| 1 | #include "duckdb/function/aggregate/distributive_functions.hpp" |
| 2 | #include "duckdb/main/client_config.hpp" |
| 3 | #include "duckdb/planner/binder.hpp" |
| 4 | #include "duckdb/planner/expression/bound_aggregate_expression.hpp" |
| 5 | #include "duckdb/planner/expression/bound_cast_expression.hpp" |
| 6 | #include "duckdb/planner/expression/bound_columnref_expression.hpp" |
| 7 | #include "duckdb/planner/expression/bound_comparison_expression.hpp" |
| 8 | #include "duckdb/planner/expression/bound_constant_expression.hpp" |
| 9 | #include "duckdb/planner/expression/bound_reference_expression.hpp" |
| 10 | #include "duckdb/planner/expression/bound_subquery_expression.hpp" |
| 11 | #include "duckdb/planner/expression/bound_window_expression.hpp" |
| 12 | #include "duckdb/planner/expression_iterator.hpp" |
| 13 | #include "duckdb/planner/operator/list.hpp" |
| 14 | #include "duckdb/planner/operator/logical_window.hpp" |
| 15 | #include "duckdb/function/function_binder.hpp" |
| 16 | #include "duckdb/planner/subquery/flatten_dependent_join.hpp" |
| 17 | |
| 18 | namespace duckdb { |
| 19 | |
| 20 | static unique_ptr<Expression> PlanUncorrelatedSubquery(Binder &binder, BoundSubqueryExpression &expr, |
| 21 | unique_ptr<LogicalOperator> &root, |
| 22 | unique_ptr<LogicalOperator> plan) { |
| 23 | D_ASSERT(!expr.IsCorrelated()); |
| 24 | switch (expr.subquery_type) { |
| 25 | case SubqueryType::EXISTS: { |
| 26 | // uncorrelated EXISTS |
| 27 | // we only care about existence, hence we push a LIMIT 1 operator |
| 28 | auto limit = make_uniq<LogicalLimit>(args: 1, args: 0, args: nullptr, args: nullptr); |
| 29 | limit->AddChild(child: std::move(plan)); |
| 30 | plan = std::move(limit); |
| 31 | |
| 32 | // now we push a COUNT(*) aggregate onto the limit, this will be either 0 or 1 (EXISTS or NOT EXISTS) |
| 33 | auto count_star_fun = CountStarFun::GetFunction(); |
| 34 | |
| 35 | FunctionBinder function_binder(binder.context); |
| 36 | auto count_star = |
| 37 | function_binder.BindAggregateFunction(bound_function: count_star_fun, children: {}, filter: nullptr, aggr_type: AggregateType::NON_DISTINCT); |
| 38 | auto idx_type = count_star->return_type; |
| 39 | vector<unique_ptr<Expression>> aggregate_list; |
| 40 | aggregate_list.push_back(x: std::move(count_star)); |
| 41 | auto aggregate_index = binder.GenerateTableIndex(); |
| 42 | auto aggregate = |
| 43 | make_uniq<LogicalAggregate>(args: binder.GenerateTableIndex(), args&: aggregate_index, args: std::move(aggregate_list)); |
| 44 | aggregate->AddChild(child: std::move(plan)); |
| 45 | plan = std::move(aggregate); |
| 46 | |
| 47 | // now we push a projection with a comparison to 1 |
| 48 | auto left_child = make_uniq<BoundColumnRefExpression>(args&: idx_type, args: ColumnBinding(aggregate_index, 0)); |
| 49 | auto right_child = make_uniq<BoundConstantExpression>(args: Value::Numeric(type: idx_type, value: 1)); |
| 50 | auto comparison = make_uniq<BoundComparisonExpression>(args: ExpressionType::COMPARE_EQUAL, args: std::move(left_child), |
| 51 | args: std::move(right_child)); |
| 52 | |
| 53 | vector<unique_ptr<Expression>> projection_list; |
| 54 | projection_list.push_back(x: std::move(comparison)); |
| 55 | auto projection_index = binder.GenerateTableIndex(); |
| 56 | auto projection = make_uniq<LogicalProjection>(args&: projection_index, args: std::move(projection_list)); |
| 57 | projection->AddChild(child: std::move(plan)); |
| 58 | plan = std::move(projection); |
| 59 | |
| 60 | // we add it to the main query by adding a cross product |
