| 1 | #include "duckdb/function/scalar/string_functions.hpp" |
| 2 | |
| 3 | #include "duckdb/common/algorithm.hpp" |
| 4 | #include "duckdb/common/exception.hpp" |
| 5 | #include "duckdb/common/vector_operations/vector_operations.hpp" |
| 6 | #include "duckdb/common/vector_operations/ternary_executor.hpp" |
| 7 | |
| 8 | #include "duckdb/planner/expression/bound_function_expression.hpp" |
| 9 | #include "utf8proc.hpp" |
| 10 | #include "duckdb/common/types/blob.hpp" |
| 11 | |
| 12 | namespace duckdb { |
| 13 | |
| 14 | static const int64_t SUPPORTED_UPPER_BOUND = NumericLimits<uint32_t>::Maximum(); |
| 15 | static const int64_t SUPPORTED_LOWER_BOUND = -SUPPORTED_UPPER_BOUND - 1; |
| 16 | |
| 17 | static inline void AssertInSupportedRange(idx_t input_size, int64_t offset, int64_t length) { |
| 18 | |
| 19 | if (input_size > (uint64_t)SUPPORTED_UPPER_BOUND) { |
| 20 | throw OutOfRangeException("Substring input size is too large (> %d)" , SUPPORTED_UPPER_BOUND); |
| 21 | } |
| 22 | if (offset < SUPPORTED_LOWER_BOUND) { |
| 23 | throw OutOfRangeException("Substring offset outside of supported range (< %d)" , SUPPORTED_LOWER_BOUND); |
| 24 | } |
| 25 | if (offset > SUPPORTED_UPPER_BOUND) { |
| 26 | throw OutOfRangeException("Substring offset outside of supported range (> %d)" , SUPPORTED_UPPER_BOUND); |
| 27 | } |
| 28 | if (length < SUPPORTED_LOWER_BOUND) { |
| 29 | throw OutOfRangeException("Substring length outside of supported range (< %d)" , SUPPORTED_LOWER_BOUND); |
| 30 | } |
| 31 | if (length > SUPPORTED_UPPER_BOUND) { |
| 32 | throw OutOfRangeException("Substring length outside of supported range (> %d)" , SUPPORTED_UPPER_BOUND); |
| 33 | } |
| 34 | } |
| 35 | |
| 36 | string_t SubstringEmptyString(Vector &result) { |
| 37 | auto result_string = StringVector::EmptyString(vector&: result, len: 0); |
| 38 | result_string.Finalize(); |
| 39 | return result_string; |
| 40 | } |
| 41 | |
| 42 | string_t SubstringSlice(Vector &result, const char *input_data, int64_t offset, int64_t length) { |
| 43 | auto result_string = StringVector::EmptyString(vector&: result, len: length); |
| 44 | auto result_data = result_string.GetDataWriteable(); |
| 45 | memcpy(dest: result_data, src: input_data + offset, n: length); |
| 46 | result_string.Finalize(); |
| 47 | return result_string; |
| 48 | } |
| 49 | |
| 50 | // compute start and end characters from the given input size and offset/length |
| 51 | bool SubstringStartEnd(int64_t input_size, int64_t offset, int64_t length, int64_t &start, int64_t &end) { |
| 52 | if (length == 0) { |
| 53 | return false; |
| 54 | } |
| 55 | if (offset > 0) { |
| 56 | // positive offset: scan from start |
| 57 | start = MinValue<int64_t>(a: input_size, b: offset - 1); |
| 58 | } else if (offset < 0) { |
| 59 | // negative offset: scan from end (i.e. start = end + offset) |
| 60 | start = MaxValue<int64_t>(a: input_size + offset, b: 0); |
| 61 | } else { |
| 62 | // offset = 0: special case, we start 1 character BEHIND the first character |
| 63 | start = 0; |
| 64 | length--; |
| 65 | if (length <= 0) { |
| 66 | return false; |
| 67 | } |
| 68 | } |
| 69 | if (length > 0) { |
| 70 | // positive length: go forward (i.e. end = start + offset) |
| 71 | end = MinValue<int64_t>(a: input_size, b: start + length); |
| 72 | } else { |
| 73 | // negative length: go backwards (i.e. end = start, start = start + length) |
| 74 | end = start; |
| 75 | start = MaxValue<int64_t>(a: 0, b: start + length); |
| 76 | } |
| 77 | if (start == end) { |
| 78 | return false; |
| 79 | } |
| 80 | D_ASSERT(start < end); |
| 81 | return true; |
| 82 | } |
| 83 | |
| 84 | string_t SubstringASCII(Vector &result, string_t input, int64_t offset, int64_t length) { |
