| 1 | /*************************************************************************** |
| 2 | * _ _ ____ _ |
| 3 | * Project ___| | | | _ \| | |
| 4 | * / __| | | | |_) | | |
| 5 | * | (__| |_| | _ <| |___ |
| 6 | * \___|\___/|_| \_\_____| |
| 7 | * |
| 8 | * Copyright (C) Daniel Stenberg, <daniel@haxx.se>, et al. |
| 9 | * |
| 10 | * This software is licensed as described in the file COPYING, which |
| 11 | * you should have received as part of this distribution. The terms |
| 12 | * are also available at https://curl.se/docs/copyright.html. |
| 13 | * |
| 14 | * You may opt to use, copy, modify, merge, publish, distribute and/or sell |
| 15 | * copies of the Software, and permit persons to whom the Software is |
| 16 | * furnished to do so, under the terms of the COPYING file. |
| 17 | * |
| 18 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY |
| 19 | * KIND, either express or implied. |
| 20 | * |
| 21 | * SPDX-License-Identifier: curl |
| 22 | * |
| 23 | ***************************************************************************/ |
| 24 | |
| 25 | #include "curl_setup.h" |
| 26 | |
| 27 | #if defined(USE_NGTCP2) && defined(USE_NGHTTP3) |
| 28 | #include <ngtcp2/ngtcp2.h> |
| 29 | #include <nghttp3/nghttp3.h> |
| 30 | |
| 31 | #ifdef USE_OPENSSL |
| 32 | #include <openssl/err.h> |
| 33 | #if defined(OPENSSL_IS_BORINGSSL) || defined(OPENSSL_IS_AWSLC) |
| 34 | #include <ngtcp2/ngtcp2_crypto_boringssl.h> |
| 35 | #else |
| 36 | #include <ngtcp2/ngtcp2_crypto_quictls.h> |
| 37 | #endif |
| 38 | #include "vtls/openssl.h" |
| 39 | #elif defined(USE_GNUTLS) |
| 40 | #include <ngtcp2/ngtcp2_crypto_gnutls.h> |
| 41 | #include "vtls/gtls.h" |
| 42 | #elif defined(USE_WOLFSSL) |
| 43 | #include <ngtcp2/ngtcp2_crypto_wolfssl.h> |
| 44 | #include "vtls/wolfssl.h" |
| 45 | #endif |
| 46 | |
| 47 | #include "urldata.h" |
| 48 | #include "sendf.h" |
| 49 | #include "strdup.h" |
| 50 | #include "rand.h" |
| 51 | #include "multiif.h" |
| 52 | #include "strcase.h" |
| 53 | #include "cfilters.h" |
| 54 | #include "cf-socket.h" |
| 55 | #include "connect.h" |
| 56 | #include "progress.h" |
| 57 | #include "strerror.h" |
| 58 | #include "dynbuf.h" |
| 59 | #include "http1.h" |
| 60 | #include "select.h" |
| 61 | #include "inet_pton.h" |
| 62 | #include "vquic.h" |
| 63 | #include "vquic_int.h" |
| 64 | #include "vtls/keylog.h" |
| 65 | #include "vtls/vtls.h" |
| 66 | #include "curl_ngtcp2.h" |
| 67 | |
| 68 | #include "warnless.h" |
| 69 | |
| 70 | /* The last 3 #include files should be in this order */ |
| 71 | #include "curl_printf.h" |
| 72 | #include "curl_memory.h" |
| 73 | #include "memdebug.h" |
| 74 | |
| 75 | |
| 76 | #define H3_ALPN_H3_29 "\x5h3-29" |
| 77 | #define H3_ALPN_H3 "\x2h3" |
| 78 | |
| 79 | #define QUIC_MAX_STREAMS (256*1024) |
| 80 | #define QUIC_MAX_DATA (1*1024*1024) |
| 81 | #define QUIC_IDLE_TIMEOUT (60*NGTCP2_SECONDS) |
| 82 | #define QUIC_HANDSHAKE_TIMEOUT (10*NGTCP2_SECONDS) |
| 83 | |
| 84 | /* A stream window is the maximum amount we need to buffer for |
| 85 | * each active transfer. We use HTTP/3 flow control and only ACK |
| 86 | * when we take things out of the buffer. |
| 87 | * Chunk size is large enough to take a full DATA frame */ |
| 88 | #define H3_STREAM_WINDOW_SIZE (128 * 1024) |
| 89 | #define H3_STREAM_CHUNK_SIZE (16 * 1024) |
| 90 | /* The pool keeps spares around and half of a full stream windows |
| 91 | * seems good. More does not seem to improve performance. |
| 92 | * The benefit of the pool is that stream buffer to not keep |
| 93 | * spares. So memory consumption goes down when streams run empty, |
| 94 | * have a large upload done, etc. */ |
| 95 | #define H3_STREAM_POOL_SPARES \ |
| 96 | (H3_STREAM_WINDOW_SIZE / H3_STREAM_CHUNK_SIZE ) / 2 |
| 97 | /* Receive and Send max number of chunks just follows from the |
| 98 | * chunk size and window size */ |
| 99 | #define H3_STREAM_RECV_CHUNKS \ |
| 100 | (H3_STREAM_WINDOW_SIZE / H3_STREAM_CHUNK_SIZE) |
| 101 | #define H3_STREAM_SEND_CHUNKS \ |
| 102 | (H3_STREAM_WINDOW_SIZE / H3_STREAM_CHUNK_SIZE) |
| 103 | |
| 104 | |
| 105 | #ifdef USE_OPENSSL |
| 106 | #define QUIC_CIPHERS \ |
| 107 | "TLS_AES_128_GCM_SHA256:TLS_AES_256_GCM_SHA384:TLS_CHACHA20_" \ |
| 108 | "POLY1305_SHA256:TLS_AES_128_CCM_SHA256" |
| 109 | #define QUIC_GROUPS "P-256:X25519:P-384:P-521" |
| 110 | #elif defined(USE_GNUTLS) |
| 111 | #define QUIC_PRIORITY \ |
| 112 | "NORMAL:-VERS-ALL:+VERS-TLS1.3:-CIPHER-ALL:+AES-128-GCM:+AES-256-GCM:" \ |
| 113 | "+CHACHA20-POLY1305:+AES-128-CCM:-GROUP-ALL:+GROUP-SECP256R1:" \ |
| 114 | "+GROUP-X25519:+GROUP-SECP384R1:+GROUP-SECP521R1:" \ |
| 115 | "%DISABLE_TLS13_COMPAT_MODE" |
| 116 | #elif defined(USE_WOLFSSL) |
| 117 | #define QUIC_CIPHERS \ |
| 118 | "TLS_AES_128_GCM_SHA256:TLS_AES_256_GCM_SHA384:TLS_CHACHA20_" \ |
| 119 | "POLY1305_SHA256:TLS_AES_128_CCM_SHA256" |
| 120 | #define QUIC_GROUPS "P-256:P-384:P-521" |
| 121 | #endif |
| 122 | |
| 123 | |
| 124 | /* |
| 125 | * Store ngtcp2 version info in this buffer. |
| 126 | */ |
| 127 | void Curl_ngtcp2_ver(char *p, size_t len) |
| 128 | { |
| 129 | const ngtcp2_info *ng2 = ngtcp2_version(0); |
| 130 | const nghttp3_info *ht3 = nghttp3_version(0); |
| 131 | (void)msnprintf(p, len, "ngtcp2/%s nghttp3/%s" , |
| 132 | ng2->version_str, ht3->version_str); |
| 133 | } |
| 134 | |
| 135 | struct cf_ngtcp2_ctx { |
| 136 | struct cf_quic_ctx q; |
| 137 | ngtcp2_path connected_path; |
| 138 | ngtcp2_conn *qconn; |
| 139 | ngtcp2_cid dcid; |
| 140 | ngtcp2_cid scid; |
| 141 | uint32_t version; |
| 142 | ngtcp2_settings settings; |
| 143 | ngtcp2_transport_params transport_params; |
| 144 | ngtcp2_ccerr last_error; |
| 145 | ngtcp2_crypto_conn_ref conn_ref; |
| 146 | #ifdef USE_OPENSSL |
| 147 | SSL_CTX *sslctx; |
| 148 | SSL *ssl; |
| 149 | #elif defined(USE_GNUTLS) |
| 150 | struct gtls_instance *gtls; |
| 151 | #elif defined(USE_WOLFSSL) |
| 152 | WOLFSSL_CTX *sslctx; |
| 153 | WOLFSSL *ssl; |
| 154 | #endif |
| 155 | struct cf_call_data call_data; |
| 156 | nghttp3_conn *h3conn; |
| 157 | nghttp3_settings h3settings; |
| 158 | struct curltime started_at; /* time the current attempt started */ |
| 159 | struct curltime handshake_at; /* time connect handshake finished */ |
| 160 | struct curltime first_byte_at; /* when first byte was recvd */ |
| 161 | struct curltime reconnect_at; /* time the next attempt should start */ |
| 162 | struct bufc_pool stream_bufcp; /* chunk pool for streams */ |
| 163 | size_t max_stream_window; /* max flow window for one stream */ |
| 164 | int qlogfd; |
| 165 | BIT(got_first_byte); /* if first byte was received */ |
| 166 | #ifdef USE_OPENSSL |
| 167 | BIT(x509_store_setup); /* if x509 store has been set up */ |
| 168 | #endif |
| 169 | }; |
| 170 | |
| 171 | /* How to access `call_data` from a cf_ngtcp2 filter */ |
| 172 | #undef CF_CTX_CALL_DATA |
| 173 | #define CF_CTX_CALL_DATA(cf) \ |
| 174 | ((struct cf_ngtcp2_ctx *)(cf)->ctx)->call_data |
| 175 | |
| 176 | /** |
| 177 | * All about the H3 internals of a stream |
| 178 | */ |
| 179 | struct h3_stream_ctx { |
| 180 | int64_t id; /* HTTP/3 protocol identifier */ |
| 181 | struct bufq sendbuf; /* h3 request body */ |
| 182 | struct bufq recvbuf; /* h3 response body */ |
| 183 | struct h1_req_parser h1; /* h1 request parsing */ |
| 184 | size_t sendbuf_len_in_flight; /* sendbuf amount "in flight" */ |
| 185 | size_t upload_blocked_len; /* the amount written last and EGAINed */ |
| 186 | size_t recv_buf_nonflow; /* buffered bytes, not counting for flow control */ |
| 187 | uint64_t error3; /* HTTP/3 stream error code */ |
| 188 | curl_off_t upload_left; /* number of request bytes left to upload */ |
| 189 | int status_code; /* HTTP status code */ |
| 190 | bool resp_hds_complete; /* we have a complete, final response */ |
| 191 | bool closed; /* TRUE on stream close */ |
| 192 | bool reset; /* TRUE on stream reset */ |
| 193 | bool send_closed; /* stream is local closed */ |
| 194 | }; |
| 195 | |
| 196 | #define H3_STREAM_CTX(d) ((struct h3_stream_ctx *)(((d) && (d)->req.p.http)? \ |
| 197 | ((struct HTTP *)(d)->req.p.http)->h3_ctx \ |
| 198 | : NULL)) |
| 199 | #define H3_STREAM_LCTX(d) ((struct HTTP *)(d)->req.p.http)->h3_ctx |
| 200 | #define H3_STREAM_ID(d) (H3_STREAM_CTX(d)? \ |
| 201 | H3_STREAM_CTX(d)->id : -2) |
| 202 | |
| 203 | static CURLcode h3_data_setup(struct Curl_cfilter *cf, |
| 204 | struct Curl_easy *data) |
| 205 | { |
| 206 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 207 | struct h3_stream_ctx *stream = H3_STREAM_CTX(data); |
| 208 | |
| 209 | if(!data || !data->req.p.http) { |
| 210 | failf(data, "initialization failure, transfer not http initialized" ); |
| 211 | return CURLE_FAILED_INIT; |
| 212 | } |
| 213 | |
| 214 | if(stream) |
| 215 | return CURLE_OK; |
| 216 | |
| 217 | stream = calloc(1, sizeof(*stream)); |
| 218 | if(!stream) |
| 219 | return CURLE_OUT_OF_MEMORY; |
| 220 | |
| 221 | stream->id = -1; |
| 222 | /* on send, we control how much we put into the buffer */ |
| 223 | Curl_bufq_initp(&stream->sendbuf, &ctx->stream_bufcp, |
| 224 | H3_STREAM_SEND_CHUNKS, BUFQ_OPT_NONE); |
| 225 | stream->sendbuf_len_in_flight = 0; |
| 226 | /* on recv, we need a flexible buffer limit since we also write |
| 227 | * headers to it that are not counted against the nghttp3 flow limits. */ |
| 228 | Curl_bufq_initp(&stream->recvbuf, &ctx->stream_bufcp, |
| 229 | H3_STREAM_RECV_CHUNKS, BUFQ_OPT_SOFT_LIMIT); |
| 230 | stream->recv_buf_nonflow = 0; |
| 231 | Curl_h1_req_parse_init(&stream->h1, H1_PARSE_DEFAULT_MAX_LINE_LEN); |
| 232 | |
| 233 | H3_STREAM_LCTX(data) = stream; |
| 234 | return CURLE_OK; |
| 235 | } |
| 236 | |
| 237 | static void h3_data_done(struct Curl_cfilter *cf, struct Curl_easy *data) |
| 238 | { |
| 239 | struct h3_stream_ctx *stream = H3_STREAM_CTX(data); |
| 240 | |
| 241 | (void)cf; |
| 242 | if(stream) { |
| 243 | CURL_TRC_CF(data, cf, "[%" PRId64"] easy handle is done" , stream->id); |
| 244 | Curl_bufq_free(&stream->sendbuf); |
| 245 | Curl_bufq_free(&stream->recvbuf); |
| 246 | Curl_h1_req_parse_free(&stream->h1); |
| 247 | free(stream); |
| 248 | H3_STREAM_LCTX(data) = NULL; |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | /* ngtcp2 default congestion controller does not perform pacing. Limit |
| 253 | the maximum packet burst to MAX_PKT_BURST packets. */ |
| 254 | #define MAX_PKT_BURST 10 |
| 255 | |
| 256 | struct pkt_io_ctx { |
| 257 | struct Curl_cfilter *cf; |
| 258 | struct Curl_easy *data; |
| 259 | ngtcp2_tstamp ts; |
| 260 | size_t pkt_count; |
| 261 | ngtcp2_path_storage ps; |
| 262 | }; |
| 263 | |
| 264 | static ngtcp2_tstamp timestamp(void) |
| 265 | { |
| 266 | struct curltime ct = Curl_now(); |
| 267 | return ct.tv_sec * NGTCP2_SECONDS + ct.tv_usec * NGTCP2_MICROSECONDS; |
| 268 | } |
| 269 | |
| 270 | static void pktx_init(struct pkt_io_ctx *pktx, |
| 271 | struct Curl_cfilter *cf, |
| 272 | struct Curl_easy *data) |
| 273 | { |
| 274 | pktx->cf = cf; |
| 275 | pktx->data = data; |
| 276 | pktx->ts = timestamp(); |
| 277 | pktx->pkt_count = 0; |
| 278 | ngtcp2_path_storage_zero(&pktx->ps); |
| 279 | } |
| 280 | |
| 281 | static CURLcode cf_progress_ingress(struct Curl_cfilter *cf, |
| 282 | struct Curl_easy *data, |
| 283 | struct pkt_io_ctx *pktx); |
| 284 | static CURLcode cf_progress_egress(struct Curl_cfilter *cf, |
| 285 | struct Curl_easy *data, |
| 286 | struct pkt_io_ctx *pktx); |
| 287 | static int cb_h3_acked_req_body(nghttp3_conn *conn, int64_t stream_id, |
| 288 | uint64_t datalen, void *user_data, |
| 289 | void *stream_user_data); |
| 290 | |
| 291 | static ngtcp2_conn *get_conn(ngtcp2_crypto_conn_ref *conn_ref) |
| 292 | { |
| 293 | struct Curl_cfilter *cf = conn_ref->user_data; |
| 294 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 295 | return ctx->qconn; |
| 296 | } |
| 297 | |
| 298 | #ifdef DEBUG_NGTCP2 |
| 299 | static void quic_printf(void *user_data, const char *fmt, ...) |
| 300 | { |
| 301 | struct Curl_cfilter *cf = user_data; |
| 302 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 303 | |
| 304 | (void)ctx; /* TODO: need an easy handle to infof() message */ |
| 305 | va_list ap; |
| 306 | va_start(ap, fmt); |
| 307 | vfprintf(stderr, fmt, ap); |
| 308 | va_end(ap); |
| 309 | fprintf(stderr, "\n" ); |
| 310 | } |
| 311 | #endif |
| 312 | |
| 313 | static void qlog_callback(void *user_data, uint32_t flags, |
| 314 | const void *data, size_t datalen) |
| 315 | { |
| 316 | struct Curl_cfilter *cf = user_data; |
| 317 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 318 | (void)flags; |