| 61 | // FIXME: should use something else besides cross product as we always add only one scalar constant |
| 62 | root = LogicalCrossProduct::Create(left: std::move(root), right: std::move(plan)); |
| 63 | |
| 64 | // we replace the original subquery with a ColumnRefExpression referring to the result of the projection (either |
| 65 | // TRUE or FALSE) |
| 66 | return make_uniq<BoundColumnRefExpression>(args: expr.GetName(), args: LogicalType::BOOLEAN, |
| 67 | args: ColumnBinding(projection_index, 0)); |
| 68 | } |
| 69 | case SubqueryType::SCALAR: { |
| 70 | // uncorrelated scalar, we want to return the first entry |
| 71 | // figure out the table index of the bound table of the entry which we want to return |
| 72 | auto bindings = plan->GetColumnBindings(); |
| 73 | D_ASSERT(bindings.size() == 1); |
| 74 | idx_t table_idx = bindings[0].table_index; |
| 75 | |
| 76 | // in the uncorrelated case we are only interested in the first result of the query |
| 77 | // hence we simply push a LIMIT 1 to get the first row of the subquery |
| 78 | auto limit = make_uniq<LogicalLimit>(args: 1, args: 0, args: nullptr, args: nullptr); |
| 79 | limit->AddChild(child: std::move(plan)); |
| 80 | plan = std::move(limit); |
| 81 | |
| 82 | // we push an aggregate that returns the FIRST element |
| 83 | vector<unique_ptr<Expression>> expressions; |
| 84 | auto bound = make_uniq<BoundColumnRefExpression>(args&: expr.return_type, args: ColumnBinding(table_idx, 0)); |
| 85 | vector<unique_ptr<Expression>> first_children; |
| 86 | first_children.push_back(x: std::move(bound)); |
| 87 | |
| 88 | FunctionBinder function_binder(binder.context); |
| 89 | auto first_agg = function_binder.BindAggregateFunction( |
| 90 | bound_function: FirstFun::GetFunction(type: expr.return_type), children: std::move(first_children), filter: nullptr, aggr_type: AggregateType::NON_DISTINCT); |
| 91 | |
| 92 | expressions.push_back(x: std::move(first_agg)); |
| 93 | auto aggr_index = binder.GenerateTableIndex(); |
| 94 | auto aggr = make_uniq<LogicalAggregate>(args: binder.GenerateTableIndex(), args&: aggr_index, args: std::move(expressions)); |
| 95 | aggr->AddChild(child: std::move(plan)); |
| 96 | plan = std::move(aggr); |
| 97 | |
| 98 | // in the uncorrelated case, we add the value to the main query through a cross product |
| 99 | // FIXME: should use something else besides cross product as we always add only one scalar constant and cross |
| 100 | // product is not optimized for this. |
| 101 | D_ASSERT(root); |
| 102 | root = LogicalCrossProduct::Create(left: std::move(root), right: std::move(plan)); |
| 103 | |
| 104 | // we replace the original subquery with a BoundColumnRefExpression referring to the first result of the |
| 105 | // aggregation |
| 106 | return make_uniq<BoundColumnRefExpression>(args: expr.GetName(), args&: expr.return_type, args: ColumnBinding(aggr_index, 0)); |
| 107 | } |
| 108 | default: { |
| 109 | D_ASSERT(expr.subquery_type == SubqueryType::ANY); |
| 110 | // we generate a MARK join that results in either (TRUE, FALSE or NULL) |
| 111 | // subquery has NULL values -> result is (TRUE or NULL) |
| 112 | // subquery has no NULL values -> result is (TRUE, FALSE or NULL [if input is NULL]) |
| 113 | // fetch the column bindings |
| 114 | auto plan_columns = plan->GetColumnBindings(); |
| 115 | |
| 116 | // then we generate the MARK join with the subquery |
| 117 | idx_t mark_index = binder.GenerateTableIndex(); |
| 118 | auto join = make_uniq<LogicalComparisonJoin>(args: JoinType::MARK); |
