| 1 | //===----------------------------------------------------------------------===// |
| 2 | // DuckDB |
| 3 | // |
| 4 | // duckdb/function/udf_function.hpp |
| 5 | // |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #pragma once |
| 10 | |
| 11 | #include "duckdb/function/scalar_function.hpp" |
| 12 | #include "duckdb/function/aggregate_function.hpp" |
| 13 | |
| 14 | namespace duckdb { |
| 15 | |
| 16 | struct UDFWrapper { |
| 17 | public: |
| 18 | template <typename TR, typename... Args> |
| 19 | inline static scalar_function_t CreateScalarFunction(const string &name, TR (*udf_func)(Args...)) { |
| 20 | const std::size_t num_template_argc = sizeof...(Args); |
| 21 | switch (num_template_argc) { |
| 22 | case 1: |
| 23 | return CreateUnaryFunction<TR, Args...>(name, udf_func); |
| 24 | case 2: |
| 25 | return CreateBinaryFunction<TR, Args...>(name, udf_func); |
| 26 | case 3: |
| 27 | return CreateTernaryFunction<TR, Args...>(name, udf_func); |
| 28 | default: // LCOV_EXCL_START |
| 29 | throw std::runtime_error("UDF function only supported until ternary!" ); |
| 30 | } // LCOV_EXCL_STOP |
| 31 | } |
| 32 | |
| 33 | template <typename TR, typename... Args> |
| 34 | inline static scalar_function_t CreateScalarFunction(const string &name, vector<LogicalType> args, |
| 35 | LogicalType ret_type, TR (*udf_func)(Args...)) { |
| 36 | if (!TypesMatch<TR>(ret_type)) { // LCOV_EXCL_START |
| 37 | throw std::runtime_error("Return type doesn't match with the first template type." ); |
| 38 | } // LCOV_EXCL_STOP |
| 39 | |
| 40 | const std::size_t num_template_types = sizeof...(Args); |
| 41 | if (num_template_types != args.size()) { // LCOV_EXCL_START |
| 42 | throw std::runtime_error( |
| 43 | "The number of templated types should be the same quantity of the LogicalType arguments." ); |
| 44 | } // LCOV_EXCL_STOP |
| 45 | |
| 46 | switch (num_template_types) { |
| 47 | case 1: |
| 48 | return CreateUnaryFunction<TR, Args...>(name, args, ret_type, udf_func); |
| 49 | case 2: |
| 50 | return CreateBinaryFunction<TR, Args...>(name, args, ret_type, udf_func); |
| 51 | case 3: |
| 52 | return CreateTernaryFunction<TR, Args...>(name, args, ret_type, udf_func); |
| 53 | default: // LCOV_EXCL_START |
| 54 | throw std::runtime_error("UDF function only supported until ternary!" ); |
| 55 | } // LCOV_EXCL_STOP |
| 56 | } |
| 57 | |
| 58 | template <typename TR, typename... Args> |
| 59 | inline static void RegisterFunction(const string &name, scalar_function_t udf_function, ClientContext &context, |
| 60 | LogicalType varargs = LogicalType(LogicalTypeId::INVALID)) { |
| 61 | vector<LogicalType> arguments; |
| 62 | GetArgumentTypesRecursive<Args...>(arguments); |
| 63 | |
| 64 | LogicalType ret_type = GetArgumentType<TR>(); |
| 65 | |
| 66 | RegisterFunction(name, args: arguments, ret_type, udf_function, context, varargs); |
| 67 | } |
| 68 | |
| 69 | static void RegisterFunction(string name, vector<LogicalType> args, LogicalType ret_type, |
| 70 | scalar_function_t udf_function, ClientContext &context, |
| 71 | LogicalType varargs = LogicalType(LogicalTypeId::INVALID)); |
| 72 | |
| 73 | //--------------------------------- Aggregate UDFs ------------------------------------// |
| 74 | template <typename UDF_OP, typename STATE, typename TR, typename TA> |
| 75 | inline static AggregateFunction CreateAggregateFunction(const string &name) { |
| 76 | return CreateUnaryAggregateFunction<UDF_OP, STATE, TR, TA>(name); |
| 77 | } |
| 78 | |
| 79 | template <typename UDF_OP, typename STATE, typename TR, typename TA, typename TB> |
| 80 | inline static AggregateFunction CreateAggregateFunction(const string &name) { |
| 81 | return CreateBinaryAggregateFunction<UDF_OP, STATE, TR, TA, TB>(name); |