| 319 | if(ctx->qlogfd != -1) { |
| 320 | ssize_t rc = write(ctx->qlogfd, data, datalen); |
| 321 | if(rc == -1) { |
| 322 | /* on write error, stop further write attempts */ |
| 323 | close(ctx->qlogfd); |
| 324 | ctx->qlogfd = -1; |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | } |
| 329 | |
| 330 | static void quic_settings(struct cf_ngtcp2_ctx *ctx, |
| 331 | struct Curl_easy *data, |
| 332 | struct pkt_io_ctx *pktx) |
| 333 | { |
| 334 | ngtcp2_settings *s = &ctx->settings; |
| 335 | ngtcp2_transport_params *t = &ctx->transport_params; |
| 336 | |
| 337 | ngtcp2_settings_default(s); |
| 338 | ngtcp2_transport_params_default(t); |
| 339 | #ifdef DEBUG_NGTCP2 |
| 340 | s->log_printf = quic_printf; |
| 341 | #else |
| 342 | s->log_printf = NULL; |
| 343 | #endif |
| 344 | |
| 345 | (void)data; |
| 346 | s->initial_ts = pktx->ts; |
| 347 | s->handshake_timeout = QUIC_HANDSHAKE_TIMEOUT; |
| 348 | s->max_window = 100 * ctx->max_stream_window; |
| 349 | s->max_stream_window = ctx->max_stream_window; |
| 350 | |
| 351 | t->initial_max_data = 10 * ctx->max_stream_window; |
| 352 | t->initial_max_stream_data_bidi_local = ctx->max_stream_window; |
| 353 | t->initial_max_stream_data_bidi_remote = ctx->max_stream_window; |
| 354 | t->initial_max_stream_data_uni = ctx->max_stream_window; |
| 355 | t->initial_max_streams_bidi = QUIC_MAX_STREAMS; |
| 356 | t->initial_max_streams_uni = QUIC_MAX_STREAMS; |
| 357 | t->max_idle_timeout = QUIC_IDLE_TIMEOUT; |
| 358 | if(ctx->qlogfd != -1) { |
| 359 | s->qlog_write = qlog_callback; |
| 360 | } |
| 361 | } |
| 362 | |
| 363 | #ifdef USE_OPENSSL |
| 364 | static void keylog_callback(const SSL *ssl, const char *line) |
| 365 | { |
| 366 | (void)ssl; |
| 367 | Curl_tls_keylog_write_line(line); |
| 368 | } |
| 369 | #elif defined(USE_GNUTLS) |
| 370 | static int keylog_callback(gnutls_session_t session, const char *label, |
| 371 | const gnutls_datum_t *secret) |
| 372 | { |
| 373 | gnutls_datum_t crandom; |
| 374 | gnutls_datum_t srandom; |
| 375 | |
| 376 | gnutls_session_get_random(session, &crandom, &srandom); |
| 377 | if(crandom.size != 32) { |
| 378 | return -1; |
| 379 | } |
| 380 | |
| 381 | Curl_tls_keylog_write(label, crandom.data, secret->data, secret->size); |
| 382 | return 0; |
| 383 | } |
| 384 | #elif defined(USE_WOLFSSL) |
| 385 | #if defined(HAVE_SECRET_CALLBACK) |
| 386 | static void keylog_callback(const WOLFSSL *ssl, const char *line) |
| 387 | { |
| 388 | (void)ssl; |
| 389 | Curl_tls_keylog_write_line(line); |
| 390 | } |
| 391 | #endif |
| 392 | #endif |
| 393 | |
| 394 | static int init_ngh3_conn(struct Curl_cfilter *cf); |
| 395 | |
| 396 | #ifdef USE_OPENSSL |
| 397 | static CURLcode quic_ssl_ctx(SSL_CTX **pssl_ctx, |
| 398 | struct Curl_cfilter *cf, struct Curl_easy *data) |
| 399 | { |
| 400 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 401 | struct connectdata *conn = cf->conn; |
| 402 | CURLcode result = CURLE_FAILED_INIT; |
| 403 | SSL_CTX *ssl_ctx = SSL_CTX_new(TLS_method()); |
| 404 | |
| 405 | if(!ssl_ctx) { |
| 406 | result = CURLE_OUT_OF_MEMORY; |
| 407 | goto out; |
| 408 | } |
| 409 | |
| 410 | #if defined(OPENSSL_IS_BORINGSSL) || defined(OPENSSL_IS_AWSLC) |
| 411 | if(ngtcp2_crypto_boringssl_configure_client_context(ssl_ctx) != 0) { |
| 412 | failf(data, "ngtcp2_crypto_boringssl_configure_client_context failed" ); |
| 413 | goto out; |
| 414 | } |
| 415 | #else |
| 416 | if(ngtcp2_crypto_quictls_configure_client_context(ssl_ctx) != 0) { |
| 417 | failf(data, "ngtcp2_crypto_quictls_configure_client_context failed" ); |
| 418 | goto out; |
| 419 | } |
| 420 | #endif |
| 421 | |
| 422 | SSL_CTX_set_default_verify_paths(ssl_ctx); |
| 423 | |
| 424 | { |
| 425 | const char *curves = conn->ssl_config.curves ? |
| 426 | conn->ssl_config.curves : QUIC_GROUPS; |
| 427 | if(!SSL_CTX_set1_curves_list(ssl_ctx, curves)) { |
| 428 | failf(data, "failed setting curves list for QUIC: '%s'" , curves); |
| 429 | return CURLE_SSL_CIPHER; |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | #ifndef OPENSSL_IS_BORINGSSL |
| 434 | { |
| 435 | const char *ciphers13 = conn->ssl_config.cipher_list13 ? |
| 436 | conn->ssl_config.cipher_list13 : QUIC_CIPHERS; |
| 437 | if(SSL_CTX_set_ciphersuites(ssl_ctx, ciphers13) != 1) { |
| 438 | failf(data, "failed setting QUIC cipher suite: %s" , ciphers13); |
| 439 | return CURLE_SSL_CIPHER; |
| 440 | } |
| 441 | infof(data, "QUIC cipher selection: %s" , ciphers13); |
| 442 | } |
| 443 | #endif |
| 444 | |
| 445 | /* Open the file if a TLS or QUIC backend has not done this before. */ |
| 446 | Curl_tls_keylog_open(); |
| 447 | if(Curl_tls_keylog_enabled()) { |
| 448 | SSL_CTX_set_keylog_callback(ssl_ctx, keylog_callback); |
| 449 | } |
| 450 | |
| 451 | /* OpenSSL always tries to verify the peer, this only says whether it should |
| 452 | * fail to connect if the verification fails, or if it should continue |
| 453 | * anyway. In the latter case the result of the verification is checked with |
| 454 | * SSL_get_verify_result() below. */ |
| 455 | SSL_CTX_set_verify(ssl_ctx, conn->ssl_config.verifypeer ? |
| 456 | SSL_VERIFY_PEER : SSL_VERIFY_NONE, NULL); |
| 457 | |
| 458 | /* give application a chance to interfere with SSL set up. */ |
| 459 | if(data->set.ssl.fsslctx) { |
| 460 | /* When a user callback is installed to modify the SSL_CTX, |
| 461 | * we need to do the full initialization before calling it. |
| 462 | * See: #11800 */ |
| 463 | if(!ctx->x509_store_setup) { |
| 464 | result = Curl_ssl_setup_x509_store(cf, data, ssl_ctx); |
| 465 | if(result) |
| 466 | goto out; |
| 467 | ctx->x509_store_setup = TRUE; |
| 468 | } |
| 469 | Curl_set_in_callback(data, true); |
| 470 | result = (*data->set.ssl.fsslctx)(data, ssl_ctx, |
| 471 | data->set.ssl.fsslctxp); |
| 472 | Curl_set_in_callback(data, false); |
| 473 | if(result) { |
| 474 | failf(data, "error signaled by ssl ctx callback" ); |
| 475 | goto out; |
| 476 | } |
| 477 | } |
| 478 | result = CURLE_OK; |
| 479 | |
| 480 | out: |
| 481 | *pssl_ctx = result? NULL : ssl_ctx; |
| 482 | if(result && ssl_ctx) |
| 483 | SSL_CTX_free(ssl_ctx); |
| 484 | return result; |
| 485 | } |
| 486 | |
| 487 | static CURLcode quic_set_client_cert(struct Curl_cfilter *cf, |
| 488 | struct Curl_easy *data) |
| 489 | { |
| 490 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 491 | SSL_CTX *ssl_ctx = ctx->sslctx; |
| 492 | const struct ssl_config_data *ssl_config; |
| 493 | |
| 494 | ssl_config = Curl_ssl_get_config(data, FIRSTSOCKET); |
| 495 | DEBUGASSERT(ssl_config); |
| 496 | |
| 497 | if(ssl_config->primary.clientcert || ssl_config->primary.cert_blob |
| 498 | || ssl_config->cert_type) { |
| 499 | return Curl_ossl_set_client_cert( |
| 500 | data, ssl_ctx, ssl_config->primary.clientcert, |
| 501 | ssl_config->primary.cert_blob, ssl_config->cert_type, |
| 502 | ssl_config->key, ssl_config->key_blob, |
| 503 | ssl_config->key_type, ssl_config->key_passwd); |
| 504 | } |
| 505 | |
| 506 | return CURLE_OK; |
| 507 | } |
| 508 | |
| 509 | /** SSL callbacks ***/ |
| 510 | |
| 511 | static CURLcode quic_init_ssl(struct Curl_cfilter *cf, |
| 512 | struct Curl_easy *data) |
| 513 | { |
| 514 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 515 | const uint8_t *alpn = NULL; |
| 516 | size_t alpnlen = 0; |
| 517 | unsigned char checkip[16]; |
| 518 | |
| 519 | DEBUGASSERT(!ctx->ssl); |
| 520 | ctx->ssl = SSL_new(ctx->sslctx); |
| 521 | |
| 522 | SSL_set_app_data(ctx->ssl, &ctx->conn_ref); |
| 523 | SSL_set_connect_state(ctx->ssl); |
| 524 | SSL_set_quic_use_legacy_codepoint(ctx->ssl, 0); |
| 525 | |
| 526 | alpn = (const uint8_t *)H3_ALPN_H3_29 H3_ALPN_H3; |
| 527 | alpnlen = sizeof(H3_ALPN_H3_29) - 1 + sizeof(H3_ALPN_H3) - 1; |
| 528 | if(alpn) |
| 529 | SSL_set_alpn_protos(ctx->ssl, alpn, (int)alpnlen); |
| 530 | |
| 531 | /* set SNI */ |
| 532 | if((0 == Curl_inet_pton(AF_INET, cf->conn->host.name, checkip)) |
| 533 | #ifdef ENABLE_IPV6 |
| 534 | && (0 == Curl_inet_pton(AF_INET6, cf->conn->host.name, checkip)) |
| 535 | #endif |
| 536 | ) { |
| 537 | char *snihost = Curl_ssl_snihost(data, cf->conn->host.name, NULL); |
| 538 | if(!snihost || !SSL_set_tlsext_host_name(ctx->ssl, snihost)) { |
| 539 | failf(data, "Failed set SNI" ); |
| 540 | SSL_free(ctx->ssl); |
| 541 | ctx->ssl = NULL; |
| 542 | return CURLE_QUIC_CONNECT_ERROR; |
| 543 | } |
| 544 | } |
| 545 | return CURLE_OK; |
| 546 | } |
| 547 | #elif defined(USE_GNUTLS) |
| 548 | static CURLcode quic_init_ssl(struct Curl_cfilter *cf, |
| 549 | struct Curl_easy *data) |
| 550 | { |
| 551 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 552 | CURLcode result; |
| 553 | gnutls_datum_t alpn[2]; |
| 554 | /* this will need some attention when HTTPS proxy over QUIC get fixed */ |
| 555 | const char * const hostname = cf->conn->host.name; |
| 556 | long * const pverifyresult = &data->set.ssl.certverifyresult; |
| 557 | int rc; |
| 558 | |
| 559 | DEBUGASSERT(ctx->gtls == NULL); |
| 560 | ctx->gtls = calloc(1, sizeof(*(ctx->gtls))); |
| 561 | if(!ctx->gtls) |
| 562 | return CURLE_OUT_OF_MEMORY; |
| 563 | |
| 564 | result = gtls_client_init(data, &cf->conn->ssl_config, &data->set.ssl, |
| 565 | hostname, ctx->gtls, pverifyresult); |
| 566 | if(result) |
| 567 | return result; |
| 568 | |
| 569 | gnutls_session_set_ptr(ctx->gtls->session, &ctx->conn_ref); |
| 570 | |
| 571 | if(ngtcp2_crypto_gnutls_configure_client_session(ctx->gtls->session) != 0) { |
| 572 | CURL_TRC_CF(data, cf, |
| 573 | "ngtcp2_crypto_gnutls_configure_client_session failed\n" ); |
| 574 | return CURLE_QUIC_CONNECT_ERROR; |
| 575 | } |
| 576 | |
| 577 | rc = gnutls_priority_set_direct(ctx->gtls->session, QUIC_PRIORITY, NULL); |
| 578 | if(rc < 0) { |
| 579 | CURL_TRC_CF(data, cf, "gnutls_priority_set_direct failed: %s\n" , |
| 580 | gnutls_strerror(rc)); |
| 581 | return CURLE_QUIC_CONNECT_ERROR; |
| 582 | } |
| 583 | |
| 584 | /* Open the file if a TLS or QUIC backend has not done this before. */ |
| 585 | Curl_tls_keylog_open(); |
| 586 | if(Curl_tls_keylog_enabled()) { |
| 587 | gnutls_session_set_keylog_function(ctx->gtls->session, keylog_callback); |
| 588 | } |
| 589 | |
| 590 | /* strip the first byte (the length) from NGHTTP3_ALPN_H3 */ |
| 591 | alpn[0].data = (unsigned char *)H3_ALPN_H3_29 + 1; |
| 592 | alpn[0].size = sizeof(H3_ALPN_H3_29) - 2; |
| 593 | alpn[1].data = (unsigned char *)H3_ALPN_H3 + 1; |
| 594 | alpn[1].size = sizeof(H3_ALPN_H3) - 2; |
| 595 | |
| 596 | gnutls_alpn_set_protocols(ctx->gtls->session, |
| 597 | alpn, 2, GNUTLS_ALPN_MANDATORY); |
| 598 | return CURLE_OK; |
| 599 | } |
| 600 | #elif defined(USE_WOLFSSL) |
| 601 | |
| 602 | static CURLcode quic_ssl_ctx(WOLFSSL_CTX **pssl_ctx, |
| 603 | struct Curl_cfilter *cf, struct Curl_easy *data) |
| 604 | { |
| 605 | struct connectdata *conn = cf->conn; |
| 606 | CURLcode result = CURLE_FAILED_INIT; |
| 607 | WOLFSSL_CTX *ssl_ctx = wolfSSL_CTX_new(wolfTLSv1_3_client_method()); |
| 608 | |
| 609 | if(!ssl_ctx) { |
| 610 | result = CURLE_OUT_OF_MEMORY; |
| 611 | goto out; |
| 612 | } |
| 613 | |
| 614 | if(ngtcp2_crypto_wolfssl_configure_client_context(ssl_ctx) != 0) { |
| 615 | failf(data, "ngtcp2_crypto_wolfssl_configure_client_context failed" ); |
| 616 | goto out; |
| 617 | } |
| 618 | |
| 619 | wolfSSL_CTX_set_default_verify_paths(ssl_ctx); |
| 620 | |
| 621 | if(wolfSSL_CTX_set_cipher_list(ssl_ctx, conn->ssl_config.cipher_list13 ? |
| 622 | conn->ssl_config.cipher_list13 : |
| 623 | QUIC_CIPHERS) != 1) { |
| 624 | char error_buffer[256]; |
| 625 | ERR_error_string_n(ERR_get_error(), error_buffer, sizeof(error_buffer)); |
| 626 | failf(data, "wolfSSL failed to set ciphers: %s" , error_buffer); |
| 627 | goto out; |
| 628 | } |
| 629 | |
| 630 | if(wolfSSL_CTX_set1_groups_list(ssl_ctx, conn->ssl_config.curves ? |
| 631 | conn->ssl_config.curves : |
| 632 | (char *)QUIC_GROUPS) != 1) { |
| 633 | failf(data, "wolfSSL failed to set curves" ); |
| 634 | goto out; |
| 635 | } |
| 636 | |
| 637 | /* Open the file if a TLS or QUIC backend has not done this before. */ |
| 638 | Curl_tls_keylog_open(); |
| 639 | if(Curl_tls_keylog_enabled()) { |
| 640 | #if defined(HAVE_SECRET_CALLBACK) |
| 641 | wolfSSL_CTX_set_keylog_callback(ssl_ctx, keylog_callback); |
| 642 | #else |
| 643 | failf(data, "wolfSSL was built without keylog callback" ); |
| 644 | goto out; |
| 645 | #endif |
| 646 | } |
| 647 | |
| 648 | if(conn->ssl_config.verifypeer) { |
| 649 | const char * const ssl_cafile = conn->ssl_config.CAfile; |