| 119 | join->mark_index = mark_index; |
| 120 | join->AddChild(child: std::move(root)); |
| 121 | join->AddChild(child: std::move(plan)); |
| 122 | // create the JOIN condition |
| 123 | JoinCondition cond; |
| 124 | cond.left = std::move(expr.child); |
| 125 | cond.right = BoundCastExpression::AddDefaultCastToType( |
| 126 | expr: make_uniq<BoundColumnRefExpression>(args&: expr.child_type, args&: plan_columns[0]), target_type: expr.child_target); |
| 127 | cond.comparison = expr.comparison_type; |
| 128 | join->conditions.push_back(x: std::move(cond)); |
| 129 | root = std::move(join); |
| 130 | |
| 131 | // we replace the original subquery with a BoundColumnRefExpression referring to the mark column |
| 132 | return make_uniq<BoundColumnRefExpression>(args: expr.GetName(), args&: expr.return_type, args: ColumnBinding(mark_index, 0)); |
| 133 | } |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | static unique_ptr<LogicalDelimJoin> |
| 138 | CreateDuplicateEliminatedJoin(const vector<CorrelatedColumnInfo> &correlated_columns, JoinType join_type, |
| 139 | unique_ptr<LogicalOperator> original_plan, bool perform_delim) { |
| 140 | auto delim_join = make_uniq<LogicalDelimJoin>(args&: join_type); |
| 141 | if (!perform_delim) { |
| 142 | // if we are not performing a delim join, we push a row_number() OVER() window operator on the LHS |
| 143 | // and perform all duplicate elimination on that row number instead |
| 144 | D_ASSERT(correlated_columns[0].type.id() == LogicalTypeId::BIGINT); |
| 145 | auto window = make_uniq<LogicalWindow>(args: correlated_columns[0].binding.table_index); |
| 146 | auto row_number = |
| 147 | make_uniq<BoundWindowExpression>(args: ExpressionType::WINDOW_ROW_NUMBER, args: LogicalType::BIGINT, args: nullptr, args: nullptr); |
| 148 | row_number->start = WindowBoundary::UNBOUNDED_PRECEDING; |
| 149 | row_number->end = WindowBoundary::CURRENT_ROW_ROWS; |
| 150 | row_number->alias = "delim_index" ; |
| 151 | window->expressions.push_back(x: std::move(row_number)); |
| 152 | window->AddChild(child: std::move(original_plan)); |
| 153 | original_plan = std::move(window); |
| 154 | } |
| 155 | delim_join->AddChild(child: std::move(original_plan)); |
| 156 | for (idx_t i = 0; i < correlated_columns.size(); i++) { |
| 157 | auto &col = correlated_columns[i]; |
| 158 | delim_join->duplicate_eliminated_columns.push_back(x: make_uniq<BoundColumnRefExpression>(args: col.type, args: col.binding)); |
| 159 | delim_join->delim_types.push_back(x: col.type); |
| 160 | } |
| 161 | return delim_join; |
| 162 | } |
| 163 | |
| 164 | static void CreateDelimJoinConditions(LogicalDelimJoin &delim_join, |
| 165 | const vector<CorrelatedColumnInfo> &correlated_columns, |
| 166 | vector<ColumnBinding> bindings, idx_t base_offset, bool perform_delim) { |
| 167 | auto col_count = perform_delim ? correlated_columns.size() : 1; |
| 168 | for (idx_t i = 0; i < col_count; i++) { |
| 169 | auto &col = correlated_columns[i]; |
| 170 | auto binding_idx = base_offset + i; |
| 171 | if (binding_idx >= bindings.size()) { |
| 172 | throw InternalException("Delim join - binding index out of range" ); |
| 173 | } |
| 174 | JoinCondition cond; |
| 175 | cond.left = make_uniq<BoundColumnRefExpression>(args: col.name, args: col.type, args: col.binding); |
| 176 | cond.right = make_uniq<BoundColumnRefExpression>(args: col.name, args: col.type, args&: bindings[binding_idx]); |
| 177 | cond.comparison = ExpressionType::COMPARE_NOT_DISTINCT_FROM; |
