| 1 | #include "duckdb/parser/expression/columnref_expression.hpp" |
| 2 | #include "duckdb/parser/expression/constant_expression.hpp" |
| 3 | #include "duckdb/parser/expression_map.hpp" |
| 4 | #include "duckdb/parser/query_node/select_node.hpp" |
| 5 | #include "duckdb/parser/query_node/set_operation_node.hpp" |
| 6 | #include "duckdb/planner/binder.hpp" |
| 7 | #include "duckdb/planner/expression/bound_columnref_expression.hpp" |
| 8 | #include "duckdb/planner/expression/bound_constant_expression.hpp" |
| 9 | #include "duckdb/planner/expression_binder/order_binder.hpp" |
| 10 | #include "duckdb/planner/query_node/bound_select_node.hpp" |
| 11 | #include "duckdb/planner/query_node/bound_set_operation_node.hpp" |
| 12 | |
| 13 | namespace duckdb { |
| 14 | |
| 15 | static void GatherAliases(BoundQueryNode &node, case_insensitive_map_t<idx_t> &aliases, |
| 16 | parsed_expression_map_t<idx_t> &expressions, const vector<idx_t> &reorder_idx) { |
| 17 | if (node.type == QueryNodeType::SET_OPERATION_NODE) { |
| 18 | // setop, recurse |
| 19 | auto &setop = node.Cast<BoundSetOperationNode>(); |
| 20 | |
| 21 | // create new reorder index |
| 22 | if (setop.setop_type == SetOperationType::UNION_BY_NAME) { |
| 23 | vector<idx_t> new_left_reorder_idx(setop.left_reorder_idx.size()); |
| 24 | vector<idx_t> new_right_reorder_idx(setop.right_reorder_idx.size()); |
| 25 | for (idx_t i = 0; i < setop.left_reorder_idx.size(); ++i) { |
| 26 | new_left_reorder_idx[i] = reorder_idx[setop.left_reorder_idx[i]]; |
| 27 | } |
| 28 | |
| 29 | for (idx_t i = 0; i < setop.right_reorder_idx.size(); ++i) { |
| 30 | new_right_reorder_idx[i] = reorder_idx[setop.right_reorder_idx[i]]; |
| 31 | } |
| 32 | |
| 33 | // use new reorder index |
| 34 | GatherAliases(node&: *setop.left, aliases, expressions, reorder_idx: new_left_reorder_idx); |
| 35 | GatherAliases(node&: *setop.right, aliases, expressions, reorder_idx: new_right_reorder_idx); |
| 36 | return; |
| 37 | } |
| 38 | |
| 39 | GatherAliases(node&: *setop.left, aliases, expressions, reorder_idx); |
| 40 | GatherAliases(node&: *setop.right, aliases, expressions, reorder_idx); |
| 41 | } else { |
| 42 | // query node |
| 43 | D_ASSERT(node.type == QueryNodeType::SELECT_NODE); |
| 44 | auto &select = node.Cast<BoundSelectNode>(); |
| 45 | // fill the alias lists |
| 46 | for (idx_t i = 0; i < select.names.size(); i++) { |
| 47 | auto &name = select.names[i]; |
| 48 | auto &expr = select.original_expressions[i]; |
| 49 | // first check if the alias is already in there |
| 50 | auto entry = aliases.find(x: name); |
| 51 | |
| 52 | idx_t index = reorder_idx[i]; |
| 53 | |
| 54 | if (entry != aliases.end()) { |
| 55 | // the alias already exists |
| 56 | // check if there is a conflict |
| 57 | |
| 58 | if (entry->second != index) { |
| 59 | // there is a conflict |
| 60 | // we place "-1" in the aliases map at this location |
| 61 | // "-1" signifies that there is an ambiguous reference |
| 62 | aliases[name] = DConstants::INVALID_INDEX; |
| 63 | } |
| 64 | } else { |
| 65 | // the alias is not in there yet, just assign it |
| 66 | aliases[name] = index; |
| 67 | } |
| 68 | // now check if the node is already in the set of expressions |
| 69 | auto expr_entry = expressions.find(x: *expr); |
| 70 | if (expr_entry != expressions.end()) { |
| 71 | // the node is in there |
| 72 | // repeat the same as with the alias: if there is an ambiguity we insert "-1" |
| 73 | if (expr_entry->second != index) { |
| 74 | expressions[*expr] = DConstants::INVALID_INDEX; |
| 75 | } |
| 76 | } else { |
| 77 | // not in there yet, just place it in there |
| 78 | expressions[*expr] = index; |
| 79 | } |
| 80 | } |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | static void BuildUnionByNameInfo(BoundSetOperationNode &result, bool can_contain_nulls) { |
| 85 | D_ASSERT(result.setop_type == SetOperationType::UNION_BY_NAME); |
| 86 | case_insensitive_map_t<idx_t> left_names_map; |
| 87 | case_insensitive_map_t<idx_t> right_names_map; |
| 88 | |
| 89 | BoundQueryNode *left_node = result.left.get(); |
| 90 | BoundQueryNode *right_node = result.right.get(); |
| 91 | |
| 92 | // Build a name_map to use to check if a name exists |
| 93 | // We throw a binder exception if two same name in the SELECT list |
| 94 | for (idx_t i = 0; i < left_node->names.size(); ++i) { |