| 650 | const char * const ssl_capath = conn->ssl_config.CApath; |
| 651 | |
| 652 | wolfSSL_CTX_set_verify(ssl_ctx, SSL_VERIFY_PEER, NULL); |
| 653 | if(ssl_cafile || ssl_capath) { |
| 654 | /* tell wolfSSL where to find CA certificates that are used to verify |
| 655 | the server's certificate. */ |
| 656 | int rc = |
| 657 | wolfSSL_CTX_load_verify_locations_ex(ssl_ctx, ssl_cafile, ssl_capath, |
| 658 | WOLFSSL_LOAD_FLAG_IGNORE_ERR); |
| 659 | if(SSL_SUCCESS != rc) { |
| 660 | /* Fail if we insist on successfully verifying the server. */ |
| 661 | failf(data, "error setting certificate verify locations:" |
| 662 | " CAfile: %s CApath: %s" , |
| 663 | ssl_cafile ? ssl_cafile : "none" , |
| 664 | ssl_capath ? ssl_capath : "none" ); |
| 665 | goto out; |
| 666 | } |
| 667 | infof(data, " CAfile: %s" , ssl_cafile ? ssl_cafile : "none" ); |
| 668 | infof(data, " CApath: %s" , ssl_capath ? ssl_capath : "none" ); |
| 669 | } |
| 670 | #ifdef CURL_CA_FALLBACK |
| 671 | else { |
| 672 | /* verifying the peer without any CA certificates won't work so |
| 673 | use wolfssl's built-in default as fallback */ |
| 674 | wolfSSL_CTX_set_default_verify_paths(ssl_ctx); |
| 675 | } |
| 676 | #endif |
| 677 | } |
| 678 | else { |
| 679 | wolfSSL_CTX_set_verify(ssl_ctx, SSL_VERIFY_NONE, NULL); |
| 680 | } |
| 681 | |
| 682 | /* give application a chance to interfere with SSL set up. */ |
| 683 | if(data->set.ssl.fsslctx) { |
| 684 | Curl_set_in_callback(data, true); |
| 685 | result = (*data->set.ssl.fsslctx)(data, ssl_ctx, |
| 686 | data->set.ssl.fsslctxp); |
| 687 | Curl_set_in_callback(data, false); |
| 688 | if(result) { |
| 689 | failf(data, "error signaled by ssl ctx callback" ); |
| 690 | goto out; |
| 691 | } |
| 692 | } |
| 693 | result = CURLE_OK; |
| 694 | |
| 695 | out: |
| 696 | *pssl_ctx = result? NULL : ssl_ctx; |
| 697 | if(result && ssl_ctx) |
| 698 | SSL_CTX_free(ssl_ctx); |
| 699 | return result; |
| 700 | } |
| 701 | |
| 702 | /** SSL callbacks ***/ |
| 703 | |
| 704 | static CURLcode quic_init_ssl(struct Curl_cfilter *cf, |
| 705 | struct Curl_easy *data) |
| 706 | { |
| 707 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 708 | const uint8_t *alpn = NULL; |
| 709 | size_t alpnlen = 0; |
| 710 | /* this will need some attention when HTTPS proxy over QUIC get fixed */ |
| 711 | const char * const hostname = cf->conn->host.name; |
| 712 | |
| 713 | (void)data; |
| 714 | DEBUGASSERT(!ctx->ssl); |
| 715 | ctx->ssl = wolfSSL_new(ctx->sslctx); |
| 716 | |
| 717 | wolfSSL_set_app_data(ctx->ssl, &ctx->conn_ref); |
| 718 | wolfSSL_set_connect_state(ctx->ssl); |
| 719 | wolfSSL_set_quic_use_legacy_codepoint(ctx->ssl, 0); |
| 720 | |
| 721 | alpn = (const uint8_t *)H3_ALPN_H3_29 H3_ALPN_H3; |
| 722 | alpnlen = sizeof(H3_ALPN_H3_29) - 1 + sizeof(H3_ALPN_H3) - 1; |
| 723 | if(alpn) |
| 724 | wolfSSL_set_alpn_protos(ctx->ssl, alpn, (int)alpnlen); |
| 725 | |
| 726 | /* set SNI */ |
| 727 | wolfSSL_UseSNI(ctx->ssl, WOLFSSL_SNI_HOST_NAME, |
| 728 | hostname, (unsigned short)strlen(hostname)); |
| 729 | |
| 730 | return CURLE_OK; |
| 731 | } |
| 732 | #endif /* defined(USE_WOLFSSL) */ |
| 733 | |
| 734 | static int cb_handshake_completed(ngtcp2_conn *tconn, void *user_data) |
| 735 | { |
| 736 | (void)user_data; |
| 737 | (void)tconn; |
| 738 | return 0; |
| 739 | } |
| 740 | |
| 741 | static void report_consumed_data(struct Curl_cfilter *cf, |
| 742 | struct Curl_easy *data, |
| 743 | size_t consumed) |
| 744 | { |
| 745 | struct h3_stream_ctx *stream = H3_STREAM_CTX(data); |
| 746 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 747 | |
| 748 | if(!stream) |
| 749 | return; |
| 750 | /* the HTTP/1.1 response headers are written to the buffer, but |
| 751 | * consuming those does not count against flow control. */ |
| 752 | if(stream->recv_buf_nonflow) { |
| 753 | if(consumed >= stream->recv_buf_nonflow) { |
| 754 | consumed -= stream->recv_buf_nonflow; |
| 755 | stream->recv_buf_nonflow = 0; |
| 756 | } |
| 757 | else { |
| 758 | stream->recv_buf_nonflow -= consumed; |
| 759 | consumed = 0; |
| 760 | } |
| 761 | } |
| 762 | if(consumed > 0) { |
| 763 | CURL_TRC_CF(data, cf, "[%" PRId64 "] ACK %zu bytes of DATA" , |
| 764 | stream->id, consumed); |
| 765 | ngtcp2_conn_extend_max_stream_offset(ctx->qconn, stream->id, |
| 766 | consumed); |
| 767 | ngtcp2_conn_extend_max_offset(ctx->qconn, consumed); |
| 768 | } |
| 769 | } |
| 770 | |
| 771 | static int cb_recv_stream_data(ngtcp2_conn *tconn, uint32_t flags, |
| 772 | int64_t stream_id, uint64_t offset, |
| 773 | const uint8_t *buf, size_t buflen, |
| 774 | void *user_data, void *stream_user_data) |
| 775 | { |
| 776 | struct Curl_cfilter *cf = user_data; |
| 777 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 778 | nghttp3_ssize nconsumed; |
| 779 | int fin = (flags & NGTCP2_STREAM_DATA_FLAG_FIN) ? 1 : 0; |
| 780 | struct Curl_easy *data = stream_user_data; |
| 781 | (void)offset; |
| 782 | (void)data; |
| 783 | |
| 784 | nconsumed = |
| 785 | nghttp3_conn_read_stream(ctx->h3conn, stream_id, buf, buflen, fin); |
| 786 | CURL_TRC_CF(data, cf, "[%" PRId64 "] read_stream(len=%zu) -> %zd" , |
| 787 | stream_id, buflen, nconsumed); |
| 788 | if(nconsumed < 0) { |
| 789 | ngtcp2_ccerr_set_application_error( |
| 790 | &ctx->last_error, |
| 791 | nghttp3_err_infer_quic_app_error_code((int)nconsumed), NULL, 0); |
| 792 | return NGTCP2_ERR_CALLBACK_FAILURE; |
| 793 | } |
| 794 | |
| 795 | /* number of bytes inside buflen which consists of framing overhead |
| 796 | * including QPACK HEADERS. In other words, it does not consume payload of |
| 797 | * DATA frame. */ |
| 798 | ngtcp2_conn_extend_max_stream_offset(tconn, stream_id, nconsumed); |
| 799 | ngtcp2_conn_extend_max_offset(tconn, nconsumed); |
| 800 | |
| 801 | return 0; |
| 802 | } |
| 803 | |
| 804 | static int |
| 805 | cb_acked_stream_data_offset(ngtcp2_conn *tconn, int64_t stream_id, |
| 806 | uint64_t offset, uint64_t datalen, void *user_data, |
| 807 | void *stream_user_data) |
| 808 | { |
| 809 | struct Curl_cfilter *cf = user_data; |
| 810 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 811 | int rv; |
| 812 | (void)stream_id; |
| 813 | (void)tconn; |
| 814 | (void)offset; |
| 815 | (void)datalen; |
| 816 | (void)stream_user_data; |
| 817 | |
| 818 | rv = nghttp3_conn_add_ack_offset(ctx->h3conn, stream_id, datalen); |
| 819 | if(rv) { |
| 820 | return NGTCP2_ERR_CALLBACK_FAILURE; |
| 821 | } |
| 822 | |
| 823 | return 0; |
| 824 | } |
| 825 | |
| 826 | static int cb_stream_close(ngtcp2_conn *tconn, uint32_t flags, |
| 827 | int64_t stream3_id, uint64_t app_error_code, |
| 828 | void *user_data, void *stream_user_data) |
| 829 | { |
| 830 | struct Curl_cfilter *cf = user_data; |
| 831 | struct Curl_easy *data = stream_user_data; |
| 832 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 833 | int rv; |
| 834 | |
| 835 | (void)tconn; |
| 836 | (void)data; |
| 837 | /* stream is closed... */ |
| 838 | |
| 839 | if(!(flags & NGTCP2_STREAM_CLOSE_FLAG_APP_ERROR_CODE_SET)) { |
| 840 | app_error_code = NGHTTP3_H3_NO_ERROR; |
| 841 | } |
| 842 | |
| 843 | rv = nghttp3_conn_close_stream(ctx->h3conn, stream3_id, |
| 844 | app_error_code); |
| 845 | CURL_TRC_CF(data, cf, "[%" PRId64 "] quic close(err=%" |
| 846 | PRIu64 ") -> %d" , stream3_id, app_error_code, rv); |
| 847 | if(rv) { |
| 848 | ngtcp2_ccerr_set_application_error( |
| 849 | &ctx->last_error, nghttp3_err_infer_quic_app_error_code(rv), NULL, 0); |
| 850 | return NGTCP2_ERR_CALLBACK_FAILURE; |
| 851 | } |
| 852 | |
| 853 | return 0; |
| 854 | } |
| 855 | |
| 856 | static int cb_stream_reset(ngtcp2_conn *tconn, int64_t stream_id, |
| 857 | uint64_t final_size, uint64_t app_error_code, |
| 858 | void *user_data, void *stream_user_data) |
| 859 | { |
| 860 | struct Curl_cfilter *cf = user_data; |
| 861 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 862 | struct Curl_easy *data = stream_user_data; |
| 863 | int rv; |
| 864 | (void)tconn; |
| 865 | (void)final_size; |
| 866 | (void)app_error_code; |
| 867 | (void)data; |
| 868 | |
| 869 | rv = nghttp3_conn_shutdown_stream_read(ctx->h3conn, stream_id); |
| 870 | CURL_TRC_CF(data, cf, "[%" PRId64 "] reset -> %d" , stream_id, rv); |
| 871 | if(rv) { |
| 872 | return NGTCP2_ERR_CALLBACK_FAILURE; |
| 873 | } |
| 874 | |
| 875 | return 0; |
| 876 | } |
| 877 | |
| 878 | static int cb_stream_stop_sending(ngtcp2_conn *tconn, int64_t stream_id, |
| 879 | uint64_t app_error_code, void *user_data, |
| 880 | void *stream_user_data) |
| 881 | { |
| 882 | struct Curl_cfilter *cf = user_data; |
| 883 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 884 | int rv; |
| 885 | (void)tconn; |
| 886 | (void)app_error_code; |
| 887 | (void)stream_user_data; |
| 888 | |
| 889 | rv = nghttp3_conn_shutdown_stream_read(ctx->h3conn, stream_id); |
| 890 | if(rv) { |
| 891 | return NGTCP2_ERR_CALLBACK_FAILURE; |
| 892 | } |
| 893 | |
| 894 | return 0; |
| 895 | } |
| 896 | |
| 897 | static int cb_extend_max_local_streams_bidi(ngtcp2_conn *tconn, |
| 898 | uint64_t max_streams, |
| 899 | void *user_data) |
| 900 | { |
| 901 | (void)tconn; |
| 902 | (void)max_streams; |
| 903 | (void)user_data; |
| 904 | |
| 905 | return 0; |
| 906 | } |
| 907 | |
| 908 | static int cb_extend_max_stream_data(ngtcp2_conn *tconn, int64_t stream_id, |
| 909 | uint64_t max_data, void *user_data, |
| 910 | void *stream_user_data) |
| 911 | { |
| 912 | struct Curl_cfilter *cf = user_data; |
| 913 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 914 | int rv; |
| 915 | (void)tconn; |
| 916 | (void)max_data; |
| 917 | (void)stream_user_data; |
| 918 | |
| 919 | rv = nghttp3_conn_unblock_stream(ctx->h3conn, stream_id); |
| 920 | if(rv) { |
| 921 | return NGTCP2_ERR_CALLBACK_FAILURE; |
| 922 | } |
| 923 | |
| 924 | return 0; |
| 925 | } |
| 926 | |
| 927 | static void cb_rand(uint8_t *dest, size_t destlen, |
| 928 | const ngtcp2_rand_ctx *rand_ctx) |
| 929 | { |
| 930 | CURLcode result; |
| 931 | (void)rand_ctx; |
| 932 | |
| 933 | result = Curl_rand(NULL, dest, destlen); |
| 934 | if(result) { |
| 935 | /* cb_rand is only used for non-cryptographic context. If Curl_rand |
| 936 | failed, just fill 0 and call it *random*. */ |
| 937 | memset(dest, 0, destlen); |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | static int cb_get_new_connection_id(ngtcp2_conn *tconn, ngtcp2_cid *cid, |
| 942 | uint8_t *token, size_t cidlen, |
| 943 | void *user_data) |
| 944 | { |
| 945 | CURLcode result; |
| 946 | (void)tconn; |
| 947 | (void)user_data; |
| 948 | |
| 949 | result = Curl_rand(NULL, cid->data, cidlen); |
| 950 | if(result) |
| 951 | return NGTCP2_ERR_CALLBACK_FAILURE; |
| 952 | cid->datalen = cidlen; |
| 953 | |
| 954 | result = Curl_rand(NULL, token, NGTCP2_STATELESS_RESET_TOKENLEN); |
| 955 | if(result) |
| 956 | return NGTCP2_ERR_CALLBACK_FAILURE; |
| 957 | |
| 958 | return 0; |
| 959 | } |
| 960 | |
| 961 | static int cb_recv_rx_key(ngtcp2_conn *tconn, ngtcp2_encryption_level level, |
| 962 | void *user_data) |
| 963 | { |
| 964 | struct Curl_cfilter *cf = user_data; |
| 965 | (void)tconn; |
| 966 | |
| 967 | if(level != NGTCP2_ENCRYPTION_LEVEL_1RTT) { |
| 968 | return 0; |
| 969 | } |
| 970 | |
| 971 | if(init_ngh3_conn(cf) != CURLE_OK) { |
| 972 | return NGTCP2_ERR_CALLBACK_FAILURE; |
| 973 | } |
| 974 | |
| 975 | return 0; |
| 976 | } |
| 977 | |
| 978 | static ngtcp2_callbacks ng_callbacks = { |
| 979 | ngtcp2_crypto_client_initial_cb, |
| 980 | NULL, /* recv_client_initial */ |
| 981 | ngtcp2_crypto_recv_crypto_data_cb, |
| 982 | cb_handshake_completed, |
| 983 | NULL, /* recv_version_negotiation */ |
| 984 | ngtcp2_crypto_encrypt_cb, |
| 985 | ngtcp2_crypto_decrypt_cb, |
| 986 | ngtcp2_crypto_hp_mask_cb, |
| 987 | cb_recv_stream_data, |
| 988 | cb_acked_stream_data_offset, |
| 989 | NULL, /* stream_open */ |
| 990 | cb_stream_close, |
| 991 | NULL, /* recv_stateless_reset */ |
| 992 | ngtcp2_crypto_recv_retry_cb, |
| 993 | cb_extend_max_local_streams_bidi, |
| 994 | NULL, /* extend_max_local_streams_uni */ |
| 995 | cb_rand, |
| 996 | cb_get_new_connection_id, |
| 997 | NULL, /* remove_connection_id */ |
| 998 | ngtcp2_crypto_update_key_cb, /* update_key */ |
| 999 | NULL, /* path_validation */ |
| 1000 | NULL, /* select_preferred_addr */ |
| 1001 | cb_stream_reset, |
| 1002 | NULL, /* extend_max_remote_streams_bidi */ |
| 1003 | NULL, /* extend_max_remote_streams_uni */ |
| 1004 | cb_extend_max_stream_data, |
| 1005 | NULL, /* dcid_status */ |
| 1006 | NULL, /* handshake_confirmed */ |
| 1007 | NULL, /* recv_new_token */ |
