1 | #include "duckdb/function/scalar/string_functions.hpp" |
2 | |
3 | #include "duckdb/common/exception.hpp" |
4 | #include "duckdb/common/vector_operations/vector_operations.hpp" |
5 | #include "duckdb/planner/expression/bound_function_expression.hpp" |
6 | |
7 | namespace duckdb { |
8 | |
9 | template <class UNSIGNED, int NEEDLE_SIZE> |
10 | static idx_t ContainsUnaligned(const unsigned char *haystack, idx_t haystack_size, const unsigned char *needle, |
11 | idx_t base_offset) { |
12 | if (NEEDLE_SIZE > haystack_size) { |
13 | // needle is bigger than haystack: haystack cannot contain needle |
14 | return DConstants::INVALID_INDEX; |
15 | } |
16 | // contains for a small unaligned needle (3/5/6/7 bytes) |
17 | // we perform unsigned integer comparisons to check for equality of the entire needle in a single comparison |
18 | // this implementation is inspired by the memmem implementation of freebsd |
19 | |
20 | // first we set up the needle and the first NEEDLE_SIZE characters of the haystack as UNSIGNED integers |
21 | UNSIGNED needle_entry = 0; |
22 | UNSIGNED haystack_entry = 0; |
23 | const UNSIGNED start = (sizeof(UNSIGNED) * 8) - 8; |
24 | const UNSIGNED shift = (sizeof(UNSIGNED) - NEEDLE_SIZE) * 8; |
25 | for (int i = 0; i < NEEDLE_SIZE; i++) { |
26 | needle_entry |= UNSIGNED(needle[i]) << UNSIGNED(start - i * 8); |
27 | haystack_entry |= UNSIGNED(haystack[i]) << UNSIGNED(start - i * 8); |
28 | } |
29 | // now we perform the actual search |
30 | for (idx_t offset = NEEDLE_SIZE; offset < haystack_size; offset++) { |
31 | // for this position we first compare the haystack with the needle |
32 | if (haystack_entry == needle_entry) { |
33 | return base_offset + offset - NEEDLE_SIZE; |
34 | } |
35 | // now we adjust the haystack entry by |
36 | // (1) removing the left-most character (shift by 8) |
37 | // (2) adding the next character (bitwise or, with potential shift) |
38 | // this shift is only necessary if the needle size is not aligned with the unsigned integer size |
39 | // (e.g. needle size 3, unsigned integer size 4, we need to shift by 1) |
40 | haystack_entry = (haystack_entry << 8) | ((UNSIGNED(haystack[offset])) << shift); |
41 | } |
42 | if (haystack_entry == needle_entry) { |
43 | return base_offset + haystack_size - NEEDLE_SIZE; |
44 | } |
45 | return DConstants::INVALID_INDEX; |
46 | } |
47 | |
48 | template <class UNSIGNED> |
49 | static idx_t ContainsAligned(const unsigned char *haystack, idx_t haystack_size, const unsigned char *needle, |
50 | idx_t base_offset) { |
51 | if (sizeof(UNSIGNED) > haystack_size) { |
52 | // needle is bigger than haystack: haystack cannot contain needle |
53 | return DConstants::INVALID_INDEX; |
54 | } |
55 | // contains for a small needle aligned with unsigned integer (2/4/8) |
56 | // similar to ContainsUnaligned, but simpler because we only need to do a reinterpret cast |
57 | auto needle_entry = Load<UNSIGNED>(needle); |
58 | for (idx_t offset = 0; offset <= haystack_size - sizeof(UNSIGNED); offset++) { |
59 | // for this position we first compare the haystack with the needle |
60 | auto haystack_entry = Load<UNSIGNED>(haystack + offset); |
61 | if (needle_entry == haystack_entry) { |
62 | return base_offset + offset; |
63 | } |
64 | } |
65 | return DConstants::INVALID_INDEX; |
66 | } |
67 | |
68 | idx_t ContainsGeneric(const unsigned char *haystack, idx_t haystack_size, const unsigned char *needle, |
69 | idx_t needle_size, idx_t base_offset) { |
70 | if (needle_size > haystack_size) { |
71 | // needle is bigger than haystack: haystack cannot contain needle |
72 | return DConstants::INVALID_INDEX; |
73 | } |
74 | // this implementation is inspired by Raphael Javaux's faststrstr (https://github.com/RaphaelJ/fast_strstr) |
75 | // generic contains; note that we can't use strstr because we don't have null-terminated strings anymore |
