| 1 | #include "duckdb/common/vector_operations/vector_operations.hpp" |
| 2 | #include "duckdb/execution/expression_executor.hpp" |
| 3 | #include "duckdb/planner/expression/bound_case_expression.hpp" |
| 4 | |
| 5 | namespace duckdb { |
| 6 | |
| 7 | struct CaseExpressionState : public ExpressionState { |
| 8 | CaseExpressionState(const Expression &expr, ExpressionExecutorState &root) |
| 9 | : ExpressionState(expr, root), true_sel(STANDARD_VECTOR_SIZE), false_sel(STANDARD_VECTOR_SIZE) { |
| 10 | } |
| 11 | |
| 12 | SelectionVector true_sel; |
| 13 | SelectionVector false_sel; |
| 14 | }; |
| 15 | |
| 16 | unique_ptr<ExpressionState> ExpressionExecutor::InitializeState(const BoundCaseExpression &expr, |
| 17 | ExpressionExecutorState &root) { |
| 18 | auto result = make_uniq<CaseExpressionState>(args: expr, args&: root); |
| 19 | for (auto &case_check : expr.case_checks) { |
| 20 | result->AddChild(expr: case_check.when_expr.get()); |
| 21 | result->AddChild(expr: case_check.then_expr.get()); |
| 22 | } |
| 23 | result->AddChild(expr: expr.else_expr.get()); |
| 24 | result->Finalize(); |
| 25 | return std::move(result); |
| 26 | } |
| 27 | |
| 28 | void ExpressionExecutor::Execute(const BoundCaseExpression &expr, ExpressionState *state_p, const SelectionVector *sel, |
| 29 | idx_t count, Vector &result) { |
| 30 | auto &state = state_p->Cast<CaseExpressionState>(); |
| 31 | |
| 32 | state.intermediate_chunk.Reset(); |
| 33 | |
| 34 | // first execute the check expression |
| 35 | auto current_true_sel = &state.true_sel; |
| 36 | auto current_false_sel = &state.false_sel; |
| 37 | auto current_sel = sel; |
| 38 | idx_t current_count = count; |
| 39 | for (idx_t i = 0; i < expr.case_checks.size(); i++) { |
| 40 | auto &case_check = expr.case_checks[i]; |
| 41 | auto &intermediate_result = state.intermediate_chunk.data[i * 2 + 1]; |
| 42 | auto check_state = state.child_states[i * 2].get(); |
| 43 | auto then_state = state.child_states[i * 2 + 1].get(); |
| 44 | |
| 45 | idx_t tcount = |
| 46 | Select(expr: *case_check.when_expr, state: check_state, sel: current_sel, count: current_count, true_sel: current_true_sel, false_sel: current_false_sel); |
| 47 | if (tcount == 0) { |
| 48 | // everything is false: do nothing |
| 49 | continue; |
| 50 | } |
| 51 | idx_t fcount = current_count - tcount; |
| 52 | if (fcount == 0 && current_count == count) { |
| 53 | // everything is true in the first CHECK statement |
| 54 | // we can skip the entire case and only execute the TRUE side |
| 55 | Execute(expr: *case_check.then_expr, state: then_state, sel, count, result); |
| 56 | return; |
| 57 | } else { |
| 58 | // we need to execute and then fill in the desired tuples in the result |
| 59 | Execute(expr: *case_check.then_expr, state: then_state, sel: current_true_sel, count: tcount, result&: intermediate_result); |
| 60 | FillSwitch(vector&: intermediate_result, result, sel: *current_true_sel, count: tcount); |
| 61 | } |
| 62 | // continue with the false tuples |
| 63 | current_sel = current_false_sel; |
| 64 | current_count = fcount; |
| 65 | if (fcount == 0) { |
| 66 | // everything is true: we are done |
| 67 | break; |
| 68 | } |
| 69 | } |
| 70 | if (current_count > 0) { |