| 1008 | ngtcp2_crypto_delete_crypto_aead_ctx_cb, |
| 1009 | ngtcp2_crypto_delete_crypto_cipher_ctx_cb, |
| 1010 | NULL, /* recv_datagram */ |
| 1011 | NULL, /* ack_datagram */ |
| 1012 | NULL, /* lost_datagram */ |
| 1013 | ngtcp2_crypto_get_path_challenge_data_cb, |
| 1014 | cb_stream_stop_sending, |
| 1015 | NULL, /* version_negotiation */ |
| 1016 | cb_recv_rx_key, |
| 1017 | NULL, /* recv_tx_key */ |
| 1018 | NULL, /* early_data_rejected */ |
| 1019 | }; |
| 1020 | |
| 1021 | /** |
| 1022 | * Connection maintenance like timeouts on packet ACKs etc. are done by us, not |
| 1023 | * the OS like for TCP. POLL events on the socket therefore are not |
| 1024 | * sufficient. |
| 1025 | * ngtcp2 tells us when it wants to be invoked again. We handle that via |
| 1026 | * the `Curl_expire()` mechanisms. |
| 1027 | */ |
| 1028 | static CURLcode check_and_set_expiry(struct Curl_cfilter *cf, |
| 1029 | struct Curl_easy *data, |
| 1030 | struct pkt_io_ctx *pktx) |
| 1031 | { |
| 1032 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 1033 | struct pkt_io_ctx local_pktx; |
| 1034 | ngtcp2_tstamp expiry; |
| 1035 | |
| 1036 | if(!pktx) { |
| 1037 | pktx_init(&local_pktx, cf, data); |
| 1038 | pktx = &local_pktx; |
| 1039 | } |
| 1040 | else { |
| 1041 | pktx->ts = timestamp(); |
| 1042 | } |
| 1043 | |
| 1044 | expiry = ngtcp2_conn_get_expiry(ctx->qconn); |
| 1045 | if(expiry != UINT64_MAX) { |
| 1046 | if(expiry <= pktx->ts) { |
| 1047 | CURLcode result; |
| 1048 | int rv = ngtcp2_conn_handle_expiry(ctx->qconn, pktx->ts); |
| 1049 | if(rv) { |
| 1050 | failf(data, "ngtcp2_conn_handle_expiry returned error: %s" , |
| 1051 | ngtcp2_strerror(rv)); |
| 1052 | ngtcp2_ccerr_set_liberr(&ctx->last_error, rv, NULL, 0); |
| 1053 | return CURLE_SEND_ERROR; |
| 1054 | } |
| 1055 | result = cf_progress_ingress(cf, data, pktx); |
| 1056 | if(result) |
| 1057 | return result; |
| 1058 | result = cf_progress_egress(cf, data, pktx); |
| 1059 | if(result) |
| 1060 | return result; |
| 1061 | /* ask again, things might have changed */ |
| 1062 | expiry = ngtcp2_conn_get_expiry(ctx->qconn); |
| 1063 | } |
| 1064 | |
| 1065 | if(expiry > pktx->ts) { |
| 1066 | ngtcp2_duration timeout = expiry - pktx->ts; |
| 1067 | if(timeout % NGTCP2_MILLISECONDS) { |
| 1068 | timeout += NGTCP2_MILLISECONDS; |
| 1069 | } |
| 1070 | Curl_expire(data, timeout / NGTCP2_MILLISECONDS, EXPIRE_QUIC); |
| 1071 | } |
| 1072 | } |
| 1073 | return CURLE_OK; |
| 1074 | } |
| 1075 | |
| 1076 | static int cf_ngtcp2_get_select_socks(struct Curl_cfilter *cf, |
| 1077 | struct Curl_easy *data, |
| 1078 | curl_socket_t *socks) |
| 1079 | { |
| 1080 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 1081 | struct SingleRequest *k = &data->req; |
| 1082 | int rv = GETSOCK_BLANK; |
| 1083 | struct h3_stream_ctx *stream = H3_STREAM_CTX(data); |
| 1084 | struct cf_call_data save; |
| 1085 | |
| 1086 | CF_DATA_SAVE(save, cf, data); |
| 1087 | socks[0] = ctx->q.sockfd; |
| 1088 | |
| 1089 | /* in HTTP/3 we can always get a frame, so check read */ |
| 1090 | rv |= GETSOCK_READSOCK(0); |
| 1091 | |
| 1092 | /* we're still uploading or the HTTP/2 layer wants to send data */ |
| 1093 | if((k->keepon & KEEP_SENDBITS) == KEEP_SEND && |
| 1094 | ngtcp2_conn_get_cwnd_left(ctx->qconn) && |
| 1095 | ngtcp2_conn_get_max_data_left(ctx->qconn) && |
| 1096 | stream && nghttp3_conn_is_stream_writable(ctx->h3conn, stream->id)) |
| 1097 | rv |= GETSOCK_WRITESOCK(0); |
| 1098 | |
| 1099 | CF_DATA_RESTORE(cf, save); |
| 1100 | return rv; |
| 1101 | } |
| 1102 | |
| 1103 | static void h3_drain_stream(struct Curl_cfilter *cf, |
| 1104 | struct Curl_easy *data) |
| 1105 | { |
| 1106 | struct h3_stream_ctx *stream = H3_STREAM_CTX(data); |
| 1107 | unsigned char bits; |
| 1108 | |
| 1109 | (void)cf; |
| 1110 | bits = CURL_CSELECT_IN; |
| 1111 | if(stream && stream->upload_left && !stream->send_closed) |
| 1112 | bits |= CURL_CSELECT_OUT; |
| 1113 | if(data->state.dselect_bits != bits) { |
| 1114 | data->state.dselect_bits = bits; |
| 1115 | Curl_expire(data, 0, EXPIRE_RUN_NOW); |
| 1116 | } |
| 1117 | } |
| 1118 | |
| 1119 | static int cb_h3_stream_close(nghttp3_conn *conn, int64_t stream_id, |
| 1120 | uint64_t app_error_code, void *user_data, |
| 1121 | void *stream_user_data) |
| 1122 | { |
| 1123 | struct Curl_cfilter *cf = user_data; |
| 1124 | struct Curl_easy *data = stream_user_data; |
| 1125 | struct h3_stream_ctx *stream = H3_STREAM_CTX(data); |
| 1126 | (void)conn; |
| 1127 | (void)stream_id; |
| 1128 | |
| 1129 | /* we might be called by nghttp3 after we already cleaned up */ |
| 1130 | if(!stream) |
| 1131 | return 0; |
| 1132 | |
| 1133 | stream->closed = TRUE; |
| 1134 | stream->error3 = app_error_code; |
| 1135 | if(stream->error3 != NGHTTP3_H3_NO_ERROR) { |
| 1136 | stream->reset = TRUE; |
| 1137 | stream->send_closed = TRUE; |
| 1138 | CURL_TRC_CF(data, cf, "[%" PRId64 "] RESET: error %" PRId64, |
| 1139 | stream->id, stream->error3); |
| 1140 | } |
| 1141 | else { |
| 1142 | CURL_TRC_CF(data, cf, "[%" PRId64 "] CLOSED" , stream->id); |
| 1143 | } |
| 1144 | data->req.keepon &= ~KEEP_SEND_HOLD; |
| 1145 | h3_drain_stream(cf, data); |
| 1146 | return 0; |
| 1147 | } |
| 1148 | |
| 1149 | /* |
| 1150 | * write_resp_raw() copies response data in raw format to the `data`'s |
| 1151 | * receive buffer. If not enough space is available, it appends to the |
| 1152 | * `data`'s overflow buffer. |
| 1153 | */ |
| 1154 | static CURLcode write_resp_raw(struct Curl_cfilter *cf, |
| 1155 | struct Curl_easy *data, |
| 1156 | const void *mem, size_t memlen, |
| 1157 | bool flow) |
| 1158 | { |
| 1159 | struct h3_stream_ctx *stream = H3_STREAM_CTX(data); |
| 1160 | CURLcode result = CURLE_OK; |
| 1161 | ssize_t nwritten; |
| 1162 | |
| 1163 | (void)cf; |
| 1164 | if(!stream) { |
| 1165 | return CURLE_RECV_ERROR; |
| 1166 | } |
| 1167 | nwritten = Curl_bufq_write(&stream->recvbuf, mem, memlen, &result); |
| 1168 | if(nwritten < 0) { |
| 1169 | return result; |
| 1170 | } |
| 1171 | |
| 1172 | if(!flow) |
| 1173 | stream->recv_buf_nonflow += (size_t)nwritten; |
| 1174 | |
| 1175 | if((size_t)nwritten < memlen) { |
| 1176 | /* This MUST not happen. Our recbuf is dimensioned to hold the |
| 1177 | * full max_stream_window and then some for this very reason. */ |
| 1178 | DEBUGASSERT(0); |
| 1179 | return CURLE_RECV_ERROR; |
| 1180 | } |
| 1181 | return result; |
| 1182 | } |
| 1183 | |
| 1184 | static int cb_h3_recv_data(nghttp3_conn *conn, int64_t stream3_id, |
| 1185 | const uint8_t *buf, size_t buflen, |
| 1186 | void *user_data, void *stream_user_data) |
| 1187 | { |
| 1188 | struct Curl_cfilter *cf = user_data; |
| 1189 | struct Curl_easy *data = stream_user_data; |
| 1190 | struct h3_stream_ctx *stream = H3_STREAM_CTX(data); |
| 1191 | CURLcode result; |
| 1192 | |
| 1193 | (void)conn; |
| 1194 | (void)stream3_id; |
| 1195 | |
| 1196 | if(!stream) |
| 1197 | return NGHTTP3_ERR_CALLBACK_FAILURE; |
| 1198 | |
| 1199 | result = write_resp_raw(cf, data, buf, buflen, TRUE); |
| 1200 | if(result) { |
| 1201 | CURL_TRC_CF(data, cf, "[%" PRId64 "] DATA len=%zu, ERROR receiving %d" , |
| 1202 | stream->id, buflen, result); |
| 1203 | return NGHTTP3_ERR_CALLBACK_FAILURE; |
| 1204 | } |
| 1205 | CURL_TRC_CF(data, cf, "[%" PRId64 "] DATA len=%zu" , stream->id, buflen); |
| 1206 | h3_drain_stream(cf, data); |
| 1207 | return 0; |
| 1208 | } |
| 1209 | |
| 1210 | static int cb_h3_deferred_consume(nghttp3_conn *conn, int64_t stream3_id, |
| 1211 | size_t consumed, void *user_data, |
| 1212 | void *stream_user_data) |
| 1213 | { |
| 1214 | struct Curl_cfilter *cf = user_data; |
| 1215 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 1216 | (void)conn; |
| 1217 | (void)stream_user_data; |
| 1218 | |
| 1219 | /* nghttp3 has consumed bytes on the QUIC stream and we need to |
| 1220 | * tell the QUIC connection to increase its flow control */ |
| 1221 | ngtcp2_conn_extend_max_stream_offset(ctx->qconn, stream3_id, consumed); |
| 1222 | ngtcp2_conn_extend_max_offset(ctx->qconn, consumed); |
| 1223 | return 0; |
| 1224 | } |
| 1225 | |
| 1226 | static int cb_h3_end_headers(nghttp3_conn *conn, int64_t stream_id, |
| 1227 | int fin, void *user_data, void *stream_user_data) |
| 1228 | { |
| 1229 | struct Curl_cfilter *cf = user_data; |
| 1230 | struct Curl_easy *data = stream_user_data; |
| 1231 | struct h3_stream_ctx *stream = H3_STREAM_CTX(data); |
| 1232 | CURLcode result = CURLE_OK; |
| 1233 | (void)conn; |
| 1234 | (void)stream_id; |
| 1235 | (void)fin; |
| 1236 | (void)cf; |
| 1237 | |
| 1238 | if(!stream) |
| 1239 | return 0; |
| 1240 | /* add a CRLF only if we've received some headers */ |
| 1241 | result = write_resp_raw(cf, data, "\r\n" , 2, FALSE); |
| 1242 | if(result) { |
| 1243 | return -1; |
| 1244 | } |
| 1245 | |
| 1246 | CURL_TRC_CF(data, cf, "[%" PRId64 "] end_headers, status=%d" , |
| 1247 | stream_id, stream->status_code); |
| 1248 | if(stream->status_code / 100 != 1) { |
| 1249 | stream->resp_hds_complete = TRUE; |
| 1250 | } |
| 1251 | h3_drain_stream(cf, data); |
| 1252 | return 0; |
| 1253 | } |
| 1254 | |
| 1255 | static int cb_h3_recv_header(nghttp3_conn *conn, int64_t stream_id, |
| 1256 | int32_t token, nghttp3_rcbuf *name, |
| 1257 | nghttp3_rcbuf *value, uint8_t flags, |
| 1258 | void *user_data, void *stream_user_data) |
| 1259 | { |
| 1260 | struct Curl_cfilter *cf = user_data; |
| 1261 | nghttp3_vec h3name = nghttp3_rcbuf_get_buf(name); |
| 1262 | nghttp3_vec h3val = nghttp3_rcbuf_get_buf(value); |
| 1263 | struct Curl_easy *data = stream_user_data; |
| 1264 | struct h3_stream_ctx *stream = H3_STREAM_CTX(data); |
| 1265 | CURLcode result = CURLE_OK; |
| 1266 | (void)conn; |
| 1267 | (void)stream_id; |
| 1268 | (void)token; |
| 1269 | (void)flags; |
| 1270 | (void)cf; |
| 1271 | |
| 1272 | /* we might have cleaned up this transfer already */ |
| 1273 | if(!stream) |
| 1274 | return 0; |
| 1275 | |
| 1276 | if(token == NGHTTP3_QPACK_TOKEN__STATUS) { |
| 1277 | char line[14]; /* status line is always 13 characters long */ |
| 1278 | size_t ncopy; |
| 1279 | |
| 1280 | result = Curl_http_decode_status(&stream->status_code, |
| 1281 | (const char *)h3val.base, h3val.len); |
| 1282 | if(result) |
| 1283 | return -1; |
| 1284 | ncopy = msnprintf(line, sizeof(line), "HTTP/3 %03d \r\n" , |
| 1285 | stream->status_code); |
| 1286 | CURL_TRC_CF(data, cf, "[%" PRId64 "] status: %s" , stream_id, line); |
| 1287 | result = write_resp_raw(cf, data, line, ncopy, FALSE); |
| 1288 | if(result) { |
| 1289 | return -1; |
| 1290 | } |
| 1291 | } |
| 1292 | else { |
| 1293 | /* store as an HTTP1-style header */ |
| 1294 | CURL_TRC_CF(data, cf, "[%" PRId64 "] header: %.*s: %.*s" , |
| 1295 | stream_id, (int)h3name.len, h3name.base, |
| 1296 | (int)h3val.len, h3val.base); |
| 1297 | result = write_resp_raw(cf, data, h3name.base, h3name.len, FALSE); |
| 1298 | if(result) { |
| 1299 | return -1; |
| 1300 | } |
| 1301 | result = write_resp_raw(cf, data, ": " , 2, FALSE); |
| 1302 | if(result) { |
| 1303 | return -1; |
| 1304 | } |
| 1305 | result = write_resp_raw(cf, data, h3val.base, h3val.len, FALSE); |
| 1306 | if(result) { |
| 1307 | return -1; |
| 1308 | } |
| 1309 | result = write_resp_raw(cf, data, "\r\n" , 2, FALSE); |
| 1310 | if(result) { |
| 1311 | return -1; |
| 1312 | } |
| 1313 | } |
| 1314 | return 0; |
| 1315 | } |
| 1316 | |
| 1317 | static int cb_h3_stop_sending(nghttp3_conn *conn, int64_t stream_id, |
| 1318 | uint64_t app_error_code, void *user_data, |
| 1319 | void *stream_user_data) |
| 1320 | { |
| 1321 | struct Curl_cfilter *cf = user_data; |
| 1322 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 1323 | int rv; |
| 1324 | (void)conn; |
| 1325 | (void)stream_user_data; |
| 1326 | |
| 1327 | rv = ngtcp2_conn_shutdown_stream_read(ctx->qconn, 0, stream_id, |
| 1328 | app_error_code); |
| 1329 | if(rv && rv != NGTCP2_ERR_STREAM_NOT_FOUND) { |
| 1330 | return NGTCP2_ERR_CALLBACK_FAILURE; |
| 1331 | } |
| 1332 | |
| 1333 | return 0; |
| 1334 | } |
| 1335 | |
| 1336 | static int cb_h3_reset_stream(nghttp3_conn *conn, int64_t stream_id, |
| 1337 | uint64_t app_error_code, void *user_data, |
| 1338 | void *stream_user_data) { |
| 1339 | struct Curl_cfilter *cf = user_data; |
| 1340 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 1341 | struct Curl_easy *data = stream_user_data; |
| 1342 | int rv; |
| 1343 | (void)conn; |
| 1344 | (void)data; |
| 1345 | |
| 1346 | rv = ngtcp2_conn_shutdown_stream_write(ctx->qconn, 0, stream_id, |
| 1347 | app_error_code); |