| 82 | } |
| 83 | |
| 84 | template <typename UDF_OP, typename STATE, typename TR, typename TA> |
| 85 | inline static AggregateFunction CreateAggregateFunction(const string &name, LogicalType ret_type, |
| 86 | LogicalType input_type) { |
| 87 | if (!TypesMatch<TR>(ret_type)) { // LCOV_EXCL_START |
| 88 | throw std::runtime_error("The return argument don't match!" ); |
| 89 | } // LCOV_EXCL_STOP |
| 90 | |
| 91 | if (!TypesMatch<TA>(input_type)) { // LCOV_EXCL_START |
| 92 | throw std::runtime_error("The input argument don't match!" ); |
| 93 | } // LCOV_EXCL_STOP |
| 94 | |
| 95 | return CreateUnaryAggregateFunction<UDF_OP, STATE, TR, TA>(name, ret_type, input_type); |
| 96 | } |
| 97 | |
| 98 | template <typename UDF_OP, typename STATE, typename TR, typename TA, typename TB> |
| 99 | inline static AggregateFunction CreateAggregateFunction(const string &name, LogicalType ret_type, |
| 100 | LogicalType input_typeA, LogicalType input_typeB) { |
| 101 | if (!TypesMatch<TR>(ret_type)) { // LCOV_EXCL_START |
| 102 | throw std::runtime_error("The return argument don't match!" ); |
| 103 | } |
| 104 | |
| 105 | if (!TypesMatch<TA>(input_typeA)) { |
| 106 | throw std::runtime_error("The first input argument don't match!" ); |
| 107 | } |
| 108 | |
| 109 | if (!TypesMatch<TB>(input_typeB)) { |
| 110 | throw std::runtime_error("The second input argument don't match!" ); |
| 111 | } // LCOV_EXCL_STOP |
| 112 | |
| 113 | return CreateBinaryAggregateFunction<UDF_OP, STATE, TR, TA, TB>(name, ret_type, input_typeA, input_typeB); |
| 114 | } |
| 115 | |
| 116 | //! A generic CreateAggregateFunction ---------------------------------------------------------------------------// |
| 117 | inline static AggregateFunction |
| 118 | CreateAggregateFunction(string name, vector<LogicalType> arguments, LogicalType return_type, |
| 119 | aggregate_size_t state_size, aggregate_initialize_t initialize, aggregate_update_t update, |
| 120 | aggregate_combine_t combine, aggregate_finalize_t finalize, |
| 121 | aggregate_simple_update_t simple_update = nullptr, bind_aggregate_function_t bind = nullptr, |
| 122 | aggregate_destructor_t destructor = nullptr) { |
| 123 | |
| 124 | AggregateFunction aggr_function(std::move(name), std::move(arguments), std::move(return_type), state_size, |
| 125 | initialize, update, combine, finalize, simple_update, bind, destructor); |
| 126 | aggr_function.null_handling = FunctionNullHandling::SPECIAL_HANDLING; |
| 127 | return aggr_function; |
| 128 | } |
| 129 | |
| 130 | static void RegisterAggrFunction(AggregateFunction aggr_function, ClientContext &context, |
| 131 | LogicalType varargs = LogicalType(LogicalTypeId::INVALID)); |
| 132 | |
| 133 | private: |
| 134 | //-------------------------------- Templated functions --------------------------------// |
| 135 | struct UnaryUDFExecutor { |
| 136 | template <class INPUT_TYPE, class RESULT_TYPE> |
| 137 | static RESULT_TYPE Operation(INPUT_TYPE input, ValidityMask &mask, idx_t idx, void *dataptr) { |
| 138 | typedef RESULT_TYPE (*unary_function_t)(INPUT_TYPE); |
| 139 | auto udf = (unary_function_t)dataptr; |
| 140 | return udf(input); |
| 141 | } |
| 142 | }; |
| 143 | |
| 144 | template <typename TR, typename TA> |
| 145 | inline static scalar_function_t CreateUnaryFunction(const string &name, TR (*udf_func)(TA)) { |
| 146 | scalar_function_t udf_function = [=](DataChunk &input, ExpressionState &state, Vector &result) -> void { |
| 147 | UnaryExecutor::GenericExecute<TA, TR, UnaryUDFExecutor>(input.data[0], result, input.size(), |
| 148 | (void *)udf_func); |
| 149 | }; |
| 150 | return udf_function; |
| 151 | } |
| 152 | |
| 153 | template <typename TR, typename TA, typename TB> |
