| 1 | #include "duckdb/common/hive_partitioning.hpp" |
| 2 | |
| 3 | #include "duckdb/execution/expression_executor.hpp" |
| 4 | #include "duckdb/optimizer/filter_combiner.hpp" |
| 5 | #include "duckdb/planner/expression/bound_columnref_expression.hpp" |
| 6 | #include "duckdb/planner/expression/bound_constant_expression.hpp" |
| 7 | #include "duckdb/planner/expression/bound_reference_expression.hpp" |
| 8 | #include "duckdb/planner/expression_iterator.hpp" |
| 9 | #include "duckdb/planner/table_filter.hpp" |
| 10 | #include "re2/re2.h" |
| 11 | |
| 12 | namespace duckdb { |
| 13 | |
| 14 | static unordered_map<column_t, string> GetKnownColumnValues(string &filename, |
| 15 | unordered_map<string, column_t> &column_map, |
| 16 | duckdb_re2::RE2 &compiled_regex, bool filename_col, |
| 17 | bool hive_partition_cols) { |
| 18 | unordered_map<column_t, string> result; |
| 19 | |
| 20 | if (filename_col) { |
| 21 | auto lookup_column_id = column_map.find(x: "filename" ); |
| 22 | if (lookup_column_id != column_map.end()) { |
| 23 | result[lookup_column_id->second] = filename; |
| 24 | } |
| 25 | } |
| 26 | |
| 27 | if (hive_partition_cols) { |
| 28 | auto partitions = HivePartitioning::Parse(filename, regex&: compiled_regex); |
| 29 | for (auto &partition : partitions) { |
| 30 | auto lookup_column_id = column_map.find(x: partition.first); |
| 31 | if (lookup_column_id != column_map.end()) { |
| 32 | result[lookup_column_id->second] = partition.second; |
| 33 | } |
| 34 | } |
| 35 | } |
| 36 | |
| 37 | return result; |
| 38 | } |
| 39 | |
| 40 | // Takes an expression and converts a list of known column_refs to constants |
| 41 | static void ConvertKnownColRefToConstants(unique_ptr<Expression> &expr, |
| 42 | unordered_map<column_t, string> &known_column_values, idx_t table_index) { |
| 43 | if (expr->type == ExpressionType::BOUND_COLUMN_REF) { |
| 44 | auto &bound_colref = expr->Cast<BoundColumnRefExpression>(); |
| 45 | |
| 46 | // This bound column ref is for another table |
| 47 | if (table_index != bound_colref.binding.table_index) { |
| 48 | return; |
| 49 | } |
| 50 | |
| 51 | auto lookup = known_column_values.find(x: bound_colref.binding.column_index); |
| 52 | if (lookup != known_column_values.end()) { |
| 53 | expr = make_uniq<BoundConstantExpression>(args: Value(lookup->second).DefaultCastAs(target_type: bound_colref.return_type)); |
| 54 | } |
| 55 | } else { |
| 56 | ExpressionIterator::EnumerateChildren(expression&: *expr, callback: [&](unique_ptr<Expression> &child) { |
| 57 | ConvertKnownColRefToConstants(expr&: child, known_column_values, table_index); |
| 58 | }); |
| 59 | } |
| 60 | } |
| 61 | |
| 62 | // matches hive partitions in file name. For example: |
| 63 | // - s3://bucket/var1=value1/bla/bla/var2=value2 |
| 64 | // - http(s)://domain(:port)/lala/kasdl/var1=value1/?not-a-var=not-a-value |
| 65 | // - folder/folder/folder/../var1=value1/etc/.//var2=value2 |
| 66 | const string HivePartitioning::REGEX_STRING = "[\\/\\\\]([^\\/\\?\\\\]+)=([^\\/\\n\\?\\\\]+)" ; |
| 67 | |
| 68 | std::map<string, string> HivePartitioning::Parse(const string &filename, duckdb_re2::RE2 ®ex) { |
| 69 | std::map<string, string> result; |
| 70 | duckdb_re2::StringPiece input(filename); // Wrap a StringPiece around it |
| 71 | |
| 72 | string var; |
| 73 | string value; |
| 74 | while (RE2::FindAndConsume(input: &input, re: regex, a: &var, a: &value)) { |
| 75 | result.insert(x: std::pair<string, string>(var, value)); |
