1 | #include "duckdb/common/vector_operations/vector_operations.hpp" |
2 | #include "duckdb/execution/expression_executor.hpp" |
3 | #include "duckdb/planner/expression/bound_conjunction_expression.hpp" |
4 | #include "duckdb/execution/adaptive_filter.hpp" |
5 | #include "duckdb/common/chrono.hpp" |
6 | |
7 | #include <random> |
8 | |
9 | namespace duckdb { |
10 | |
11 | struct ConjunctionState : public ExpressionState { |
12 | ConjunctionState(const Expression &expr, ExpressionExecutorState &root) : ExpressionState(expr, root) { |
13 | adaptive_filter = make_uniq<AdaptiveFilter>(args: expr); |
14 | } |
15 | unique_ptr<AdaptiveFilter> adaptive_filter; |
16 | }; |
17 | |
18 | unique_ptr<ExpressionState> ExpressionExecutor::InitializeState(const BoundConjunctionExpression &expr, |
19 | ExpressionExecutorState &root) { |
20 | auto result = make_uniq<ConjunctionState>(args: expr, args&: root); |
21 | for (auto &child : expr.children) { |
22 | result->AddChild(expr: child.get()); |
23 | } |
24 | result->Finalize(); |
25 | return std::move(result); |
26 | } |
27 | |
28 | void ExpressionExecutor::Execute(const BoundConjunctionExpression &expr, ExpressionState *state, |
29 | const SelectionVector *sel, idx_t count, Vector &result) { |
30 | // execute the children |
31 | state->intermediate_chunk.Reset(); |
32 | for (idx_t i = 0; i < expr.children.size(); i++) { |
33 | auto ¤t_result = state->intermediate_chunk.data[i]; |
34 | Execute(expr: *expr.children[i], state: state->child_states[i].get(), sel, count, result&: current_result); |
35 | if (i == 0) { |
36 | // move the result |
37 | result.Reference(other&: current_result); |
38 | } else { |
39 | Vector intermediate(LogicalType::BOOLEAN); |
40 | // AND/OR together |
41 | switch (expr.type) { |
42 | case ExpressionType::CONJUNCTION_AND: |
43 | VectorOperations::And(left&: current_result, right&: result, result&: intermediate, count); |
44 | break; |
45 | case ExpressionType::CONJUNCTION_OR: |
46 | VectorOperations::Or(left&: current_result, right&: result, result&: intermediate, count); |
47 | break; |
48 | default: |
49 | throw InternalException("Unknown conjunction type!" ); |
50 | } |
51 | result.Reference(other&: intermediate); |
52 | } |
53 | } |
54 | } |
55 | |
56 | idx_t ExpressionExecutor::Select(const BoundConjunctionExpression &expr, ExpressionState *state_p, |
57 | const SelectionVector *sel, idx_t count, SelectionVector *true_sel, |
58 | SelectionVector *false_sel) { |
59 | auto &state = state_p->Cast<ConjunctionState>(); |
60 | |
61 | if (expr.type == ExpressionType::CONJUNCTION_AND) { |
62 | // get runtime statistics |
63 | auto start_time = high_resolution_clock::now(); |
64 | |
65 | const SelectionVector *current_sel = sel; |
66 | idx_t current_count = count; |
67 | idx_t false_count = 0; |
68 | |
69 | unique_ptr<SelectionVector> temp_true, temp_false; |
70 | if (false_sel) { |
71 | temp_false = make_uniq<SelectionVector>(STANDARD_VECTOR_SIZE); |
72 | } |
73 | if (!true_sel) { |
74 | temp_true = make_uniq<SelectionVector>(STANDARD_VECTOR_SIZE); |
75 | true_sel = temp_true.get(); |
76 | } |
77 | for (idx_t i = 0; i < expr.children.size(); i++) { |
78 | idx_t tcount = Select(expr: *expr.children[state.adaptive_filter->permutation[i]], |
79 | state: state.child_states[state.adaptive_filter->permutation[i]].get(), sel: current_sel, |
80 | count: current_count, true_sel, false_sel: temp_false.get()); |
81 | idx_t fcount = current_count - tcount; |
82 | if (fcount > 0 && false_sel) { |
83 | // move failing tuples into the false_sel |
84 | // tuples passed, move them into the actual result vector |
85 | for (idx_t i = 0; i < fcount; i++) { |
86 | false_sel->set_index(idx: false_count++, loc: temp_false->get_index(idx: i)); |
87 | } |
88 | } |
89 | current_count = tcount; |
90 | if (current_count == 0) { |
91 | break; |
92 | } |
93 | if (current_count < count) { |
94 | // tuples were filtered out: move on to using the true_sel to only evaluate passing tuples in subsequent |
95 | // iterations |
96 | current_sel = true_sel; |
97 | } |
98 | } |
99 | |
100 | // adapt runtime statistics |
101 | auto end_time = high_resolution_clock::now(); |
102 | state.adaptive_filter->AdaptRuntimeStatistics(duration: duration_cast<duration<double>>(d: end_time - start_time).count()); |
103 | return current_count; |
104 | } else { |
105 | // get runtime statistics |
106 | auto start_time = high_resolution_clock::now(); |
107 | |
108 | const SelectionVector *current_sel = sel; |
109 | idx_t current_count = count; |
110 | idx_t result_count = 0; |
111 | |
112 | unique_ptr<SelectionVector> temp_true, temp_false; |
113 | if (true_sel) { |
114 | temp_true = make_uniq<SelectionVector>(STANDARD_VECTOR_SIZE); |
115 | } |
116 | if (!false_sel) { |
117 | temp_false = make_uniq<SelectionVector>(STANDARD_VECTOR_SIZE); |
118 | false_sel = temp_false.get(); |
119 | } |
120 | for (idx_t i = 0; i < expr.children.size(); i++) { |
121 | idx_t tcount = Select(expr: *expr.children[state.adaptive_filter->permutation[i]], |
122 | state: state.child_states[state.adaptive_filter->permutation[i]].get(), sel: current_sel, |
123 | count: current_count, true_sel: temp_true.get(), false_sel); |
124 | if (tcount > 0) { |
125 | if (true_sel) { |
126 | // tuples passed, move them into the actual result vector |
127 | for (idx_t i = 0; i < tcount; i++) { |
128 | true_sel->set_index(idx: result_count++, loc: temp_true->get_index(idx: i)); |
129 | } |
130 | } |
131 | // now move on to check only the non-passing tuples |
132 | current_count -= tcount; |
133 | current_sel = false_sel; |
134 | } |
135 | } |
136 | |
137 | // adapt runtime statistics |
138 | auto end_time = high_resolution_clock::now(); |
139 | state.adaptive_filter->AdaptRuntimeStatistics(duration: duration_cast<duration<double>>(d: end_time - start_time).count()); |
140 | return result_count; |
141 | } |
142 | } |
143 | |
144 | } // namespace duckdb |
145 | |