| 71 | auto else_state = state.child_states.back().get(); |
| 72 | if (current_count == count) { |
| 73 | // everything was false, we can just evaluate the else expression directly |
| 74 | Execute(expr: *expr.else_expr, state: else_state, sel, count, result); |
| 75 | return; |
| 76 | } else { |
| 77 | auto &intermediate_result = state.intermediate_chunk.data[expr.case_checks.size() * 2]; |
| 78 | |
| 79 | D_ASSERT(current_sel); |
| 80 | Execute(expr: *expr.else_expr, state: else_state, sel: current_sel, count: current_count, result&: intermediate_result); |
| 81 | FillSwitch(vector&: intermediate_result, result, sel: *current_sel, count: current_count); |
| 82 | } |
| 83 | } |
| 84 | if (sel) { |
| 85 | result.Slice(sel: *sel, count); |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | template <class T> |
| 90 | void TemplatedFillLoop(Vector &vector, Vector &result, const SelectionVector &sel, sel_t count) { |
| 91 | result.SetVectorType(VectorType::FLAT_VECTOR); |
| 92 | auto res = FlatVector::GetData<T>(result); |
| 93 | auto &result_mask = FlatVector::Validity(vector&: result); |
| 94 | if (vector.GetVectorType() == VectorType::CONSTANT_VECTOR) { |
| 95 | auto data = ConstantVector::GetData<T>(vector); |
| 96 | if (ConstantVector::IsNull(vector)) { |
| 97 | for (idx_t i = 0; i < count; i++) { |
| 98 | result_mask.SetInvalid(sel.get_index(idx: i)); |
| 99 | } |
| 100 | } else { |
| 101 | for (idx_t i = 0; i < count; i++) { |
| 102 | res[sel.get_index(idx: i)] = *data; |
| 103 | } |
| 104 | } |
| 105 | } else { |
| 106 | UnifiedVectorFormat vdata; |
| 107 | vector.ToUnifiedFormat(count, data&: vdata); |
| 108 | auto data = UnifiedVectorFormat::GetData<T>(vdata); |
| 109 | for (idx_t i = 0; i < count; i++) { |
| 110 | auto source_idx = vdata.sel->get_index(idx: i); |
| 111 | auto res_idx = sel.get_index(idx: i); |
| 112 | |
| 113 | res[res_idx] = data[source_idx]; |
| 114 | result_mask.Set(row_idx: res_idx, valid: vdata.validity.RowIsValid(row_idx: source_idx)); |
| 115 | } |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | void ValidityFillLoop(Vector &vector, Vector &result, const SelectionVector &sel, sel_t count) { |
| 120 | result.SetVectorType(VectorType::FLAT_VECTOR); |
| 121 | auto &result_mask = FlatVector::Validity(vector&: result); |
| 122 | if (vector.GetVectorType() == VectorType::CONSTANT_VECTOR) { |
| 123 | if (ConstantVector::IsNull(vector)) { |
| 124 | for (idx_t i = 0; i < count; i++) { |
| 125 | result_mask.SetInvalid(sel.get_index(idx: i)); |
| 126 | } |
| 127 | } |
| 128 | } else { |
| 129 | UnifiedVectorFormat vdata; |
| 130 | vector.ToUnifiedFormat(count, data&: vdata); |
| 131 | if (vdata.validity.AllValid()) { |
| 132 | return; |
| 133 | } |
| 134 | for (idx_t i = 0; i < count; i++) { |
| 135 | auto source_idx = vdata.sel->get_index(idx: i); |
| 136 | if (!vdata.validity.RowIsValid(row_idx: source_idx)) { |
| 137 | result_mask.SetInvalid(sel.get_index(idx: i)); |
| 138 | } |
| 139 | } |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | void ExpressionExecutor::FillSwitch(Vector &vector, Vector &result, const SelectionVector &sel, sel_t count) { |
| 144 | switch (result.GetType().InternalType()) { |
