2918 | /* walk over the sockets we got right now */ |
2919 | for(i = 0; (i< MAX_SOCKSPEREASYHANDLE) && |
2920 | (curraction & GETSOCK_MASK_RW(i)); |
2921 | i++) { |
2922 | unsigned char action = CURL_POLL_NONE; |
2923 | unsigned char prevaction = 0; |
2924 | int comboaction; |
2925 | bool sincebefore = FALSE; |
2926 | |
2927 | s = socks[i]; |
2928 | |
2929 | /* get it from the hash */ |
2930 | entry = sh_getentry(sh: &multi->sockhash, s); |
2931 | |
2932 | if(curraction & GETSOCK_READSOCK(i)) |
2933 | action |= CURL_POLL_IN; |
2934 | if(curraction & GETSOCK_WRITESOCK(i)) |
2935 | action |= CURL_POLL_OUT; |
2936 | |
2937 | actions[i] = action; |
2938 | if(entry) { |
2939 | /* check if new for this transfer */ |
2940 | int j; |
2941 | for(j = 0; j< data->numsocks; j++) { |
2942 | if(s == data->sockets[j]) { |
2943 | prevaction = data->actions[j]; |
2944 | sincebefore = TRUE; |
2945 | break; |
2946 | } |
2947 | } |
2948 | } |
2949 | else { |
2950 | /* this is a socket we didn't have before, add it to the hash! */ |
2951 | entry = sh_addentry(sh: &multi->sockhash, s); |
2952 | if(!entry) |
2953 | /* fatal */ |
2954 | return CURLM_OUT_OF_MEMORY; |
2955 | } |
2956 | if(sincebefore && (prevaction != action)) { |
2957 | /* Socket was used already, but different action now */ |
2958 | if(prevaction & CURL_POLL_IN) |
2959 | entry->readers--; |
2960 | if(prevaction & CURL_POLL_OUT) |
2961 | entry->writers--; |
2962 | if(action & CURL_POLL_IN) |
2963 | entry->readers++; |
2964 | if(action & CURL_POLL_OUT) |
2965 | entry->writers++; |
2966 | } |
2967 | else if(!sincebefore) { |
2968 | /* a new user */ |
2969 | entry->users++; |
2970 | if(action & CURL_POLL_IN) |
2971 | entry->readers++; |
2972 | if(action & CURL_POLL_OUT) |
2973 | entry->writers++; |
2974 | |
2975 | /* add 'data' to the transfer hash on this socket! */ |
2976 | if(!Curl_hash_add(h: &entry->transfers, key: (char *)&data, /* hash key */ |
2977 | key_len: sizeof(struct Curl_easy *), p: data)) { |
2978 | Curl_hash_destroy(h: &entry->transfers); |
2979 | return CURLM_OUT_OF_MEMORY; |
2980 | } |
2981 | } |
2982 | |
2983 | comboaction = (entry->writers? CURL_POLL_OUT : 0) | |
2984 | (entry->readers ? CURL_POLL_IN : 0); |
2985 | |
2986 | /* socket existed before and has the same action set as before */ |
2987 | if(sincebefore && ((int)entry->action == comboaction)) |
2988 | /* same, continue */ |
2989 | continue; |
2990 | |
2991 | if(multi->socket_cb) { |
2992 | set_in_callback(multi, TRUE); |
2993 | rc = multi->socket_cb(data, s, comboaction, multi->socket_userp, |
2994 | entry->socketp); |
2995 | set_in_callback(multi, FALSE); |
2996 | if(rc == -1) { |
2997 | multi->dead = TRUE; |
2998 | return CURLM_ABORTED_BY_CALLBACK; |
2999 | } |
3000 | } |
3001 | |
3002 | entry->action = comboaction; /* store the current action state */ |
3003 | } |
3004 | |
3005 | num = i; /* number of sockets */ |
3006 | |
3007 | /* when we've walked over all the sockets we should have right now, we must |
3008 | make sure to detect sockets that are removed */ |
3009 | for(i = 0; i< data->numsocks; i++) { |
3010 | int j; |
3011 | bool stillused = FALSE; |
3012 | s = data->sockets[i]; |
3013 | for(j = 0; j < num; j++) { |
3014 | if(s == socks[j]) { |
3015 | /* this is still supervised */ |
3016 | stillused = TRUE; |
3017 | break; |
3018 | } |
3019 | } |
3020 | if(stillused) |
3021 | continue; |
3022 | |
3023 | entry = sh_getentry(sh: &multi->sockhash, s); |
3024 | /* if this is NULL here, the socket has been closed and notified so |
3025 | already by Curl_multi_closed() */ |
3026 | if(entry) { |
3027 | unsigned char oldactions = data->actions[i]; |
3028 | /* this socket has been removed. Decrease user count */ |
3029 | entry->users--; |
3030 | if(oldactions & CURL_POLL_OUT) |
3031 | entry->writers--; |
3032 | if(oldactions & CURL_POLL_IN) |