| 154 | inline static scalar_function_t CreateBinaryFunction(const string &name, TR (*udf_func)(TA, TB)) { |
| 155 | scalar_function_t udf_function = [=](DataChunk &input, ExpressionState &state, Vector &result) -> void { |
| 156 | BinaryExecutor::Execute<TA, TB, TR>(input.data[0], input.data[1], result, input.size(), udf_func); |
| 157 | }; |
| 158 | return udf_function; |
| 159 | } |
| 160 | |
| 161 | template <typename TR, typename TA, typename TB, typename TC> |
| 162 | inline static scalar_function_t CreateTernaryFunction(const string &name, TR (*udf_func)(TA, TB, TC)) { |
| 163 | scalar_function_t udf_function = [=](DataChunk &input, ExpressionState &state, Vector &result) -> void { |
| 164 | TernaryExecutor::Execute<TA, TB, TC, TR>(input.data[0], input.data[1], input.data[2], result, input.size(), |
| 165 | udf_func); |
| 166 | }; |
| 167 | return udf_function; |
| 168 | } |
| 169 | |
| 170 | template <typename TR, typename... Args> |
| 171 | inline static scalar_function_t CreateUnaryFunction(const string &name, |
| 172 | TR (*udf_func)(Args...)) { // LCOV_EXCL_START |
| 173 | throw std::runtime_error("Incorrect number of arguments for unary function" ); |
| 174 | } // LCOV_EXCL_STOP |
| 175 | |
| 176 | template <typename TR, typename... Args> |
| 177 | inline static scalar_function_t CreateBinaryFunction(const string &name, |
| 178 | TR (*udf_func)(Args...)) { // LCOV_EXCL_START |
| 179 | throw std::runtime_error("Incorrect number of arguments for binary function" ); |
| 180 | } // LCOV_EXCL_STOP |
| 181 | |
| 182 | template <typename TR, typename... Args> |
| 183 | inline static scalar_function_t CreateTernaryFunction(const string &name, |
| 184 | TR (*udf_func)(Args...)) { // LCOV_EXCL_START |
| 185 | throw std::runtime_error("Incorrect number of arguments for ternary function" ); |
| 186 | } // LCOV_EXCL_STOP |
| 187 | |
| 188 | template <typename T> |
| 189 | inline static LogicalType GetArgumentType() { |
| 190 | if (std::is_same<T, bool>()) { |
| 191 | return LogicalType(LogicalTypeId::BOOLEAN); |
| 192 | } else if (std::is_same<T, int8_t>()) { |
| 193 | return LogicalType(LogicalTypeId::TINYINT); |
| 194 | } else if (std::is_same<T, int16_t>()) { |
| 195 | return LogicalType(LogicalTypeId::SMALLINT); |
| 196 | } else if (std::is_same<T, int32_t>()) { |
| 197 | return LogicalType(LogicalTypeId::INTEGER); |
| 198 | } else if (std::is_same<T, int64_t>()) { |
| 199 | return LogicalType(LogicalTypeId::BIGINT); |
| 200 | } else if (std::is_same<T, float>()) { |
| 201 | return LogicalType(LogicalTypeId::FLOAT); |
| 202 | } else if (std::is_same<T, double>()) { |
| 203 | return LogicalType(LogicalTypeId::DOUBLE); |
| 204 | } else if (std::is_same<T, string_t>()) { |
| 205 | return LogicalType(LogicalTypeId::VARCHAR); |
| 206 | } else { // LCOV_EXCL_START |
| 207 | throw std::runtime_error("Unrecognized type!" ); |
| 208 | } // LCOV_EXCL_STOP |
| 209 | } |
| 210 | |
| 211 | template <typename TA, typename TB, typename... Args> |
| 212 | inline static void GetArgumentTypesRecursive(vector<LogicalType> &arguments) { |
| 213 | arguments.push_back(GetArgumentType<TA>()); |
| 214 | GetArgumentTypesRecursive<TB, Args...>(arguments); |
| 215 | } |
| 216 | |
| 217 | template <typename TA> |
| 218 | inline static void GetArgumentTypesRecursive(vector<LogicalType> &arguments) { |
| 219 | arguments.push_back(GetArgumentType<TA>()); |
| 220 | } |
| 221 | |
| 222 | private: |
| 223 | //-------------------------------- Argumented functions --------------------------------// |
| 224 | |
| 225 | template <typename TR, typename... Args> |
| 226 | inline static scalar_function_t CreateUnaryFunction(const string &name, vector<LogicalType> args, |
| 227 | LogicalType ret_type, |