| 95 | if (left_names_map.find(x: left_node->names[i]) != left_names_map.end()) { |
| 96 | throw BinderException("UNION(ALL) BY NAME operation doesn't support same name in SELECT list" ); |
| 97 | } |
| 98 | left_names_map[left_node->names[i]] = i; |
| 99 | } |
| 100 | |
| 101 | for (idx_t i = 0; i < right_node->names.size(); ++i) { |
| 102 | if (right_names_map.find(x: right_node->names[i]) != right_names_map.end()) { |
| 103 | throw BinderException("UNION(ALL) BY NAME operation doesn't support same name in SELECT list" ); |
| 104 | } |
| 105 | if (left_names_map.find(x: right_node->names[i]) == left_names_map.end()) { |
| 106 | result.names.push_back(x: right_node->names[i]); |
| 107 | } |
| 108 | right_names_map[right_node->names[i]] = i; |
| 109 | } |
| 110 | |
| 111 | idx_t new_size = result.names.size(); |
| 112 | bool need_reorder = false; |
| 113 | vector<idx_t> left_reorder_idx(left_node->names.size()); |
| 114 | vector<idx_t> right_reorder_idx(right_node->names.size()); |
| 115 | |
| 116 | // Construct return type and reorder_idxs |
| 117 | // reorder_idxs is used to gather correct alias_map |
| 118 | // and expression_map in GatherAlias(...) |
| 119 | for (idx_t i = 0; i < new_size; ++i) { |
| 120 | auto left_index = left_names_map.find(x: result.names[i]); |
| 121 | auto right_index = right_names_map.find(x: result.names[i]); |
| 122 | bool left_exist = left_index != left_names_map.end(); |
| 123 | bool right_exist = right_index != right_names_map.end(); |
| 124 | LogicalType result_type; |
| 125 | if (left_exist && right_exist) { |
| 126 | result_type = LogicalType::MaxLogicalType(left: left_node->types[left_index->second], |
| 127 | right: right_node->types[right_index->second]); |
| 128 | if (left_index->second != i || right_index->second != i) { |
| 129 | need_reorder = true; |
| 130 | } |
| 131 | left_reorder_idx[left_index->second] = i; |
| 132 | right_reorder_idx[right_index->second] = i; |
| 133 | } else if (left_exist) { |
| 134 | result_type = left_node->types[left_index->second]; |
| 135 | need_reorder = true; |
| 136 | left_reorder_idx[left_index->second] = i; |
| 137 | } else { |
| 138 | D_ASSERT(right_exist); |
| 139 | result_type = right_node->types[right_index->second]; |
| 140 | need_reorder = true; |
| 141 | right_reorder_idx[right_index->second] = i; |
| 142 | } |
| 143 | |
| 144 | if (!can_contain_nulls) { |
| 145 | if (ExpressionBinder::ContainsNullType(type: result_type)) { |
| 146 | result_type = ExpressionBinder::ExchangeNullType(type: result_type); |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | result.types.push_back(x: result_type); |
| 151 | } |
| 152 | |
| 153 | result.left_reorder_idx = std::move(left_reorder_idx); |
| 154 | result.right_reorder_idx = std::move(right_reorder_idx); |
| 155 | |
| 156 | // If reorder is required, collect reorder expressions for push projection |
| 157 | // into the two child nodes of union node |
| 158 | if (need_reorder) { |
| 159 | for (idx_t i = 0; i < new_size; ++i) { |
| 160 | auto left_index = left_names_map.find(x: result.names[i]); |
| 161 | auto right_index = right_names_map.find(x: result.names[i]); |
| 162 | bool left_exist = left_index != left_names_map.end(); |
| 163 | bool right_exist = right_index != right_names_map.end(); |
| 164 | unique_ptr<Expression> left_reorder_expr; |
| 165 | unique_ptr<Expression> right_reorder_expr; |
| 166 | if (left_exist && right_exist) { |
| 167 | left_reorder_expr = make_uniq<BoundColumnRefExpression>( |
| 168 | args&: left_node->types[left_index->second], args: ColumnBinding(left_node->GetRootIndex(), left_index->second)); |
| 169 | right_reorder_expr = |
| 170 | make_uniq<BoundColumnRefExpression>(args&: right_node->types[right_index->second], |
| 171 | args: ColumnBinding(right_node->GetRootIndex(), right_index->second)); |
| 172 | } else if (left_exist) { |
| 173 | left_reorder_expr = make_uniq<BoundColumnRefExpression>( |
| 174 | args&: left_node->types[left_index->second], args: ColumnBinding(left_node->GetRootIndex(), left_index->second)); |
| 175 | // create null value here |
| 176 | right_reorder_expr = make_uniq<BoundConstantExpression>(args: Value(result.types[i])); |
| 177 | } else { |
| 178 | D_ASSERT(right_exist); |
| 179 | left_reorder_expr = make_uniq<BoundConstantExpression>(args: Value(result.types[i])); |
| 180 | right_reorder_expr = |
