| 1 | #include "duckdb/execution/expression_executor.hpp" |
| 2 | |
| 3 | #include "duckdb/common/vector_operations/vector_operations.hpp" |
| 4 | #include "duckdb/execution/execution_context.hpp" |
| 5 | #include "duckdb/storage/statistics/base_statistics.hpp" |
| 6 | #include "duckdb/planner/expression/list.hpp" |
| 7 | |
| 8 | namespace duckdb { |
| 9 | |
| 10 | ExpressionExecutor::ExpressionExecutor(ClientContext &context) : context(&context) { |
| 11 | } |
| 12 | |
| 13 | ExpressionExecutor::ExpressionExecutor(ClientContext &context, const Expression *expression) |
| 14 | : ExpressionExecutor(context) { |
| 15 | D_ASSERT(expression); |
| 16 | AddExpression(expr: *expression); |
| 17 | } |
| 18 | |
| 19 | ExpressionExecutor::ExpressionExecutor(ClientContext &context, const Expression &expression) |
| 20 | : ExpressionExecutor(context) { |
| 21 | AddExpression(expr: expression); |
| 22 | } |
| 23 | |
| 24 | ExpressionExecutor::ExpressionExecutor(ClientContext &context, const vector<unique_ptr<Expression>> &exprs) |
| 25 | : ExpressionExecutor(context) { |
| 26 | D_ASSERT(exprs.size() > 0); |
| 27 | for (auto &expr : exprs) { |
| 28 | AddExpression(expr: *expr); |
| 29 | } |
| 30 | } |
| 31 | |
| 32 | ExpressionExecutor::ExpressionExecutor(const vector<unique_ptr<Expression>> &exprs) : context(nullptr) { |
| 33 | D_ASSERT(exprs.size() > 0); |
| 34 | for (auto &expr : exprs) { |
| 35 | AddExpression(expr: *expr); |
| 36 | } |
| 37 | } |
| 38 | |
| 39 | ExpressionExecutor::ExpressionExecutor() : context(nullptr) { |
| 40 | } |
| 41 | |
| 42 | bool ExpressionExecutor::HasContext() { |
| 43 | return context; |
| 44 | } |
| 45 | |
| 46 | ClientContext &ExpressionExecutor::GetContext() { |
| 47 | if (!context) { |
| 48 | throw InternalException("Calling ExpressionExecutor::GetContext on an expression executor without a context" ); |
| 49 | } |
| 50 | return *context; |
| 51 | } |
| 52 | |
| 53 | Allocator &ExpressionExecutor::GetAllocator() { |
| 54 | return context ? Allocator::Get(context&: *context) : Allocator::DefaultAllocator(); |
| 55 | } |
| 56 | |
| 57 | void ExpressionExecutor::AddExpression(const Expression &expr) { |
| 58 | expressions.push_back(x: &expr); |
| 59 | auto state = make_uniq<ExpressionExecutorState>(); |
| 60 | Initialize(expr, state&: *state); |
| 61 | state->Verify(); |
| 62 | states.push_back(x: std::move(state)); |
| 63 | } |
| 64 | |
| 65 | void ExpressionExecutor::Initialize(const Expression &expression, ExpressionExecutorState &state) { |
| 66 | state.executor = this; |
| 67 | state.root_state = InitializeState(expr: expression, state); |
| 68 | } |
| 69 | |
| 70 | void ExpressionExecutor::Execute(DataChunk *input, DataChunk &result) { |
| 71 | SetChunk(input); |
| 72 | D_ASSERT(expressions.size() == result.ColumnCount()); |
| 73 | D_ASSERT(!expressions.empty()); |
| 74 | |
| 75 | for (idx_t i = 0; i < expressions.size(); i++) { |
| 76 | ExecuteExpression(expr_idx: i, result&: result.data[i]); |
| 77 | } |
| 78 | result.SetCardinality(input ? input->size() : 1); |
| 79 | result.Verify(); |
| 80 | } |
| 81 | |
| 82 | void ExpressionExecutor::ExecuteExpression(DataChunk &input, Vector &result) { |
| 83 | SetChunk(&input); |
| 84 | ExecuteExpression(result); |
| 85 | } |
| 86 | |
| 87 | idx_t ExpressionExecutor::SelectExpression(DataChunk &input, SelectionVector &sel) { |
| 88 | D_ASSERT(expressions.size() == 1); |
| 89 | SetChunk(&input); |
| 90 | states[0]->profiler.BeginSample(); |
| 91 | idx_t selected_tuples = Select(expr: *expressions[0], state: states[0]->root_state.get(), sel: nullptr, count: input.size(), true_sel: &sel, false_sel: nullptr); |