| 1348 | CURL_TRC_CF(data, cf, "[%" PRId64 "] reset -> %d" , stream_id, rv); |
| 1349 | if(rv && rv != NGTCP2_ERR_STREAM_NOT_FOUND) { |
| 1350 | return NGTCP2_ERR_CALLBACK_FAILURE; |
| 1351 | } |
| 1352 | |
| 1353 | return 0; |
| 1354 | } |
| 1355 | |
| 1356 | static nghttp3_callbacks ngh3_callbacks = { |
| 1357 | cb_h3_acked_req_body, /* acked_stream_data */ |
| 1358 | cb_h3_stream_close, |
| 1359 | cb_h3_recv_data, |
| 1360 | cb_h3_deferred_consume, |
| 1361 | NULL, /* begin_headers */ |
| 1362 | cb_h3_recv_header, |
| 1363 | cb_h3_end_headers, |
| 1364 | NULL, /* begin_trailers */ |
| 1365 | cb_h3_recv_header, |
| 1366 | NULL, /* end_trailers */ |
| 1367 | cb_h3_stop_sending, |
| 1368 | NULL, /* end_stream */ |
| 1369 | cb_h3_reset_stream, |
| 1370 | NULL, /* shutdown */ |
| 1371 | NULL /* recv_settings */ |
| 1372 | }; |
| 1373 | |
| 1374 | static int init_ngh3_conn(struct Curl_cfilter *cf) |
| 1375 | { |
| 1376 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 1377 | CURLcode result; |
| 1378 | int rc; |
| 1379 | int64_t ctrl_stream_id, qpack_enc_stream_id, qpack_dec_stream_id; |
| 1380 | |
| 1381 | if(ngtcp2_conn_get_streams_uni_left(ctx->qconn) < 3) { |
| 1382 | return CURLE_QUIC_CONNECT_ERROR; |
| 1383 | } |
| 1384 | |
| 1385 | nghttp3_settings_default(&ctx->h3settings); |
| 1386 | |
| 1387 | rc = nghttp3_conn_client_new(&ctx->h3conn, |
| 1388 | &ngh3_callbacks, |
| 1389 | &ctx->h3settings, |
| 1390 | nghttp3_mem_default(), |
| 1391 | cf); |
| 1392 | if(rc) { |
| 1393 | result = CURLE_OUT_OF_MEMORY; |
| 1394 | goto fail; |
| 1395 | } |
| 1396 | |
| 1397 | rc = ngtcp2_conn_open_uni_stream(ctx->qconn, &ctrl_stream_id, NULL); |
| 1398 | if(rc) { |
| 1399 | result = CURLE_QUIC_CONNECT_ERROR; |
| 1400 | goto fail; |
| 1401 | } |
| 1402 | |
| 1403 | rc = nghttp3_conn_bind_control_stream(ctx->h3conn, ctrl_stream_id); |
| 1404 | if(rc) { |
| 1405 | result = CURLE_QUIC_CONNECT_ERROR; |
| 1406 | goto fail; |
| 1407 | } |
| 1408 | |
| 1409 | rc = ngtcp2_conn_open_uni_stream(ctx->qconn, &qpack_enc_stream_id, NULL); |
| 1410 | if(rc) { |
| 1411 | result = CURLE_QUIC_CONNECT_ERROR; |
| 1412 | goto fail; |
| 1413 | } |
| 1414 | |
| 1415 | rc = ngtcp2_conn_open_uni_stream(ctx->qconn, &qpack_dec_stream_id, NULL); |
| 1416 | if(rc) { |
| 1417 | result = CURLE_QUIC_CONNECT_ERROR; |
| 1418 | goto fail; |
| 1419 | } |
| 1420 | |
| 1421 | rc = nghttp3_conn_bind_qpack_streams(ctx->h3conn, qpack_enc_stream_id, |
| 1422 | qpack_dec_stream_id); |
| 1423 | if(rc) { |
| 1424 | result = CURLE_QUIC_CONNECT_ERROR; |
| 1425 | goto fail; |
| 1426 | } |
| 1427 | |
| 1428 | return CURLE_OK; |
| 1429 | fail: |
| 1430 | |
| 1431 | return result; |
| 1432 | } |
| 1433 | |
| 1434 | static ssize_t recv_closed_stream(struct Curl_cfilter *cf, |
| 1435 | struct Curl_easy *data, |
| 1436 | struct h3_stream_ctx *stream, |
| 1437 | CURLcode *err) |
| 1438 | { |
| 1439 | ssize_t nread = -1; |
| 1440 | |
| 1441 | (void)cf; |
| 1442 | if(stream->reset) { |
| 1443 | failf(data, |
| 1444 | "HTTP/3 stream %" PRId64 " reset by server" , stream->id); |
| 1445 | *err = stream->resp_hds_complete? CURLE_PARTIAL_FILE : CURLE_HTTP3; |
| 1446 | goto out; |
| 1447 | } |
| 1448 | else if(!stream->resp_hds_complete) { |
| 1449 | failf(data, |
| 1450 | "HTTP/3 stream %" PRId64 " was closed cleanly, but before getting" |
| 1451 | " all response header fields, treated as error" , |
| 1452 | stream->id); |
| 1453 | *err = CURLE_HTTP3; |
| 1454 | goto out; |
| 1455 | } |
| 1456 | *err = CURLE_OK; |
| 1457 | nread = 0; |
| 1458 | |
| 1459 | out: |
| 1460 | return nread; |
| 1461 | } |
| 1462 | |
| 1463 | /* incoming data frames on the h3 stream */ |
| 1464 | static ssize_t cf_ngtcp2_recv(struct Curl_cfilter *cf, struct Curl_easy *data, |
| 1465 | char *buf, size_t len, CURLcode *err) |
| 1466 | { |
| 1467 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 1468 | struct h3_stream_ctx *stream = H3_STREAM_CTX(data); |
| 1469 | ssize_t nread = -1; |
| 1470 | struct cf_call_data save; |
| 1471 | struct pkt_io_ctx pktx; |
| 1472 | |
| 1473 | (void)ctx; |
| 1474 | |
| 1475 | CF_DATA_SAVE(save, cf, data); |
| 1476 | DEBUGASSERT(cf->connected); |
| 1477 | DEBUGASSERT(ctx); |
| 1478 | DEBUGASSERT(ctx->qconn); |
| 1479 | DEBUGASSERT(ctx->h3conn); |
| 1480 | *err = CURLE_OK; |
| 1481 | |
| 1482 | pktx_init(&pktx, cf, data); |
| 1483 | |
| 1484 | if(!stream) { |
| 1485 | *err = CURLE_RECV_ERROR; |
| 1486 | goto out; |
| 1487 | } |
| 1488 | |
| 1489 | if(!Curl_bufq_is_empty(&stream->recvbuf)) { |
| 1490 | nread = Curl_bufq_read(&stream->recvbuf, |
| 1491 | (unsigned char *)buf, len, err); |
| 1492 | if(nread < 0) { |
| 1493 | CURL_TRC_CF(data, cf, "[%" PRId64 "] read recvbuf(len=%zu) " |
| 1494 | "-> %zd, %d" , stream->id, len, nread, *err); |
| 1495 | goto out; |
| 1496 | } |
| 1497 | report_consumed_data(cf, data, nread); |
| 1498 | } |
| 1499 | |
| 1500 | if(cf_progress_ingress(cf, data, &pktx)) { |
| 1501 | *err = CURLE_RECV_ERROR; |
| 1502 | nread = -1; |
| 1503 | goto out; |
| 1504 | } |
| 1505 | |
| 1506 | /* recvbuf had nothing before, maybe after progressing ingress? */ |
| 1507 | if(nread < 0 && !Curl_bufq_is_empty(&stream->recvbuf)) { |
| 1508 | nread = Curl_bufq_read(&stream->recvbuf, |
| 1509 | (unsigned char *)buf, len, err); |
| 1510 | if(nread < 0) { |
| 1511 | CURL_TRC_CF(data, cf, "[%" PRId64 "] read recvbuf(len=%zu) " |
| 1512 | "-> %zd, %d" , stream->id, len, nread, *err); |
| 1513 | goto out; |
| 1514 | } |
| 1515 | report_consumed_data(cf, data, nread); |
| 1516 | } |
| 1517 | |
| 1518 | if(nread > 0) { |
| 1519 | h3_drain_stream(cf, data); |
| 1520 | } |
| 1521 | else { |
| 1522 | if(stream->closed) { |
| 1523 | nread = recv_closed_stream(cf, data, stream, err); |
| 1524 | goto out; |
| 1525 | } |
| 1526 | *err = CURLE_AGAIN; |
| 1527 | nread = -1; |
| 1528 | } |
| 1529 | |
| 1530 | out: |
| 1531 | if(cf_progress_egress(cf, data, &pktx)) { |
| 1532 | *err = CURLE_SEND_ERROR; |
| 1533 | nread = -1; |
| 1534 | } |
| 1535 | else { |
| 1536 | CURLcode result2 = check_and_set_expiry(cf, data, &pktx); |
| 1537 | if(result2) { |
| 1538 | *err = result2; |
| 1539 | nread = -1; |
| 1540 | } |
| 1541 | } |
| 1542 | CURL_TRC_CF(data, cf, "[%" PRId64 "] cf_recv(len=%zu) -> %zd, %d" , |
| 1543 | stream? stream->id : -1, len, nread, *err); |
| 1544 | CF_DATA_RESTORE(cf, save); |
| 1545 | return nread; |
| 1546 | } |
| 1547 | |
| 1548 | static int cb_h3_acked_req_body(nghttp3_conn *conn, int64_t stream_id, |
| 1549 | uint64_t datalen, void *user_data, |
| 1550 | void *stream_user_data) |
| 1551 | { |
| 1552 | struct Curl_cfilter *cf = user_data; |
| 1553 | struct Curl_easy *data = stream_user_data; |
| 1554 | struct h3_stream_ctx *stream = H3_STREAM_CTX(data); |
| 1555 | size_t skiplen; |
| 1556 | |
| 1557 | (void)cf; |
| 1558 | if(!stream) |
| 1559 | return 0; |
| 1560 | /* The server acknowledged `datalen` of bytes from our request body. |
| 1561 | * This is a delta. We have kept this data in `sendbuf` for |
| 1562 | * re-transmissions and can free it now. */ |
| 1563 | if(datalen >= (uint64_t)stream->sendbuf_len_in_flight) |
| 1564 | skiplen = stream->sendbuf_len_in_flight; |
| 1565 | else |
| 1566 | skiplen = (size_t)datalen; |
| 1567 | Curl_bufq_skip(&stream->sendbuf, skiplen); |
| 1568 | stream->sendbuf_len_in_flight -= skiplen; |
| 1569 | |
| 1570 | /* Everything ACKed, we resume upload processing */ |
| 1571 | if(!stream->sendbuf_len_in_flight) { |
| 1572 | int rv = nghttp3_conn_resume_stream(conn, stream_id); |
| 1573 | if(rv) { |
| 1574 | return NGTCP2_ERR_CALLBACK_FAILURE; |
| 1575 | } |
| 1576 | if((data->req.keepon & KEEP_SEND_HOLD) && |
| 1577 | (data->req.keepon & KEEP_SEND)) { |
| 1578 | data->req.keepon &= ~KEEP_SEND_HOLD; |
| 1579 | h3_drain_stream(cf, data); |
| 1580 | CURL_TRC_CF(data, cf, "[%" PRId64 "] unpausing acks" , stream_id); |
| 1581 | } |
| 1582 | } |
| 1583 | return 0; |
| 1584 | } |
| 1585 | |
| 1586 | static nghttp3_ssize |
| 1587 | cb_h3_read_req_body(nghttp3_conn *conn, int64_t stream_id, |
| 1588 | nghttp3_vec *vec, size_t veccnt, |
| 1589 | uint32_t *pflags, void *user_data, |
| 1590 | void *stream_user_data) |
| 1591 | { |
| 1592 | struct Curl_cfilter *cf = user_data; |
| 1593 | struct Curl_easy *data = stream_user_data; |
| 1594 | struct h3_stream_ctx *stream = H3_STREAM_CTX(data); |
| 1595 | ssize_t nwritten = 0; |
| 1596 | size_t nvecs = 0; |
| 1597 | (void)cf; |
| 1598 | (void)conn; |
| 1599 | (void)stream_id; |
| 1600 | (void)user_data; |
| 1601 | (void)veccnt; |
| 1602 | |
| 1603 | if(!stream) |
| 1604 | return NGHTTP3_ERR_CALLBACK_FAILURE; |
| 1605 | /* nghttp3 keeps references to the sendbuf data until it is ACKed |
| 1606 | * by the server (see `cb_h3_acked_req_body()` for updates). |
| 1607 | * `sendbuf_len_in_flight` is the amount of bytes in `sendbuf` |
| 1608 | * that we have already passed to nghttp3, but which have not been |
| 1609 | * ACKed yet. |
| 1610 | * Any amount beyond `sendbuf_len_in_flight` we need still to pass |
| 1611 | * to nghttp3. Do that now, if we can. */ |
| 1612 | if(stream->sendbuf_len_in_flight < Curl_bufq_len(&stream->sendbuf)) { |
| 1613 | nvecs = 0; |
| 1614 | while(nvecs < veccnt && |
| 1615 | Curl_bufq_peek_at(&stream->sendbuf, |
| 1616 | stream->sendbuf_len_in_flight, |
| 1617 | (const unsigned char **)&vec[nvecs].base, |
| 1618 | &vec[nvecs].len)) { |
| 1619 | stream->sendbuf_len_in_flight += vec[nvecs].len; |
| 1620 | nwritten += vec[nvecs].len; |
| 1621 | ++nvecs; |
| 1622 | } |
| 1623 | DEBUGASSERT(nvecs > 0); /* we SHOULD have been be able to peek */ |
| 1624 | } |
| 1625 | |
| 1626 | if(nwritten > 0 && stream->upload_left != -1) |
| 1627 | stream->upload_left -= nwritten; |
| 1628 | |
| 1629 | /* When we stopped sending and everything in `sendbuf` is "in flight", |
| 1630 | * we are at the end of the request body. */ |
| 1631 | if(stream->upload_left == 0) { |
| 1632 | *pflags = NGHTTP3_DATA_FLAG_EOF; |
| 1633 | stream->send_closed = TRUE; |
| 1634 | } |
| 1635 | else if(!nwritten) { |
| 1636 | /* Not EOF, and nothing to give, we signal WOULDBLOCK. */ |
| 1637 | CURL_TRC_CF(data, cf, "[%" PRId64 "] read req body -> AGAIN" , |
| 1638 | stream->id); |
| 1639 | return NGHTTP3_ERR_WOULDBLOCK; |
| 1640 | } |
| 1641 | |
| 1642 | CURL_TRC_CF(data, cf, "[%" PRId64 "] read req body -> " |
| 1643 | "%d vecs%s with %zu (buffered=%zu, left=%" |
| 1644 | CURL_FORMAT_CURL_OFF_T ")" , |
| 1645 | stream->id, (int)nvecs, |
| 1646 | *pflags == NGHTTP3_DATA_FLAG_EOF?" EOF" :"" , |
| 1647 | nwritten, Curl_bufq_len(&stream->sendbuf), |
| 1648 | stream->upload_left); |
| 1649 | return (nghttp3_ssize)nvecs; |
| 1650 | } |
| 1651 | |
| 1652 | /* Index where :authority header field will appear in request header |
| 1653 | field list. */ |
| 1654 | #define AUTHORITY_DST_IDX 3 |
| 1655 | |
| 1656 | static ssize_t h3_stream_open(struct Curl_cfilter *cf, |
| 1657 | struct Curl_easy *data, |
| 1658 | const void *buf, size_t len, |
| 1659 | CURLcode *err) |
| 1660 | { |
| 1661 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 1662 | struct h3_stream_ctx *stream = NULL; |
| 1663 | struct dynhds h2_headers; |
| 1664 | size_t nheader; |
| 1665 | nghttp3_nv *nva = NULL; |
| 1666 | int rc = 0; |
| 1667 | unsigned int i; |
| 1668 | ssize_t nwritten = -1; |
| 1669 | nghttp3_data_reader reader; |
| 1670 | nghttp3_data_reader *preader = NULL; |
| 1671 | |
| 1672 | Curl_dynhds_init(&h2_headers, 0, DYN_HTTP_REQUEST); |
| 1673 | |
| 1674 | *err = h3_data_setup(cf, data); |
| 1675 | if(*err) |
| 1676 | goto out; |
| 1677 | stream = H3_STREAM_CTX(data); |
| 1678 | DEBUGASSERT(stream); |
| 1679 | |
| 1680 | nwritten = Curl_h1_req_parse_read(&stream->h1, buf, len, NULL, 0, err); |
| 1681 | if(nwritten < 0) |
| 1682 | goto out; |
| 1683 | if(!stream->h1.done) { |
| 1684 | /* need more data */ |
| 1685 | goto out; |
| 1686 | } |
| 1687 | DEBUGASSERT(stream->h1.req); |
| 1688 | |
| 1689 | *err = Curl_http_req_to_h2(&h2_headers, stream->h1.req, data); |
| 1690 | if(*err) { |
| 1691 | nwritten = -1; |
| 1692 | goto out; |
| 1693 | } |
| 1694 | /* no longer needed */ |
| 1695 | Curl_h1_req_parse_free(&stream->h1); |
| 1696 | |
| 1697 | nheader = Curl_dynhds_count(&h2_headers); |
| 1698 | nva = malloc(sizeof(nghttp3_nv) * nheader); |
| 1699 | if(!nva) { |
| 1700 | *err = CURLE_OUT_OF_MEMORY; |
| 1701 | nwritten = -1; |
| 1702 | goto out; |
| 1703 | } |
| 1704 | |
| 1705 | for(i = 0; i < nheader; ++i) { |
| 1706 | struct dynhds_entry *e = Curl_dynhds_getn(&h2_headers, i); |
| 1707 | nva[i].name = (unsigned char *)e->name; |
