1 | #include "duckdb/common/hive_partitioning.hpp" |
2 | |
3 | #include "duckdb/execution/expression_executor.hpp" |
4 | #include "duckdb/optimizer/filter_combiner.hpp" |
5 | #include "duckdb/planner/expression/bound_columnref_expression.hpp" |
6 | #include "duckdb/planner/expression/bound_constant_expression.hpp" |
7 | #include "duckdb/planner/expression/bound_reference_expression.hpp" |
8 | #include "duckdb/planner/expression_iterator.hpp" |
9 | #include "duckdb/planner/table_filter.hpp" |
10 | #include "re2/re2.h" |
11 | |
12 | namespace duckdb { |
13 | |
14 | static unordered_map<column_t, string> GetKnownColumnValues(string &filename, |
15 | unordered_map<string, column_t> &column_map, |
16 | duckdb_re2::RE2 &compiled_regex, bool filename_col, |
17 | bool hive_partition_cols) { |
18 | unordered_map<column_t, string> result; |
19 | |
20 | if (filename_col) { |
21 | auto lookup_column_id = column_map.find(x: "filename" ); |
22 | if (lookup_column_id != column_map.end()) { |
23 | result[lookup_column_id->second] = filename; |
24 | } |
25 | } |
26 | |
27 | if (hive_partition_cols) { |
28 | auto partitions = HivePartitioning::Parse(filename, regex&: compiled_regex); |
29 | for (auto &partition : partitions) { |
30 | auto lookup_column_id = column_map.find(x: partition.first); |
31 | if (lookup_column_id != column_map.end()) { |
32 | result[lookup_column_id->second] = partition.second; |
33 | } |
34 | } |
35 | } |
36 | |
37 | return result; |
38 | } |
39 | |
40 | // Takes an expression and converts a list of known column_refs to constants |
41 | static void ConvertKnownColRefToConstants(unique_ptr<Expression> &expr, |
42 | unordered_map<column_t, string> &known_column_values, idx_t table_index) { |
43 | if (expr->type == ExpressionType::BOUND_COLUMN_REF) { |
44 | auto &bound_colref = expr->Cast<BoundColumnRefExpression>(); |
45 | |
46 | // This bound column ref is for another table |
47 | if (table_index != bound_colref.binding.table_index) { |
48 | return; |
49 | } |
50 | |
51 | auto lookup = known_column_values.find(x: bound_colref.binding.column_index); |
52 | if (lookup != known_column_values.end()) { |
53 | expr = make_uniq<BoundConstantExpression>(args: Value(lookup->second).DefaultCastAs(target_type: bound_colref.return_type)); |
54 | } |
55 | } else { |
56 | ExpressionIterator::EnumerateChildren(expression&: *expr, callback: [&](unique_ptr<Expression> &child) { |
57 | ConvertKnownColRefToConstants(expr&: child, known_column_values, table_index); |
58 | }); |
59 | } |
60 | } |
61 | |
62 | // matches hive partitions in file name. For example: |
63 | // - s3://bucket/var1=value1/bla/bla/var2=value2 |
64 | // - http(s)://domain(:port)/lala/kasdl/var1=value1/?not-a-var=not-a-value |
65 | // - folder/folder/folder/../var1=value1/etc/.//var2=value2 |
66 | const string HivePartitioning::REGEX_STRING = "[\\/\\\\]([^\\/\\?\\\\]+)=([^\\/\\n\\?\\\\]+)" ; |
67 | |
68 | std::map<string, string> HivePartitioning::Parse(const string &filename, duckdb_re2::RE2 ®ex) { |
69 | std::map<string, string> result; |
70 | duckdb_re2::StringPiece input(filename); // Wrap a StringPiece around it |
71 | |
72 | string var; |
73 | string value; |
74 | while (RE2::FindAndConsume(input: &input, re: regex, a: &var, a: &value)) { |
75 | result.insert(x: std::pair<string, string>(var, value)); |
76 | } |
77 | return result; |
78 | } |
79 | |
80 | std::map<string, string> HivePartitioning::Parse(const string &filename) { |
81 | duckdb_re2::RE2 regex(REGEX_STRING); |
82 | return Parse(filename, regex); |
83 | } |
84 | |
85 | // TODO: this can still be improved by removing the parts of filter expressions that are true for all remaining files. |
86 | // currently, only expressions that cannot be evaluated during pushdown are removed. |
87 | void HivePartitioning::ApplyFiltersToFileList(ClientContext &context, vector<string> &files, |
88 | vector<unique_ptr<Expression>> &filters, |
89 | unordered_map<string, column_t> &column_map, idx_t table_index, |
90 | bool hive_enabled, bool filename_enabled) { |
91 | vector<string> pruned_files; |
