| 1 | /* |
| 2 | ** This code taken from the SQLite test library. Originally found on |
| 3 | ** the internet. The original header comment follows this comment. |
| 4 | ** The code is largerly unchanged, but there have been some modifications. |
| 5 | */ |
| 6 | /* |
| 7 | * This code implements the MD5 message-digest algorithm. |
| 8 | * The algorithm is due to Ron Rivest. This code was |
| 9 | * written by Colin Plumb in 1993, no copyright is claimed. |
| 10 | * This code is in the public domain; do with it what you wish. |
| 11 | * |
| 12 | * Equivalent code is available from RSA Data Security, Inc. |
| 13 | * This code has been tested against that, and is equivalent, |
| 14 | * except that you don't need to include two pages of legalese |
| 15 | * with every copy. |
| 16 | * |
| 17 | * To compute the message digest of a chunk of bytes, declare an |
| 18 | * MD5Context structure, pass it to MD5Init, call MD5Update as |
| 19 | * needed on buffers full of bytes, and then call MD5Final, which |
| 20 | * will fill a supplied 16-byte array with the digest. |
| 21 | */ |
| 22 | #include "duckdb/common/crypto/md5.hpp" |
| 23 | |
| 24 | namespace duckdb { |
| 25 | |
| 26 | /* |
| 27 | * Note: this code is harmless on little-endian machines. |
| 28 | */ |
| 29 | static void ByteReverse(unsigned char *buf, unsigned longs) { |
| 30 | uint32_t t; |
| 31 | do { |
| 32 | t = (uint32_t)((unsigned)buf[3] << 8 | buf[2]) << 16 | ((unsigned)buf[1] << 8 | buf[0]); |
| 33 | *reinterpret_cast<uint32_t *>(buf) = t; |
| 34 | buf += 4; |
| 35 | } while (--longs); |
| 36 | } |
| 37 | /* The four core functions - F1 is optimized somewhat */ |
| 38 | |
| 39 | /* #define F1(x, y, z) (x & y | ~x & z) */ |
| 40 | #define F1(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) |
| 41 | #define F2(x, y, z) F1(z, x, y) |
| 42 | #define F3(x, y, z) ((x) ^ (y) ^ (z)) |
| 43 | #define F4(x, y, z) ((y) ^ ((x) | ~(z))) |
| 44 | |
| 45 | /* This is the central step in the MD5 algorithm. */ |
| 46 | #define MD5STEP(f, w, x, y, z, data, s) ((w) += f(x, y, z) + (data), (w) = (w) << (s) | (w) >> (32 - (s)), (w) += (x)) |
| 47 | |
| 48 | /* |
| 49 | * The core of the MD5 algorithm, this alters an existing MD5 hash to |
| 50 | * reflect the addition of 16 longwords of new data. MD5Update blocks |
| 51 | * the data and converts bytes into longwords for this routine. |
| 52 | */ |
| 53 | static void MD5Transform(uint32_t buf[4], const uint32_t in[16]) { |
| 54 | uint32_t a, b, c, d; |
| 55 | |
| 56 | a = buf[0]; |
| 57 | b = buf[1]; |
| 58 | c = buf[2]; |
| 59 | d = buf[3]; |
| 60 | |
| 61 | MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); |
| 62 | MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); |
| 63 | MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); |
| 64 | MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); |
| 65 | MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); |
| 66 | MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); |
| 67 | MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); |
| 68 | MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); |
| 69 | MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); |
| 70 | MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); |
| 71 | MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); |
| 72 | MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); |
| 73 | MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); |
| 74 | MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); |
| 75 | MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); |
| 76 | MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); |
| 77 | |
| 78 | MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); |
| 79 | MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); |
| 80 | MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); |
| 81 | MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); |
| 82 | MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); |
| 83 | MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); |
| 84 | MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); |
| 85 | MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); |
| 86 | MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); |
| 87 | MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); |
| 88 | MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); |
| 89 | MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); |
| 90 | MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); |
| 91 | MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); |
| 92 | MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); |
| 93 | MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); |
| 94 | |
| 95 | MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); |
| 96 | MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); |
| 97 | MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); |
| 98 | MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); |
| 99 | MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); |
| 100 | MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); |
| 101 | MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); |
| 102 | MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); |
| 103 | MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); |
| 104 | MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); |
| 105 | MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); |
| 106 | MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); |
| 107 | MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); |
| 108 | MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); |
| 109 | MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); |