| 92 | states[0]->profiler.EndSample(chunk_size: chunk ? chunk->size() : 0); |
| 93 | return selected_tuples; |
| 94 | } |
| 95 | |
| 96 | void ExpressionExecutor::ExecuteExpression(Vector &result) { |
| 97 | D_ASSERT(expressions.size() == 1); |
| 98 | ExecuteExpression(expr_idx: 0, result); |
| 99 | } |
| 100 | |
| 101 | void ExpressionExecutor::ExecuteExpression(idx_t expr_idx, Vector &result) { |
| 102 | D_ASSERT(expr_idx < expressions.size()); |
| 103 | D_ASSERT(result.GetType().id() == expressions[expr_idx]->return_type.id()); |
| 104 | states[expr_idx]->profiler.BeginSample(); |
| 105 | Execute(expr: *expressions[expr_idx], state: states[expr_idx]->root_state.get(), sel: nullptr, count: chunk ? chunk->size() : 1, result); |
| 106 | states[expr_idx]->profiler.EndSample(chunk_size: chunk ? chunk->size() : 0); |
| 107 | } |
| 108 | |
| 109 | Value ExpressionExecutor::EvaluateScalar(ClientContext &context, const Expression &expr, bool allow_unfoldable) { |
| 110 | D_ASSERT(allow_unfoldable || expr.IsFoldable()); |
| 111 | D_ASSERT(expr.IsScalar()); |
| 112 | // use an ExpressionExecutor to execute the expression |
| 113 | ExpressionExecutor executor(context, expr); |
| 114 | |
| 115 | Vector result(expr.return_type); |
| 116 | executor.ExecuteExpression(result); |
| 117 | |
| 118 | D_ASSERT(allow_unfoldable || result.GetVectorType() == VectorType::CONSTANT_VECTOR); |
| 119 | auto result_value = result.GetValue(index: 0); |
| 120 | D_ASSERT(result_value.type().InternalType() == expr.return_type.InternalType()); |
| 121 | return result_value; |
| 122 | } |
| 123 | |
| 124 | bool ExpressionExecutor::TryEvaluateScalar(ClientContext &context, const Expression &expr, Value &result) { |
| 125 | try { |
| 126 | result = EvaluateScalar(context, expr); |
| 127 | return true; |
| 128 | } catch (InternalException &ex) { |
| 129 | throw ex; |
| 130 | } catch (...) { |
| 131 | return false; |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | void ExpressionExecutor::Verify(const Expression &expr, Vector &vector, idx_t count) { |
| 136 | D_ASSERT(expr.return_type.id() == vector.GetType().id()); |
| 137 | vector.Verify(count); |
| 138 | if (expr.verification_stats) { |
| 139 | expr.verification_stats->Verify(vector, count); |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | unique_ptr<ExpressionState> ExpressionExecutor::InitializeState(const Expression &expr, |
| 144 | ExpressionExecutorState &state) { |
| 145 | switch (expr.expression_class) { |
| 146 | case ExpressionClass::BOUND_REF: |
| 147 | return InitializeState(expr: expr.Cast<BoundReferenceExpression>(), state); |
| 148 | case ExpressionClass::BOUND_BETWEEN: |
| 149 | return InitializeState(expr: expr.Cast<BoundBetweenExpression>(), state); |
| 150 | case ExpressionClass::BOUND_CASE: |
| 151 | return InitializeState(expr: expr.Cast<BoundCaseExpression>(), state); |
| 152 | case ExpressionClass::BOUND_CAST: |
| 153 | return InitializeState(expr: expr.Cast<BoundCastExpression>(), state); |
| 154 | case ExpressionClass::BOUND_COMPARISON: |
| 155 | return InitializeState(expr: expr.Cast<BoundComparisonExpression>(), state); |
| 156 | case ExpressionClass::BOUND_CONJUNCTION: |
| 157 | return InitializeState(expr: expr.Cast<BoundConjunctionExpression>(), state); |
| 158 | case ExpressionClass::BOUND_CONSTANT: |
| 159 | return InitializeState(expr: expr.Cast<BoundConstantExpression>(), state); |
| 160 | case ExpressionClass::BOUND_FUNCTION: |
| 161 | return InitializeState(expr: expr.Cast<BoundFunctionExpression>(), state); |