3033 | entry->readers--; |
3034 | if(!entry->users) { |
3035 | if(multi->socket_cb) { |
3036 | set_in_callback(multi, TRUE); |
3037 | rc = multi->socket_cb(data, s, CURL_POLL_REMOVE, |
3038 | multi->socket_userp, entry->socketp); |
3039 | set_in_callback(multi, FALSE); |
3040 | if(rc == -1) { |
3041 | multi->dead = TRUE; |
3042 | return CURLM_ABORTED_BY_CALLBACK; |
3043 | } |
3044 | } |
3045 | sh_delentry(entry, sh: &multi->sockhash, s); |
3046 | } |
3047 | else { |
3048 | /* still users, but remove this handle as a user of this socket */ |
3049 | if(Curl_hash_delete(h: &entry->transfers, key: (char *)&data, |
3050 | key_len: sizeof(struct Curl_easy *))) { |
3051 | DEBUGASSERT(NULL); |
3052 | } |
3053 | } |
3054 | } |
3055 | } /* for loop over numsocks */ |
3056 | |
3057 | memcpy(dest: data->sockets, src: socks, n: num*sizeof(curl_socket_t)); |
3058 | memcpy(dest: data->actions, src: actions, n: num*sizeof(char)); |
3059 | data->numsocks = num; |
3060 | return CURLM_OK; |
3061 | } |
3062 | |
3063 | CURLcode Curl_updatesocket(struct Curl_easy *data) |
3064 | { |
3065 | if(singlesocket(multi: data->multi, data)) |
3066 | return CURLE_ABORTED_BY_CALLBACK; |
3067 | return CURLE_OK; |
3068 | } |
3069 | |
3070 | |
3071 | /* |
3072 | * Curl_multi_closed() |
3073 | * |
3074 | * Used by the connect code to tell the multi_socket code that one of the |
3075 | * sockets we were using is about to be closed. This function will then |
3076 | * remove it from the sockethash for this handle to make the multi_socket API |
3077 | * behave properly, especially for the case when libcurl will create another |
3078 | * socket again and it gets the same file descriptor number. |
3079 | */ |
3080 | |
3081 | void Curl_multi_closed(struct Curl_easy *data, curl_socket_t s) |
3082 | { |
3083 | if(data) { |
3084 | /* if there's still an easy handle associated with this connection */ |
3085 | struct Curl_multi *multi = data->multi; |
3086 | if(multi) { |
3087 | /* this is set if this connection is part of a handle that is added to |
3088 | a multi handle, and only then this is necessary */ |
3089 | struct Curl_sh_entry *entry = sh_getentry(sh: &multi->sockhash, s); |
3090 | |
3091 | if(entry) { |
3092 | int rc = 0; |
3093 | if(multi->socket_cb) { |
3094 | set_in_callback(multi, TRUE); |
3095 | rc = multi->socket_cb(data, s, CURL_POLL_REMOVE, |
3096 | multi->socket_userp, entry->socketp); |
3097 | set_in_callback(multi, FALSE); |
3098 | } |
3099 | |
3100 | /* now remove it from the socket hash */ |
3101 | sh_delentry(entry, sh: &multi->sockhash, s); |
3102 | if(rc == -1) |
3103 | /* This just marks the multi handle as "dead" without returning an |
3104 | error code primarily because this function is used from many |
3105 | places where propagating an error back is tricky. */ |
3106 | multi->dead = TRUE; |
3107 | } |
3108 | } |
3109 | } |
3110 | } |
3111 | |
3112 | /* |
3113 | * add_next_timeout() |
3114 | * |
3115 | * Each Curl_easy has a list of timeouts. The add_next_timeout() is called |
3116 | * when it has just been removed from the splay tree because the timeout has |
3117 | * expired. This function is then to advance in the list to pick the next |
3118 | * timeout to use (skip the already expired ones) and add this node back to |
3119 | * the splay tree again. |
3120 | * |
3121 | * The splay tree only has each sessionhandle as a single node and the nearest |
3122 | * timeout is used to sort it on. |
3123 | */ |
3124 | static CURLMcode add_next_timeout(struct curltime now, |
3125 | struct Curl_multi *multi, |
3126 | struct Curl_easy *d) |
3127 | { |
3128 | struct curltime *tv = &d->state.expiretime; |
3129 | struct Curl_llist *list = &d->state.timeoutlist; |
3130 | struct Curl_llist_element *e; |
3131 | struct time_node *node = NULL; |
3132 | |