92 | vector<bool> have_preserved_filter(filters.size(), false); |
93 | vector<unique_ptr<Expression>> pruned_filters; |
94 | duckdb_re2::RE2 regex(REGEX_STRING); |
95 | |
96 | if ((!filename_enabled && !hive_enabled) || filters.empty()) { |
97 | return; |
98 | } |
99 | |
100 | for (idx_t i = 0; i < files.size(); i++) { |
101 | auto &file = files[i]; |
102 | bool should_prune_file = false; |
103 | auto known_values = GetKnownColumnValues(filename&: file, column_map, compiled_regex&: regex, filename_col: filename_enabled, hive_partition_cols: hive_enabled); |
104 | |
105 | FilterCombiner combiner(context); |
106 | |
107 | for (idx_t j = 0; j < filters.size(); j++) { |
108 | auto &filter = filters[j]; |
109 | unique_ptr<Expression> filter_copy = filter->Copy(); |
110 | ConvertKnownColRefToConstants(expr&: filter_copy, known_column_values&: known_values, table_index); |
111 | // Evaluate the filter, if it can be evaluated here, we can not prune this filter |
112 | Value result_value; |
113 | |
114 | if (!filter_copy->IsScalar() || !filter_copy->IsFoldable() || |
115 | !ExpressionExecutor::TryEvaluateScalar(context, expr: *filter_copy, result&: result_value)) { |
116 | // can not be evaluated only with the filename/hive columns added, we can not prune this filter |
117 | if (!have_preserved_filter[j]) { |
118 | pruned_filters.emplace_back(args: filter->Copy()); |
119 | have_preserved_filter[j] = true; |
120 | } |
121 | } else if (!result_value.GetValue<bool>()) { |
122 | // filter evaluates to false |
123 | should_prune_file = true; |
124 | } |
125 | |
126 | // Use filter combiner to determine that this filter makes |
127 | if (!should_prune_file && combiner.AddFilter(expr: std::move(filter_copy)) == FilterResult::UNSATISFIABLE) { |
128 | should_prune_file = true; |
129 | } |
130 | } |
131 | |
132 | if (!should_prune_file) { |
133 | pruned_files.push_back(x: file); |
134 | } |
135 | } |
136 | |
137 | D_ASSERT(filters.size() >= pruned_filters.size()); |
138 | |
139 | filters = std::move(pruned_filters); |
140 | files = std::move(pruned_files); |
141 | } |
142 | |
143 | HivePartitionedColumnData::HivePartitionedColumnData(const HivePartitionedColumnData &other) |
144 | : PartitionedColumnData(other), hashes_v(LogicalType::HASH) { |
145 | // Synchronize to ensure consistency of shared partition map |
146 | if (other.global_state) { |
147 | global_state = other.global_state; |
148 | unique_lock<mutex> lck(global_state->lock); |
149 | SynchronizeLocalMap(); |
150 | } |
151 | InitializeKeys(); |
152 | } |
153 | |
154 | void HivePartitionedColumnData::InitializeKeys() { |
155 | keys.resize(STANDARD_VECTOR_SIZE); |
156 | for (idx_t i = 0; i < STANDARD_VECTOR_SIZE; i++) { |
157 | keys[i].values.resize(new_size: group_by_columns.size()); |
158 | } |
159 | } |
160 | |
161 | template <class T> |
162 | static inline Value GetHiveKeyValue(const T &val) { |
163 | return Value::CreateValue<T>(val); |
164 | } |
165 | |
166 | template <class T> |
167 | static inline Value GetHiveKeyValue(const T &val, const LogicalType &type) { |
168 | auto result = GetHiveKeyValue(val); |
169 | result.Reinterpret(type); |
170 | return result; |
171 | } |
172 | |
173 | static inline Value GetHiveKeyNullValue(const LogicalType &type) { |
174 | Value result; |
175 | result.Reinterpret(new_type: type); |
176 | return result; |
177 | } |
178 | |
179 | template <class T> |
180 | static void TemplatedGetHivePartitionValues(Vector &input, vector<HivePartitionKey> &keys, const idx_t col_idx, |
181 | const idx_t count) { |
182 | UnifiedVectorFormat format; |
183 | input.ToUnifiedFormat(count, data&: format); |
184 | |
185 | const auto &sel = *format.sel; |
186 | const auto data = UnifiedVectorFormat::GetData<T>(format); |
187 | const auto &validity = format.validity; |
188 | |
189 | const auto &type = input.GetType(); |
190 | |
191 | const auto reinterpret = Value::CreateValue<T>(data[0]).GetTypeMutable() != type; |
192 | if (reinterpret) { |
193 | for (idx_t i = 0; i < count; i++) { |
194 | auto &key = keys[i]; |
195 | const auto idx = sel.get_index(idx: i); |
196 | if (validity.RowIsValid(row_idx: idx)) { |