| 162 | case ExpressionClass::BOUND_OPERATOR: |
| 163 | return InitializeState(expr: expr.Cast<BoundOperatorExpression>(), state); |
| 164 | case ExpressionClass::BOUND_PARAMETER: |
| 165 | return InitializeState(expr: expr.Cast<BoundParameterExpression>(), state); |
| 166 | default: |
| 167 | throw InternalException("Attempting to initialize state of expression of unknown type!" ); |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | void ExpressionExecutor::Execute(const Expression &expr, ExpressionState *state, const SelectionVector *sel, |
| 172 | idx_t count, Vector &result) { |
| 173 | #ifdef DEBUG |
| 174 | //! The result Vector must be "clean" |
| 175 | if (result.GetVectorType() == VectorType::FLAT_VECTOR) { |
| 176 | D_ASSERT(FlatVector::Validity(result).CheckAllValid(count)); |
| 177 | } |
| 178 | #endif |
| 179 | |
| 180 | if (count == 0) { |
| 181 | return; |
| 182 | } |
| 183 | if (result.GetType().id() != expr.return_type.id()) { |
| 184 | throw InternalException( |
| 185 | "ExpressionExecutor::Execute called with a result vector of type %s that does not match expression type %s" , |
| 186 | result.GetType(), expr.return_type); |
| 187 | } |
| 188 | switch (expr.expression_class) { |
| 189 | case ExpressionClass::BOUND_BETWEEN: |
| 190 | Execute(expr: expr.Cast<BoundBetweenExpression>(), state, sel, count, result); |
| 191 | break; |
| 192 | case ExpressionClass::BOUND_REF: |
| 193 | Execute(expr: expr.Cast<BoundReferenceExpression>(), state, sel, count, result); |
| 194 | break; |
| 195 | case ExpressionClass::BOUND_CASE: |
| 196 | Execute(expr: expr.Cast<BoundCaseExpression>(), state, sel, count, result); |
| 197 | break; |
| 198 | case ExpressionClass::BOUND_CAST: |
| 199 | Execute(expr: expr.Cast<BoundCastExpression>(), state, sel, count, result); |
| 200 | break; |
| 201 | case ExpressionClass::BOUND_COMPARISON: |
| 202 | Execute(expr: expr.Cast<BoundComparisonExpression>(), state, sel, count, result); |
| 203 | break; |
| 204 | case ExpressionClass::BOUND_CONJUNCTION: |
| 205 | Execute(expr: expr.Cast<BoundConjunctionExpression>(), state, sel, count, result); |
| 206 | break; |
| 207 | case ExpressionClass::BOUND_CONSTANT: |
| 208 | Execute(expr: expr.Cast<BoundConstantExpression>(), state, sel, count, result); |
| 209 | break; |
| 210 | case ExpressionClass::BOUND_FUNCTION: |
| 211 | Execute(expr: expr.Cast<BoundFunctionExpression>(), state, sel, count, result); |
| 212 | break; |
| 213 | case ExpressionClass::BOUND_OPERATOR: |
| 214 | Execute(expr: expr.Cast<BoundOperatorExpression>(), state, sel, count, result); |
| 215 | break; |
| 216 | case ExpressionClass::BOUND_PARAMETER: |
| 217 | Execute(expr: expr.Cast<BoundParameterExpression>(), state, sel, count, result); |
| 218 | break; |
| 219 | default: |
| 220 | throw InternalException("Attempting to execute expression of unknown type!" ); |
| 221 | } |
| 222 | Verify(expr, vector&: result, count); |
| 223 | } |
| 224 | |
| 225 | idx_t ExpressionExecutor::Select(const Expression &expr, ExpressionState *state, const SelectionVector *sel, |
| 226 | idx_t count, SelectionVector *true_sel, SelectionVector *false_sel) { |
| 227 | if (count == 0) { |
| 228 | return 0; |
| 229 | } |
| 230 | D_ASSERT(true_sel || false_sel); |
| 231 | D_ASSERT(expr.return_type.id() == LogicalTypeId::BOOLEAN); |
| 232 | switch (expr.expression_class) { |
| 233 | case ExpressionClass::BOUND_BETWEEN: |
| 234 | return Select(expr: expr.Cast<BoundBetweenExpression>(), state, sel, count, true_sel, false_sel); |
| 235 | case ExpressionClass::BOUND_COMPARISON: |