3133 | /* move over the timeout list for this specific handle and remove all |
3134 | timeouts that are now passed tense and store the next pending |
3135 | timeout in *tv */ |
3136 | for(e = list->head; e;) { |
3137 | struct Curl_llist_element *n = e->next; |
3138 | timediff_t diff; |
3139 | node = (struct time_node *)e->ptr; |
3140 | diff = Curl_timediff_us(newer: node->time, older: now); |
3141 | if(diff <= 0) |
3142 | /* remove outdated entry */ |
3143 | Curl_llist_remove(list, e, NULL); |
3144 | else |
3145 | /* the list is sorted so get out on the first mismatch */ |
3146 | break; |
3147 | e = n; |
3148 | } |
3149 | e = list->head; |
3150 | if(!e) { |
3151 | /* clear the expire times within the handles that we remove from the |
3152 | splay tree */ |
3153 | tv->tv_sec = 0; |
3154 | tv->tv_usec = 0; |
3155 | } |
3156 | else { |
3157 | /* copy the first entry to 'tv' */ |
3158 | memcpy(dest: tv, src: &node->time, n: sizeof(*tv)); |
3159 | |
3160 | /* Insert this node again into the splay. Keep the timer in the list in |
3161 | case we need to recompute future timers. */ |
3162 | multi->timetree = Curl_splayinsert(key: *tv, t: multi->timetree, |
3163 | newnode: &d->state.timenode); |
3164 | } |
3165 | return CURLM_OK; |
3166 | } |
3167 | |
3168 | static CURLMcode multi_socket(struct Curl_multi *multi, |
3169 | bool checkall, |
3170 | curl_socket_t s, |
3171 | int ev_bitmask, |
3172 | int *running_handles) |
3173 | { |
3174 | CURLMcode result = CURLM_OK; |
3175 | struct Curl_easy *data = NULL; |
3176 | struct Curl_tree *t; |
3177 | struct curltime now = Curl_now(); |
3178 | bool first = FALSE; |
3179 | bool nosig = FALSE; |
3180 | SIGPIPE_VARIABLE(pipe_st); |
3181 | |
3182 | if(checkall) { |
3183 | /* *perform() deals with running_handles on its own */ |
3184 | result = curl_multi_perform(multi, running_handles); |
3185 | |
3186 | /* walk through each easy handle and do the socket state change magic |
3187 | and callbacks */ |
3188 | if(result != CURLM_BAD_HANDLE) { |
3189 | data = multi->easyp; |
3190 | while(data && !result) { |
3191 | result = singlesocket(multi, data); |
3192 | data = data->next; |
3193 | } |
3194 | } |
3195 | |
3196 | /* or should we fall-through and do the timer-based stuff? */ |
3197 | return result; |
3198 | } |
3199 | if(s != CURL_SOCKET_TIMEOUT) { |
3200 | struct Curl_sh_entry *entry = sh_getentry(sh: &multi->sockhash, s); |
3201 | |
3202 | if(!entry) |
3203 | /* Unmatched socket, we can't act on it but we ignore this fact. In |
3204 | real-world tests it has been proved that libevent can in fact give |
3205 | the application actions even though the socket was just previously |
3206 | asked to get removed, so thus we better survive stray socket actions |
3207 | and just move on. */ |
3208 | ; |
3209 | else { |
3210 | struct Curl_hash_iterator iter; |
3211 | struct Curl_hash_element *he; |
3212 | |
3213 | /* the socket can be shared by many transfers, iterate */ |
3214 | Curl_hash_start_iterate(hash: &entry->transfers, iter: &iter); |
3215 | for(he = Curl_hash_next_element(iter: &iter); he; |
3216 | he = Curl_hash_next_element(iter: &iter)) { |
3217 | data = (struct Curl_easy *)he->ptr; |
3218 | DEBUGASSERT(data); |
3219 | DEBUGASSERT(data->magic == CURLEASY_MAGIC_NUMBER); |
3220 | |
3221 | if(data->conn && !(data->conn->handler->flags & PROTOPT_DIRLOCK)) |
3222 | /* set socket event bitmask if they're not locked */ |
3223 | data->conn->cselect_bits = (unsigned char)ev_bitmask; |
3224 | |
3225 | Curl_expire(data, milli: 0, EXPIRE_RUN_NOW); |
3226 | } |
3227 | |
3228 | /* Now we fall-through and do the timer-based stuff, since we don't want |
3229 | to force the user to have to deal with timeouts as long as at least |
3230 | one connection in fact has traffic. */ |
3231 | |
3232 | data = NULL; /* set data to NULL again to avoid calling |