| 76 | } |
| 77 | return result; |
| 78 | } |
| 79 | |
| 80 | std::map<string, string> HivePartitioning::Parse(const string &filename) { |
| 81 | duckdb_re2::RE2 regex(REGEX_STRING); |
| 82 | return Parse(filename, regex); |
| 83 | } |
| 84 | |
| 85 | // TODO: this can still be improved by removing the parts of filter expressions that are true for all remaining files. |
| 86 | // currently, only expressions that cannot be evaluated during pushdown are removed. |
| 87 | void HivePartitioning::ApplyFiltersToFileList(ClientContext &context, vector<string> &files, |
| 88 | vector<unique_ptr<Expression>> &filters, |
| 89 | unordered_map<string, column_t> &column_map, idx_t table_index, |
| 90 | bool hive_enabled, bool filename_enabled) { |
| 91 | vector<string> pruned_files; |
| 92 | vector<bool> have_preserved_filter(filters.size(), false); |
| 93 | vector<unique_ptr<Expression>> pruned_filters; |
| 94 | duckdb_re2::RE2 regex(REGEX_STRING); |
| 95 | |
| 96 | if ((!filename_enabled && !hive_enabled) || filters.empty()) { |
| 97 | return; |
| 98 | } |
| 99 | |
| 100 | for (idx_t i = 0; i < files.size(); i++) { |
| 101 | auto &file = files[i]; |
| 102 | bool should_prune_file = false; |
| 103 | auto known_values = GetKnownColumnValues(filename&: file, column_map, compiled_regex&: regex, filename_col: filename_enabled, hive_partition_cols: hive_enabled); |
| 104 | |
| 105 | FilterCombiner combiner(context); |
| 106 | |
| 107 | for (idx_t j = 0; j < filters.size(); j++) { |
| 108 | auto &filter = filters[j]; |
| 109 | unique_ptr<Expression> filter_copy = filter->Copy(); |
| 110 | ConvertKnownColRefToConstants(expr&: filter_copy, known_column_values&: known_values, table_index); |
| 111 | // Evaluate the filter, if it can be evaluated here, we can not prune this filter |
| 112 | Value result_value; |
| 113 | |
| 114 | if (!filter_copy->IsScalar() || !filter_copy->IsFoldable() || |
| 115 | !ExpressionExecutor::TryEvaluateScalar(context, expr: *filter_copy, result&: result_value)) { |
| 116 | // can not be evaluated only with the filename/hive columns added, we can not prune this filter |
| 117 | if (!have_preserved_filter[j]) { |
| 118 | pruned_filters.emplace_back(args: filter->Copy()); |
| 119 | have_preserved_filter[j] = true; |
| 120 | } |
| 121 | } else if (!result_value.GetValue<bool>()) { |
| 122 | // filter evaluates to false |
| 123 | should_prune_file = true; |
| 124 | } |
| 125 | |
| 126 | // Use filter combiner to determine that this filter makes |
| 127 | if (!should_prune_file && combiner.AddFilter(expr: std::move(filter_copy)) == FilterResult::UNSATISFIABLE) { |
| 128 | should_prune_file = true; |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | if (!should_prune_file) { |
| 133 | pruned_files.push_back(x: file); |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | D_ASSERT(filters.size() >= pruned_filters.size()); |
| 138 | |
| 139 | filters = std::move(pruned_filters); |
| 140 | files = std::move(pruned_files); |
| 141 | } |
| 142 | |
| 143 | HivePartitionedColumnData::HivePartitionedColumnData(const HivePartitionedColumnData &other) |
| 144 | : PartitionedColumnData(other), hashes_v(LogicalType::HASH) { |
| 145 | // Synchronize to ensure consistency of shared partition map |
| 146 | if (other.global_state) { |
| 147 | global_state = other.global_state; |
| 148 | unique_lock<mutex> lck(global_state->lock); |
| 149 | SynchronizeLocalMap(); |
| 150 | } |