197 | key.values[col_idx] = GetHiveKeyValue(data[idx], type); |
198 | } else { |
199 | key.values[col_idx] = GetHiveKeyNullValue(type); |
200 | } |
201 | } |
202 | } else { |
203 | for (idx_t i = 0; i < count; i++) { |
204 | auto &key = keys[i]; |
205 | const auto idx = sel.get_index(idx: i); |
206 | if (validity.RowIsValid(row_idx: idx)) { |
207 | key.values[col_idx] = GetHiveKeyValue(data[idx]); |
208 | } else { |
209 | key.values[col_idx] = GetHiveKeyNullValue(type); |
210 | } |
211 | } |
212 | } |
213 | } |
214 | |
215 | static void GetNestedHivePartitionValues(Vector &input, vector<HivePartitionKey> &keys, const idx_t col_idx, |
216 | const idx_t count) { |
217 | for (idx_t i = 0; i < count; i++) { |
218 | auto &key = keys[i]; |
219 | key.values[col_idx] = input.GetValue(index: i); |
220 | } |
221 | } |
222 | |
223 | static void GetHivePartitionValuesTypeSwitch(Vector &input, vector<HivePartitionKey> &keys, const idx_t col_idx, |
224 | const idx_t count) { |
225 | const auto &type = input.GetType(); |
226 | switch (type.InternalType()) { |
227 | case PhysicalType::BOOL: |
228 | TemplatedGetHivePartitionValues<bool>(input, keys, col_idx, count); |
229 | break; |
230 | case PhysicalType::INT8: |
231 | TemplatedGetHivePartitionValues<int8_t>(input, keys, col_idx, count); |
232 | break; |
233 | case PhysicalType::INT16: |
234 | TemplatedGetHivePartitionValues<int16_t>(input, keys, col_idx, count); |
235 | break; |
236 | case PhysicalType::INT32: |
237 | TemplatedGetHivePartitionValues<int32_t>(input, keys, col_idx, count); |
238 | break; |
239 | case PhysicalType::INT64: |
240 | TemplatedGetHivePartitionValues<int64_t>(input, keys, col_idx, count); |
241 | break; |
242 | case PhysicalType::INT128: |
243 | TemplatedGetHivePartitionValues<hugeint_t>(input, keys, col_idx, count); |
244 | break; |
245 | case PhysicalType::UINT8: |
246 | TemplatedGetHivePartitionValues<uint8_t>(input, keys, col_idx, count); |
247 | break; |
248 | case PhysicalType::UINT16: |
249 | TemplatedGetHivePartitionValues<uint16_t>(input, keys, col_idx, count); |
250 | break; |
251 | case PhysicalType::UINT32: |
252 | TemplatedGetHivePartitionValues<uint32_t>(input, keys, col_idx, count); |
253 | break; |
254 | case PhysicalType::UINT64: |
255 | TemplatedGetHivePartitionValues<uint64_t>(input, keys, col_idx, count); |
256 | break; |
257 | case PhysicalType::FLOAT: |
258 | TemplatedGetHivePartitionValues<float>(input, keys, col_idx, count); |
259 | break; |
260 | case PhysicalType::DOUBLE: |
261 | TemplatedGetHivePartitionValues<double>(input, keys, col_idx, count); |
262 | break; |
263 | case PhysicalType::INTERVAL: |
264 | TemplatedGetHivePartitionValues<interval_t>(input, keys, col_idx, count); |
265 | break; |
266 | case PhysicalType::VARCHAR: |
267 | TemplatedGetHivePartitionValues<string_t>(input, keys, col_idx, count); |
268 | break; |
269 | case PhysicalType::STRUCT: |
270 | case PhysicalType::LIST: |
271 | GetNestedHivePartitionValues(input, keys, col_idx, count); |
272 | break; |
273 | default: |
274 | throw InternalException("Unsupported type for HivePartitionedColumnData::ComputePartitionIndices" ); |
275 | } |
276 | } |
277 | |
278 | void HivePartitionedColumnData::ComputePartitionIndices(PartitionedColumnDataAppendState &state, DataChunk &input) { |
279 | const auto count = input.size(); |
280 | |
281 | input.Hash(column_ids&: group_by_columns, result&: hashes_v); |
282 | hashes_v.Flatten(count); |
283 | |
284 | for (idx_t col_idx = 0; col_idx < group_by_columns.size(); col_idx++) { |
285 | auto &group_by_col = input.data[group_by_columns[col_idx]]; |
286 | GetHivePartitionValuesTypeSwitch(input&: group_by_col, keys, col_idx, count); |
287 | } |
288 | |
289 | const auto hashes = FlatVector::GetData<hash_t>(vector&: hashes_v); |
290 | const auto partition_indices = FlatVector::GetData<idx_t>(vector&: state.partition_indices); |
291 | for (idx_t i = 0; i < count; i++) { |
292 | auto &key = keys[i]; |
293 | key.hash = hashes[i]; |
294 | auto lookup = local_partition_map.find(x: key); |
295 | if (lookup == local_partition_map.end()) { |