3233 | multi_runsingle() in case there's no need to */ |
3234 | now = Curl_now(); /* get a newer time since the multi_runsingle() loop |
3235 | may have taken some time */ |
3236 | } |
3237 | } |
3238 | else { |
3239 | /* Asked to run due to time-out. Clear the 'lastcall' variable to force |
3240 | Curl_update_timer() to trigger a callback to the app again even if the |
3241 | same timeout is still the one to run after this call. That handles the |
3242 | case when the application asks libcurl to run the timeout |
3243 | prematurely. */ |
3244 | memset(s: &multi->timer_lastcall, c: 0, n: sizeof(multi->timer_lastcall)); |
3245 | } |
3246 | |
3247 | /* |
3248 | * The loop following here will go on as long as there are expire-times left |
3249 | * to process in the splay and 'data' will be re-assigned for every expired |
3250 | * handle we deal with. |
3251 | */ |
3252 | do { |
3253 | /* the first loop lap 'data' can be NULL */ |
3254 | if(data) { |
3255 | if(!first) { |
3256 | first = TRUE; |
3257 | nosig = data->set.no_signal; /* initial state */ |
3258 | sigpipe_ignore(data, ig: &pipe_st); |
3259 | } |
3260 | else if(data->set.no_signal != nosig) { |
3261 | sigpipe_restore(ig: &pipe_st); |
3262 | sigpipe_ignore(data, ig: &pipe_st); |
3263 | nosig = data->set.no_signal; /* remember new state */ |
3264 | } |
3265 | result = multi_runsingle(multi, nowp: &now, data); |
3266 | |
3267 | if(CURLM_OK >= result) { |
3268 | /* get the socket(s) and check if the state has been changed since |
3269 | last */ |
3270 | result = singlesocket(multi, data); |
3271 | if(result) |
3272 | break; |
3273 | } |
3274 | } |
3275 | |
3276 | /* Check if there's one (more) expired timer to deal with! This function |
3277 | extracts a matching node if there is one */ |
3278 | |
3279 | multi->timetree = Curl_splaygetbest(key: now, t: multi->timetree, removed: &t); |
3280 | if(t) { |
3281 | data = t->payload; /* assign this for next loop */ |
3282 | (void)add_next_timeout(now, multi, d: t->payload); |
3283 | } |
3284 | |
3285 | } while(t); |
3286 | if(first) |
3287 | sigpipe_restore(ig: &pipe_st); |
3288 | |
3289 | *running_handles = multi->num_alive; |
3290 | return result; |
3291 | } |
3292 | |
3293 | #undef curl_multi_setopt |
3294 | CURLMcode curl_multi_setopt(struct Curl_multi *multi, |
3295 | CURLMoption option, ...) |
3296 | { |
3297 | CURLMcode res = CURLM_OK; |
3298 | va_list param; |
3299 | |
3300 | if(!GOOD_MULTI_HANDLE(multi)) |
3301 | return CURLM_BAD_HANDLE; |
3302 | |
3303 | if(multi->in_callback) |
3304 | return CURLM_RECURSIVE_API_CALL; |
3305 | |
3306 | va_start(param, option); |
3307 | |
3308 | switch(option) { |
3309 | case CURLMOPT_SOCKETFUNCTION: |
3310 | multi->socket_cb = va_arg(param, curl_socket_callback); |
3311 | break; |
3312 | case CURLMOPT_SOCKETDATA: |
3313 | multi->socket_userp = va_arg(param, void *); |
3314 | break; |
3315 | case CURLMOPT_PUSHFUNCTION: |
3316 | multi->push_cb = va_arg(param, curl_push_callback); |
3317 | break; |
3318 | case CURLMOPT_PUSHDATA: |
3319 | multi->push_userp = va_arg(param, void *); |
3320 | break; |
3321 | case CURLMOPT_PIPELINING: |
3322 | multi->multiplexing = va_arg(param, long) & CURLPIPE_MULTIPLEX ? 1 : 0; |
3323 | break; |
3324 | case CURLMOPT_TIMERFUNCTION: |
3325 | multi->timer_cb = va_arg(param, curl_multi_timer_callback); |
3326 | break; |
3327 | case CURLMOPT_TIMERDATA: |
3328 | multi->timer_userp = va_arg(param, void *); |
3329 | break; |
3330 | case CURLMOPT_MAXCONNECTS: |
3331 | multi->maxconnects = va_arg(param, long); |
3332 | break; |
3333 | case CURLMOPT_MAX_HOST_CONNECTIONS: |
3334 | multi->max_host_connections = va_arg(param, long); |
3335 | break; |
3336 | case CURLMOPT_MAX_TOTAL_CONNECTIONS: |
3337 | multi->max_total_connections = va_arg(param, long); |
3338 | break; |
3339 | /* options formerly used for pipelining */ |