| 178 | delim_join.conditions.push_back(x: std::move(cond)); |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | static bool PerformDelimOnType(const LogicalType &type) { |
| 183 | if (type.InternalType() == PhysicalType::LIST) { |
| 184 | return false; |
| 185 | } |
| 186 | if (type.InternalType() == PhysicalType::STRUCT) { |
| 187 | for (auto &entry : StructType::GetChildTypes(type)) { |
| 188 | if (!PerformDelimOnType(type: entry.second)) { |
| 189 | return false; |
| 190 | } |
| 191 | } |
| 192 | } |
| 193 | return true; |
| 194 | } |
| 195 | |
| 196 | static bool PerformDuplicateElimination(Binder &binder, vector<CorrelatedColumnInfo> &correlated_columns) { |
| 197 | if (!ClientConfig::GetConfig(context&: binder.context).enable_optimizer) { |
| 198 | // if optimizations are disabled we always do a delim join |
| 199 | return true; |
| 200 | } |
| 201 | bool perform_delim = true; |
| 202 | for (auto &col : correlated_columns) { |
| 203 | if (!PerformDelimOnType(type: col.type)) { |
| 204 | perform_delim = false; |
| 205 | break; |
| 206 | } |
| 207 | } |
| 208 | if (perform_delim) { |
| 209 | return true; |
| 210 | } |
| 211 | auto binding = ColumnBinding(binder.GenerateTableIndex(), 0); |
| 212 | auto type = LogicalType::BIGINT; |
| 213 | auto name = "delim_index" ; |
| 214 | CorrelatedColumnInfo info(binding, type, name, 0); |
| 215 | correlated_columns.insert(position: correlated_columns.begin(), x: std::move(info)); |
| 216 | return false; |
| 217 | } |
| 218 | |
| 219 | static unique_ptr<Expression> PlanCorrelatedSubquery(Binder &binder, BoundSubqueryExpression &expr, |
| 220 | unique_ptr<LogicalOperator> &root, |
| 221 | unique_ptr<LogicalOperator> plan) { |
| 222 | auto &correlated_columns = expr.binder->correlated_columns; |
| 223 | // FIXME: there should be a way of disabling decorrelation for ANY queries as well, but not for now... |
| 224 | bool perform_delim = |
| 225 | expr.subquery_type == SubqueryType::ANY ? true : PerformDuplicateElimination(binder, correlated_columns); |
| 226 | D_ASSERT(expr.IsCorrelated()); |
| 227 | // correlated subquery |
| 228 | // for a more in-depth explanation of this code, read the paper "Unnesting Arbitrary Subqueries" |
| 229 | // we handle three types of correlated subqueries: Scalar, EXISTS and ANY |
| 230 | // all three cases are very similar with some minor changes (mainly the type of join performed at the end) |
| 231 | switch (expr.subquery_type) { |
| 232 | case SubqueryType::SCALAR: { |
| 233 | // correlated SCALAR query |
| 234 | // first push a DUPLICATE ELIMINATED join |
| 235 | // a duplicate eliminated join creates a duplicate eliminated copy of the LHS |
| 236 | // and pushes it into any DUPLICATE_ELIMINATED SCAN operators on the RHS |
| 237 | |
| 238 | // in the SCALAR case, we create a SINGLE join (because we are only interested in obtaining the value) |
| 239 | // NULL values are equal in this join because we join on the correlated columns ONLY |
| 240 | // and e.g. in the query: SELECT (SELECT 42 FROM integers WHERE i1.i IS NULL LIMIT 1) FROM integers i1; |
| 241 | // the input value NULL will generate the value 42, and we need to join NULL on the LHS with NULL on the RHS |
| 242 | // the left side is the original plan |
| 243 | // this is the side that will be duplicate eliminated and pushed into the RHS |
| 244 | auto delim_join = |
| 245 | CreateDuplicateEliminatedJoin(correlated_columns, join_type: JoinType::SINGLE, original_plan: std::move(root), perform_delim); |
| 246 | |
| 247 | // the right side initially is a DEPENDENT join between the duplicate eliminated scan and the subquery |
