| 1 | #include "duckdb/common/radix_partitioning.hpp" |
| 2 | |
| 3 | #include "duckdb/common/types/column/partitioned_column_data.hpp" |
| 4 | #include "duckdb/common/types/row/row_data_collection.hpp" |
| 5 | #include "duckdb/common/types/vector.hpp" |
| 6 | #include "duckdb/common/vector_operations/binary_executor.hpp" |
| 7 | #include "duckdb/common/vector_operations/unary_executor.hpp" |
| 8 | |
| 9 | namespace duckdb { |
| 10 | |
| 11 | template <class OP, class RETURN_TYPE, typename... ARGS> |
| 12 | RETURN_TYPE RadixBitsSwitch(idx_t radix_bits, ARGS &&... args) { |
| 13 | D_ASSERT(radix_bits <= sizeof(hash_t) * 8); |
| 14 | switch (radix_bits) { |
| 15 | case 1: |
| 16 | return OP::template Operation<1>(std::forward<ARGS>(args)...); |
| 17 | case 2: |
| 18 | return OP::template Operation<2>(std::forward<ARGS>(args)...); |
| 19 | case 3: |
| 20 | return OP::template Operation<3>(std::forward<ARGS>(args)...); |
| 21 | case 4: |
| 22 | return OP::template Operation<4>(std::forward<ARGS>(args)...); |
| 23 | case 5: |
| 24 | return OP::template Operation<5>(std::forward<ARGS>(args)...); |
| 25 | case 6: |
| 26 | return OP::template Operation<6>(std::forward<ARGS>(args)...); |
| 27 | case 7: |
| 28 | return OP::template Operation<7>(std::forward<ARGS>(args)...); |
| 29 | case 8: |
| 30 | return OP::template Operation<8>(std::forward<ARGS>(args)...); |
| 31 | case 9: |
| 32 | return OP::template Operation<9>(std::forward<ARGS>(args)...); |
| 33 | case 10: |
| 34 | return OP::template Operation<10>(std::forward<ARGS>(args)...); |
| 35 | default: |
| 36 | throw InternalException("TODO" ); |
| 37 | } |
| 38 | } |
| 39 | |
| 40 | template <idx_t radix_bits> |
| 41 | struct RadixLessThan { |
| 42 | static inline bool Operation(hash_t hash, hash_t cutoff) { |
| 43 | using CONSTANTS = RadixPartitioningConstants<radix_bits>; |
| 44 | return CONSTANTS::ApplyMask(hash) < cutoff; |
| 45 | } |
| 46 | }; |
| 47 | |
| 48 | struct SelectFunctor { |
| 49 | template <idx_t radix_bits> |
| 50 | static idx_t Operation(Vector &hashes, const SelectionVector *sel, idx_t count, idx_t cutoff, |
| 51 | SelectionVector *true_sel, SelectionVector *false_sel) { |
| 52 | Vector cutoff_vector(Value::HASH(value: cutoff)); |
| 53 | return BinaryExecutor::Select<hash_t, hash_t, RadixLessThan<radix_bits>>(hashes, cutoff_vector, sel, count, |
| 54 | true_sel, false_sel); |
| 55 | } |
| 56 | }; |
| 57 | |
| 58 | idx_t RadixPartitioning::Select(Vector &hashes, const SelectionVector *sel, idx_t count, idx_t radix_bits, idx_t cutoff, |
| 59 | SelectionVector *true_sel, SelectionVector *false_sel) { |
| 60 | return RadixBitsSwitch<SelectFunctor, idx_t>(radix_bits, args&: hashes, args&: sel, args&: count, args&: cutoff, args&: true_sel, args&: false_sel); |
| 61 | } |
| 62 | |
| 63 | struct HashsToBinsFunctor { |
| 64 | template <idx_t radix_bits> |
| 65 | static void Operation(Vector &hashes, Vector &bins, idx_t count) { |
| 66 | using CONSTANTS = RadixPartitioningConstants<radix_bits>; |
| 67 | UnaryExecutor::Execute<hash_t, hash_t>(hashes, bins, count, |
| 68 | [&](hash_t hash) { return CONSTANTS::ApplyMask(hash); }); |
| 69 | } |
| 70 | }; |
| 71 | |
| 72 | void RadixPartitioning::HashesToBins(Vector &hashes, idx_t radix_bits, Vector &bins, idx_t count) { |