| 85 | auto input_data = input.GetData(); |
| 86 | auto input_size = input.GetSize(); |
| 87 | |
| 88 | AssertInSupportedRange(input_size, offset, length); |
| 89 | |
| 90 | int64_t start, end; |
| 91 | if (!SubstringStartEnd(input_size, offset, length, start, end)) { |
| 92 | return SubstringEmptyString(result); |
| 93 | } |
| 94 | return SubstringSlice(result, input_data, offset: start, length: end - start); |
| 95 | } |
| 96 | |
| 97 | string_t SubstringFun::SubstringUnicode(Vector &result, string_t input, int64_t offset, int64_t length) { |
| 98 | auto input_data = input.GetData(); |
| 99 | auto input_size = input.GetSize(); |
| 100 | |
| 101 | AssertInSupportedRange(input_size, offset, length); |
| 102 | |
| 103 | if (length == 0) { |
| 104 | return SubstringEmptyString(result); |
| 105 | } |
| 106 | // first figure out which direction we need to scan |
| 107 | idx_t start_pos; |
| 108 | idx_t end_pos; |
| 109 | if (offset < 0) { |
| 110 | start_pos = 0; |
| 111 | end_pos = DConstants::INVALID_INDEX; |
| 112 | |
| 113 | // negative offset: scan backwards |
| 114 | int64_t start, end; |
| 115 | |
| 116 | // we express start and end as unicode codepoints from the back |
| 117 | offset--; |
| 118 | if (length < 0) { |
| 119 | // negative length |
| 120 | start = -offset - length; |
| 121 | end = -offset; |
| 122 | } else { |
| 123 | // positive length |
| 124 | start = -offset; |
| 125 | end = -offset - length; |
| 126 | } |
| 127 | if (end <= 0) { |
| 128 | end_pos = input_size; |
| 129 | } |
| 130 | int64_t current_character = 0; |
| 131 | for (idx_t i = input_size; i > 0; i--) { |
| 132 | if (LengthFun::IsCharacter(c: input_data[i - 1])) { |
| 133 | current_character++; |
| 134 | if (current_character == start) { |
| 135 | start_pos = i; |
| 136 | break; |
| 137 | } else if (current_character == end) { |
| 138 | end_pos = i; |
| 139 | } |
| 140 | } |
| 141 | } |
| 142 | while (!LengthFun::IsCharacter(c: input_data[start_pos])) { |
| 143 | start_pos++; |
| 144 | } |
| 145 | while (end_pos < input_size && !LengthFun::IsCharacter(c: input_data[end_pos])) { |
| 146 | end_pos++; |
| 147 | } |
| 148 | |
| 149 | if (end_pos == DConstants::INVALID_INDEX) { |
| 150 | return SubstringEmptyString(result); |
| 151 | } |
| 152 | } else { |
| 153 | start_pos = DConstants::INVALID_INDEX; |
| 154 | end_pos = input_size; |
| 155 | |
| 156 | // positive offset: scan forwards |
| 157 | int64_t start, end; |
| 158 | |
| 159 | // we express start and end as unicode codepoints from the front |
| 160 | offset--; |
| 161 | if (length < 0) { |
| 162 | // negative length |
| 163 | start = MaxValue<int64_t>(a: 0, b: offset + length); |
| 164 | end = offset; |
| 165 | } else { |
| 166 | // positive length |
| 167 | start = MaxValue<int64_t>(a: 0, b: offset); |
| 168 | end = offset + length; |
| 169 | } |
| 170 | |
| 171 | int64_t current_character = 0; |
| 172 | for (idx_t i = 0; i < input_size; i++) { |
| 173 | if (LengthFun::IsCharacter(c: input_data[i])) { |
| 174 | if (current_character == start) { |
| 175 | start_pos = i; |
| 176 | } else if (current_character == end) { |
| 177 | end_pos = i; |
| 178 | break; |
| 179 | } |
| 180 | current_character++; |
| 181 | } |
| 182 | } |
| 183 | if (start_pos == DConstants::INVALID_INDEX || end == 0 || end <= start) { |
| 184 | return SubstringEmptyString(result); |
| 185 | } |
| 186 | } |
| 187 | D_ASSERT(end_pos >= start_pos); |
| 188 | // after we have found these, we can slice the substring |
| 189 | return SubstringSlice(result, input_data, offset: start_pos, length: end_pos - start_pos); |
| 190 | } |
| 191 | |