| 248 | // HOWEVER: we do not explicitly create the dependent join |
| 249 | // instead, we eliminate the dependent join by pushing it down into the right side of the plan |
| 250 | FlattenDependentJoins flatten(binder, correlated_columns, perform_delim); |
| 251 | |
| 252 | // first we check which logical operators have correlated expressions in the first place |
| 253 | flatten.DetectCorrelatedExpressions(op: plan.get()); |
| 254 | // now we push the dependent join down |
| 255 | auto dependent_join = flatten.PushDownDependentJoin(plan: std::move(plan)); |
| 256 | |
| 257 | // now the dependent join is fully eliminated |
| 258 | // we only need to create the join conditions between the LHS and the RHS |
| 259 | // fetch the set of columns |
| 260 | auto plan_columns = dependent_join->GetColumnBindings(); |
| 261 | |
| 262 | // now create the join conditions |
| 263 | CreateDelimJoinConditions(delim_join&: *delim_join, correlated_columns, bindings: plan_columns, base_offset: flatten.delim_offset, perform_delim); |
| 264 | delim_join->AddChild(child: std::move(dependent_join)); |
| 265 | root = std::move(delim_join); |
| 266 | // finally push the BoundColumnRefExpression referring to the data element returned by the join |
| 267 | return make_uniq<BoundColumnRefExpression>(args: expr.GetName(), args&: expr.return_type, args&: plan_columns[flatten.data_offset]); |
| 268 | } |
| 269 | case SubqueryType::EXISTS: { |
| 270 | // correlated EXISTS query |
| 271 | // this query is similar to the correlated SCALAR query, except we use a MARK join here |
| 272 | idx_t mark_index = binder.GenerateTableIndex(); |
| 273 | auto delim_join = |
| 274 | CreateDuplicateEliminatedJoin(correlated_columns, join_type: JoinType::MARK, original_plan: std::move(root), perform_delim); |
| 275 | delim_join->mark_index = mark_index; |
| 276 | // RHS |
| 277 | FlattenDependentJoins flatten(binder, correlated_columns, perform_delim, true); |
| 278 | flatten.DetectCorrelatedExpressions(op: plan.get()); |
| 279 | auto dependent_join = flatten.PushDownDependentJoin(plan: std::move(plan)); |
| 280 | |
| 281 | // fetch the set of columns |
| 282 | auto plan_columns = dependent_join->GetColumnBindings(); |
| 283 | |
| 284 | // now we create the join conditions between the dependent join and the original table |
| 285 | CreateDelimJoinConditions(delim_join&: *delim_join, correlated_columns, bindings: plan_columns, base_offset: flatten.delim_offset, perform_delim); |
| 286 | delim_join->AddChild(child: std::move(dependent_join)); |
| 287 | root = std::move(delim_join); |
| 288 | // finally push the BoundColumnRefExpression referring to the marker |
| 289 | return make_uniq<BoundColumnRefExpression>(args: expr.GetName(), args&: expr.return_type, args: ColumnBinding(mark_index, 0)); |
| 290 | } |
| 291 | default: { |
| 292 | D_ASSERT(expr.subquery_type == SubqueryType::ANY); |
| 293 | // correlated ANY query |
| 294 | // this query is similar to the correlated SCALAR query |
| 295 | // however, in this case we push a correlated MARK join |
| 296 | // note that in this join null values are NOT equal for ALL columns, but ONLY for the correlated columns |
| 297 | // the correlated mark join handles this case by itself |
| 298 | // as the MARK join has one extra join condition (the original condition, of the ANY expression, e.g. |
| 299 | // [i=ANY(...)]) |
| 300 | idx_t mark_index = binder.GenerateTableIndex(); |
| 301 | auto delim_join = |
| 302 | CreateDuplicateEliminatedJoin(correlated_columns, join_type: JoinType::MARK, original_plan: std::move(root), perform_delim); |