| 236 | return Select(expr: expr.Cast<BoundComparisonExpression>(), state, sel, count, true_sel, false_sel); |
| 237 | case ExpressionClass::BOUND_CONJUNCTION: |
| 238 | return Select(expr: expr.Cast<BoundConjunctionExpression>(), state, sel, count, true_sel, false_sel); |
| 239 | default: |
| 240 | return DefaultSelect(expr, state, sel, count, true_sel, false_sel); |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | template <bool NO_NULL, bool HAS_TRUE_SEL, bool HAS_FALSE_SEL> |
| 245 | static inline idx_t DefaultSelectLoop(const SelectionVector *bsel, const uint8_t *__restrict bdata, ValidityMask &mask, |
| 246 | const SelectionVector *sel, idx_t count, SelectionVector *true_sel, |
| 247 | SelectionVector *false_sel) { |
| 248 | idx_t true_count = 0, false_count = 0; |
| 249 | for (idx_t i = 0; i < count; i++) { |
| 250 | auto bidx = bsel->get_index(idx: i); |
| 251 | auto result_idx = sel->get_index(idx: i); |
| 252 | if (bdata[bidx] > 0 && (NO_NULL || mask.RowIsValid(row_idx: bidx))) { |
| 253 | if (HAS_TRUE_SEL) { |
| 254 | true_sel->set_index(idx: true_count++, loc: result_idx); |
| 255 | } |
| 256 | } else { |
| 257 | if (HAS_FALSE_SEL) { |
| 258 | false_sel->set_index(idx: false_count++, loc: result_idx); |
| 259 | } |
| 260 | } |
| 261 | } |
| 262 | if (HAS_TRUE_SEL) { |
| 263 | return true_count; |
| 264 | } else { |
| 265 | return count - false_count; |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | template <bool NO_NULL> |
| 270 | static inline idx_t DefaultSelectSwitch(UnifiedVectorFormat &idata, const SelectionVector *sel, idx_t count, |
| 271 | SelectionVector *true_sel, SelectionVector *false_sel) { |
| 272 | if (true_sel && false_sel) { |
| 273 | return DefaultSelectLoop<NO_NULL, true, true>(idata.sel, UnifiedVectorFormat::GetData<uint8_t>(format: idata), |
| 274 | idata.validity, sel, count, true_sel, false_sel); |
| 275 | } else if (true_sel) { |
| 276 | return DefaultSelectLoop<NO_NULL, true, false>(idata.sel, UnifiedVectorFormat::GetData<uint8_t>(format: idata), |
| 277 | idata.validity, sel, count, true_sel, false_sel); |
| 278 | } else { |
| 279 | D_ASSERT(false_sel); |
| 280 | return DefaultSelectLoop<NO_NULL, false, true>(idata.sel, UnifiedVectorFormat::GetData<uint8_t>(format: idata), |
| 281 | idata.validity, sel, count, true_sel, false_sel); |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | idx_t ExpressionExecutor::DefaultSelect(const Expression &expr, ExpressionState *state, const SelectionVector *sel, |
| 286 | idx_t count, SelectionVector *true_sel, SelectionVector *false_sel) { |
| 287 | // generic selection of boolean expression: |
| 288 | // resolve the true/false expression first |
| 289 | // then use that to generate the selection vector |
| 290 | bool intermediate_bools[STANDARD_VECTOR_SIZE]; |
| 291 | Vector intermediate(LogicalType::BOOLEAN, data_ptr_cast(src: intermediate_bools)); |
| 292 | Execute(expr, state, sel, count, result&: intermediate); |
| 293 | |
| 294 | UnifiedVectorFormat idata; |
| 295 | intermediate.ToUnifiedFormat(count, data&: idata); |
| 296 | |
| 297 | if (!sel) { |
| 298 | sel = FlatVector::IncrementalSelectionVector(); |
| 299 | } |
| 300 | if (!idata.validity.AllValid()) { |
| 301 | return DefaultSelectSwitch<false>(idata, sel, count, true_sel, false_sel); |
| 302 | } else { |
| 303 | return DefaultSelectSwitch<true>(idata, sel, count, true_sel, false_sel); |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | vector<unique_ptr<ExpressionExecutorState>> &ExpressionExecutor::GetStates() { |
| 308 | return states; |
| 309 | } |
| 310 | |
| 311 | } // namespace duckdb |
| 312 | |