3340 | case CURLMOPT_MAX_PIPELINE_LENGTH: |
3341 | break; |
3342 | case CURLMOPT_CONTENT_LENGTH_PENALTY_SIZE: |
3343 | break; |
3344 | case CURLMOPT_CHUNK_LENGTH_PENALTY_SIZE: |
3345 | break; |
3346 | case CURLMOPT_PIPELINING_SITE_BL: |
3347 | break; |
3348 | case CURLMOPT_PIPELINING_SERVER_BL: |
3349 | break; |
3350 | case CURLMOPT_MAX_CONCURRENT_STREAMS: |
3351 | { |
3352 | long streams = va_arg(param, long); |
3353 | if(streams < 1) |
3354 | streams = 100; |
3355 | multi->max_concurrent_streams = curlx_sltoui(slnum: streams); |
3356 | } |
3357 | break; |
3358 | default: |
3359 | res = CURLM_UNKNOWN_OPTION; |
3360 | break; |
3361 | } |
3362 | va_end(param); |
3363 | return res; |
3364 | } |
3365 | |
3366 | /* we define curl_multi_socket() in the public multi.h header */ |
3367 | #undef curl_multi_socket |
3368 | |
3369 | CURLMcode curl_multi_socket(struct Curl_multi *multi, curl_socket_t s, |
3370 | int *running_handles) |
3371 | { |
3372 | CURLMcode result; |
3373 | if(multi->in_callback) |
3374 | return CURLM_RECURSIVE_API_CALL; |
3375 | result = multi_socket(multi, FALSE, s, ev_bitmask: 0, running_handles); |
3376 | if(CURLM_OK >= result) |
3377 | result = Curl_update_timer(multi); |
3378 | return result; |
3379 | } |
3380 | |
3381 | CURLMcode curl_multi_socket_action(struct Curl_multi *multi, curl_socket_t s, |
3382 | int ev_bitmask, int *running_handles) |
3383 | { |
3384 | CURLMcode result; |
3385 | if(multi->in_callback) |
3386 | return CURLM_RECURSIVE_API_CALL; |
3387 | result = multi_socket(multi, FALSE, s, ev_bitmask, running_handles); |
3388 | if(CURLM_OK >= result) |
3389 | result = Curl_update_timer(multi); |
3390 | return result; |
3391 | } |
3392 | |
3393 | CURLMcode curl_multi_socket_all(struct Curl_multi *multi, int *running_handles) |
3394 | { |
3395 | CURLMcode result; |
3396 | if(multi->in_callback) |
3397 | return CURLM_RECURSIVE_API_CALL; |
3398 | result = multi_socket(multi, TRUE, CURL_SOCKET_BAD, ev_bitmask: 0, running_handles); |
3399 | if(CURLM_OK >= result) |
3400 | result = Curl_update_timer(multi); |
3401 | return result; |
3402 | } |
3403 | |
3404 | static CURLMcode multi_timeout(struct Curl_multi *multi, |
3405 | long *timeout_ms) |
3406 | { |
3407 | static const struct curltime tv_zero = {0, 0}; |
3408 | |
3409 | if(multi->dead) { |
3410 | *timeout_ms = 0; |
3411 | return CURLM_OK; |
3412 | } |
3413 | |
3414 | if(multi->timetree) { |
3415 | /* we have a tree of expire times */ |
3416 | struct curltime now = Curl_now(); |
3417 | |
3418 | /* splay the lowest to the bottom */ |
3419 | multi->timetree = Curl_splay(i: tv_zero, t: multi->timetree); |
3420 | |
3421 | if(Curl_splaycomparekeys(multi->timetree->key, now) > 0) { |
3422 | /* some time left before expiration */ |
3423 | timediff_t diff = Curl_timediff_ceil(newer: multi->timetree->key, older: now); |
3424 | /* this should be safe even on 32 bit archs, as we don't use that |
3425 | overly long timeouts */ |
3426 | *timeout_ms = (long)diff; |
3427 | } |
3428 | else |
3429 | /* 0 means immediately */ |
3430 | *timeout_ms = 0; |
3431 | } |
3432 | else |
3433 | *timeout_ms = -1; |
3434 | |
3435 | return CURLM_OK; |
3436 | } |
3437 | |
3438 | CURLMcode curl_multi_timeout(struct Curl_multi *multi, |
3439 | long *timeout_ms) |
3440 | { |
3441 | /* First, make some basic checks that the CURLM handle is a good handle */ |
3442 | if(!GOOD_MULTI_HANDLE(multi)) |
3443 | return CURLM_BAD_HANDLE; |
3444 | |
3445 | if(multi->in_callback) |
3446 | return CURLM_RECURSIVE_API_CALL; |
3447 | |
3448 | return multi_timeout(multi, timeout_ms); |
3449 | } |
3450 | |
3451 | /* |
3452 | * Tell the application it should update its timers, if it subscribes to the |
3453 | * update timer callback. |
3454 | */ |
3455 | CURLMcode Curl_update_timer(struct Curl_multi *multi) |