| 145 | case PhysicalType::BOOL: |
| 146 | case PhysicalType::INT8: |
| 147 | TemplatedFillLoop<int8_t>(vector, result, sel, count); |
| 148 | break; |
| 149 | case PhysicalType::INT16: |
| 150 | TemplatedFillLoop<int16_t>(vector, result, sel, count); |
| 151 | break; |
| 152 | case PhysicalType::INT32: |
| 153 | TemplatedFillLoop<int32_t>(vector, result, sel, count); |
| 154 | break; |
| 155 | case PhysicalType::INT64: |
| 156 | TemplatedFillLoop<int64_t>(vector, result, sel, count); |
| 157 | break; |
| 158 | case PhysicalType::UINT8: |
| 159 | TemplatedFillLoop<uint8_t>(vector, result, sel, count); |
| 160 | break; |
| 161 | case PhysicalType::UINT16: |
| 162 | TemplatedFillLoop<uint16_t>(vector, result, sel, count); |
| 163 | break; |
| 164 | case PhysicalType::UINT32: |
| 165 | TemplatedFillLoop<uint32_t>(vector, result, sel, count); |
| 166 | break; |
| 167 | case PhysicalType::UINT64: |
| 168 | TemplatedFillLoop<uint64_t>(vector, result, sel, count); |
| 169 | break; |
| 170 | case PhysicalType::INT128: |
| 171 | TemplatedFillLoop<hugeint_t>(vector, result, sel, count); |
| 172 | break; |
| 173 | case PhysicalType::FLOAT: |
| 174 | TemplatedFillLoop<float>(vector, result, sel, count); |
| 175 | break; |
| 176 | case PhysicalType::DOUBLE: |
| 177 | TemplatedFillLoop<double>(vector, result, sel, count); |
| 178 | break; |
| 179 | case PhysicalType::INTERVAL: |
| 180 | TemplatedFillLoop<interval_t>(vector, result, sel, count); |
| 181 | break; |
| 182 | case PhysicalType::VARCHAR: |
| 183 | TemplatedFillLoop<string_t>(vector, result, sel, count); |
| 184 | StringVector::AddHeapReference(vector&: result, other&: vector); |
| 185 | break; |
| 186 | case PhysicalType::STRUCT: { |
| 187 | auto &vector_entries = StructVector::GetEntries(vector); |
| 188 | auto &result_entries = StructVector::GetEntries(vector&: result); |
| 189 | ValidityFillLoop(vector, result, sel, count); |
| 190 | D_ASSERT(vector_entries.size() == result_entries.size()); |
| 191 | for (idx_t i = 0; i < vector_entries.size(); i++) { |
| 192 | FillSwitch(vector&: *vector_entries[i], result&: *result_entries[i], sel, count); |
| 193 | } |
| 194 | break; |
| 195 | } |
| 196 | case PhysicalType::LIST: { |
| 197 | idx_t offset = ListVector::GetListSize(vector: result); |
| 198 | auto &list_child = ListVector::GetEntry(vector); |
| 199 | ListVector::Append(target&: result, source: list_child, source_size: ListVector::GetListSize(vector)); |
| 200 | |
| 201 | // all the false offsets need to be incremented by true_child.count |
| 202 | TemplatedFillLoop<list_entry_t>(vector, result, sel, count); |
| 203 | if (offset == 0) { |
| 204 | break; |
| 205 | } |
| 206 | |
| 207 | auto result_data = FlatVector::GetData<list_entry_t>(vector&: result); |
| 208 | for (idx_t i = 0; i < count; i++) { |
| 209 | auto result_idx = sel.get_index(idx: i); |
| 210 | result_data[result_idx].offset += offset; |
| 211 | } |
| 212 | |
| 213 | Vector::Verify(vector&: result, sel, count); |
| 214 | break; |
| 215 | } |
| 216 | default: |
| 217 | throw NotImplementedException("Unimplemented type for case expression: %s" , result.GetType().ToString()); |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | } // namespace duckdb |
| 222 | |