| 303 | delim_join->mark_index = mark_index; |
| 304 | // RHS |
| 305 | FlattenDependentJoins flatten(binder, correlated_columns, true, true); |
| 306 | flatten.DetectCorrelatedExpressions(op: plan.get()); |
| 307 | auto dependent_join = flatten.PushDownDependentJoin(plan: std::move(plan)); |
| 308 | |
| 309 | // fetch the columns |
| 310 | auto plan_columns = dependent_join->GetColumnBindings(); |
| 311 | |
| 312 | // now we create the join conditions between the dependent join and the original table |
| 313 | CreateDelimJoinConditions(delim_join&: *delim_join, correlated_columns, bindings: plan_columns, base_offset: flatten.delim_offset, perform_delim); |
| 314 | // add the actual condition based on the ANY/ALL predicate |
| 315 | JoinCondition compare_cond; |
| 316 | compare_cond.left = std::move(expr.child); |
| 317 | compare_cond.right = BoundCastExpression::AddDefaultCastToType( |
| 318 | expr: make_uniq<BoundColumnRefExpression>(args&: expr.child_type, args&: plan_columns[0]), target_type: expr.child_target); |
| 319 | compare_cond.comparison = expr.comparison_type; |
| 320 | delim_join->conditions.push_back(x: std::move(compare_cond)); |
| 321 | |
| 322 | delim_join->AddChild(child: std::move(dependent_join)); |
| 323 | root = std::move(delim_join); |
| 324 | // finally push the BoundColumnRefExpression referring to the marker |
| 325 | return make_uniq<BoundColumnRefExpression>(args: expr.GetName(), args&: expr.return_type, args: ColumnBinding(mark_index, 0)); |
| 326 | } |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | class RecursiveSubqueryPlanner : public LogicalOperatorVisitor { |
| 331 | public: |
| 332 | explicit RecursiveSubqueryPlanner(Binder &binder) : binder(binder) { |
| 333 | } |
| 334 | void VisitOperator(LogicalOperator &op) override { |
| 335 | if (!op.children.empty()) { |
| 336 | root = std::move(op.children[0]); |
| 337 | D_ASSERT(root); |
| 338 | VisitOperatorExpressions(op); |
| 339 | op.children[0] = std::move(root); |
| 340 | for (idx_t i = 0; i < op.children.size(); i++) { |
| 341 | D_ASSERT(op.children[i]); |
| 342 | VisitOperator(op&: *op.children[i]); |
| 343 | } |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | unique_ptr<Expression> VisitReplace(BoundSubqueryExpression &expr, unique_ptr<Expression> *expr_ptr) override { |
| 348 | return binder.PlanSubquery(expr, root); |
| 349 | } |
| 350 | |
| 351 | private: |
| 352 | unique_ptr<LogicalOperator> root; |
| 353 | Binder &binder; |
| 354 | }; |
| 355 | |
| 356 | unique_ptr<Expression> Binder::PlanSubquery(BoundSubqueryExpression &expr, unique_ptr<LogicalOperator> &root) { |
| 357 | D_ASSERT(root); |
| 358 | // first we translate the QueryNode of the subquery into a logical plan |
| 359 | // note that we do not plan nested subqueries yet |
| 360 | auto sub_binder = Binder::CreateBinder(context, parent: this); |
| 361 | sub_binder->plan_subquery = false; |
| 362 | auto subquery_root = sub_binder->CreatePlan(node&: *expr.subquery); |
| 363 | D_ASSERT(subquery_root); |
| 364 | |
| 365 | // now we actually flatten the subquery |
| 366 | auto plan = std::move(subquery_root); |
| 367 | unique_ptr<Expression> result_expression; |
| 368 | if (!expr.IsCorrelated()) { |
| 369 | result_expression = PlanUncorrelatedSubquery(binder&: *this, expr, root, plan: std::move(plan)); |
| 370 | } else { |
| 371 | result_expression = PlanCorrelatedSubquery(binder&: *this, expr, root, plan: std::move(plan)); |
| 372 | } |
| 373 | // finally, we recursively plan the nested subqueries (if there are any) |