| 228 | TR (*udf_func)(Args...)) { // LCOV_EXCL_START |
| 229 | throw std::runtime_error("Incorrect number of arguments for unary function" ); |
| 230 | } // LCOV_EXCL_STOP |
| 231 | |
| 232 | template <typename TR, typename TA> |
| 233 | inline static scalar_function_t CreateUnaryFunction(const string &name, vector<LogicalType> args, |
| 234 | LogicalType ret_type, TR (*udf_func)(TA)) { |
| 235 | if (args.size() != 1) { // LCOV_EXCL_START |
| 236 | throw std::runtime_error("The number of LogicalType arguments (\"args\") should be 1!" ); |
| 237 | } |
| 238 | if (!TypesMatch<TA>(args[0])) { |
| 239 | throw std::runtime_error("The first arguments don't match!" ); |
| 240 | } // LCOV_EXCL_STOP |
| 241 | |
| 242 | scalar_function_t udf_function = [=](DataChunk &input, ExpressionState &state, Vector &result) -> void { |
| 243 | UnaryExecutor::GenericExecute<TA, TR, UnaryUDFExecutor>(input.data[0], result, input.size(), |
| 244 | (void *)udf_func); |
| 245 | }; |
| 246 | return udf_function; |
| 247 | } |
| 248 | |
| 249 | template <typename TR, typename... Args> |
| 250 | inline static scalar_function_t CreateBinaryFunction(const string &name, vector<LogicalType> args, |
| 251 | LogicalType ret_type, |
| 252 | TR (*udf_func)(Args...)) { // LCOV_EXCL_START |
| 253 | throw std::runtime_error("Incorrect number of arguments for binary function" ); |
| 254 | } // LCOV_EXCL_STOP |
| 255 | |
| 256 | template <typename TR, typename TA, typename TB> |
| 257 | inline static scalar_function_t CreateBinaryFunction(const string &name, vector<LogicalType> args, |
| 258 | LogicalType ret_type, TR (*udf_func)(TA, TB)) { |
| 259 | if (args.size() != 2) { // LCOV_EXCL_START |
| 260 | throw std::runtime_error("The number of LogicalType arguments (\"args\") should be 2!" ); |
| 261 | } |
| 262 | if (!TypesMatch<TA>(args[0])) { |
| 263 | throw std::runtime_error("The first arguments don't match!" ); |
| 264 | } |
| 265 | if (!TypesMatch<TB>(args[1])) { |
| 266 | throw std::runtime_error("The second arguments don't match!" ); |
| 267 | } // LCOV_EXCL_STOP |
| 268 | |
| 269 | scalar_function_t udf_function = [=](DataChunk &input, ExpressionState &state, Vector &result) { |
| 270 | BinaryExecutor::Execute<TA, TB, TR>(input.data[0], input.data[1], result, input.size(), udf_func); |
| 271 | }; |
| 272 | return udf_function; |
| 273 | } |
| 274 | |
| 275 | template <typename TR, typename... Args> |
| 276 | inline static scalar_function_t CreateTernaryFunction(const string &name, vector<LogicalType> args, |
| 277 | LogicalType ret_type, |
| 278 | TR (*udf_func)(Args...)) { // LCOV_EXCL_START |
| 279 | throw std::runtime_error("Incorrect number of arguments for ternary function" ); |
| 280 | } // LCOV_EXCL_STOP |
| 281 | |
| 282 | template <typename TR, typename TA, typename TB, typename TC> |
| 283 | inline static scalar_function_t CreateTernaryFunction(const string &name, vector<LogicalType> args, |
| 284 | LogicalType ret_type, TR (*udf_func)(TA, TB, TC)) { |
| 285 | if (args.size() != 3) { // LCOV_EXCL_START |
| 286 | throw std::runtime_error("The number of LogicalType arguments (\"args\") should be 3!" ); |
| 287 | } |
| 288 | if (!TypesMatch<TA>(args[0])) { |
| 289 | throw std::runtime_error("The first arguments don't match!" ); |
| 290 | } |
| 291 | if (!TypesMatch<TB>(args[1])) { |
| 292 | throw std::runtime_error("The second arguments don't match!" ); |
| 293 | } |
| 294 | if (!TypesMatch<TC>(args[2])) { |
| 295 | throw std::runtime_error("The second arguments don't match!" ); |
| 296 | } // LCOV_EXCL_STOP |
| 297 | |
| 298 | scalar_function_t udf_function = [=](DataChunk &input, ExpressionState &state, Vector &result) -> void { |