| 110 | MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); |
| 111 | |
| 112 | MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); |
| 113 | MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); |
| 114 | MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); |
| 115 | MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); |
| 116 | MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); |
| 117 | MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); |
| 118 | MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); |
| 119 | MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); |
| 120 | MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); |
| 121 | MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); |
| 122 | MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); |
| 123 | MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); |
| 124 | MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); |
| 125 | MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); |
| 126 | MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); |
| 127 | MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); |
| 128 | |
| 129 | buf[0] += a; |
| 130 | buf[1] += b; |
| 131 | buf[2] += c; |
| 132 | buf[3] += d; |
| 133 | } |
| 134 | |
| 135 | /* |
| 136 | * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious |
| 137 | * initialization constants. |
| 138 | */ |
| 139 | MD5Context::MD5Context() { |
| 140 | buf[0] = 0x67452301; |
| 141 | buf[1] = 0xefcdab89; |
| 142 | buf[2] = 0x98badcfe; |
| 143 | buf[3] = 0x10325476; |
| 144 | bits[0] = 0; |
| 145 | bits[1] = 0; |
| 146 | } |
| 147 | |
| 148 | /* |
| 149 | * Update context to reflect the concatenation of another buffer full |
| 150 | * of bytes. |
| 151 | */ |
| 152 | void MD5Context::MD5Update(const_data_ptr_t input, idx_t len) { |
| 153 | uint32_t t; |
| 154 | |
| 155 | /* Update bitcount */ |
| 156 | |
| 157 | t = bits[0]; |
| 158 | if ((bits[0] = t + ((uint32_t)len << 3)) < t) { |
| 159 | bits[1]++; /* Carry from low to high */ |
| 160 | } |
| 161 | bits[1] += len >> 29; |
| 162 | |
| 163 | t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ |
| 164 | |
| 165 | /* Handle any leading odd-sized chunks */ |
| 166 | |
| 167 | if (t) { |
| 168 | unsigned char *p = (unsigned char *)in + t; |
| 169 | |
| 170 | t = 64 - t; |
| 171 | if (len < t) { |
| 172 | memcpy(dest: p, src: input, n: len); |
| 173 | return; |
| 174 | } |
| 175 | memcpy(dest: p, src: input, n: t); |
| 176 | ByteReverse(buf: in, longs: 16); |
| 177 | MD5Transform(buf, in: reinterpret_cast<uint32_t *>(in)); |
| 178 | input += t; |
| 179 | len -= t; |
| 180 | } |
| 181 | |
| 182 | /* Process data in 64-byte chunks */ |
| 183 | |
| 184 | while (len >= 64) { |
| 185 | memcpy(dest: in, src: input, n: 64); |
| 186 | ByteReverse(buf: in, longs: 16); |
| 187 | MD5Transform(buf, in: reinterpret_cast<uint32_t *>(in)); |
| 188 | input += 64; |
| 189 | len -= 64; |
| 190 | } |
| 191 | |
| 192 | /* Handle any remaining bytes of data. */ |
| 193 | memcpy(dest: in, src: input, n: len); |
| 194 | } |
| 195 | |
| 196 | /* |
| 197 | * Final wrapup - pad to 64-byte boundary with the bit pattern |
| 198 | * 1 0* (64-bit count of bits processed, MSB-first) |
| 199 | */ |
| 200 | void MD5Context::Finish(data_ptr_t out_digest) { |
| 201 | unsigned count; |
| 202 | unsigned char *p; |
| 203 | |
| 204 | /* Compute number of bytes mod 64 */ |
| 205 | count = (bits[0] >> 3) & 0x3F; |
| 206 | |
| 207 | /* Set the first char of padding to 0x80. This is safe since there is |
| 208 | always at least one byte free */ |
| 209 | p = in + count; |
| 210 | *p++ = 0x80; |
| 211 | |
| 212 | /* Bytes of padding needed to make 64 bytes */ |
| 213 | count = 64 - 1 - count; |
| 214 | |
| 215 | /* Pad out to 56 mod 64 */ |
| 216 | if (count < 8) { |
| 217 | /* Two lots of padding: Pad the first block to 64 bytes */ |
| 218 | memset(s: p, c: 0, n: count); |
| 219 | ByteReverse(buf: in, longs: 16); |
| 220 | MD5Transform(buf, in: reinterpret_cast<uint32_t *>(in)); |
| 221 | |
| 222 | /* Now fill the next block with 56 bytes */ |
| 223 | memset(s: in, c: 0, n: 56); |
| 224 | } else { |
| 225 | /* Pad block to 56 bytes */ |
| 226 | memset(s: p, c: 0, n: count - 8); |
| 227 | } |
| 228 | ByteReverse(buf: in, longs: 14); |
| 229 | |
| 230 | /* Append length in bits and transform */ |
| 231 | (reinterpret_cast<uint32_t *>(in))[14] = bits[0]; |
| 232 | (reinterpret_cast<uint32_t *>(in))[15] = bits[1]; |
| 233 | |
| 234 | MD5Transform(buf, in: reinterpret_cast<uint32_t *>(in)); |
| 235 | ByteReverse(buf: reinterpret_cast<unsigned char *>(buf), longs: 4); |
| 236 | memcpy(dest: out_digest, src: buf, n: 16); |
| 237 | } |
| 238 | |
| 239 | void MD5Context::DigestToBase16(const_data_ptr_t digest, char *zbuf) { |
| 240 | static char const HEX_CODES[] = "0123456789abcdef" ; |
| 241 | int i, j; |
| 242 | |
| 243 | for (j = i = 0; i < 16; i++) { |
| 244 | int a = digest[i]; |
| 245 | zbuf[j++] = HEX_CODES[(a >> 4) & 0xf]; |
| 246 | zbuf[j++] = HEX_CODES[a & 0xf]; |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | void MD5Context::FinishHex(char *out_digest) { |
| 251 | data_t digest[MD5_HASH_LENGTH_BINARY]; |
| 252 | Finish(out_digest: digest); |
| 253 | DigestToBase16(digest, zbuf: out_digest); |
| 254 | } |
| 255 | |
| 256 | string MD5Context::FinishHex() { |
| 257 | char digest[MD5_HASH_LENGTH_TEXT]; |
| 258 | FinishHex(out_digest: digest); |
| 259 | return string(digest, MD5_HASH_LENGTH_TEXT); |
| 260 | } |
| 261 | |
| 262 | void MD5Context::Add(const char *data) { |
| 263 | MD5Update(input: const_data_ptr_cast(src: data), len: strlen(s: data)); |
| 264 | } |
| 265 | |
| 266 | } // namespace duckdb |
| 267 | |