76 | // we keep track of a shifting window sum of all characters with window size equal to needle_size |
77 | // this shifting sum is used to avoid calling into memcmp; |
78 | // we only need to call into memcmp when the window sum is equal to the needle sum |
79 | // when that happens, the characters are potentially the same and we call into memcmp to check if they are |
80 | uint32_t sums_diff = 0; |
81 | for (idx_t i = 0; i < needle_size; i++) { |
82 | sums_diff += haystack[i]; |
83 | sums_diff -= needle[i]; |
84 | } |
85 | idx_t offset = 0; |
86 | while (true) { |
87 | if (sums_diff == 0 && haystack[offset] == needle[0]) { |
88 | if (memcmp(s1: haystack + offset, s2: needle, n: needle_size) == 0) { |
89 | return base_offset + offset; |
90 | } |
91 | } |
92 | if (offset >= haystack_size - needle_size) { |
93 | return DConstants::INVALID_INDEX; |
94 | } |
95 | sums_diff -= haystack[offset]; |
96 | sums_diff += haystack[offset + needle_size]; |
97 | offset++; |
98 | } |
99 | } |
100 | |
101 | idx_t ContainsFun::Find(const unsigned char *haystack, idx_t haystack_size, const unsigned char *needle, |
102 | idx_t needle_size) { |
103 | D_ASSERT(needle_size > 0); |
104 | // start off by performing a memchr to find the first character of the |
105 | auto location = memchr(s: haystack, c: needle[0], n: haystack_size); |
106 | if (location == nullptr) { |
107 | return DConstants::INVALID_INDEX; |
108 | } |
109 | idx_t base_offset = const_uchar_ptr_cast(src: location) - haystack; |
110 | haystack_size -= base_offset; |
111 | haystack = const_uchar_ptr_cast(src: location); |
112 | // switch algorithm depending on needle size |
113 | switch (needle_size) { |
114 | case 1: |
115 | return base_offset; |
116 | case 2: |
117 | return ContainsAligned<uint16_t>(haystack, haystack_size, needle, base_offset); |
118 | case 3: |
119 | return ContainsUnaligned<uint32_t, 3>(haystack, haystack_size, needle, base_offset); |
120 | case 4: |
121 | return ContainsAligned<uint32_t>(haystack, haystack_size, needle, base_offset); |
122 | case 5: |
123 | return ContainsUnaligned<uint64_t, 5>(haystack, haystack_size, needle, base_offset); |
124 | case 6: |
125 | return ContainsUnaligned<uint64_t, 6>(haystack, haystack_size, needle, base_offset); |
126 | case 7: |
127 | return ContainsUnaligned<uint64_t, 7>(haystack, haystack_size, needle, base_offset); |
128 | case 8: |
129 | return ContainsAligned<uint64_t>(haystack, haystack_size, needle, base_offset); |
130 | default: |
131 | return ContainsGeneric(haystack, haystack_size, needle, needle_size, base_offset); |
132 | } |
133 | } |
134 | |
135 | idx_t ContainsFun::Find(const string_t &haystack_s, const string_t &needle_s) { |
136 | auto haystack = const_uchar_ptr_cast(src: haystack_s.GetData()); |
137 | auto haystack_size = haystack_s.GetSize(); |
138 | auto needle = const_uchar_ptr_cast(src: needle_s.GetData()); |
139 | auto needle_size = needle_s.GetSize(); |
140 | if (needle_size == 0) { |
141 | // empty needle: always true |
142 | return 0; |
143 | } |
144 | return ContainsFun::Find(haystack, haystack_size, needle, needle_size); |
145 | } |
146 | |
147 | struct ContainsOperator { |
148 | template <class TA, class TB, class TR> |
149 | static inline TR Operation(TA left, TB right) { |
150 | return ContainsFun::Find(left, right) != DConstants::INVALID_INDEX; |
151 | } |
152 | }; |
153 | |
154 | ScalarFunction ContainsFun::GetFunction() { |
155 | return ScalarFunction("contains" , // name of the function |
156 | {LogicalType::VARCHAR, LogicalType::VARCHAR}, // argument list |
157 | LogicalType::BOOLEAN, // return type |
158 | ScalarFunction::BinaryFunction<string_t, string_t, bool, ContainsOperator>); |
159 | } |
160 | |
161 | void ContainsFun::RegisterFunction(BuiltinFunctions &set) { |
162 | set.AddFunction(function: GetFunction()); |
163 | } |
164 | |
165 | } // namespace duckdb |
166 | |