1 | #include "duckdb/common/radix_partitioning.hpp" |
2 | |
3 | #include "duckdb/common/types/column/partitioned_column_data.hpp" |
4 | #include "duckdb/common/types/row/row_data_collection.hpp" |
5 | #include "duckdb/common/types/vector.hpp" |
6 | #include "duckdb/common/vector_operations/binary_executor.hpp" |
7 | #include "duckdb/common/vector_operations/unary_executor.hpp" |
8 | |
9 | namespace duckdb { |
10 | |
11 | template <class OP, class RETURN_TYPE, typename... ARGS> |
12 | RETURN_TYPE RadixBitsSwitch(idx_t radix_bits, ARGS &&... args) { |
13 | D_ASSERT(radix_bits <= sizeof(hash_t) * 8); |
14 | switch (radix_bits) { |
15 | case 1: |
16 | return OP::template Operation<1>(std::forward<ARGS>(args)...); |
17 | case 2: |
18 | return OP::template Operation<2>(std::forward<ARGS>(args)...); |
19 | case 3: |
20 | return OP::template Operation<3>(std::forward<ARGS>(args)...); |
21 | case 4: |
22 | return OP::template Operation<4>(std::forward<ARGS>(args)...); |
23 | case 5: |
24 | return OP::template Operation<5>(std::forward<ARGS>(args)...); |
25 | case 6: |
26 | return OP::template Operation<6>(std::forward<ARGS>(args)...); |
27 | case 7: |
28 | return OP::template Operation<7>(std::forward<ARGS>(args)...); |
29 | case 8: |
30 | return OP::template Operation<8>(std::forward<ARGS>(args)...); |
31 | case 9: |
32 | return OP::template Operation<9>(std::forward<ARGS>(args)...); |
33 | case 10: |
34 | return OP::template Operation<10>(std::forward<ARGS>(args)...); |
35 | default: |
36 | throw InternalException("TODO" ); |
37 | } |
38 | } |
39 | |
40 | template <idx_t radix_bits> |
41 | struct RadixLessThan { |
42 | static inline bool Operation(hash_t hash, hash_t cutoff) { |
43 | using CONSTANTS = RadixPartitioningConstants<radix_bits>; |
44 | return CONSTANTS::ApplyMask(hash) < cutoff; |
45 | } |
46 | }; |
47 | |
48 | struct SelectFunctor { |
49 | template <idx_t radix_bits> |
50 | static idx_t Operation(Vector &hashes, const SelectionVector *sel, idx_t count, idx_t cutoff, |
51 | SelectionVector *true_sel, SelectionVector *false_sel) { |
52 | Vector cutoff_vector(Value::HASH(value: cutoff)); |
53 | return BinaryExecutor::Select<hash_t, hash_t, RadixLessThan<radix_bits>>(hashes, cutoff_vector, sel, count, |
54 | true_sel, false_sel); |
55 | } |
56 | }; |
57 | |
58 | idx_t RadixPartitioning::Select(Vector &hashes, const SelectionVector *sel, idx_t count, idx_t radix_bits, idx_t cutoff, |
59 | SelectionVector *true_sel, SelectionVector *false_sel) { |
60 | return RadixBitsSwitch<SelectFunctor, idx_t>(radix_bits, args&: hashes, args&: sel, args&: count, args&: cutoff, args&: true_sel, args&: false_sel); |
61 | } |
62 | |
63 | struct HashsToBinsFunctor { |
64 | template <idx_t radix_bits> |
65 | static void Operation(Vector &hashes, Vector &bins, idx_t count) { |
66 | using CONSTANTS = RadixPartitioningConstants<radix_bits>; |
67 | UnaryExecutor::Execute<hash_t, hash_t>(hashes, bins, count, |
68 | [&](hash_t hash) { return CONSTANTS::ApplyMask(hash); }); |
69 | } |
70 | }; |
71 | |
72 | void RadixPartitioning::HashesToBins(Vector &hashes, idx_t radix_bits, Vector &bins, idx_t count) { |
73 | return RadixBitsSwitch<HashsToBinsFunctor, void>(radix_bits, args&: hashes, args&: bins, args&: count); |
74 | } |
75 | |
76 | //===--------------------------------------------------------------------===// |
77 | // Row Data Partitioning |
78 | //===--------------------------------------------------------------------===// |
79 | template <idx_t radix_bits> |
80 | static void InitPartitions(BufferManager &buffer_manager, vector<unique_ptr<RowDataCollection>> &partition_collections, |
81 | RowDataBlock *partition_blocks[], vector<BufferHandle> &partition_handles, |
82 | data_ptr_t partition_ptrs[], idx_t block_capacity, idx_t row_width) { |
83 | using CONSTANTS = RadixPartitioningConstants<radix_bits>; |
84 | |
85 | partition_collections.reserve(n: CONSTANTS::NUM_PARTITIONS); |
86 | partition_handles.reserve(n: CONSTANTS::NUM_PARTITIONS); |
87 | for (idx_t i = 0; i < CONSTANTS::NUM_PARTITIONS; i++) { |
88 | partition_collections.push_back(x: make_uniq<RowDataCollection>(args&: buffer_manager, args&: block_capacity, args&: row_width)); |
89 | partition_blocks[i] = &partition_collections[i]->CreateBlock(); |
