| 1 | #include "duckdb/catalog/catalog_entry/aggregate_function_catalog_entry.hpp" |
| 2 | #include "duckdb/common/operator/subtract.hpp" |
| 3 | #include "duckdb/execution/operator/aggregate/physical_hash_aggregate.hpp" |
| 4 | #include "duckdb/execution/operator/aggregate/physical_perfecthash_aggregate.hpp" |
| 5 | #include "duckdb/execution/operator/aggregate/physical_ungrouped_aggregate.hpp" |
| 6 | #include "duckdb/execution/operator/projection/physical_projection.hpp" |
| 7 | #include "duckdb/execution/physical_plan_generator.hpp" |
| 8 | #include "duckdb/main/client_context.hpp" |
| 9 | #include "duckdb/parser/expression/comparison_expression.hpp" |
| 10 | #include "duckdb/planner/expression/bound_aggregate_expression.hpp" |
| 11 | #include "duckdb/planner/operator/logical_aggregate.hpp" |
| 12 | #include "duckdb/function/function_binder.hpp" |
| 13 | #include "duckdb/planner/expression/bound_reference_expression.hpp" |
| 14 | |
| 15 | namespace duckdb { |
| 16 | |
| 17 | static uint32_t RequiredBitsForValue(uint32_t n) { |
| 18 | idx_t required_bits = 0; |
| 19 | while (n > 0) { |
| 20 | n >>= 1; |
| 21 | required_bits++; |
| 22 | } |
| 23 | return required_bits; |
| 24 | } |
| 25 | |
| 26 | static bool CanUsePerfectHashAggregate(ClientContext &context, LogicalAggregate &op, vector<idx_t> &bits_per_group) { |
| 27 | if (op.grouping_sets.size() > 1 || !op.grouping_functions.empty()) { |
| 28 | return false; |
| 29 | } |
| 30 | idx_t perfect_hash_bits = 0; |
| 31 | if (op.group_stats.empty()) { |
| 32 | op.group_stats.resize(new_size: op.groups.size()); |
| 33 | } |
| 34 | for (idx_t group_idx = 0; group_idx < op.groups.size(); group_idx++) { |
| 35 | auto &group = op.groups[group_idx]; |
| 36 | auto &stats = op.group_stats[group_idx]; |
| 37 | |
| 38 | switch (group->return_type.InternalType()) { |
| 39 | case PhysicalType::INT8: |
| 40 | case PhysicalType::INT16: |
| 41 | case PhysicalType::INT32: |
| 42 | case PhysicalType::INT64: |
| 43 | break; |
| 44 | default: |
| 45 | // we only support simple integer types for perfect hashing |
| 46 | return false; |
| 47 | } |
| 48 | // check if the group has stats available |
| 49 | auto &group_type = group->return_type; |
| 50 | if (!stats) { |
| 51 | // no stats, but we might still be able to use perfect hashing if the type is small enough |
| 52 | // for small types we can just set the stats to [type_min, type_max] |
| 53 | switch (group_type.InternalType()) { |
| 54 | case PhysicalType::INT8: |
| 55 | case PhysicalType::INT16: |
| 56 | break; |
| 57 | default: |
| 58 | // type is too large and there are no stats: skip perfect hashing |
| 59 | return false; |
| 60 | } |
| 61 | // construct stats with the min and max value of the type |
| 62 | stats = NumericStats::CreateUnknown(type: group_type).ToUnique(); |
| 63 | NumericStats::SetMin(stats&: *stats, val: Value::MinimumValue(type: group_type)); |
| 64 | NumericStats::SetMax(stats&: *stats, val: Value::MaximumValue(type: group_type)); |
| 65 | } |
| 66 | auto &nstats = *stats; |
| 67 | |
| 68 | if (!NumericStats::HasMinMax(stats: nstats)) { |
| 69 | return false; |
| 70 | } |
| 71 | // we have a min and a max value for the stats: use that to figure out how many bits we have |
| 72 | // we add two here, one for the NULL value, and one to make the computation one-indexed |