296 | idx_t new_partition_id = RegisterNewPartition(key, state); |
297 | partition_indices[i] = new_partition_id; |
298 | } else { |
299 | partition_indices[i] = lookup->second; |
300 | } |
301 | } |
302 | } |
303 | |
304 | std::map<idx_t, const HivePartitionKey *> HivePartitionedColumnData::GetReverseMap() { |
305 | std::map<idx_t, const HivePartitionKey *> ret; |
306 | for (const auto &pair : local_partition_map) { |
307 | ret[pair.second] = &(pair.first); |
308 | } |
309 | return ret; |
310 | } |
311 | |
312 | void HivePartitionedColumnData::GrowAllocators() { |
313 | unique_lock<mutex> lck_gstate(allocators->lock); |
314 | |
315 | idx_t current_allocator_size = allocators->allocators.size(); |
316 | idx_t required_allocators = local_partition_map.size(); |
317 | |
318 | allocators->allocators.reserve(n: current_allocator_size); |
319 | for (idx_t i = current_allocator_size; i < required_allocators; i++) { |
320 | CreateAllocator(); |
321 | } |
322 | |
323 | D_ASSERT(allocators->allocators.size() == local_partition_map.size()); |
324 | } |
325 | |
326 | void HivePartitionedColumnData::GrowAppendState(PartitionedColumnDataAppendState &state) { |
327 | idx_t current_append_state_size = state.partition_append_states.size(); |
328 | idx_t required_append_state_size = local_partition_map.size(); |
329 | |
330 | for (idx_t i = current_append_state_size; i < required_append_state_size; i++) { |
331 | state.partition_append_states.emplace_back(args: make_uniq<ColumnDataAppendState>()); |
332 | state.partition_buffers.emplace_back(args: CreatePartitionBuffer()); |
333 | } |
334 | } |
335 | |
336 | void HivePartitionedColumnData::GrowPartitions(PartitionedColumnDataAppendState &state) { |
337 | idx_t current_partitions = partitions.size(); |
338 | idx_t required_partitions = local_partition_map.size(); |
339 | |
340 | D_ASSERT(allocators->allocators.size() == required_partitions); |
341 | |
342 | for (idx_t i = current_partitions; i < required_partitions; i++) { |
343 | partitions.emplace_back(args: CreatePartitionCollection(partition_index: i)); |
344 | partitions[i]->InitializeAppend(state&: *state.partition_append_states[i]); |
345 | } |
346 | D_ASSERT(partitions.size() == local_partition_map.size()); |
347 | } |
348 | |
349 | void HivePartitionedColumnData::SynchronizeLocalMap() { |
350 | // Synchronise global map into local, may contain changes from other threads too |
351 | for (auto it = global_state->partitions.begin() + local_partition_map.size(); it < global_state->partitions.end(); |
352 | it++) { |
353 | local_partition_map[(*it)->first] = (*it)->second; |
354 | } |
355 | } |
356 | |
357 | idx_t HivePartitionedColumnData::RegisterNewPartition(HivePartitionKey key, PartitionedColumnDataAppendState &state) { |
358 | if (global_state) { |
359 | idx_t partition_id; |
360 | |
361 | // Synchronize Global state with our local state with the newly discoveren partition |
362 | { |
363 | unique_lock<mutex> lck_gstate(global_state->lock); |
364 | |
365 | // Insert into global map, or return partition if already present |
366 | auto res = |
367 | global_state->partition_map.emplace(args: std::make_pair(x: std::move(key), y: global_state->partition_map.size())); |
368 | auto it = res.first; |
369 | partition_id = it->second; |
370 | |
371 | // Add iterator to vector to allow incrementally updating local states from global state |
372 | global_state->partitions.emplace_back(args&: it); |
373 | SynchronizeLocalMap(); |
374 | } |
375 | |
376 | // After synchronizing with the global state, we need to grow the shared allocators to support |
377 | // the number of partitions, which guarantees that there's always enough allocators available to each thread |
378 | GrowAllocators(); |
379 | |
380 | // Grow local partition data |
381 | GrowAppendState(state); |
382 | GrowPartitions(state); |
383 | |
384 | return partition_id; |
385 | } else { |
386 | return local_partition_map.emplace(args: std::make_pair(x: std::move(key), y: local_partition_map.size())).first->second; |
387 | } |
388 | } |
389 | |
390 | } // namespace duckdb |
391 | |