1 | #include "duckdb/catalog/catalog_entry/aggregate_function_catalog_entry.hpp" |
2 | #include "duckdb/common/operator/subtract.hpp" |
3 | #include "duckdb/execution/operator/aggregate/physical_hash_aggregate.hpp" |
4 | #include "duckdb/execution/operator/aggregate/physical_perfecthash_aggregate.hpp" |
5 | #include "duckdb/execution/operator/aggregate/physical_ungrouped_aggregate.hpp" |
6 | #include "duckdb/execution/operator/projection/physical_projection.hpp" |
7 | #include "duckdb/execution/physical_plan_generator.hpp" |
8 | #include "duckdb/main/client_context.hpp" |
9 | #include "duckdb/parser/expression/comparison_expression.hpp" |
10 | #include "duckdb/planner/expression/bound_aggregate_expression.hpp" |
11 | #include "duckdb/planner/operator/logical_aggregate.hpp" |
12 | #include "duckdb/function/function_binder.hpp" |
13 | #include "duckdb/planner/expression/bound_reference_expression.hpp" |
14 | |
15 | namespace duckdb { |
16 | |
17 | static uint32_t RequiredBitsForValue(uint32_t n) { |
18 | idx_t required_bits = 0; |
19 | while (n > 0) { |
20 | n >>= 1; |
21 | required_bits++; |
22 | } |
23 | return required_bits; |
24 | } |
25 | |
26 | static bool CanUsePerfectHashAggregate(ClientContext &context, LogicalAggregate &op, vector<idx_t> &bits_per_group) { |
27 | if (op.grouping_sets.size() > 1 || !op.grouping_functions.empty()) { |
28 | return false; |
29 | } |
30 | idx_t perfect_hash_bits = 0; |
31 | if (op.group_stats.empty()) { |
32 | op.group_stats.resize(new_size: op.groups.size()); |
33 | } |
34 | for (idx_t group_idx = 0; group_idx < op.groups.size(); group_idx++) { |
35 | auto &group = op.groups[group_idx]; |
36 | auto &stats = op.group_stats[group_idx]; |
37 | |
38 | switch (group->return_type.InternalType()) { |
39 | case PhysicalType::INT8: |
40 | case PhysicalType::INT16: |
41 | case PhysicalType::INT32: |
42 | case PhysicalType::INT64: |
43 | break; |
44 | default: |
45 | // we only support simple integer types for perfect hashing |
46 | return false; |
47 | } |
48 | // check if the group has stats available |
49 | auto &group_type = group->return_type; |
50 | if (!stats) { |
51 | // no stats, but we might still be able to use perfect hashing if the type is small enough |
52 | // for small types we can just set the stats to [type_min, type_max] |
53 | switch (group_type.InternalType()) { |
54 | case PhysicalType::INT8: |
55 | case PhysicalType::INT16: |
56 | break; |
57 | default: |
58 | // type is too large and there are no stats: skip perfect hashing |
59 | return false; |
60 | } |
61 | // construct stats with the min and max value of the type |
62 | stats = NumericStats::CreateUnknown(type: group_type).ToUnique(); |
63 | NumericStats::SetMin(stats&: *stats, val: Value::MinimumValue(type: group_type)); |
64 | NumericStats::SetMax(stats&: *stats, val: Value::MaximumValue(type: group_type)); |
65 | } |
66 | auto &nstats = *stats; |
67 | |
68 | if (!NumericStats::HasMinMax(stats: nstats)) { |
69 | return false; |
70 | } |
71 | // we have a min and a max value for the stats: use that to figure out how many bits we have |
72 | // we add two here, one for the NULL value, and one to make the computation one-indexed |
73 | // (e.g. if min and max are the same, we still need one entry in total) |
74 | int64_t range; |
75 | switch (group_type.InternalType()) { |
76 | case PhysicalType::INT8: |
77 | range = int64_t(NumericStats::GetMax<int8_t>(stats: nstats)) - int64_t(NumericStats::GetMin<int8_t>(stats: nstats)); |
78 | break; |
79 | case PhysicalType::INT16: |
80 | range = int64_t(NumericStats::GetMax<int16_t>(stats: nstats)) - int64_t(NumericStats::GetMin<int16_t>(stats: nstats)); |
81 | break; |
82 | case PhysicalType::INT32: |
83 | range = int64_t(NumericStats::GetMax<int32_t>(stats: nstats)) - int64_t(NumericStats::GetMin<int32_t>(stats: nstats)); |
84 | break; |
85 | case PhysicalType::INT64: |
86 | if (!TrySubtractOperator::Operation(left: NumericStats::GetMax<int64_t>(stats: nstats), |
87 | right: NumericStats::GetMin<int64_t>(stats: nstats), result&: range)) { |
88 | return false; |
89 | } |
90 | break; |
91 | default: |
92 | throw InternalException("Unsupported type for perfect hash (should be caught before)" ); |
93 | } |
94 | // bail out on any range bigger than 2^32 |
95 | if (range >= NumericLimits<int32_t>::Maximum()) { |
96 | return false; |
97 | } |
98 | range += 2; |
99 | // figure out how many bits we need |
100 | idx_t required_bits = RequiredBitsForValue(n: range); |
101 | bits_per_group.push_back(x: required_bits); |
102 | perfect_hash_bits += required_bits; |
103 | // check if we have exceeded the bits for the hash |
104 | if (perfect_hash_bits > ClientConfig::GetConfig(context).perfect_ht_threshold) { |
105 | // too many bits for perfect hash |