| 151 | InitializeKeys(); |
| 152 | } |
| 153 | |
| 154 | void HivePartitionedColumnData::InitializeKeys() { |
| 155 | keys.resize(STANDARD_VECTOR_SIZE); |
| 156 | for (idx_t i = 0; i < STANDARD_VECTOR_SIZE; i++) { |
| 157 | keys[i].values.resize(new_size: group_by_columns.size()); |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | template <class T> |
| 162 | static inline Value GetHiveKeyValue(const T &val) { |
| 163 | return Value::CreateValue<T>(val); |
| 164 | } |
| 165 | |
| 166 | template <class T> |
| 167 | static inline Value GetHiveKeyValue(const T &val, const LogicalType &type) { |
| 168 | auto result = GetHiveKeyValue(val); |
| 169 | result.Reinterpret(type); |
| 170 | return result; |
| 171 | } |
| 172 | |
| 173 | static inline Value GetHiveKeyNullValue(const LogicalType &type) { |
| 174 | Value result; |
| 175 | result.Reinterpret(new_type: type); |
| 176 | return result; |
| 177 | } |
| 178 | |
| 179 | template <class T> |
| 180 | static void TemplatedGetHivePartitionValues(Vector &input, vector<HivePartitionKey> &keys, const idx_t col_idx, |
| 181 | const idx_t count) { |
| 182 | UnifiedVectorFormat format; |
| 183 | input.ToUnifiedFormat(count, data&: format); |
| 184 | |
| 185 | const auto &sel = *format.sel; |
| 186 | const auto data = UnifiedVectorFormat::GetData<T>(format); |
| 187 | const auto &validity = format.validity; |
| 188 | |
| 189 | const auto &type = input.GetType(); |
| 190 | |
| 191 | const auto reinterpret = Value::CreateValue<T>(data[0]).GetTypeMutable() != type; |
| 192 | if (reinterpret) { |
| 193 | for (idx_t i = 0; i < count; i++) { |
| 194 | auto &key = keys[i]; |
| 195 | const auto idx = sel.get_index(idx: i); |
| 196 | if (validity.RowIsValid(row_idx: idx)) { |
| 197 | key.values[col_idx] = GetHiveKeyValue(data[idx], type); |
| 198 | } else { |
| 199 | key.values[col_idx] = GetHiveKeyNullValue(type); |
| 200 | } |
| 201 | } |
| 202 | } else { |
| 203 | for (idx_t i = 0; i < count; i++) { |
| 204 | auto &key = keys[i]; |
| 205 | const auto idx = sel.get_index(idx: i); |
| 206 | if (validity.RowIsValid(row_idx: idx)) { |
| 207 | key.values[col_idx] = GetHiveKeyValue(data[idx]); |
| 208 | } else { |
| 209 | key.values[col_idx] = GetHiveKeyNullValue(type); |
| 210 | } |
| 211 | } |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | static void GetNestedHivePartitionValues(Vector &input, vector<HivePartitionKey> &keys, const idx_t col_idx, |
| 216 | const idx_t count) { |
| 217 | for (idx_t i = 0; i < count; i++) { |
| 218 | auto &key = keys[i]; |
| 219 | key.values[col_idx] = input.GetValue(index: i); |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | static void GetHivePartitionValuesTypeSwitch(Vector &input, vector<HivePartitionKey> &keys, const idx_t col_idx, |
| 224 | const idx_t count) { |
| 225 | const auto &type = input.GetType(); |
| 226 | switch (type.InternalType()) { |
| 227 | case PhysicalType::BOOL: |
| 228 | TemplatedGetHivePartitionValues<bool>(input, keys, col_idx, count); |
| 229 | break; |
| 230 | case PhysicalType::INT8: |
| 231 | TemplatedGetHivePartitionValues<int8_t>(input, keys, col_idx, count); |
| 232 | break; |
| 233 | case PhysicalType::INT16: |
| 234 | TemplatedGetHivePartitionValues<int16_t>(input, keys, col_idx, count); |
| 235 | break; |
| 236 | case PhysicalType::INT32: |
| 237 | TemplatedGetHivePartitionValues<int32_t>(input, keys, col_idx, count); |
| 238 | break; |
| 239 | case PhysicalType::INT64: |