| 181 | make_uniq<BoundColumnRefExpression>(args&: right_node->types[right_index->second], |
| 182 | args: ColumnBinding(right_node->GetRootIndex(), right_index->second)); |
| 183 | } |
| 184 | result.left_reorder_exprs.push_back(x: std::move(left_reorder_expr)); |
| 185 | result.right_reorder_exprs.push_back(x: std::move(right_reorder_expr)); |
| 186 | } |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | unique_ptr<BoundQueryNode> Binder::BindNode(SetOperationNode &statement) { |
| 191 | auto result = make_uniq<BoundSetOperationNode>(); |
| 192 | result->setop_type = statement.setop_type; |
| 193 | |
| 194 | // first recursively visit the set operations |
| 195 | // both the left and right sides have an independent BindContext and Binder |
| 196 | D_ASSERT(statement.left); |
| 197 | D_ASSERT(statement.right); |
| 198 | |
| 199 | result->setop_index = GenerateTableIndex(); |
| 200 | |
| 201 | result->left_binder = Binder::CreateBinder(context, parent: this); |
| 202 | result->left_binder->can_contain_nulls = true; |
| 203 | result->left = result->left_binder->BindNode(node&: *statement.left); |
| 204 | result->right_binder = Binder::CreateBinder(context, parent: this); |
| 205 | result->right_binder->can_contain_nulls = true; |
| 206 | result->right = result->right_binder->BindNode(node&: *statement.right); |
| 207 | |
| 208 | result->names = result->left->names; |
| 209 | |
| 210 | // move the correlated expressions from the child binders to this binder |
| 211 | MoveCorrelatedExpressions(other&: *result->left_binder); |
| 212 | MoveCorrelatedExpressions(other&: *result->right_binder); |
| 213 | |
| 214 | // now both sides have been bound we can resolve types |
| 215 | if (result->setop_type != SetOperationType::UNION_BY_NAME && |
| 216 | result->left->types.size() != result->right->types.size()) { |
| 217 | throw BinderException("Set operations can only apply to expressions with the " |
| 218 | "same number of result columns" ); |
| 219 | } |
| 220 | |
| 221 | if (result->setop_type == SetOperationType::UNION_BY_NAME) { |
| 222 | BuildUnionByNameInfo(result&: *result, can_contain_nulls); |
| 223 | |
| 224 | } else { |
| 225 | // figure out the types of the setop result by picking the max of both |
| 226 | for (idx_t i = 0; i < result->left->types.size(); i++) { |
| 227 | auto result_type = LogicalType::MaxLogicalType(left: result->left->types[i], right: result->right->types[i]); |
| 228 | if (!can_contain_nulls) { |
| 229 | if (ExpressionBinder::ContainsNullType(type: result_type)) { |
| 230 | result_type = ExpressionBinder::ExchangeNullType(type: result_type); |
| 231 | } |
| 232 | } |
| 233 | result->types.push_back(x: result_type); |
| 234 | } |
| 235 | } |
| 236 | |
| 237 | if (!statement.modifiers.empty()) { |
| 238 | // handle the ORDER BY/DISTINCT clauses |
| 239 | |
| 240 | // we recursively visit the children of this node to extract aliases and expressions that can be referenced |
| 241 | // in the ORDER BY |
| 242 | case_insensitive_map_t<idx_t> alias_map; |
| 243 | parsed_expression_map_t<idx_t> expression_map; |
| 244 | |
| 245 | if (result->setop_type == SetOperationType::UNION_BY_NAME) { |
| 246 | GatherAliases(node&: *result->left, aliases&: alias_map, expressions&: expression_map, reorder_idx: result->left_reorder_idx); |
| 247 | GatherAliases(node&: *result->right, aliases&: alias_map, expressions&: expression_map, reorder_idx: result->right_reorder_idx); |
| 248 | } else { |
| 249 | vector<idx_t> reorder_idx; |
| 250 | for (idx_t i = 0; i < result->names.size(); i++) { |
| 251 | reorder_idx.push_back(x: i); |
| 252 | } |
| 253 | GatherAliases(node&: *result, aliases&: alias_map, expressions&: expression_map, reorder_idx); |
| 254 | } |
| 255 | // now we perform the actual resolution of the ORDER BY/DISTINCT expressions |
| 256 | OrderBinder order_binder({result->left_binder.get(), result->right_binder.get()}, result->setop_index, |
| 257 | alias_map, expression_map, result->names.size()); |
| 258 | BindModifiers(order_binder, statement, result&: *result); |
| 259 | } |
| 260 | |
| 261 | // finally bind the types of the ORDER/DISTINCT clause expressions |
| 262 | BindModifierTypes(result&: *result, sql_types: result->types, projection_index: result->setop_index); |
| 263 | return std::move(result); |
| 264 | } |
| 265 | |
| 266 | } // namespace duckdb |
| 267 | |