| 1708 | nva[i].namelen = e->namelen; |
| 1709 | nva[i].value = (unsigned char *)e->value; |
| 1710 | nva[i].valuelen = e->valuelen; |
| 1711 | nva[i].flags = NGHTTP3_NV_FLAG_NONE; |
| 1712 | } |
| 1713 | |
| 1714 | rc = ngtcp2_conn_open_bidi_stream(ctx->qconn, &stream->id, NULL); |
| 1715 | if(rc) { |
| 1716 | failf(data, "can get bidi streams" ); |
| 1717 | *err = CURLE_SEND_ERROR; |
| 1718 | goto out; |
| 1719 | } |
| 1720 | |
| 1721 | switch(data->state.httpreq) { |
| 1722 | case HTTPREQ_POST: |
| 1723 | case HTTPREQ_POST_FORM: |
| 1724 | case HTTPREQ_POST_MIME: |
| 1725 | case HTTPREQ_PUT: |
| 1726 | /* known request body size or -1 */ |
| 1727 | if(data->state.infilesize != -1) |
| 1728 | stream->upload_left = data->state.infilesize; |
| 1729 | else |
| 1730 | /* data sending without specifying the data amount up front */ |
| 1731 | stream->upload_left = -1; /* unknown */ |
| 1732 | break; |
| 1733 | default: |
| 1734 | /* there is not request body */ |
| 1735 | stream->upload_left = 0; /* no request body */ |
| 1736 | break; |
| 1737 | } |
| 1738 | |
| 1739 | stream->send_closed = (stream->upload_left == 0); |
| 1740 | if(!stream->send_closed) { |
| 1741 | reader.read_data = cb_h3_read_req_body; |
| 1742 | preader = &reader; |
| 1743 | } |
| 1744 | |
| 1745 | rc = nghttp3_conn_submit_request(ctx->h3conn, stream->id, |
| 1746 | nva, nheader, preader, data); |
| 1747 | if(rc) { |
| 1748 | switch(rc) { |
| 1749 | case NGHTTP3_ERR_CONN_CLOSING: |
| 1750 | CURL_TRC_CF(data, cf, "h3sid[%" PRId64"] failed to send, " |
| 1751 | "connection is closing" , stream->id); |
| 1752 | break; |
| 1753 | default: |
| 1754 | CURL_TRC_CF(data, cf, "h3sid[%" PRId64"] failed to send -> %d (%s)" , |
| 1755 | stream->id, rc, ngtcp2_strerror(rc)); |
| 1756 | break; |
| 1757 | } |
| 1758 | *err = CURLE_SEND_ERROR; |
| 1759 | nwritten = -1; |
| 1760 | goto out; |
| 1761 | } |
| 1762 | |
| 1763 | if(Curl_trc_is_verbose(data)) { |
| 1764 | infof(data, "[HTTP/3] [%" PRId64 "] OPENED stream for %s" , |
| 1765 | stream->id, data->state.url); |
| 1766 | for(i = 0; i < nheader; ++i) { |
| 1767 | infof(data, "[HTTP/3] [%" PRId64 "] [%.*s: %.*s]" , stream->id, |
| 1768 | (int)nva[i].namelen, nva[i].name, |
| 1769 | (int)nva[i].valuelen, nva[i].value); |
| 1770 | } |
| 1771 | } |
| 1772 | |
| 1773 | out: |
| 1774 | free(nva); |
| 1775 | Curl_dynhds_free(&h2_headers); |
| 1776 | return nwritten; |
| 1777 | } |
| 1778 | |
| 1779 | static ssize_t cf_ngtcp2_send(struct Curl_cfilter *cf, struct Curl_easy *data, |
| 1780 | const void *buf, size_t len, CURLcode *err) |
| 1781 | { |
| 1782 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 1783 | struct h3_stream_ctx *stream = H3_STREAM_CTX(data); |
| 1784 | ssize_t sent = 0; |
| 1785 | struct cf_call_data save; |
| 1786 | struct pkt_io_ctx pktx; |
| 1787 | CURLcode result; |
| 1788 | |
| 1789 | CF_DATA_SAVE(save, cf, data); |
| 1790 | DEBUGASSERT(cf->connected); |
| 1791 | DEBUGASSERT(ctx->qconn); |
| 1792 | DEBUGASSERT(ctx->h3conn); |
| 1793 | pktx_init(&pktx, cf, data); |
| 1794 | *err = CURLE_OK; |
| 1795 | |
| 1796 | result = cf_progress_ingress(cf, data, &pktx); |
| 1797 | if(result) { |
| 1798 | *err = result; |
| 1799 | sent = -1; |
| 1800 | } |
| 1801 | |
| 1802 | if(!stream || stream->id < 0) { |
| 1803 | sent = h3_stream_open(cf, data, buf, len, err); |
| 1804 | if(sent < 0) { |
| 1805 | CURL_TRC_CF(data, cf, "failed to open stream -> %d" , *err); |
| 1806 | goto out; |
| 1807 | } |
| 1808 | stream = H3_STREAM_CTX(data); |
| 1809 | } |
| 1810 | else if(stream->upload_blocked_len) { |
| 1811 | /* the data in `buf` has already been submitted or added to the |
| 1812 | * buffers, but have been EAGAINed on the last invocation. */ |
| 1813 | DEBUGASSERT(len >= stream->upload_blocked_len); |
| 1814 | if(len < stream->upload_blocked_len) { |
| 1815 | /* Did we get called again with a smaller `len`? This should not |
| 1816 | * happen. We are not prepared to handle that. */ |
| 1817 | failf(data, "HTTP/3 send again with decreased length" ); |
| 1818 | *err = CURLE_HTTP3; |
| 1819 | sent = -1; |
| 1820 | goto out; |
| 1821 | } |
| 1822 | sent = (ssize_t)stream->upload_blocked_len; |
| 1823 | stream->upload_blocked_len = 0; |
| 1824 | } |
| 1825 | else if(stream->closed) { |
| 1826 | if(stream->resp_hds_complete) { |
| 1827 | /* Server decided to close the stream after having sent us a final |
| 1828 | * response. This is valid if it is not interested in the request |
| 1829 | * body. This happens on 30x or 40x responses. |
| 1830 | * We silently discard the data sent, since this is not a transport |
| 1831 | * error situation. */ |
| 1832 | CURL_TRC_CF(data, cf, "[%" PRId64 "] discarding data" |
| 1833 | "on closed stream with response" , stream->id); |
| 1834 | *err = CURLE_OK; |
| 1835 | sent = (ssize_t)len; |
| 1836 | goto out; |
| 1837 | } |
| 1838 | *err = CURLE_HTTP3; |
| 1839 | sent = -1; |
| 1840 | goto out; |
| 1841 | } |
| 1842 | else { |
| 1843 | sent = Curl_bufq_write(&stream->sendbuf, buf, len, err); |
| 1844 | CURL_TRC_CF(data, cf, "[%" PRId64 "] cf_send, add to " |
| 1845 | "sendbuf(len=%zu) -> %zd, %d" , |
| 1846 | stream->id, len, sent, *err); |
| 1847 | if(sent < 0) { |
| 1848 | goto out; |
| 1849 | } |
| 1850 | |
| 1851 | (void)nghttp3_conn_resume_stream(ctx->h3conn, stream->id); |
| 1852 | } |
| 1853 | |
| 1854 | result = cf_progress_egress(cf, data, &pktx); |
| 1855 | if(result) { |
| 1856 | *err = result; |
| 1857 | sent = -1; |
| 1858 | } |
| 1859 | |
| 1860 | if(stream && sent > 0 && stream->sendbuf_len_in_flight) { |
| 1861 | /* We have unacknowledged DATA and cannot report success to our |
| 1862 | * caller. Instead we EAGAIN and remember how much we have already |
| 1863 | * "written" into our various internal connection buffers. |
| 1864 | * We put the stream upload on HOLD, until this gets ACKed. */ |
| 1865 | stream->upload_blocked_len = sent; |
| 1866 | CURL_TRC_CF(data, cf, "[%" PRId64 "] cf_send(len=%zu), " |
| 1867 | "%zu bytes in flight -> EGAIN" , stream->id, len, |
| 1868 | stream->sendbuf_len_in_flight); |
| 1869 | *err = CURLE_AGAIN; |
| 1870 | sent = -1; |
| 1871 | data->req.keepon |= KEEP_SEND_HOLD; |
| 1872 | } |
| 1873 | |
| 1874 | out: |
| 1875 | result = check_and_set_expiry(cf, data, &pktx); |
| 1876 | if(result) { |
| 1877 | *err = result; |
| 1878 | sent = -1; |
| 1879 | } |
| 1880 | CURL_TRC_CF(data, cf, "[%" PRId64 "] cf_send(len=%zu) -> %zd, %d" , |
| 1881 | stream? stream->id : -1, len, sent, *err); |
| 1882 | CF_DATA_RESTORE(cf, save); |
| 1883 | return sent; |
| 1884 | } |
| 1885 | |
| 1886 | static CURLcode qng_verify_peer(struct Curl_cfilter *cf, |
| 1887 | struct Curl_easy *data) |
| 1888 | { |
| 1889 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 1890 | CURLcode result = CURLE_OK; |
| 1891 | const char *hostname, *disp_hostname; |
| 1892 | int port; |
| 1893 | char *snihost; |
| 1894 | |
| 1895 | Curl_conn_get_host(data, cf->sockindex, &hostname, &disp_hostname, &port); |
| 1896 | snihost = Curl_ssl_snihost(data, hostname, NULL); |
| 1897 | if(!snihost) |
| 1898 | return CURLE_PEER_FAILED_VERIFICATION; |
| 1899 | |
| 1900 | cf->conn->bits.multiplex = TRUE; /* at least potentially multiplexed */ |
| 1901 | cf->conn->httpversion = 30; |
| 1902 | cf->conn->bundle->multiuse = BUNDLE_MULTIPLEX; |
| 1903 | |
| 1904 | if(cf->conn->ssl_config.verifyhost) { |
| 1905 | #ifdef USE_OPENSSL |
| 1906 | X509 *server_cert; |
| 1907 | server_cert = SSL_get_peer_certificate(ctx->ssl); |
| 1908 | if(!server_cert) { |
| 1909 | return CURLE_PEER_FAILED_VERIFICATION; |
| 1910 | } |
| 1911 | result = Curl_ossl_verifyhost(data, cf->conn, server_cert); |
| 1912 | X509_free(server_cert); |
| 1913 | if(result) |
| 1914 | return result; |
| 1915 | #elif defined(USE_GNUTLS) |
| 1916 | result = Curl_gtls_verifyserver(data, ctx->gtls->session, |
| 1917 | &cf->conn->ssl_config, &data->set.ssl, |
| 1918 | hostname, disp_hostname, |
| 1919 | data->set.str[STRING_SSL_PINNEDPUBLICKEY]); |
| 1920 | if(result) |
| 1921 | return result; |
| 1922 | #elif defined(USE_WOLFSSL) |
| 1923 | if(wolfSSL_check_domain_name(ctx->ssl, snihost) == SSL_FAILURE) |
| 1924 | return CURLE_PEER_FAILED_VERIFICATION; |
| 1925 | #endif |
| 1926 | infof(data, "Verified certificate just fine" ); |
| 1927 | } |
| 1928 | else |
| 1929 | infof(data, "Skipped certificate verification" ); |
| 1930 | #ifdef USE_OPENSSL |
| 1931 | if(data->set.ssl.certinfo) |
| 1932 | /* asked to gather certificate info */ |
| 1933 | (void)Curl_ossl_certchain(data, ctx->ssl); |
| 1934 | #endif |
| 1935 | return result; |
| 1936 | } |
| 1937 | |
| 1938 | static CURLcode recv_pkt(const unsigned char *pkt, size_t pktlen, |
| 1939 | struct sockaddr_storage *remote_addr, |
| 1940 | socklen_t remote_addrlen, int ecn, |
| 1941 | void *userp) |
| 1942 | { |
| 1943 | struct pkt_io_ctx *pktx = userp; |
| 1944 | struct cf_ngtcp2_ctx *ctx = pktx->cf->ctx; |
| 1945 | ngtcp2_pkt_info pi; |
| 1946 | ngtcp2_path path; |
| 1947 | int rv; |
| 1948 | |
| 1949 | ++pktx->pkt_count; |
| 1950 | ngtcp2_addr_init(&path.local, (struct sockaddr *)&ctx->q.local_addr, |
| 1951 | ctx->q.local_addrlen); |
| 1952 | ngtcp2_addr_init(&path.remote, (struct sockaddr *)remote_addr, |
| 1953 | remote_addrlen); |
| 1954 | pi.ecn = (uint8_t)ecn; |
| 1955 | |
| 1956 | rv = ngtcp2_conn_read_pkt(ctx->qconn, &path, &pi, pkt, pktlen, pktx->ts); |
| 1957 | if(rv) { |
| 1958 | CURL_TRC_CF(pktx->data, pktx->cf, "ingress, read_pkt -> %s" , |
| 1959 | ngtcp2_strerror(rv)); |
| 1960 | if(!ctx->last_error.error_code) { |
| 1961 | if(rv == NGTCP2_ERR_CRYPTO) { |
| 1962 | ngtcp2_ccerr_set_tls_alert(&ctx->last_error, |
| 1963 | ngtcp2_conn_get_tls_alert(ctx->qconn), |
| 1964 | NULL, 0); |
| 1965 | } |
| 1966 | else { |
| 1967 | ngtcp2_ccerr_set_liberr(&ctx->last_error, rv, NULL, 0); |
| 1968 | } |
| 1969 | } |
| 1970 | |
| 1971 | if(rv == NGTCP2_ERR_CRYPTO) |
| 1972 | /* this is a "TLS problem", but a failed certificate verification |
| 1973 | is a common reason for this */ |
| 1974 | return CURLE_PEER_FAILED_VERIFICATION; |
| 1975 | return CURLE_RECV_ERROR; |
| 1976 | } |
| 1977 | |
| 1978 | return CURLE_OK; |
| 1979 | } |
| 1980 | |
| 1981 | static CURLcode cf_progress_ingress(struct Curl_cfilter *cf, |
| 1982 | struct Curl_easy *data, |
| 1983 | struct pkt_io_ctx *pktx) |
| 1984 | { |
| 1985 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 1986 | struct pkt_io_ctx local_pktx; |
| 1987 | size_t pkts_chunk = 128, i; |
| 1988 | size_t pkts_max = 10 * pkts_chunk; |
| 1989 | CURLcode result = CURLE_OK; |
| 1990 | |
| 1991 | if(!pktx) { |
| 1992 | pktx_init(&local_pktx, cf, data); |
| 1993 | pktx = &local_pktx; |
| 1994 | } |
| 1995 | else { |
| 1996 | pktx->ts = timestamp(); |
| 1997 | } |
| 1998 | |
| 1999 | #ifdef USE_OPENSSL |
| 2000 | if(!ctx->x509_store_setup) { |
| 2001 | result = Curl_ssl_setup_x509_store(cf, data, ctx->sslctx); |
| 2002 | if(result) |
| 2003 | return result; |
| 2004 | ctx->x509_store_setup = TRUE; |
| 2005 | } |
| 2006 | #endif |
| 2007 | |
| 2008 | for(i = 0; i < pkts_max; i += pkts_chunk) { |
| 2009 | pktx->pkt_count = 0; |
| 2010 | result = vquic_recv_packets(cf, data, &ctx->q, pkts_chunk, |
| 2011 | recv_pkt, pktx); |
| 2012 | if(result) /* error */ |
| 2013 | break; |
| 2014 | if(pktx->pkt_count < pkts_chunk) /* got less than we could */ |
| 2015 | break; |
| 2016 | /* give egress a chance before we receive more */ |
| 2017 | result = cf_progress_egress(cf, data, pktx); |
| 2018 | if(result) /* error */ |
| 2019 | break; |
| 2020 | } |
| 2021 | return result; |
| 2022 | } |
| 2023 | |
| 2024 | /** |
| 2025 | * Read a network packet to send from ngtcp2 into `buf`. |
| 2026 | * Return number of bytes written or -1 with *err set. |
| 2027 | */ |
| 2028 | static ssize_t read_pkt_to_send(void *userp, |
| 2029 | unsigned char *buf, size_t buflen, |
| 2030 | CURLcode *err) |
| 2031 | { |
| 2032 | struct pkt_io_ctx *x = userp; |
| 2033 | struct cf_ngtcp2_ctx *ctx = x->cf->ctx; |
| 2034 | nghttp3_vec vec[16]; |
| 2035 | nghttp3_ssize veccnt; |
| 2036 | ngtcp2_ssize ndatalen; |
| 2037 | uint32_t flags; |
| 2038 | int64_t stream_id; |
| 2039 | int fin; |
| 2040 | ssize_t nwritten, n; |
| 2041 | veccnt = 0; |
| 2042 | stream_id = -1; |
| 2043 | fin = 0; |
| 2044 | |
| 2045 | /* ngtcp2 may want to put several frames from different streams into |
| 2046 | * this packet. `NGTCP2_WRITE_STREAM_FLAG_MORE` tells it to do so. |
| 2047 | * When `NGTCP2_ERR_WRITE_MORE` is returned, we *need* to make |