| 192 | string_t SubstringFun::SubstringGrapheme(Vector &result, string_t input, int64_t offset, int64_t length) { |
| 193 | auto input_data = input.GetData(); |
| 194 | auto input_size = input.GetSize(); |
| 195 | |
| 196 | AssertInSupportedRange(input_size, offset, length); |
| 197 | |
| 198 | // we don't know yet if the substring is ascii, but we assume it is (for now) |
| 199 | // first get the start and end as if this was an ascii string |
| 200 | int64_t start, end; |
| 201 | if (!SubstringStartEnd(input_size, offset, length, start, end)) { |
| 202 | return SubstringEmptyString(result); |
| 203 | } |
| 204 | |
| 205 | // now check if all the characters between 0 and end are ascii characters |
| 206 | // note that we scan one further to check for a potential combining diacritics (e.g. i + diacritic is ï) |
| 207 | bool is_ascii = true; |
| 208 | idx_t ascii_end = MinValue<idx_t>(a: end + 1, b: input_size); |
| 209 | for (idx_t i = 0; i < ascii_end; i++) { |
| 210 | if (input_data[i] & 0x80) { |
| 211 | // found a non-ascii character: eek |
| 212 | is_ascii = false; |
| 213 | break; |
| 214 | } |
| 215 | } |
| 216 | if (is_ascii) { |
| 217 | // all characters are ascii, we can just slice the substring |
| 218 | return SubstringSlice(result, input_data, offset: start, length: end - start); |
| 219 | } |
| 220 | // if the characters are not ascii, we need to scan grapheme clusters |
| 221 | // first figure out which direction we need to scan |
| 222 | // offset = 0 case is taken care of in SubstringStartEnd |
| 223 | if (offset < 0) { |
| 224 | // negative offset, this case is more difficult |
| 225 | // we first need to count the number of characters in the string |
| 226 | idx_t num_characters = 0; |
| 227 | utf8proc_grapheme_callback(s: input_data, len: input_size, fun: [&](size_t start, size_t end) { |
| 228 | num_characters++; |
| 229 | return true; |
| 230 | }); |
| 231 | // now call substring start and end again, but with the number of unicode characters this time |
| 232 | SubstringStartEnd(input_size: num_characters, offset, length, start, end); |
| 233 | } |
| 234 | |
| 235 | // now scan the graphemes of the string to find the positions of the start and end characters |
| 236 | int64_t current_character = 0; |
| 237 | idx_t start_pos = DConstants::INVALID_INDEX, end_pos = input_size; |
| 238 | utf8proc_grapheme_callback(s: input_data, len: input_size, fun: [&](size_t gstart, size_t gend) { |
| 239 | if (current_character == start) { |
| 240 | start_pos = gstart; |
| 241 | } else if (current_character == end) { |
| 242 | end_pos = gstart; |
| 243 | return false; |
| 244 | } |
| 245 | current_character++; |
| 246 | return true; |
| 247 | }); |
| 248 | if (start_pos == DConstants::INVALID_INDEX) { |
| 249 | return SubstringEmptyString(result); |
| 250 | } |
| 251 | // after we have found these, we can slice the substring |
| 252 | return SubstringSlice(result, input_data, offset: start_pos, length: end_pos - start_pos); |
| 253 | } |
| 254 | |
| 255 | struct SubstringUnicodeOp { |
| 256 | static string_t Substring(Vector &result, string_t input, int64_t offset, int64_t length) { |
| 257 | return SubstringFun::SubstringUnicode(result, input, offset, length); |
| 258 | } |
| 259 | }; |
| 260 | |
| 261 | struct SubstringGraphemeOp { |
| 262 | static string_t Substring(Vector &result, string_t input, int64_t offset, int64_t length) { |
| 263 | return SubstringFun::SubstringGrapheme(result, input, offset, length); |
| 264 | } |
| 265 | }; |
| 266 | |
| 267 | template <class OP> |
| 268 | static void SubstringFunction(DataChunk &args, ExpressionState &state, Vector &result) { |
| 269 | auto &input_vector = args.data[0]; |
| 270 | auto &offset_vector = args.data[1]; |