| 73 | // (e.g. if min and max are the same, we still need one entry in total) |
| 74 | int64_t range; |
| 75 | switch (group_type.InternalType()) { |
| 76 | case PhysicalType::INT8: |
| 77 | range = int64_t(NumericStats::GetMax<int8_t>(stats: nstats)) - int64_t(NumericStats::GetMin<int8_t>(stats: nstats)); |
| 78 | break; |
| 79 | case PhysicalType::INT16: |
| 80 | range = int64_t(NumericStats::GetMax<int16_t>(stats: nstats)) - int64_t(NumericStats::GetMin<int16_t>(stats: nstats)); |
| 81 | break; |
| 82 | case PhysicalType::INT32: |
| 83 | range = int64_t(NumericStats::GetMax<int32_t>(stats: nstats)) - int64_t(NumericStats::GetMin<int32_t>(stats: nstats)); |
| 84 | break; |
| 85 | case PhysicalType::INT64: |
| 86 | if (!TrySubtractOperator::Operation(left: NumericStats::GetMax<int64_t>(stats: nstats), |
| 87 | right: NumericStats::GetMin<int64_t>(stats: nstats), result&: range)) { |
| 88 | return false; |
| 89 | } |
| 90 | break; |
| 91 | default: |
| 92 | throw InternalException("Unsupported type for perfect hash (should be caught before)" ); |
| 93 | } |
| 94 | // bail out on any range bigger than 2^32 |
| 95 | if (range >= NumericLimits<int32_t>::Maximum()) { |
| 96 | return false; |
| 97 | } |
| 98 | range += 2; |
| 99 | // figure out how many bits we need |
| 100 | idx_t required_bits = RequiredBitsForValue(n: range); |
| 101 | bits_per_group.push_back(x: required_bits); |
| 102 | perfect_hash_bits += required_bits; |
| 103 | // check if we have exceeded the bits for the hash |
| 104 | if (perfect_hash_bits > ClientConfig::GetConfig(context).perfect_ht_threshold) { |
| 105 | // too many bits for perfect hash |
| 106 | return false; |
| 107 | } |
| 108 | } |
| 109 | for (auto &expression : op.expressions) { |
| 110 | auto &aggregate = expression->Cast<BoundAggregateExpression>(); |
| 111 | if (aggregate.IsDistinct() || !aggregate.function.combine) { |
| 112 | // distinct aggregates are not supported in perfect hash aggregates |
| 113 | return false; |
| 114 | } |
| 115 | } |
| 116 | return true; |
| 117 | } |
| 118 | |
| 119 | unique_ptr<PhysicalOperator> PhysicalPlanGenerator::CreatePlan(LogicalAggregate &op) { |
| 120 | unique_ptr<PhysicalOperator> groupby; |
| 121 | D_ASSERT(op.children.size() == 1); |
| 122 | |
| 123 | auto plan = CreatePlan(op&: *op.children[0]); |
| 124 | |
| 125 | plan = ExtractAggregateExpressions(child: std::move(plan), expressions&: op.expressions, groups&: op.groups); |
| 126 | |
| 127 | if (op.groups.empty() && op.grouping_sets.size() <= 1) { |
| 128 | // no groups, check if we can use a simple aggregation |
| 129 | // special case: aggregate entire columns together |
| 130 | bool use_simple_aggregation = true; |
| 131 | for (auto &expression : op.expressions) { |
| 132 | auto &aggregate = expression->Cast<BoundAggregateExpression>(); |
| 133 | if (!aggregate.function.simple_update) { |
| 134 | // unsupported aggregate for simple aggregation: use hash aggregation |
| 135 | use_simple_aggregation = false; |
| 136 | break; |
| 137 | } |
| 138 | } |
| 139 | if (use_simple_aggregation) { |
| 140 | groupby = make_uniq_base<PhysicalOperator, PhysicalUngroupedAggregate>(args&: op.types, args: std::move(op.expressions), |
| 141 | args&: op.estimated_cardinality); |
| 142 | } else { |