| 2048 | * another iteration. |
| 2049 | * When ngtcp2 is happy (because it has no other frame that would fit |
| 2050 | * or it has nothing more to send), it returns the total length |
| 2051 | * of the assembled packet. This may be 0 if there was nothing to send. */ |
| 2052 | nwritten = 0; |
| 2053 | *err = CURLE_OK; |
| 2054 | for(;;) { |
| 2055 | |
| 2056 | if(ctx->h3conn && ngtcp2_conn_get_max_data_left(ctx->qconn)) { |
| 2057 | veccnt = nghttp3_conn_writev_stream(ctx->h3conn, &stream_id, &fin, vec, |
| 2058 | sizeof(vec) / sizeof(vec[0])); |
| 2059 | if(veccnt < 0) { |
| 2060 | failf(x->data, "nghttp3_conn_writev_stream returned error: %s" , |
| 2061 | nghttp3_strerror((int)veccnt)); |
| 2062 | ngtcp2_ccerr_set_application_error( |
| 2063 | &ctx->last_error, |
| 2064 | nghttp3_err_infer_quic_app_error_code((int)veccnt), NULL, 0); |
| 2065 | *err = CURLE_SEND_ERROR; |
| 2066 | return -1; |
| 2067 | } |
| 2068 | } |
| 2069 | |
| 2070 | flags = NGTCP2_WRITE_STREAM_FLAG_MORE | |
| 2071 | (fin ? NGTCP2_WRITE_STREAM_FLAG_FIN : 0); |
| 2072 | n = ngtcp2_conn_writev_stream(ctx->qconn, &x->ps.path, |
| 2073 | NULL, buf, buflen, |
| 2074 | &ndatalen, flags, stream_id, |
| 2075 | (const ngtcp2_vec *)vec, veccnt, x->ts); |
| 2076 | if(n == 0) { |
| 2077 | /* nothing to send */ |
| 2078 | *err = CURLE_AGAIN; |
| 2079 | nwritten = -1; |
| 2080 | goto out; |
| 2081 | } |
| 2082 | else if(n < 0) { |
| 2083 | switch(n) { |
| 2084 | case NGTCP2_ERR_STREAM_DATA_BLOCKED: |
| 2085 | DEBUGASSERT(ndatalen == -1); |
| 2086 | nghttp3_conn_block_stream(ctx->h3conn, stream_id); |
| 2087 | n = 0; |
| 2088 | break; |
| 2089 | case NGTCP2_ERR_STREAM_SHUT_WR: |
| 2090 | DEBUGASSERT(ndatalen == -1); |
| 2091 | nghttp3_conn_shutdown_stream_write(ctx->h3conn, stream_id); |
| 2092 | n = 0; |
| 2093 | break; |
| 2094 | case NGTCP2_ERR_WRITE_MORE: |
| 2095 | /* ngtcp2 wants to send more. update the flow of the stream whose data |
| 2096 | * is in the buffer and continue */ |
| 2097 | DEBUGASSERT(ndatalen >= 0); |
| 2098 | n = 0; |
| 2099 | break; |
| 2100 | default: |
| 2101 | DEBUGASSERT(ndatalen == -1); |
| 2102 | failf(x->data, "ngtcp2_conn_writev_stream returned error: %s" , |
| 2103 | ngtcp2_strerror((int)n)); |
| 2104 | ngtcp2_ccerr_set_liberr(&ctx->last_error, (int)n, NULL, 0); |
| 2105 | *err = CURLE_SEND_ERROR; |
| 2106 | nwritten = -1; |
| 2107 | goto out; |
| 2108 | } |
| 2109 | } |
| 2110 | |
| 2111 | if(ndatalen >= 0) { |
| 2112 | /* we add the amount of data bytes to the flow windows */ |
| 2113 | int rv = nghttp3_conn_add_write_offset(ctx->h3conn, stream_id, ndatalen); |
| 2114 | if(rv) { |
| 2115 | failf(x->data, "nghttp3_conn_add_write_offset returned error: %s\n" , |
| 2116 | nghttp3_strerror(rv)); |
| 2117 | return CURLE_SEND_ERROR; |
| 2118 | } |
| 2119 | } |
| 2120 | |
| 2121 | if(n > 0) { |
| 2122 | /* packet assembled, leave */ |
| 2123 | nwritten = n; |
| 2124 | goto out; |
| 2125 | } |
| 2126 | } |
| 2127 | out: |
| 2128 | return nwritten; |
| 2129 | } |
| 2130 | |
| 2131 | static CURLcode cf_progress_egress(struct Curl_cfilter *cf, |
| 2132 | struct Curl_easy *data, |
| 2133 | struct pkt_io_ctx *pktx) |
| 2134 | { |
| 2135 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 2136 | ssize_t nread; |
| 2137 | size_t max_payload_size, path_max_payload_size, max_pktcnt; |
| 2138 | size_t pktcnt = 0; |
| 2139 | size_t gsolen = 0; /* this disables gso until we have a clue */ |
| 2140 | CURLcode curlcode; |
| 2141 | struct pkt_io_ctx local_pktx; |
| 2142 | |
| 2143 | if(!pktx) { |
| 2144 | pktx_init(&local_pktx, cf, data); |
| 2145 | pktx = &local_pktx; |
| 2146 | } |
| 2147 | else { |
| 2148 | pktx->ts = timestamp(); |
| 2149 | ngtcp2_path_storage_zero(&pktx->ps); |
| 2150 | } |
| 2151 | |
| 2152 | curlcode = vquic_flush(cf, data, &ctx->q); |
| 2153 | if(curlcode) { |
| 2154 | if(curlcode == CURLE_AGAIN) { |
| 2155 | Curl_expire(data, 1, EXPIRE_QUIC); |
| 2156 | return CURLE_OK; |
| 2157 | } |
| 2158 | return curlcode; |
| 2159 | } |
| 2160 | |
| 2161 | /* In UDP, there is a maximum theoretical packet paload length and |
| 2162 | * a minimum payload length that is "guarantueed" to work. |
| 2163 | * To detect if this minimum payload can be increased, ngtcp2 sends |
| 2164 | * now and then a packet payload larger than the minimum. It that |
| 2165 | * is ACKed by the peer, both parties know that it works and |
| 2166 | * the subsequent packets can use a larger one. |
| 2167 | * This is called PMTUD (Path Maximum Transmission Unit Discovery). |
| 2168 | * Since a PMTUD might be rejected right on send, we do not want it |
| 2169 | * be followed by other packets of lesser size. Because those would |
| 2170 | * also fail then. So, if we detect a PMTUD while buffering, we flush. |
| 2171 | */ |
| 2172 | max_payload_size = ngtcp2_conn_get_max_tx_udp_payload_size(ctx->qconn); |
| 2173 | path_max_payload_size = |
| 2174 | ngtcp2_conn_get_path_max_tx_udp_payload_size(ctx->qconn); |
| 2175 | /* maximum number of packets buffered before we flush to the socket */ |
| 2176 | max_pktcnt = CURLMIN(MAX_PKT_BURST, |
| 2177 | ctx->q.sendbuf.chunk_size / max_payload_size); |
| 2178 | |
| 2179 | for(;;) { |
| 2180 | /* add the next packet to send, if any, to our buffer */ |
| 2181 | nread = Curl_bufq_sipn(&ctx->q.sendbuf, max_payload_size, |
| 2182 | read_pkt_to_send, pktx, &curlcode); |
| 2183 | if(nread < 0) { |
| 2184 | if(curlcode != CURLE_AGAIN) |
| 2185 | return curlcode; |
| 2186 | /* Nothing more to add, flush and leave */ |
| 2187 | curlcode = vquic_send(cf, data, &ctx->q, gsolen); |
| 2188 | if(curlcode) { |
| 2189 | if(curlcode == CURLE_AGAIN) { |
| 2190 | Curl_expire(data, 1, EXPIRE_QUIC); |
| 2191 | return CURLE_OK; |
| 2192 | } |
| 2193 | return curlcode; |
| 2194 | } |
| 2195 | goto out; |
| 2196 | } |
| 2197 | |
| 2198 | DEBUGASSERT(nread > 0); |
| 2199 | if(pktcnt == 0) { |
| 2200 | /* first packet in buffer. This is either of a known, "good" |
| 2201 | * payload size or it is a PMTUD. We'll see. */ |
| 2202 | gsolen = (size_t)nread; |
| 2203 | } |
| 2204 | else if((size_t)nread > gsolen || |
| 2205 | (gsolen > path_max_payload_size && (size_t)nread != gsolen)) { |
| 2206 | /* The just added packet is a PMTUD *or* the one(s) before the |
| 2207 | * just added were PMTUD and the last one is smaller. |
| 2208 | * Flush the buffer before the last add. */ |
| 2209 | curlcode = vquic_send_tail_split(cf, data, &ctx->q, |
| 2210 | gsolen, nread, nread); |
| 2211 | if(curlcode) { |
| 2212 | if(curlcode == CURLE_AGAIN) { |
| 2213 | Curl_expire(data, 1, EXPIRE_QUIC); |
| 2214 | return CURLE_OK; |
| 2215 | } |
| 2216 | return curlcode; |
| 2217 | } |
| 2218 | pktcnt = 0; |
| 2219 | continue; |
| 2220 | } |
| 2221 | |
| 2222 | if(++pktcnt >= max_pktcnt || (size_t)nread < gsolen) { |
| 2223 | /* Reached MAX_PKT_BURST *or* |
| 2224 | * the capacity of our buffer *or* |
| 2225 | * last add was shorter than the previous ones, flush */ |
| 2226 | curlcode = vquic_send(cf, data, &ctx->q, gsolen); |
| 2227 | if(curlcode) { |
| 2228 | if(curlcode == CURLE_AGAIN) { |
| 2229 | Curl_expire(data, 1, EXPIRE_QUIC); |
| 2230 | return CURLE_OK; |
| 2231 | } |
| 2232 | return curlcode; |
| 2233 | } |
| 2234 | /* pktbuf has been completely sent */ |
| 2235 | pktcnt = 0; |
| 2236 | } |
| 2237 | } |
| 2238 | |
| 2239 | out: |
| 2240 | return CURLE_OK; |
| 2241 | } |
| 2242 | |
| 2243 | /* |
| 2244 | * Called from transfer.c:data_pending to know if we should keep looping |
| 2245 | * to receive more data from the connection. |
| 2246 | */ |
| 2247 | static bool cf_ngtcp2_data_pending(struct Curl_cfilter *cf, |
| 2248 | const struct Curl_easy *data) |
| 2249 | { |
| 2250 | const struct h3_stream_ctx *stream = H3_STREAM_CTX(data); |
| 2251 | (void)cf; |
| 2252 | return stream && !Curl_bufq_is_empty(&stream->recvbuf); |
| 2253 | } |
| 2254 | |
| 2255 | static CURLcode h3_data_pause(struct Curl_cfilter *cf, |
| 2256 | struct Curl_easy *data, |
| 2257 | bool pause) |
| 2258 | { |
| 2259 | /* TODO: there seems right now no API in ngtcp2 to shrink/enlarge |
| 2260 | * the streams windows. As we do in HTTP/2. */ |
| 2261 | if(!pause) { |
| 2262 | h3_drain_stream(cf, data); |
| 2263 | Curl_expire(data, 0, EXPIRE_RUN_NOW); |
| 2264 | } |
| 2265 | return CURLE_OK; |
| 2266 | } |
| 2267 | |
| 2268 | static CURLcode cf_ngtcp2_data_event(struct Curl_cfilter *cf, |
| 2269 | struct Curl_easy *data, |
| 2270 | int event, int arg1, void *arg2) |
| 2271 | { |
| 2272 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 2273 | CURLcode result = CURLE_OK; |
| 2274 | struct cf_call_data save; |
| 2275 | |
| 2276 | CF_DATA_SAVE(save, cf, data); |
| 2277 | (void)arg1; |
| 2278 | (void)arg2; |
| 2279 | switch(event) { |
| 2280 | case CF_CTRL_DATA_SETUP: |
| 2281 | break; |
| 2282 | case CF_CTRL_DATA_PAUSE: |
| 2283 | result = h3_data_pause(cf, data, (arg1 != 0)); |
| 2284 | break; |
| 2285 | case CF_CTRL_DATA_DONE: { |
| 2286 | h3_data_done(cf, data); |
| 2287 | break; |
| 2288 | } |
| 2289 | case CF_CTRL_DATA_DONE_SEND: { |
| 2290 | struct h3_stream_ctx *stream = H3_STREAM_CTX(data); |
| 2291 | if(stream && !stream->send_closed) { |
| 2292 | stream->send_closed = TRUE; |
| 2293 | stream->upload_left = Curl_bufq_len(&stream->sendbuf); |
| 2294 | (void)nghttp3_conn_resume_stream(ctx->h3conn, stream->id); |
| 2295 | } |
| 2296 | break; |
| 2297 | } |
| 2298 | case CF_CTRL_DATA_IDLE: { |
| 2299 | struct h3_stream_ctx *stream = H3_STREAM_CTX(data); |
| 2300 | CURL_TRC_CF(data, cf, "data idle" ); |
| 2301 | if(stream && !stream->closed) { |
| 2302 | result = check_and_set_expiry(cf, data, NULL); |
| 2303 | if(result) |
| 2304 | CURL_TRC_CF(data, cf, "data idle, check_and_set_expiry -> %d" , result); |
| 2305 | } |
| 2306 | break; |
| 2307 | } |
| 2308 | default: |
| 2309 | break; |
| 2310 | } |
| 2311 | CF_DATA_RESTORE(cf, save); |
| 2312 | return result; |
| 2313 | } |
| 2314 | |
| 2315 | static void cf_ngtcp2_ctx_clear(struct cf_ngtcp2_ctx *ctx) |
| 2316 | { |
| 2317 | struct cf_call_data save = ctx->call_data; |
| 2318 | |
| 2319 | if(ctx->qlogfd != -1) { |
| 2320 | close(ctx->qlogfd); |
| 2321 | } |
| 2322 | #ifdef USE_OPENSSL |
| 2323 | if(ctx->ssl) |
| 2324 | SSL_free(ctx->ssl); |
| 2325 | if(ctx->sslctx) |
| 2326 | SSL_CTX_free(ctx->sslctx); |
| 2327 | #elif defined(USE_GNUTLS) |
| 2328 | if(ctx->gtls) { |
| 2329 | if(ctx->gtls->cred) |
| 2330 | gnutls_certificate_free_credentials(ctx->gtls->cred); |
| 2331 | if(ctx->gtls->session) |
| 2332 | gnutls_deinit(ctx->gtls->session); |
| 2333 | free(ctx->gtls); |
| 2334 | } |
| 2335 | #elif defined(USE_WOLFSSL) |
| 2336 | if(ctx->ssl) |
| 2337 | wolfSSL_free(ctx->ssl); |
| 2338 | if(ctx->sslctx) |
| 2339 | wolfSSL_CTX_free(ctx->sslctx); |
| 2340 | #endif |
| 2341 | vquic_ctx_free(&ctx->q); |
| 2342 | if(ctx->h3conn) |
| 2343 | nghttp3_conn_del(ctx->h3conn); |
| 2344 | if(ctx->qconn) |
| 2345 | ngtcp2_conn_del(ctx->qconn); |
| 2346 | Curl_bufcp_free(&ctx->stream_bufcp); |
| 2347 | |
| 2348 | memset(ctx, 0, sizeof(*ctx)); |
| 2349 | ctx->qlogfd = -1; |
| 2350 | ctx->call_data = save; |
| 2351 | } |
| 2352 | |
| 2353 | static void cf_ngtcp2_close(struct Curl_cfilter *cf, struct Curl_easy *data) |
| 2354 | { |
| 2355 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 2356 | struct cf_call_data save; |
| 2357 | |
| 2358 | CF_DATA_SAVE(save, cf, data); |
| 2359 | if(ctx && ctx->qconn) { |
| 2360 | char buffer[NGTCP2_MAX_UDP_PAYLOAD_SIZE]; |
| 2361 | ngtcp2_tstamp ts; |
| 2362 | ngtcp2_ssize rc; |
| 2363 | |
| 2364 | CURL_TRC_CF(data, cf, "close" ); |
| 2365 | ts = timestamp(); |
| 2366 | rc = ngtcp2_conn_write_connection_close(ctx->qconn, NULL, /* path */ |
| 2367 | NULL, /* pkt_info */ |
| 2368 | (uint8_t *)buffer, sizeof(buffer), |
| 2369 | &ctx->last_error, ts); |
| 2370 | if(rc > 0) { |
| 2371 | while((send(ctx->q.sockfd, buffer, (SEND_TYPE_ARG3)rc, 0) == -1) && |
| 2372 | SOCKERRNO == EINTR); |
| 2373 | } |
| 2374 | |
| 2375 | cf_ngtcp2_ctx_clear(ctx); |
| 2376 | } |
| 2377 | |
| 2378 | cf->connected = FALSE; |
| 2379 | CF_DATA_RESTORE(cf, save); |
| 2380 | } |
| 2381 | |
| 2382 | static void cf_ngtcp2_destroy(struct Curl_cfilter *cf, struct Curl_easy *data) |
| 2383 | { |
| 2384 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 2385 | struct cf_call_data save; |
| 2386 | |
| 2387 | CF_DATA_SAVE(save, cf, data); |
| 2388 | CURL_TRC_CF(data, cf, "destroy" ); |
| 2389 | if(ctx) { |
| 2390 | cf_ngtcp2_ctx_clear(ctx); |
| 2391 | free(ctx); |
| 2392 | } |
| 2393 | cf->ctx = NULL; |
| 2394 | /* No CF_DATA_RESTORE(cf, save) possible */ |