| 271 | if (args.ColumnCount() == 3) { |
| 272 | auto &length_vector = args.data[2]; |
| 273 | |
| 274 | TernaryExecutor::Execute<string_t, int64_t, int64_t, string_t>( |
| 275 | input_vector, offset_vector, length_vector, result, args.size(), |
| 276 | [&](string_t input_string, int64_t offset, int64_t length) { |
| 277 | return OP::Substring(result, input_string, offset, length); |
| 278 | }); |
| 279 | } else { |
| 280 | BinaryExecutor::Execute<string_t, int64_t, string_t>( |
| 281 | input_vector, offset_vector, result, args.size(), [&](string_t input_string, int64_t offset) { |
| 282 | return OP::Substring(result, input_string, offset, NumericLimits<uint32_t>::Maximum()); |
| 283 | }); |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | static void SubstringFunctionASCII(DataChunk &args, ExpressionState &state, Vector &result) { |
| 288 | auto &input_vector = args.data[0]; |
| 289 | auto &offset_vector = args.data[1]; |
| 290 | if (args.ColumnCount() == 3) { |
| 291 | auto &length_vector = args.data[2]; |
| 292 | |
| 293 | TernaryExecutor::Execute<string_t, int64_t, int64_t, string_t>( |
| 294 | a&: input_vector, b&: offset_vector, c&: length_vector, result, count: args.size(), |
| 295 | fun: [&](string_t input_string, int64_t offset, int64_t length) { |
| 296 | return SubstringASCII(result, input: input_string, offset, length); |
| 297 | }); |
| 298 | } else { |
| 299 | BinaryExecutor::Execute<string_t, int64_t, string_t>( |
| 300 | left&: input_vector, right&: offset_vector, result, count: args.size(), fun: [&](string_t input_string, int64_t offset) { |
| 301 | return SubstringASCII(result, input: input_string, offset, length: NumericLimits<uint32_t>::Maximum()); |
| 302 | }); |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | static unique_ptr<BaseStatistics> SubstringPropagateStats(ClientContext &context, FunctionStatisticsInput &input) { |
| 307 | auto &child_stats = input.child_stats; |
| 308 | auto &expr = input.expr; |
| 309 | // can only propagate stats if the children have stats |
| 310 | // we only care about the stats of the first child (i.e. the string) |
| 311 | if (!StringStats::CanContainUnicode(stats: child_stats[0])) { |
| 312 | expr.function.function = SubstringFunctionASCII; |
| 313 | } |
| 314 | return nullptr; |
| 315 | } |
| 316 | |
| 317 | void SubstringFun::RegisterFunction(BuiltinFunctions &set) { |
| 318 | ScalarFunctionSet substr("substring" ); |
| 319 | substr.AddFunction(function: ScalarFunction({LogicalType::VARCHAR, LogicalType::BIGINT, LogicalType::BIGINT}, |
| 320 | LogicalType::VARCHAR, SubstringFunction<SubstringUnicodeOp>, nullptr, nullptr, |
| 321 | SubstringPropagateStats)); |
| 322 | substr.AddFunction(function: ScalarFunction({LogicalType::VARCHAR, LogicalType::BIGINT}, LogicalType::VARCHAR, |
| 323 | SubstringFunction<SubstringUnicodeOp>, nullptr, nullptr, |
| 324 | SubstringPropagateStats)); |
| 325 | set.AddFunction(set: substr); |
| 326 | substr.name = "substr" ; |
| 327 | set.AddFunction(set: substr); |
| 328 | |
| 329 | ScalarFunctionSet substr_grapheme("substring_grapheme" ); |
| 330 | substr_grapheme.AddFunction(function: ScalarFunction({LogicalType::VARCHAR, LogicalType::BIGINT, LogicalType::BIGINT}, |
| 331 | LogicalType::VARCHAR, SubstringFunction<SubstringGraphemeOp>, nullptr, |
| 332 | nullptr, SubstringPropagateStats)); |
| 333 | substr_grapheme.AddFunction(function: ScalarFunction({LogicalType::VARCHAR, LogicalType::BIGINT}, LogicalType::VARCHAR, |
| 334 | SubstringFunction<SubstringGraphemeOp>, nullptr, nullptr, |
| 335 | SubstringPropagateStats)); |
| 336 | set.AddFunction(set: substr_grapheme); |
| 337 | } |
| 338 | |
| 339 | } // namespace duckdb |
| 340 | |