3456 | { |
3457 | long timeout_ms; |
3458 | int rc; |
3459 | |
3460 | if(!multi->timer_cb || multi->dead) |
3461 | return CURLM_OK; |
3462 | if(multi_timeout(multi, timeout_ms: &timeout_ms)) { |
3463 | return CURLM_OK; |
3464 | } |
3465 | if(timeout_ms < 0) { |
3466 | static const struct curltime none = {0, 0}; |
3467 | if(Curl_splaycomparekeys(none, multi->timer_lastcall)) { |
3468 | multi->timer_lastcall = none; |
3469 | /* there's no timeout now but there was one previously, tell the app to |
3470 | disable it */ |
3471 | set_in_callback(multi, TRUE); |
3472 | rc = multi->timer_cb(multi, -1, multi->timer_userp); |
3473 | set_in_callback(multi, FALSE); |
3474 | if(rc == -1) { |
3475 | multi->dead = TRUE; |
3476 | return CURLM_ABORTED_BY_CALLBACK; |
3477 | } |
3478 | return CURLM_OK; |
3479 | } |
3480 | return CURLM_OK; |
3481 | } |
3482 | |
3483 | /* When multi_timeout() is done, multi->timetree points to the node with the |
3484 | * timeout we got the (relative) time-out time for. We can thus easily check |
3485 | * if this is the same (fixed) time as we got in a previous call and then |
3486 | * avoid calling the callback again. */ |
3487 | if(Curl_splaycomparekeys(multi->timetree->key, multi->timer_lastcall) == 0) |
3488 | return CURLM_OK; |
3489 | |
3490 | multi->timer_lastcall = multi->timetree->key; |
3491 | |
3492 | set_in_callback(multi, TRUE); |
3493 | rc = multi->timer_cb(multi, timeout_ms, multi->timer_userp); |
3494 | set_in_callback(multi, FALSE); |
3495 | if(rc == -1) { |
3496 | multi->dead = TRUE; |
3497 | return CURLM_ABORTED_BY_CALLBACK; |
3498 | } |
3499 | return CURLM_OK; |
3500 | } |
3501 | |
3502 | /* |
3503 | * multi_deltimeout() |
3504 | * |
3505 | * Remove a given timestamp from the list of timeouts. |
3506 | */ |
3507 | static void |
3508 | multi_deltimeout(struct Curl_easy *data, expire_id eid) |
3509 | { |
3510 | struct Curl_llist_element *e; |
3511 | struct Curl_llist *timeoutlist = &data->state.timeoutlist; |
3512 | /* find and remove the specific node from the list */ |
3513 | for(e = timeoutlist->head; e; e = e->next) { |
3514 | struct time_node *n = (struct time_node *)e->ptr; |
3515 | if(n->eid == eid) { |
3516 | Curl_llist_remove(timeoutlist, e, NULL); |
3517 | return; |
3518 | } |
3519 | } |
3520 | } |
3521 | |
3522 | /* |
3523 | * multi_addtimeout() |
3524 | * |
3525 | * Add a timestamp to the list of timeouts. Keep the list sorted so that head |
3526 | * of list is always the timeout nearest in time. |
3527 | * |
3528 | */ |
3529 | static CURLMcode |
3530 | multi_addtimeout(struct Curl_easy *data, |
3531 | struct curltime *stamp, |
3532 | expire_id eid) |
3533 | { |
3534 | struct Curl_llist_element *e; |
3535 | struct time_node *node; |
3536 | struct Curl_llist_element *prev = NULL; |
3537 | size_t n; |
3538 | struct Curl_llist *timeoutlist = &data->state.timeoutlist; |
3539 | |
3540 | node = &data->state.expires[eid]; |
3541 | |
3542 | /* copy the timestamp and id */ |
3543 | memcpy(dest: &node->time, src: stamp, n: sizeof(*stamp)); |
3544 | node->eid = eid; /* also marks it as in use */ |
3545 | |
3546 | n = Curl_llist_count(timeoutlist); |
3547 | if(n) { |
3548 | /* find the correct spot in the list */ |
3549 | for(e = timeoutlist->head; e; e = e->next) { |
3550 | struct time_node *check = (struct time_node *)e->ptr; |
3551 | timediff_t diff = Curl_timediff(newer: check->time, older: node->time); |
3552 | if(diff > 0) |
3553 | break; |
3554 | prev = e; |
3555 | } |
3556 | |
3557 | } |
3558 | /* else |
3559 | this is the first timeout on the list */ |
3560 | |
3561 | Curl_llist_insert_next(timeoutlist, prev, node, node: &node->list); |
3562 | return CURLM_OK; |
3563 | } |
3564 | |
3565 | /* |
3566 | * Curl_expire() |
3567 | * |
3568 | * given a number of milliseconds from now to use to set the 'act before |