90 | partition_handles.push_back(x: buffer_manager.Pin(handle&: partition_blocks[i]->block)); |
91 | if (partition_ptrs) { |
92 | partition_ptrs[i] = partition_handles[i].Ptr(); |
93 | } |
94 | } |
95 | } |
96 | |
97 | struct ComputePartitionIndicesFunctor { |
98 | template <idx_t radix_bits> |
99 | static void Operation(Vector &hashes, Vector &partition_indices, idx_t count) { |
100 | UnaryExecutor::Execute<hash_t, hash_t>(hashes, partition_indices, count, [&](hash_t hash) { |
101 | using CONSTANTS = RadixPartitioningConstants<radix_bits>; |
102 | return CONSTANTS::ApplyMask(hash); |
103 | }); |
104 | } |
105 | }; |
106 | |
107 | //===--------------------------------------------------------------------===// |
108 | // Column Data Partitioning |
109 | //===--------------------------------------------------------------------===// |
110 | RadixPartitionedColumnData::RadixPartitionedColumnData(ClientContext &context_p, vector<LogicalType> types_p, |
111 | idx_t radix_bits_p, idx_t hash_col_idx_p) |
112 | : PartitionedColumnData(PartitionedColumnDataType::RADIX, context_p, std::move(types_p)), radix_bits(radix_bits_p), |
113 | hash_col_idx(hash_col_idx_p) { |
114 | D_ASSERT(hash_col_idx < types.size()); |
115 | const auto num_partitions = RadixPartitioning::NumberOfPartitions(radix_bits); |
116 | allocators->allocators.reserve(n: num_partitions); |
117 | for (idx_t i = 0; i < num_partitions; i++) { |
118 | CreateAllocator(); |
119 | } |
120 | D_ASSERT(allocators->allocators.size() == num_partitions); |
121 | } |
122 | |
123 | RadixPartitionedColumnData::RadixPartitionedColumnData(const RadixPartitionedColumnData &other) |
124 | : PartitionedColumnData(other), radix_bits(other.radix_bits), hash_col_idx(other.hash_col_idx) { |
125 | for (idx_t i = 0; i < RadixPartitioning::NumberOfPartitions(radix_bits); i++) { |
126 | partitions.emplace_back(args: CreatePartitionCollection(partition_index: i)); |
127 | } |
128 | } |
129 | |
130 | RadixPartitionedColumnData::~RadixPartitionedColumnData() { |
131 | } |
132 | |
133 | void RadixPartitionedColumnData::InitializeAppendStateInternal(PartitionedColumnDataAppendState &state) const { |
134 | const auto num_partitions = RadixPartitioning::NumberOfPartitions(radix_bits); |
135 | state.partition_append_states.reserve(n: num_partitions); |
136 | state.partition_buffers.reserve(n: num_partitions); |
137 | for (idx_t i = 0; i < num_partitions; i++) { |
138 | state.partition_append_states.emplace_back(args: make_uniq<ColumnDataAppendState>()); |
139 | partitions[i]->InitializeAppend(state&: *state.partition_append_states[i]); |
140 | state.partition_buffers.emplace_back(args: CreatePartitionBuffer()); |
141 | } |
142 | } |
143 | |
144 | void RadixPartitionedColumnData::ComputePartitionIndices(PartitionedColumnDataAppendState &state, DataChunk &input) { |
145 | D_ASSERT(partitions.size() == RadixPartitioning::NumberOfPartitions(radix_bits)); |
146 | D_ASSERT(state.partition_buffers.size() == RadixPartitioning::NumberOfPartitions(radix_bits)); |
147 | RadixBitsSwitch<ComputePartitionIndicesFunctor, void>(radix_bits, args&: input.data[hash_col_idx], args&: state.partition_indices, |
148 | args: input.size()); |
149 | } |
150 | |
151 | //===--------------------------------------------------------------------===// |
152 | // Tuple Data Partitioning |
153 | //===--------------------------------------------------------------------===// |
154 | RadixPartitionedTupleData::RadixPartitionedTupleData(BufferManager &buffer_manager, const TupleDataLayout &layout_p, |
155 | idx_t radix_bits_p, idx_t hash_col_idx_p) |
156 | : PartitionedTupleData(PartitionedTupleDataType::RADIX, buffer_manager, layout_p.Copy()), radix_bits(radix_bits_p), |
157 | hash_col_idx(hash_col_idx_p) { |
158 | D_ASSERT(hash_col_idx < layout.GetTypes().size()); |
159 | const auto num_partitions = RadixPartitioning::NumberOfPartitions(radix_bits); |
160 | allocators->allocators.reserve(n: num_partitions); |
161 | for (idx_t i = 0; i < num_partitions; i++) { |
162 | CreateAllocator(); |
163 | } |
164 | D_ASSERT(allocators->allocators.size() == num_partitions); |
165 | Initialize(); |
166 | } |
167 | |
168 | RadixPartitionedTupleData::RadixPartitionedTupleData(const RadixPartitionedTupleData &other) |