106 | return false; |
107 | } |
108 | } |
109 | for (auto &expression : op.expressions) { |
110 | auto &aggregate = expression->Cast<BoundAggregateExpression>(); |
111 | if (aggregate.IsDistinct() || !aggregate.function.combine) { |
112 | // distinct aggregates are not supported in perfect hash aggregates |
113 | return false; |
114 | } |
115 | } |
116 | return true; |
117 | } |
118 | |
119 | unique_ptr<PhysicalOperator> PhysicalPlanGenerator::CreatePlan(LogicalAggregate &op) { |
120 | unique_ptr<PhysicalOperator> groupby; |
121 | D_ASSERT(op.children.size() == 1); |
122 | |
123 | auto plan = CreatePlan(op&: *op.children[0]); |
124 | |
125 | plan = ExtractAggregateExpressions(child: std::move(plan), expressions&: op.expressions, groups&: op.groups); |
126 | |
127 | if (op.groups.empty() && op.grouping_sets.size() <= 1) { |
128 | // no groups, check if we can use a simple aggregation |
129 | // special case: aggregate entire columns together |
130 | bool use_simple_aggregation = true; |
131 | for (auto &expression : op.expressions) { |
132 | auto &aggregate = expression->Cast<BoundAggregateExpression>(); |
133 | if (!aggregate.function.simple_update) { |
134 | // unsupported aggregate for simple aggregation: use hash aggregation |
135 | use_simple_aggregation = false; |
136 | break; |
137 | } |
138 | } |
139 | if (use_simple_aggregation) { |
140 | groupby = make_uniq_base<PhysicalOperator, PhysicalUngroupedAggregate>(args&: op.types, args: std::move(op.expressions), |
141 | args&: op.estimated_cardinality); |
142 | } else { |
143 | groupby = make_uniq_base<PhysicalOperator, PhysicalHashAggregate>( |
144 | args&: context, args&: op.types, args: std::move(op.expressions), args&: op.estimated_cardinality); |
145 | } |
146 | } else { |
147 | // groups! create a GROUP BY aggregator |
148 | // use a perfect hash aggregate if possible |
149 | vector<idx_t> required_bits; |
150 | if (CanUsePerfectHashAggregate(context, op, bits_per_group&: required_bits)) { |
151 | groupby = make_uniq_base<PhysicalOperator, PhysicalPerfectHashAggregate>( |
152 | args&: context, args&: op.types, args: std::move(op.expressions), args: std::move(op.groups), args: std::move(op.group_stats), |
153 | args: std::move(required_bits), args&: op.estimated_cardinality); |
154 | } else { |
155 | groupby = make_uniq_base<PhysicalOperator, PhysicalHashAggregate>( |
156 | args&: context, args&: op.types, args: std::move(op.expressions), args: std::move(op.groups), args: std::move(op.grouping_sets), |
157 | args: std::move(op.grouping_functions), args&: op.estimated_cardinality); |
158 | } |
159 | } |
160 | groupby->children.push_back(x: std::move(plan)); |
161 | return groupby; |
162 | } |
163 | |
164 | unique_ptr<PhysicalOperator> |
165 | PhysicalPlanGenerator::(unique_ptr<PhysicalOperator> child, |
166 | vector<unique_ptr<Expression>> &aggregates, |
167 | vector<unique_ptr<Expression>> &groups) { |
168 | vector<unique_ptr<Expression>> expressions; |
169 | vector<LogicalType> types; |
170 | |
171 | // bind sorted aggregates |
172 | for (auto &aggr : aggregates) { |
173 | auto &bound_aggr = aggr->Cast<BoundAggregateExpression>(); |
174 | if (bound_aggr.order_bys) { |
175 | // sorted aggregate! |
176 | FunctionBinder::BindSortedAggregate(context, expr&: bound_aggr, groups); |
177 | } |
178 | } |
179 | for (auto &group : groups) { |
180 | auto ref = make_uniq<BoundReferenceExpression>(args&: group->return_type, args: expressions.size()); |
181 | types.push_back(x: group->return_type); |
182 | expressions.push_back(x: std::move(group)); |
183 | group = std::move(ref); |
184 | } |
185 | for (auto &aggr : aggregates) { |
186 | auto &bound_aggr = aggr->Cast<BoundAggregateExpression>(); |
187 | for (auto &child : bound_aggr.children) { |
188 | auto ref = make_uniq<BoundReferenceExpression>(args&: child->return_type, args: expressions.size()); |
189 | types.push_back(x: child->return_type); |
190 | expressions.push_back(x: std::move(child)); |
191 | child = std::move(ref); |
192 | } |
193 | if (bound_aggr.filter) { |
194 | auto &filter = bound_aggr.filter; |
195 | auto ref = make_uniq<BoundReferenceExpression>(args&: filter->return_type, args: expressions.size()); |
196 | types.push_back(x: filter->return_type); |
197 | expressions.push_back(x: std::move(filter)); |
198 | bound_aggr.filter = std::move(ref); |
199 | } |
200 | } |
201 | if (expressions.empty()) { |
202 | return child; |
203 | } |
204 | auto projection = |
205 | make_uniq<PhysicalProjection>(args: std::move(types), args: std::move(expressions), args&: child->estimated_cardinality); |
206 | projection->children.push_back(x: std::move(child)); |
207 | return std::move(projection); |
208 | } |
209 | |
210 | } // namespace duckdb |
211 | |