3569 | * this'-time for the transfer, to be extracted by curl_multi_timeout() |
3570 | * |
3571 | * The timeout will be added to a queue of timeouts if it defines a moment in |
3572 | * time that is later than the current head of queue. |
3573 | * |
3574 | * Expire replaces a former timeout using the same id if already set. |
3575 | */ |
3576 | void Curl_expire(struct Curl_easy *data, timediff_t milli, expire_id id) |
3577 | { |
3578 | struct Curl_multi *multi = data->multi; |
3579 | struct curltime *nowp = &data->state.expiretime; |
3580 | struct curltime set; |
3581 | |
3582 | /* this is only interesting while there is still an associated multi struct |
3583 | remaining! */ |
3584 | if(!multi) |
3585 | return; |
3586 | |
3587 | DEBUGASSERT(id < EXPIRE_LAST); |
3588 | |
3589 | set = Curl_now(); |
3590 | set.tv_sec += (time_t)(milli/1000); /* might be a 64 to 32 bit conversion */ |
3591 | set.tv_usec += (unsigned int)(milli%1000)*1000; |
3592 | |
3593 | if(set.tv_usec >= 1000000) { |
3594 | set.tv_sec++; |
3595 | set.tv_usec -= 1000000; |
3596 | } |
3597 | |
3598 | /* Remove any timer with the same id just in case. */ |
3599 | multi_deltimeout(data, eid: id); |
3600 | |
3601 | /* Add it to the timer list. It must stay in the list until it has expired |
3602 | in case we need to recompute the minimum timer later. */ |
3603 | multi_addtimeout(data, stamp: &set, eid: id); |
3604 | |
3605 | if(nowp->tv_sec || nowp->tv_usec) { |
3606 | /* This means that the struct is added as a node in the splay tree. |
3607 | Compare if the new time is earlier, and only remove-old/add-new if it |
3608 | is. */ |
3609 | timediff_t diff = Curl_timediff(newer: set, older: *nowp); |
3610 | int rc; |
3611 | |
3612 | if(diff > 0) { |
3613 | /* The current splay tree entry is sooner than this new expiry time. |
3614 | We don't need to update our splay tree entry. */ |
3615 | return; |
3616 | } |
3617 | |
3618 | /* Since this is an updated time, we must remove the previous entry from |
3619 | the splay tree first and then re-add the new value */ |
3620 | rc = Curl_splayremove(t: multi->timetree, removenode: &data->state.timenode, |
3621 | newroot: &multi->timetree); |
3622 | if(rc) |
3623 | infof(data, "Internal error removing splay node = %d" , rc); |
3624 | } |
3625 | |
3626 | /* Indicate that we are in the splay tree and insert the new timer expiry |
3627 | value since it is our local minimum. */ |
3628 | *nowp = set; |
3629 | data->state.timenode.payload = data; |
3630 | multi->timetree = Curl_splayinsert(key: *nowp, t: multi->timetree, |
3631 | newnode: &data->state.timenode); |
3632 | } |
3633 | |
3634 | /* |
3635 | * Curl_expire_done() |
3636 | * |
3637 | * Removes the expire timer. Marks it as done. |
3638 | * |
3639 | */ |
3640 | void Curl_expire_done(struct Curl_easy *data, expire_id id) |
3641 | { |
3642 | /* remove the timer, if there */ |
3643 | multi_deltimeout(data, eid: id); |
3644 | } |
3645 | |
3646 | /* |
3647 | * Curl_expire_clear() |
3648 | * |
3649 | * Clear ALL timeout values for this handle. |
3650 | */ |
3651 | void Curl_expire_clear(struct Curl_easy *data) |
3652 | { |
3653 | struct Curl_multi *multi = data->multi; |
3654 | struct curltime *nowp = &data->state.expiretime; |
3655 | |
3656 | /* this is only interesting while there is still an associated multi struct |
3657 | remaining! */ |
3658 | if(!multi) |
3659 | return; |
3660 | |
3661 | if(nowp->tv_sec || nowp->tv_usec) { |
3662 | /* Since this is an cleared time, we must remove the previous entry from |
3663 | the splay tree */ |
3664 | struct Curl_llist *list = &data->state.timeoutlist; |
3665 | int rc; |
3666 | |
3667 | rc = Curl_splayremove(t: multi->timetree, removenode: &data->state.timenode, |
3668 | newroot: &multi->timetree); |
3669 | if(rc) |
3670 | infof(data, "Internal error clearing splay node = %d" , rc); |