| 240 | TemplatedGetHivePartitionValues<int64_t>(input, keys, col_idx, count); |
| 241 | break; |
| 242 | case PhysicalType::INT128: |
| 243 | TemplatedGetHivePartitionValues<hugeint_t>(input, keys, col_idx, count); |
| 244 | break; |
| 245 | case PhysicalType::UINT8: |
| 246 | TemplatedGetHivePartitionValues<uint8_t>(input, keys, col_idx, count); |
| 247 | break; |
| 248 | case PhysicalType::UINT16: |
| 249 | TemplatedGetHivePartitionValues<uint16_t>(input, keys, col_idx, count); |
| 250 | break; |
| 251 | case PhysicalType::UINT32: |
| 252 | TemplatedGetHivePartitionValues<uint32_t>(input, keys, col_idx, count); |
| 253 | break; |
| 254 | case PhysicalType::UINT64: |
| 255 | TemplatedGetHivePartitionValues<uint64_t>(input, keys, col_idx, count); |
| 256 | break; |
| 257 | case PhysicalType::FLOAT: |
| 258 | TemplatedGetHivePartitionValues<float>(input, keys, col_idx, count); |
| 259 | break; |
| 260 | case PhysicalType::DOUBLE: |
| 261 | TemplatedGetHivePartitionValues<double>(input, keys, col_idx, count); |
| 262 | break; |
| 263 | case PhysicalType::INTERVAL: |
| 264 | TemplatedGetHivePartitionValues<interval_t>(input, keys, col_idx, count); |
| 265 | break; |
| 266 | case PhysicalType::VARCHAR: |
| 267 | TemplatedGetHivePartitionValues<string_t>(input, keys, col_idx, count); |
| 268 | break; |
| 269 | case PhysicalType::STRUCT: |
| 270 | case PhysicalType::LIST: |
| 271 | GetNestedHivePartitionValues(input, keys, col_idx, count); |
| 272 | break; |
| 273 | default: |
| 274 | throw InternalException("Unsupported type for HivePartitionedColumnData::ComputePartitionIndices" ); |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | void HivePartitionedColumnData::ComputePartitionIndices(PartitionedColumnDataAppendState &state, DataChunk &input) { |
| 279 | const auto count = input.size(); |
| 280 | |
| 281 | input.Hash(column_ids&: group_by_columns, result&: hashes_v); |
| 282 | hashes_v.Flatten(count); |
| 283 | |
| 284 | for (idx_t col_idx = 0; col_idx < group_by_columns.size(); col_idx++) { |
| 285 | auto &group_by_col = input.data[group_by_columns[col_idx]]; |
| 286 | GetHivePartitionValuesTypeSwitch(input&: group_by_col, keys, col_idx, count); |
| 287 | } |
| 288 | |
| 289 | const auto hashes = FlatVector::GetData<hash_t>(vector&: hashes_v); |
| 290 | const auto partition_indices = FlatVector::GetData<idx_t>(vector&: state.partition_indices); |
| 291 | for (idx_t i = 0; i < count; i++) { |
| 292 | auto &key = keys[i]; |
| 293 | key.hash = hashes[i]; |
| 294 | auto lookup = local_partition_map.find(x: key); |
| 295 | if (lookup == local_partition_map.end()) { |
| 296 | idx_t new_partition_id = RegisterNewPartition(key, state); |
| 297 | partition_indices[i] = new_partition_id; |
| 298 | } else { |
| 299 | partition_indices[i] = lookup->second; |
| 300 | } |
| 301 | } |
| 302 | } |
| 303 | |
| 304 | std::map<idx_t, const HivePartitionKey *> HivePartitionedColumnData::GetReverseMap() { |
| 305 | std::map<idx_t, const HivePartitionKey *> ret; |
| 306 | for (const auto &pair : local_partition_map) { |
| 307 | ret[pair.second] = &(pair.first); |
| 308 | } |
| 309 | return ret; |
| 310 | } |
| 311 | |
| 312 | void HivePartitionedColumnData::GrowAllocators() { |
| 313 | unique_lock<mutex> lck_gstate(allocators->lock); |
| 314 | |
| 315 | idx_t current_allocator_size = allocators->allocators.size(); |
| 316 | idx_t required_allocators = local_partition_map.size(); |
| 317 | |