| 73 | return RadixBitsSwitch<HashsToBinsFunctor, void>(radix_bits, args&: hashes, args&: bins, args&: count); |
| 74 | } |
| 75 | |
| 76 | //===--------------------------------------------------------------------===// |
| 77 | // Row Data Partitioning |
| 78 | //===--------------------------------------------------------------------===// |
| 79 | template <idx_t radix_bits> |
| 80 | static void InitPartitions(BufferManager &buffer_manager, vector<unique_ptr<RowDataCollection>> &partition_collections, |
| 81 | RowDataBlock *partition_blocks[], vector<BufferHandle> &partition_handles, |
| 82 | data_ptr_t partition_ptrs[], idx_t block_capacity, idx_t row_width) { |
| 83 | using CONSTANTS = RadixPartitioningConstants<radix_bits>; |
| 84 | |
| 85 | partition_collections.reserve(n: CONSTANTS::NUM_PARTITIONS); |
| 86 | partition_handles.reserve(n: CONSTANTS::NUM_PARTITIONS); |
| 87 | for (idx_t i = 0; i < CONSTANTS::NUM_PARTITIONS; i++) { |
| 88 | partition_collections.push_back(x: make_uniq<RowDataCollection>(args&: buffer_manager, args&: block_capacity, args&: row_width)); |
| 89 | partition_blocks[i] = &partition_collections[i]->CreateBlock(); |
| 90 | partition_handles.push_back(x: buffer_manager.Pin(handle&: partition_blocks[i]->block)); |
| 91 | if (partition_ptrs) { |
| 92 | partition_ptrs[i] = partition_handles[i].Ptr(); |
| 93 | } |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | struct ComputePartitionIndicesFunctor { |
| 98 | template <idx_t radix_bits> |
| 99 | static void Operation(Vector &hashes, Vector &partition_indices, idx_t count) { |
| 100 | UnaryExecutor::Execute<hash_t, hash_t>(hashes, partition_indices, count, [&](hash_t hash) { |
| 101 | using CONSTANTS = RadixPartitioningConstants<radix_bits>; |
| 102 | return CONSTANTS::ApplyMask(hash); |
| 103 | }); |
| 104 | } |
| 105 | }; |
| 106 | |
| 107 | //===--------------------------------------------------------------------===// |
| 108 | // Column Data Partitioning |
| 109 | //===--------------------------------------------------------------------===// |
| 110 | RadixPartitionedColumnData::RadixPartitionedColumnData(ClientContext &context_p, vector<LogicalType> types_p, |
| 111 | idx_t radix_bits_p, idx_t hash_col_idx_p) |
| 112 | : PartitionedColumnData(PartitionedColumnDataType::RADIX, context_p, std::move(types_p)), radix_bits(radix_bits_p), |
| 113 | hash_col_idx(hash_col_idx_p) { |
| 114 | D_ASSERT(hash_col_idx < types.size()); |
| 115 | const auto num_partitions = RadixPartitioning::NumberOfPartitions(radix_bits); |
| 116 | allocators->allocators.reserve(n: num_partitions); |
| 117 | for (idx_t i = 0; i < num_partitions; i++) { |
| 118 | CreateAllocator(); |
| 119 | } |
| 120 | D_ASSERT(allocators->allocators.size() == num_partitions); |
| 121 | } |
| 122 | |
| 123 | RadixPartitionedColumnData::RadixPartitionedColumnData(const RadixPartitionedColumnData &other) |
| 124 | : PartitionedColumnData(other), radix_bits(other.radix_bits), hash_col_idx(other.hash_col_idx) { |
| 125 | for (idx_t i = 0; i < RadixPartitioning::NumberOfPartitions(radix_bits); i++) { |
| 126 | partitions.emplace_back(args: CreatePartitionCollection(partition_index: i)); |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | RadixPartitionedColumnData::~RadixPartitionedColumnData() { |
| 131 | } |
| 132 | |
| 133 | void RadixPartitionedColumnData::InitializeAppendStateInternal(PartitionedColumnDataAppendState &state) const { |