3671 | |
3672 | /* flush the timeout list too */ |
3673 | while(list->size > 0) { |
3674 | Curl_llist_remove(list, list->tail, NULL); |
3675 | } |
3676 | |
3677 | #ifdef DEBUGBUILD |
3678 | infof(data, "Expire cleared" ); |
3679 | #endif |
3680 | nowp->tv_sec = 0; |
3681 | nowp->tv_usec = 0; |
3682 | } |
3683 | } |
3684 | |
3685 | |
3686 | |
3687 | |
3688 | CURLMcode curl_multi_assign(struct Curl_multi *multi, curl_socket_t s, |
3689 | void *hashp) |
3690 | { |
3691 | struct Curl_sh_entry *there = NULL; |
3692 | |
3693 | there = sh_getentry(sh: &multi->sockhash, s); |
3694 | |
3695 | if(!there) |
3696 | return CURLM_BAD_SOCKET; |
3697 | |
3698 | there->socketp = hashp; |
3699 | |
3700 | return CURLM_OK; |
3701 | } |
3702 | |
3703 | size_t Curl_multi_max_host_connections(struct Curl_multi *multi) |
3704 | { |
3705 | return multi ? multi->max_host_connections : 0; |
3706 | } |
3707 | |
3708 | size_t Curl_multi_max_total_connections(struct Curl_multi *multi) |
3709 | { |
3710 | return multi ? multi->max_total_connections : 0; |
3711 | } |
3712 | |
3713 | /* |
3714 | * When information about a connection has appeared, call this! |
3715 | */ |
3716 | |
3717 | void Curl_multiuse_state(struct Curl_easy *data, |
3718 | int bundlestate) /* use BUNDLE_* defines */ |
3719 | { |
3720 | struct connectdata *conn; |
3721 | DEBUGASSERT(data); |
3722 | DEBUGASSERT(data->multi); |
3723 | conn = data->conn; |
3724 | DEBUGASSERT(conn); |
3725 | DEBUGASSERT(conn->bundle); |
3726 | |
3727 | conn->bundle->multiuse = bundlestate; |
3728 | process_pending_handles(multi: data->multi); |
3729 | } |
3730 | |
3731 | /* process_pending_handles() moves all handles from PENDING |
3732 | back into the main list and change state to CONNECT */ |
3733 | static void process_pending_handles(struct Curl_multi *multi) |
3734 | { |
3735 | struct Curl_llist_element *e = multi->pending.head; |
3736 | if(e) { |
3737 | struct Curl_easy *data = e->ptr; |
3738 | |
3739 | DEBUGASSERT(data->mstate == MSTATE_PENDING); |
3740 | |
3741 | /* put it back into the main list */ |
3742 | link_easy(multi, data); |
3743 | |
3744 | multistate(data, MSTATE_CONNECT); |
3745 | |
3746 | /* Remove this node from the list */ |
3747 | Curl_llist_remove(&multi->pending, e, NULL); |
3748 | |
3749 | /* Make sure that the handle will be processed soonish. */ |
3750 | Curl_expire(data, milli: 0, id: EXPIRE_RUN_NOW); |
3751 | |
3752 | /* mark this as having been in the pending queue */ |
3753 | data->state.previouslypending = TRUE; |
3754 | } |
3755 | } |
3756 | |
3757 | void Curl_set_in_callback(struct Curl_easy *data, bool value) |
3758 | { |
3759 | /* might get called when there is no data pointer! */ |
3760 | if(data) { |
3761 | if(data->multi_easy) |
3762 | data->multi_easy->in_callback = value; |
3763 | else if(data->multi) |
3764 | data->multi->in_callback = value; |
3765 | } |
3766 | } |
3767 | |
3768 | bool Curl_is_in_callback(struct Curl_easy *easy) |
3769 | { |
3770 | return ((easy->multi && easy->multi->in_callback) || |
3771 | (easy->multi_easy && easy->multi_easy->in_callback)); |
3772 | } |
3773 | |
3774 | unsigned int Curl_multi_max_concurrent_streams(struct Curl_multi *multi) |
3775 | { |
3776 | DEBUGASSERT(multi); |
3777 | return multi->max_concurrent_streams; |
3778 | } |
3779 | |
3780 | struct Curl_easy **curl_multi_get_handles(struct Curl_multi *multi) |
3781 | { |
3782 | struct Curl_easy **a = malloc(sizeof(struct Curl_easy *) * |
3783 | (multi->num_easy + 1)); |
3784 | if(a) { |
3785 | int i = 0; |
3786 | struct Curl_easy *e = multi->easyp; |
3787 | while(e) { |
3788 | DEBUGASSERT(i < multi->num_easy); |
3789 | if(!e->internal) |
3790 | a[i++] = e; |
3791 | e = e->next; |
3792 | } |
3793 | a[i] = NULL; /* last entry is a NULL */ |
3794 | } |
3795 | return a; |
3796 | } |
3797 | |