| 2395 | (void)save; |
| 2396 | } |
| 2397 | |
| 2398 | /* |
| 2399 | * Might be called twice for happy eyeballs. |
| 2400 | */ |
| 2401 | static CURLcode cf_connect_start(struct Curl_cfilter *cf, |
| 2402 | struct Curl_easy *data, |
| 2403 | struct pkt_io_ctx *pktx) |
| 2404 | { |
| 2405 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 2406 | int rc; |
| 2407 | int rv; |
| 2408 | CURLcode result; |
| 2409 | const struct Curl_sockaddr_ex *sockaddr = NULL; |
| 2410 | int qfd; |
| 2411 | |
| 2412 | ctx->version = NGTCP2_PROTO_VER_MAX; |
| 2413 | ctx->max_stream_window = H3_STREAM_WINDOW_SIZE; |
| 2414 | Curl_bufcp_init(&ctx->stream_bufcp, H3_STREAM_CHUNK_SIZE, |
| 2415 | H3_STREAM_POOL_SPARES); |
| 2416 | |
| 2417 | #ifdef USE_OPENSSL |
| 2418 | result = quic_ssl_ctx(&ctx->sslctx, cf, data); |
| 2419 | if(result) |
| 2420 | return result; |
| 2421 | |
| 2422 | result = quic_set_client_cert(cf, data); |
| 2423 | if(result) |
| 2424 | return result; |
| 2425 | #elif defined(USE_WOLFSSL) |
| 2426 | result = quic_ssl_ctx(&ctx->sslctx, cf, data); |
| 2427 | if(result) |
| 2428 | return result; |
| 2429 | #endif |
| 2430 | |
| 2431 | result = quic_init_ssl(cf, data); |
| 2432 | if(result) |
| 2433 | return result; |
| 2434 | |
| 2435 | ctx->dcid.datalen = NGTCP2_MAX_CIDLEN; |
| 2436 | result = Curl_rand(data, ctx->dcid.data, NGTCP2_MAX_CIDLEN); |
| 2437 | if(result) |
| 2438 | return result; |
| 2439 | |
| 2440 | ctx->scid.datalen = NGTCP2_MAX_CIDLEN; |
| 2441 | result = Curl_rand(data, ctx->scid.data, NGTCP2_MAX_CIDLEN); |
| 2442 | if(result) |
| 2443 | return result; |
| 2444 | |
| 2445 | (void)Curl_qlogdir(data, ctx->scid.data, NGTCP2_MAX_CIDLEN, &qfd); |
| 2446 | ctx->qlogfd = qfd; /* -1 if failure above */ |
| 2447 | quic_settings(ctx, data, pktx); |
| 2448 | |
| 2449 | result = vquic_ctx_init(&ctx->q); |
| 2450 | if(result) |
| 2451 | return result; |
| 2452 | |
| 2453 | Curl_cf_socket_peek(cf->next, data, &ctx->q.sockfd, |
| 2454 | &sockaddr, NULL, NULL, NULL, NULL); |
| 2455 | if(!sockaddr) |
| 2456 | return CURLE_QUIC_CONNECT_ERROR; |
| 2457 | ctx->q.local_addrlen = sizeof(ctx->q.local_addr); |
| 2458 | rv = getsockname(ctx->q.sockfd, (struct sockaddr *)&ctx->q.local_addr, |
| 2459 | &ctx->q.local_addrlen); |
| 2460 | if(rv == -1) |
| 2461 | return CURLE_QUIC_CONNECT_ERROR; |
| 2462 | |
| 2463 | ngtcp2_addr_init(&ctx->connected_path.local, |
| 2464 | (struct sockaddr *)&ctx->q.local_addr, |
| 2465 | ctx->q.local_addrlen); |
| 2466 | ngtcp2_addr_init(&ctx->connected_path.remote, |
| 2467 | &sockaddr->sa_addr, sockaddr->addrlen); |
| 2468 | |
| 2469 | rc = ngtcp2_conn_client_new(&ctx->qconn, &ctx->dcid, &ctx->scid, |
| 2470 | &ctx->connected_path, |
| 2471 | NGTCP2_PROTO_VER_V1, &ng_callbacks, |
| 2472 | &ctx->settings, &ctx->transport_params, |
| 2473 | NULL, cf); |
| 2474 | if(rc) |
| 2475 | return CURLE_QUIC_CONNECT_ERROR; |
| 2476 | |
| 2477 | #ifdef USE_GNUTLS |
| 2478 | ngtcp2_conn_set_tls_native_handle(ctx->qconn, ctx->gtls->session); |
| 2479 | #else |
| 2480 | ngtcp2_conn_set_tls_native_handle(ctx->qconn, ctx->ssl); |
| 2481 | #endif |
| 2482 | |
| 2483 | ngtcp2_ccerr_default(&ctx->last_error); |
| 2484 | |
| 2485 | ctx->conn_ref.get_conn = get_conn; |
| 2486 | ctx->conn_ref.user_data = cf; |
| 2487 | |
| 2488 | return CURLE_OK; |
| 2489 | } |
| 2490 | |
| 2491 | static CURLcode cf_ngtcp2_connect(struct Curl_cfilter *cf, |
| 2492 | struct Curl_easy *data, |
| 2493 | bool blocking, bool *done) |
| 2494 | { |
| 2495 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 2496 | CURLcode result = CURLE_OK; |
| 2497 | struct cf_call_data save; |
| 2498 | struct curltime now; |
| 2499 | struct pkt_io_ctx pktx; |
| 2500 | |
| 2501 | if(cf->connected) { |
| 2502 | *done = TRUE; |
| 2503 | return CURLE_OK; |
| 2504 | } |
| 2505 | |
| 2506 | /* Connect the UDP filter first */ |
| 2507 | if(!cf->next->connected) { |
| 2508 | result = Curl_conn_cf_connect(cf->next, data, blocking, done); |
| 2509 | if(result || !*done) |
| 2510 | return result; |
| 2511 | } |
| 2512 | |
| 2513 | *done = FALSE; |
| 2514 | now = Curl_now(); |
| 2515 | pktx_init(&pktx, cf, data); |
| 2516 | |
| 2517 | CF_DATA_SAVE(save, cf, data); |
| 2518 | |
| 2519 | if(ctx->reconnect_at.tv_sec && Curl_timediff(now, ctx->reconnect_at) < 0) { |
| 2520 | /* Not time yet to attempt the next connect */ |
| 2521 | CURL_TRC_CF(data, cf, "waiting for reconnect time" ); |
| 2522 | goto out; |
| 2523 | } |
| 2524 | |
| 2525 | if(!ctx->qconn) { |
| 2526 | ctx->started_at = now; |
| 2527 | result = cf_connect_start(cf, data, &pktx); |
| 2528 | if(result) |
| 2529 | goto out; |
| 2530 | result = cf_progress_egress(cf, data, &pktx); |
| 2531 | /* we do not expect to be able to recv anything yet */ |
| 2532 | goto out; |
| 2533 | } |
| 2534 | |
| 2535 | result = cf_progress_ingress(cf, data, &pktx); |
| 2536 | if(result) |
| 2537 | goto out; |
| 2538 | |
| 2539 | result = cf_progress_egress(cf, data, &pktx); |
| 2540 | if(result) |
| 2541 | goto out; |
| 2542 | |
| 2543 | if(ngtcp2_conn_get_handshake_completed(ctx->qconn)) { |
| 2544 | ctx->handshake_at = now; |
| 2545 | CURL_TRC_CF(data, cf, "handshake complete after %dms" , |
| 2546 | (int)Curl_timediff(now, ctx->started_at)); |
| 2547 | result = qng_verify_peer(cf, data); |
| 2548 | if(!result) { |
| 2549 | CURL_TRC_CF(data, cf, "peer verified" ); |
| 2550 | cf->connected = TRUE; |
| 2551 | cf->conn->alpn = CURL_HTTP_VERSION_3; |
| 2552 | *done = TRUE; |
| 2553 | connkeep(cf->conn, "HTTP/3 default" ); |
| 2554 | } |
| 2555 | } |
| 2556 | |
| 2557 | out: |
| 2558 | if(result == CURLE_RECV_ERROR && ctx->qconn && |
| 2559 | ngtcp2_conn_in_draining_period(ctx->qconn)) { |
| 2560 | /* When a QUIC server instance is shutting down, it may send us a |
| 2561 | * CONNECTION_CLOSE right away. Our connection then enters the DRAINING |
| 2562 | * state. |
| 2563 | * This may be a stopping of the service or it may be that the server |
| 2564 | * is reloading and a new instance will start serving soon. |
| 2565 | * In any case, we tear down our socket and start over with a new one. |
| 2566 | * We re-open the underlying UDP cf right now, but do not start |
| 2567 | * connecting until called again. |
| 2568 | */ |
| 2569 | int reconn_delay_ms = 200; |
| 2570 | |
| 2571 | CURL_TRC_CF(data, cf, "connect, remote closed, reconnect after %dms" , |
| 2572 | reconn_delay_ms); |
| 2573 | Curl_conn_cf_close(cf->next, data); |
| 2574 | cf_ngtcp2_ctx_clear(ctx); |
| 2575 | result = Curl_conn_cf_connect(cf->next, data, FALSE, done); |
| 2576 | if(!result && *done) { |
| 2577 | *done = FALSE; |
| 2578 | ctx->reconnect_at = now; |
| 2579 | ctx->reconnect_at.tv_usec += reconn_delay_ms * 1000; |
| 2580 | Curl_expire(data, reconn_delay_ms, EXPIRE_QUIC); |
| 2581 | result = CURLE_OK; |
| 2582 | } |
| 2583 | } |
| 2584 | |
| 2585 | #ifndef CURL_DISABLE_VERBOSE_STRINGS |
| 2586 | if(result) { |
| 2587 | const char *r_ip = NULL; |
| 2588 | int r_port = 0; |
| 2589 | |
| 2590 | Curl_cf_socket_peek(cf->next, data, NULL, NULL, |
| 2591 | &r_ip, &r_port, NULL, NULL); |
| 2592 | infof(data, "QUIC connect to %s port %u failed: %s" , |
| 2593 | r_ip, r_port, curl_easy_strerror(result)); |
| 2594 | } |
| 2595 | #endif |
| 2596 | if(!result && ctx->qconn) { |
| 2597 | result = check_and_set_expiry(cf, data, &pktx); |
| 2598 | } |
| 2599 | if(result || *done) |
| 2600 | CURL_TRC_CF(data, cf, "connect -> %d, done=%d" , result, *done); |
| 2601 | CF_DATA_RESTORE(cf, save); |
| 2602 | return result; |
| 2603 | } |
| 2604 | |
| 2605 | static CURLcode cf_ngtcp2_query(struct Curl_cfilter *cf, |
| 2606 | struct Curl_easy *data, |
| 2607 | int query, int *pres1, void *pres2) |
| 2608 | { |
| 2609 | struct cf_ngtcp2_ctx *ctx = cf->ctx; |
| 2610 | struct cf_call_data save; |
| 2611 | |
| 2612 | switch(query) { |
| 2613 | case CF_QUERY_MAX_CONCURRENT: { |
| 2614 | const ngtcp2_transport_params *rp; |
| 2615 | DEBUGASSERT(pres1); |
| 2616 | |
| 2617 | CF_DATA_SAVE(save, cf, data); |
| 2618 | rp = ngtcp2_conn_get_remote_transport_params(ctx->qconn); |
| 2619 | if(rp) |
| 2620 | *pres1 = (rp->initial_max_streams_bidi > INT_MAX)? |
| 2621 | INT_MAX : (int)rp->initial_max_streams_bidi; |
| 2622 | else /* not arrived yet? */ |
| 2623 | *pres1 = Curl_multi_max_concurrent_streams(data->multi); |
| 2624 | CURL_TRC_CF(data, cf, "query max_conncurrent -> %d" , *pres1); |
| 2625 | CF_DATA_RESTORE(cf, save); |
| 2626 | return CURLE_OK; |
| 2627 | } |
| 2628 | case CF_QUERY_CONNECT_REPLY_MS: |
| 2629 | if(ctx->got_first_byte) { |
| 2630 | timediff_t ms = Curl_timediff(ctx->first_byte_at, ctx->started_at); |
| 2631 | *pres1 = (ms < INT_MAX)? (int)ms : INT_MAX; |
| 2632 | } |
| 2633 | else |
| 2634 | *pres1 = -1; |
| 2635 | return CURLE_OK; |
| 2636 | case CF_QUERY_TIMER_CONNECT: { |
| 2637 | struct curltime *when = pres2; |
| 2638 | if(ctx->got_first_byte) |
| 2639 | *when = ctx->first_byte_at; |
| 2640 | return CURLE_OK; |
| 2641 | } |
| 2642 | case CF_QUERY_TIMER_APPCONNECT: { |
| 2643 | struct curltime *when = pres2; |
| 2644 | if(cf->connected) |
| 2645 | *when = ctx->handshake_at; |
| 2646 | return CURLE_OK; |
| 2647 | } |
| 2648 | default: |
| 2649 | break; |
| 2650 | } |
| 2651 | return cf->next? |
| 2652 | cf->next->cft->query(cf->next, data, query, pres1, pres2) : |
| 2653 | CURLE_UNKNOWN_OPTION; |
| 2654 | } |
| 2655 | |
| 2656 | static bool cf_ngtcp2_conn_is_alive(struct Curl_cfilter *cf, |
| 2657 | struct Curl_easy *data, |
| 2658 | bool *input_pending) |
| 2659 | { |
| 2660 | bool alive = TRUE; |
| 2661 | |
| 2662 | *input_pending = FALSE; |
| 2663 | if(!cf->next || !cf->next->cft->is_alive(cf->next, data, input_pending)) |
| 2664 | return FALSE; |
| 2665 | |
| 2666 | if(*input_pending) { |
| 2667 | /* This happens before we've sent off a request and the connection is |
| 2668 | not in use by any other transfer, there shouldn't be any data here, |
| 2669 | only "protocol frames" */ |
| 2670 | *input_pending = FALSE; |
| 2671 | if(cf_progress_ingress(cf, data, NULL)) |
| 2672 | alive = FALSE; |
| 2673 | else { |
| 2674 | alive = TRUE; |
| 2675 | } |
| 2676 | } |
| 2677 | |
| 2678 | return alive; |
| 2679 | } |
| 2680 | |
| 2681 | struct Curl_cftype Curl_cft_http3 = { |
| 2682 | "HTTP/3" , |
| 2683 | CF_TYPE_IP_CONNECT | CF_TYPE_SSL | CF_TYPE_MULTIPLEX, |
| 2684 | 0, |
| 2685 | cf_ngtcp2_destroy, |
| 2686 | cf_ngtcp2_connect, |
| 2687 | cf_ngtcp2_close, |
| 2688 | Curl_cf_def_get_host, |
| 2689 | cf_ngtcp2_get_select_socks, |
| 2690 | cf_ngtcp2_data_pending, |
| 2691 | cf_ngtcp2_send, |
| 2692 | cf_ngtcp2_recv, |
| 2693 | cf_ngtcp2_data_event, |
| 2694 | cf_ngtcp2_conn_is_alive, |
| 2695 | Curl_cf_def_conn_keep_alive, |
| 2696 | cf_ngtcp2_query, |
| 2697 | }; |
| 2698 | |
| 2699 | CURLcode Curl_cf_ngtcp2_create(struct Curl_cfilter **pcf, |
| 2700 | struct Curl_easy *data, |
| 2701 | struct connectdata *conn, |
| 2702 | const struct Curl_addrinfo *ai) |
| 2703 | { |
| 2704 | struct cf_ngtcp2_ctx *ctx = NULL; |
| 2705 | struct Curl_cfilter *cf = NULL, *udp_cf = NULL; |
| 2706 | CURLcode result; |
| 2707 | |
| 2708 | (void)data; |
| 2709 | ctx = calloc(sizeof(*ctx), 1); |
| 2710 | if(!ctx) { |
| 2711 | result = CURLE_OUT_OF_MEMORY; |
| 2712 | goto out; |
| 2713 | } |
| 2714 | ctx->qlogfd = -1; |
| 2715 | cf_ngtcp2_ctx_clear(ctx); |
| 2716 | |
| 2717 | result = Curl_cf_create(&cf, &Curl_cft_http3, ctx); |
| 2718 | if(result) |
| 2719 | goto out; |
| 2720 | |
| 2721 | result = Curl_cf_udp_create(&udp_cf, data, conn, ai, TRNSPRT_QUIC); |
| 2722 | if(result) |
| 2723 | goto out; |
| 2724 | |
| 2725 | cf->conn = conn; |
| 2726 | udp_cf->conn = cf->conn; |
| 2727 | udp_cf->sockindex = cf->sockindex; |
| 2728 | cf->next = udp_cf; |
| 2729 | |
| 2730 | out: |
| 2731 | *pcf = (!result)? cf : NULL; |
| 2732 | if(result) { |
| 2733 | if(udp_cf) |
| 2734 | Curl_conn_cf_discard_sub(cf, udp_cf, data, TRUE); |
| 2735 | Curl_safefree(cf); |
| 2736 | Curl_safefree(ctx); |
| 2737 | } |
| 2738 | return result; |
| 2739 | } |
| 2740 | |
| 2741 | bool Curl_conn_is_ngtcp2(const struct Curl_easy *data, |
| 2742 | const struct connectdata *conn, |
| 2743 | int sockindex) |
| 2744 | { |
| 2745 | struct Curl_cfilter *cf = conn? conn->cfilter[sockindex] : NULL; |
| 2746 | |
| 2747 | (void)data; |
| 2748 | for(; cf; cf = cf->next) { |
| 2749 | if(cf->cft == &Curl_cft_http3) |
| 2750 | return TRUE; |
| 2751 | if(cf->cft->flags & CF_TYPE_IP_CONNECT) |
| 2752 | return FALSE; |
| 2753 | } |
| 2754 | return FALSE; |
| 2755 | } |
| 2756 | |
| 2757 | #endif |
| 2758 | |