| 143 | groupby = make_uniq_base<PhysicalOperator, PhysicalHashAggregate>( |
| 144 | args&: context, args&: op.types, args: std::move(op.expressions), args&: op.estimated_cardinality); |
| 145 | } |
| 146 | } else { |
| 147 | // groups! create a GROUP BY aggregator |
| 148 | // use a perfect hash aggregate if possible |
| 149 | vector<idx_t> required_bits; |
| 150 | if (CanUsePerfectHashAggregate(context, op, bits_per_group&: required_bits)) { |
| 151 | groupby = make_uniq_base<PhysicalOperator, PhysicalPerfectHashAggregate>( |
| 152 | args&: context, args&: op.types, args: std::move(op.expressions), args: std::move(op.groups), args: std::move(op.group_stats), |
| 153 | args: std::move(required_bits), args&: op.estimated_cardinality); |
| 154 | } else { |
| 155 | groupby = make_uniq_base<PhysicalOperator, PhysicalHashAggregate>( |
| 156 | args&: context, args&: op.types, args: std::move(op.expressions), args: std::move(op.groups), args: std::move(op.grouping_sets), |
| 157 | args: std::move(op.grouping_functions), args&: op.estimated_cardinality); |
| 158 | } |
| 159 | } |
| 160 | groupby->children.push_back(x: std::move(plan)); |
| 161 | return groupby; |
| 162 | } |
| 163 | |
| 164 | unique_ptr<PhysicalOperator> |
| 165 | PhysicalPlanGenerator::(unique_ptr<PhysicalOperator> child, |
| 166 | vector<unique_ptr<Expression>> &aggregates, |
| 167 | vector<unique_ptr<Expression>> &groups) { |
| 168 | vector<unique_ptr<Expression>> expressions; |
| 169 | vector<LogicalType> types; |
| 170 | |
| 171 | // bind sorted aggregates |
| 172 | for (auto &aggr : aggregates) { |
| 173 | auto &bound_aggr = aggr->Cast<BoundAggregateExpression>(); |
| 174 | if (bound_aggr.order_bys) { |
| 175 | // sorted aggregate! |
| 176 | FunctionBinder::BindSortedAggregate(context, expr&: bound_aggr, groups); |
| 177 | } |
| 178 | } |
| 179 | for (auto &group : groups) { |
| 180 | auto ref = make_uniq<BoundReferenceExpression>(args&: group->return_type, args: expressions.size()); |
| 181 | types.push_back(x: group->return_type); |
| 182 | expressions.push_back(x: std::move(group)); |
| 183 | group = std::move(ref); |
| 184 | } |
| 185 | for (auto &aggr : aggregates) { |
| 186 | auto &bound_aggr = aggr->Cast<BoundAggregateExpression>(); |
| 187 | for (auto &child : bound_aggr.children) { |
| 188 | auto ref = make_uniq<BoundReferenceExpression>(args&: child->return_type, args: expressions.size()); |
| 189 | types.push_back(x: child->return_type); |
| 190 | expressions.push_back(x: std::move(child)); |
| 191 | child = std::move(ref); |
| 192 | } |
| 193 | if (bound_aggr.filter) { |
| 194 | auto &filter = bound_aggr.filter; |
| 195 | auto ref = make_uniq<BoundReferenceExpression>(args&: filter->return_type, args: expressions.size()); |
| 196 | types.push_back(x: filter->return_type); |
| 197 | expressions.push_back(x: std::move(filter)); |
| 198 | bound_aggr.filter = std::move(ref); |
| 199 | } |
| 200 | } |
| 201 | if (expressions.empty()) { |
| 202 | return child; |
| 203 | } |
| 204 | auto projection = |
| 205 | make_uniq<PhysicalProjection>(args: std::move(types), args: std::move(expressions), args&: child->estimated_cardinality); |
| 206 | projection->children.push_back(x: std::move(child)); |
| 207 | return std::move(projection); |
| 208 | } |
| 209 | |
| 210 | } // namespace duckdb |
| 211 | |