| 134 | const auto num_partitions = RadixPartitioning::NumberOfPartitions(radix_bits); |
| 135 | state.partition_append_states.reserve(n: num_partitions); |
| 136 | state.partition_buffers.reserve(n: num_partitions); |
| 137 | for (idx_t i = 0; i < num_partitions; i++) { |
| 138 | state.partition_append_states.emplace_back(args: make_uniq<ColumnDataAppendState>()); |
| 139 | partitions[i]->InitializeAppend(state&: *state.partition_append_states[i]); |
| 140 | state.partition_buffers.emplace_back(args: CreatePartitionBuffer()); |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | void RadixPartitionedColumnData::ComputePartitionIndices(PartitionedColumnDataAppendState &state, DataChunk &input) { |
| 145 | D_ASSERT(partitions.size() == RadixPartitioning::NumberOfPartitions(radix_bits)); |
| 146 | D_ASSERT(state.partition_buffers.size() == RadixPartitioning::NumberOfPartitions(radix_bits)); |
| 147 | RadixBitsSwitch<ComputePartitionIndicesFunctor, void>(radix_bits, args&: input.data[hash_col_idx], args&: state.partition_indices, |
| 148 | args: input.size()); |
| 149 | } |
| 150 | |
| 151 | //===--------------------------------------------------------------------===// |
| 152 | // Tuple Data Partitioning |
| 153 | //===--------------------------------------------------------------------===// |
| 154 | RadixPartitionedTupleData::RadixPartitionedTupleData(BufferManager &buffer_manager, const TupleDataLayout &layout_p, |
| 155 | idx_t radix_bits_p, idx_t hash_col_idx_p) |
| 156 | : PartitionedTupleData(PartitionedTupleDataType::RADIX, buffer_manager, layout_p.Copy()), radix_bits(radix_bits_p), |
| 157 | hash_col_idx(hash_col_idx_p) { |
| 158 | D_ASSERT(hash_col_idx < layout.GetTypes().size()); |
| 159 | const auto num_partitions = RadixPartitioning::NumberOfPartitions(radix_bits); |
| 160 | allocators->allocators.reserve(n: num_partitions); |
| 161 | for (idx_t i = 0; i < num_partitions; i++) { |
| 162 | CreateAllocator(); |
| 163 | } |
| 164 | D_ASSERT(allocators->allocators.size() == num_partitions); |
| 165 | Initialize(); |
| 166 | } |
| 167 | |
| 168 | RadixPartitionedTupleData::RadixPartitionedTupleData(const RadixPartitionedTupleData &other) |
| 169 | : PartitionedTupleData(other), radix_bits(other.radix_bits), hash_col_idx(other.hash_col_idx) { |
| 170 | Initialize(); |
| 171 | } |
| 172 | |
| 173 | RadixPartitionedTupleData::~RadixPartitionedTupleData() { |
| 174 | } |
| 175 | |
| 176 | void RadixPartitionedTupleData::Initialize() { |
| 177 | for (idx_t i = 0; i < RadixPartitioning::NumberOfPartitions(radix_bits); i++) { |
| 178 | partitions.emplace_back(args: CreatePartitionCollection(partition_index: i)); |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | void RadixPartitionedTupleData::InitializeAppendStateInternal(PartitionedTupleDataAppendState &state, |
| 183 | TupleDataPinProperties properties) const { |
| 184 | // Init pin state per partition |
| 185 | const auto num_partitions = RadixPartitioning::NumberOfPartitions(radix_bits); |
| 186 | state.partition_pin_states.reserve(n: num_partitions); |
| 187 | for (idx_t i = 0; i < num_partitions; i++) { |
| 188 | state.partition_pin_states.emplace_back(args: make_uniq<TupleDataPinState>()); |
| 189 | partitions[i]->InitializeAppend(pin_state&: *state.partition_pin_states[i], properties); |