| 318 | allocators->allocators.reserve(n: current_allocator_size); |
| 319 | for (idx_t i = current_allocator_size; i < required_allocators; i++) { |
| 320 | CreateAllocator(); |
| 321 | } |
| 322 | |
| 323 | D_ASSERT(allocators->allocators.size() == local_partition_map.size()); |
| 324 | } |
| 325 | |
| 326 | void HivePartitionedColumnData::GrowAppendState(PartitionedColumnDataAppendState &state) { |
| 327 | idx_t current_append_state_size = state.partition_append_states.size(); |
| 328 | idx_t required_append_state_size = local_partition_map.size(); |
| 329 | |
| 330 | for (idx_t i = current_append_state_size; i < required_append_state_size; i++) { |
| 331 | state.partition_append_states.emplace_back(args: make_uniq<ColumnDataAppendState>()); |
| 332 | state.partition_buffers.emplace_back(args: CreatePartitionBuffer()); |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | void HivePartitionedColumnData::GrowPartitions(PartitionedColumnDataAppendState &state) { |
| 337 | idx_t current_partitions = partitions.size(); |
| 338 | idx_t required_partitions = local_partition_map.size(); |
| 339 | |
| 340 | D_ASSERT(allocators->allocators.size() == required_partitions); |
| 341 | |
| 342 | for (idx_t i = current_partitions; i < required_partitions; i++) { |
| 343 | partitions.emplace_back(args: CreatePartitionCollection(partition_index: i)); |
| 344 | partitions[i]->InitializeAppend(state&: *state.partition_append_states[i]); |
| 345 | } |
| 346 | D_ASSERT(partitions.size() == local_partition_map.size()); |
| 347 | } |
| 348 | |
| 349 | void HivePartitionedColumnData::SynchronizeLocalMap() { |
| 350 | // Synchronise global map into local, may contain changes from other threads too |
| 351 | for (auto it = global_state->partitions.begin() + local_partition_map.size(); it < global_state->partitions.end(); |
| 352 | it++) { |
| 353 | local_partition_map[(*it)->first] = (*it)->second; |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | idx_t HivePartitionedColumnData::RegisterNewPartition(HivePartitionKey key, PartitionedColumnDataAppendState &state) { |
| 358 | if (global_state) { |
| 359 | idx_t partition_id; |
| 360 | |
| 361 | // Synchronize Global state with our local state with the newly discoveren partition |
| 362 | { |
| 363 | unique_lock<mutex> lck_gstate(global_state->lock); |
| 364 | |
| 365 | // Insert into global map, or return partition if already present |
| 366 | auto res = |
| 367 | global_state->partition_map.emplace(args: std::make_pair(x: std::move(key), y: global_state->partition_map.size())); |
| 368 | auto it = res.first; |
| 369 | partition_id = it->second; |
| 370 | |
| 371 | // Add iterator to vector to allow incrementally updating local states from global state |
| 372 | global_state->partitions.emplace_back(args&: it); |
| 373 | SynchronizeLocalMap(); |
| 374 | } |
| 375 | |
| 376 | // After synchronizing with the global state, we need to grow the shared allocators to support |
| 377 | // the number of partitions, which guarantees that there's always enough allocators available to each thread |
| 378 | GrowAllocators(); |
| 379 | |
| 380 | // Grow local partition data |
| 381 | GrowAppendState(state); |
| 382 | GrowPartitions(state); |
| 383 | |
| 384 | return partition_id; |
| 385 | } else { |
| 386 | return local_partition_map.emplace(args: std::make_pair(x: std::move(key), y: local_partition_map.size())).first->second; |
| 387 | } |
| 388 | } |
| 389 | |
| 390 | } // namespace duckdb |
| 391 | |