| 299 | TernaryExecutor::Execute<TA, TB, TC, TR>(input.data[0], input.data[1], input.data[2], result, input.size(), |
| 300 | udf_func); |
| 301 | }; |
| 302 | return udf_function; |
| 303 | } |
| 304 | |
| 305 | template <typename T> |
| 306 | inline static bool TypesMatch(const LogicalType &sql_type) { |
| 307 | switch (sql_type.id()) { |
| 308 | case LogicalTypeId::BOOLEAN: |
| 309 | return std::is_same<T, bool>(); |
| 310 | case LogicalTypeId::TINYINT: |
| 311 | return std::is_same<T, int8_t>(); |
| 312 | case LogicalTypeId::SMALLINT: |
| 313 | return std::is_same<T, int16_t>(); |
| 314 | case LogicalTypeId::INTEGER: |
| 315 | return std::is_same<T, int32_t>(); |
| 316 | case LogicalTypeId::BIGINT: |
| 317 | return std::is_same<T, int64_t>(); |
| 318 | case LogicalTypeId::DATE: |
| 319 | return std::is_same<T, date_t>(); |
| 320 | case LogicalTypeId::TIME: |
| 321 | case LogicalTypeId::TIME_TZ: |
| 322 | return std::is_same<T, dtime_t>(); |
| 323 | case LogicalTypeId::TIMESTAMP: |
| 324 | case LogicalTypeId::TIMESTAMP_MS: |
| 325 | case LogicalTypeId::TIMESTAMP_NS: |
| 326 | case LogicalTypeId::TIMESTAMP_SEC: |
| 327 | case LogicalTypeId::TIMESTAMP_TZ: |
| 328 | return std::is_same<T, timestamp_t>(); |
| 329 | case LogicalTypeId::FLOAT: |
| 330 | return std::is_same<T, float>(); |
| 331 | case LogicalTypeId::DOUBLE: |
| 332 | return std::is_same<T, double>(); |
| 333 | case LogicalTypeId::VARCHAR: |
| 334 | case LogicalTypeId::CHAR: |
| 335 | case LogicalTypeId::BLOB: |
| 336 | return std::is_same<T, string_t>(); |
| 337 | default: // LCOV_EXCL_START |
| 338 | throw std::runtime_error("Type is not supported!" ); |
| 339 | } // LCOV_EXCL_STOP |
| 340 | } |
| 341 | |
| 342 | private: |
| 343 | //-------------------------------- Aggregate functions --------------------------------// |
| 344 | template <typename UDF_OP, typename STATE, typename TR, typename TA> |
| 345 | inline static AggregateFunction CreateUnaryAggregateFunction(const string &name) { |
| 346 | LogicalType return_type = GetArgumentType<TR>(); |
| 347 | LogicalType input_type = GetArgumentType<TA>(); |
| 348 | return CreateUnaryAggregateFunction<UDF_OP, STATE, TR, TA>(name, return_type, input_type); |
| 349 | } |
| 350 | |
| 351 | template <typename UDF_OP, typename STATE, typename TR, typename TA> |
| 352 | inline static AggregateFunction CreateUnaryAggregateFunction(const string &name, LogicalType ret_type, |
| 353 | LogicalType input_type) { |
| 354 | AggregateFunction aggr_function = |
| 355 | AggregateFunction::UnaryAggregate<STATE, TR, TA, UDF_OP>(input_type, ret_type); |
| 356 | aggr_function.name = name; |
| 357 | return aggr_function; |
| 358 | } |
| 359 | |
| 360 | template <typename UDF_OP, typename STATE, typename TR, typename TA, typename TB> |
| 361 | inline static AggregateFunction CreateBinaryAggregateFunction(const string &name) { |
| 362 | LogicalType return_type = GetArgumentType<TR>(); |
| 363 | LogicalType input_typeA = GetArgumentType<TA>(); |
| 364 | LogicalType input_typeB = GetArgumentType<TB>(); |
| 365 | return CreateBinaryAggregateFunction<UDF_OP, STATE, TR, TA, TB>(name, return_type, input_typeA, input_typeB); |
| 366 | } |
| 367 | |
| 368 | template <typename UDF_OP, typename STATE, typename TR, typename TA, typename TB> |
| 369 | inline static AggregateFunction CreateBinaryAggregateFunction(const string &name, LogicalType ret_type, |
| 370 | LogicalType input_typeA, LogicalType input_typeB) { |
| 371 | AggregateFunction aggr_function = |
| 372 | AggregateFunction::BinaryAggregate<STATE, TR, TA, TB, UDF_OP>(input_typeA, input_typeB, ret_type); |
| 373 | aggr_function.name = name; |
| 374 | return aggr_function; |
| 375 | } |
| 376 | }; // end UDFWrapper |
| 377 | |
| 378 | } // namespace duckdb |
| 379 | |