| 190 | } |
| 191 | |
| 192 | // Init single chunk state |
| 193 | auto column_count = layout.ColumnCount(); |
| 194 | vector<column_t> column_ids; |
| 195 | column_ids.reserve(n: column_count); |
| 196 | for (idx_t col_idx = 0; col_idx < column_count; col_idx++) { |
| 197 | column_ids.emplace_back(args&: col_idx); |
| 198 | } |
| 199 | partitions[0]->InitializeAppend(chunk_state&: state.chunk_state, column_ids: std::move(column_ids)); |
| 200 | } |
| 201 | |
| 202 | void RadixPartitionedTupleData::ComputePartitionIndices(PartitionedTupleDataAppendState &state, DataChunk &input) { |
| 203 | D_ASSERT(partitions.size() == RadixPartitioning::NumberOfPartitions(radix_bits)); |
| 204 | RadixBitsSwitch<ComputePartitionIndicesFunctor, void>(radix_bits, args&: input.data[hash_col_idx], args&: state.partition_indices, |
| 205 | args: input.size()); |
| 206 | } |
| 207 | |
| 208 | void RadixPartitionedTupleData::ComputePartitionIndices(Vector &row_locations, idx_t count, |
| 209 | Vector &partition_indices) const { |
| 210 | Vector intermediate(LogicalType::HASH); |
| 211 | partitions[0]->Gather(row_locations, sel: *FlatVector::IncrementalSelectionVector(), scan_count: count, column_id: hash_col_idx, result&: intermediate, |
| 212 | target_sel: *FlatVector::IncrementalSelectionVector()); |
| 213 | RadixBitsSwitch<ComputePartitionIndicesFunctor, void>(radix_bits, args&: intermediate, args&: partition_indices, args&: count); |
| 214 | } |
| 215 | |
| 216 | void RadixPartitionedTupleData::RepartitionFinalizeStates(PartitionedTupleData &old_partitioned_data, |
| 217 | PartitionedTupleData &new_partitioned_data, |
| 218 | PartitionedTupleDataAppendState &state, |
| 219 | idx_t finished_partition_idx) const { |
| 220 | D_ASSERT(old_partitioned_data.GetType() == PartitionedTupleDataType::RADIX && |
| 221 | new_partitioned_data.GetType() == PartitionedTupleDataType::RADIX); |
| 222 | const auto &old_radix_partitions = old_partitioned_data.Cast<RadixPartitionedTupleData>(); |
| 223 | const auto &new_radix_partitions = new_partitioned_data.Cast<RadixPartitionedTupleData>(); |
| 224 | const auto old_radix_bits = old_radix_partitions.GetRadixBits(); |
| 225 | const auto new_radix_bits = new_radix_partitions.GetRadixBits(); |
| 226 | D_ASSERT(new_radix_bits > old_radix_bits); |
| 227 | |
| 228 | // We take the most significant digits as the partition index |
| 229 | // When repartitioning, e.g., partition 0 from "old" goes into the first N partitions in "new" |
| 230 | // When partition 0 is done, we can already finalize the append states, unpinning blocks |
| 231 | const auto multiplier = RadixPartitioning::NumberOfPartitions(radix_bits: new_radix_bits - old_radix_bits); |
| 232 | const auto from_idx = finished_partition_idx * multiplier; |
| 233 | const auto to_idx = from_idx + multiplier; |
| 234 | auto &partitions = new_partitioned_data.GetPartitions(); |
| 235 | for (idx_t partition_index = from_idx; partition_index < to_idx; partition_index++) { |
| 236 | auto &partition = *partitions[partition_index]; |
| 237 | auto &partition_pin_state = *state.partition_pin_states[partition_index]; |
| 238 | partition.FinalizePinState(pin_state&: partition_pin_state); |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | } // namespace duckdb |
| 243 | |