169 | : PartitionedTupleData(other), radix_bits(other.radix_bits), hash_col_idx(other.hash_col_idx) { |
170 | Initialize(); |
171 | } |
172 | |
173 | RadixPartitionedTupleData::~RadixPartitionedTupleData() { |
174 | } |
175 | |
176 | void RadixPartitionedTupleData::Initialize() { |
177 | for (idx_t i = 0; i < RadixPartitioning::NumberOfPartitions(radix_bits); i++) { |
178 | partitions.emplace_back(args: CreatePartitionCollection(partition_index: i)); |
179 | } |
180 | } |
181 | |
182 | void RadixPartitionedTupleData::InitializeAppendStateInternal(PartitionedTupleDataAppendState &state, |
183 | TupleDataPinProperties properties) const { |
184 | // Init pin state per partition |
185 | const auto num_partitions = RadixPartitioning::NumberOfPartitions(radix_bits); |
186 | state.partition_pin_states.reserve(n: num_partitions); |
187 | for (idx_t i = 0; i < num_partitions; i++) { |
188 | state.partition_pin_states.emplace_back(args: make_uniq<TupleDataPinState>()); |
189 | partitions[i]->InitializeAppend(pin_state&: *state.partition_pin_states[i], properties); |
190 | } |
191 | |
192 | // Init single chunk state |
193 | auto column_count = layout.ColumnCount(); |
194 | vector<column_t> column_ids; |
195 | column_ids.reserve(n: column_count); |
196 | for (idx_t col_idx = 0; col_idx < column_count; col_idx++) { |
197 | column_ids.emplace_back(args&: col_idx); |
198 | } |
199 | partitions[0]->InitializeAppend(chunk_state&: state.chunk_state, column_ids: std::move(column_ids)); |
200 | } |
201 | |
202 | void RadixPartitionedTupleData::ComputePartitionIndices(PartitionedTupleDataAppendState &state, DataChunk &input) { |
203 | D_ASSERT(partitions.size() == RadixPartitioning::NumberOfPartitions(radix_bits)); |
204 | RadixBitsSwitch<ComputePartitionIndicesFunctor, void>(radix_bits, args&: input.data[hash_col_idx], args&: state.partition_indices, |
205 | args: input.size()); |
206 | } |
207 | |
208 | void RadixPartitionedTupleData::ComputePartitionIndices(Vector &row_locations, idx_t count, |
209 | Vector &partition_indices) const { |
210 | Vector intermediate(LogicalType::HASH); |
211 | partitions[0]->Gather(row_locations, sel: *FlatVector::IncrementalSelectionVector(), scan_count: count, column_id: hash_col_idx, result&: intermediate, |
212 | target_sel: *FlatVector::IncrementalSelectionVector()); |
213 | RadixBitsSwitch<ComputePartitionIndicesFunctor, void>(radix_bits, args&: intermediate, args&: partition_indices, args&: count); |
214 | } |
215 | |
216 | void RadixPartitionedTupleData::RepartitionFinalizeStates(PartitionedTupleData &old_partitioned_data, |
217 | PartitionedTupleData &new_partitioned_data, |
218 | PartitionedTupleDataAppendState &state, |
219 | idx_t finished_partition_idx) const { |
220 | D_ASSERT(old_partitioned_data.GetType() == PartitionedTupleDataType::RADIX && |
221 | new_partitioned_data.GetType() == PartitionedTupleDataType::RADIX); |
222 | const auto &old_radix_partitions = old_partitioned_data.Cast<RadixPartitionedTupleData>(); |
223 | const auto &new_radix_partitions = new_partitioned_data.Cast<RadixPartitionedTupleData>(); |
224 | const auto old_radix_bits = old_radix_partitions.GetRadixBits(); |
225 | const auto new_radix_bits = new_radix_partitions.GetRadixBits(); |
226 | D_ASSERT(new_radix_bits > old_radix_bits); |
227 | |
228 | // We take the most significant digits as the partition index |
229 | // When repartitioning, e.g., partition 0 from "old" goes into the first N partitions in "new" |
230 | // When partition 0 is done, we can already finalize the append states, unpinning blocks |
231 | const auto multiplier = RadixPartitioning::NumberOfPartitions(radix_bits: new_radix_bits - old_radix_bits); |
232 | const auto from_idx = finished_partition_idx * multiplier; |
233 | const auto to_idx = from_idx + multiplier; |
234 | auto &partitions = new_partitioned_data.GetPartitions(); |
235 | for (idx_t partition_index = from_idx; partition_index < to_idx; partition_index++) { |
236 | auto &partition = *partitions[partition_index]; |
237 | auto &partition_pin_state = *state.partition_pin_states[partition_index]; |
238 | partition.FinalizePinState(pin_state&: partition_pin_state); |
239 | } |
240 | } |
241 | |
242 | } // namespace duckdb |
243 | |