| 374 | if (sub_binder->has_unplanned_subqueries) { |
| 375 | RecursiveSubqueryPlanner plan(*this); |
| 376 | plan.VisitOperator(op&: *root); |
| 377 | } |
| 378 | return result_expression; |
| 379 | } |
| 380 | |
| 381 | void Binder::PlanSubqueries(unique_ptr<Expression> &expr_ptr, unique_ptr<LogicalOperator> &root) { |
| 382 | if (!expr_ptr) { |
| 383 | return; |
| 384 | } |
| 385 | auto &expr = *expr_ptr; |
| 386 | |
| 387 | // first visit the children of the node, if any |
| 388 | ExpressionIterator::EnumerateChildren(expression&: expr, callback: [&](unique_ptr<Expression> &expr) { PlanSubqueries(expr_ptr&: expr, root); }); |
| 389 | |
| 390 | // check if this is a subquery node |
| 391 | if (expr.expression_class == ExpressionClass::BOUND_SUBQUERY) { |
| 392 | auto &subquery = expr.Cast<BoundSubqueryExpression>(); |
| 393 | // subquery node! plan it |
| 394 | if (subquery.IsCorrelated() && !plan_subquery) { |
| 395 | // detected a nested correlated subquery |
| 396 | // we don't plan it yet here, we are currently planning a subquery |
| 397 | // nested subqueries will only be planned AFTER the current subquery has been flattened entirely |
| 398 | has_unplanned_subqueries = true; |
| 399 | return; |
| 400 | } |
| 401 | expr_ptr = PlanSubquery(expr&: subquery, root); |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | unique_ptr<LogicalOperator> Binder::PlanLateralJoin(unique_ptr<LogicalOperator> left, unique_ptr<LogicalOperator> right, |
| 406 | vector<CorrelatedColumnInfo> &correlated_columns, |
| 407 | JoinType join_type, unique_ptr<Expression> condition) { |
| 408 | // scan the right operator for correlated columns |
| 409 | // correlated LATERAL JOIN |
| 410 | vector<JoinCondition> conditions; |
| 411 | vector<unique_ptr<Expression>> arbitrary_expressions; |
| 412 | if (condition) { |
| 413 | // extract join conditions, if there are any |
| 414 | LogicalComparisonJoin::ExtractJoinConditions(type: join_type, left_child&: left, right_child&: right, condition: std::move(condition), conditions, |
| 415 | arbitrary_expressions); |
| 416 | } |
| 417 | |
| 418 | auto perform_delim = PerformDuplicateElimination(binder&: *this, correlated_columns); |
| 419 | auto delim_join = CreateDuplicateEliminatedJoin(correlated_columns, join_type, original_plan: std::move(left), perform_delim); |
| 420 | |
| 421 | FlattenDependentJoins flatten(*this, correlated_columns, perform_delim); |
| 422 | |
| 423 | // first we check which logical operators have correlated expressions in the first place |
| 424 | flatten.DetectCorrelatedExpressions(op: right.get(), lateral: true); |
| 425 | // now we push the dependent join down |
| 426 | auto dependent_join = flatten.PushDownDependentJoin(plan: std::move(right)); |
| 427 | |
| 428 | // now the dependent join is fully eliminated |
| 429 | // we only need to create the join conditions between the LHS and the RHS |
| 430 | // fetch the set of columns |
| 431 | auto plan_columns = dependent_join->GetColumnBindings(); |
| 432 | |
| 433 | // now create the join conditions |
| 434 | // start off with the conditions that were passed in (if any) |
| 435 | D_ASSERT(delim_join->conditions.empty()); |
| 436 | delim_join->conditions = std::move(conditions); |
| 437 | // then add the delim join conditions |
| 438 | CreateDelimJoinConditions(delim_join&: *delim_join, correlated_columns, bindings: plan_columns, base_offset: flatten.delim_offset, perform_delim); |
| 439 | delim_join->AddChild(child: std::move(dependent_join)); |
| 440 | |
| 441 | // check if there are any arbitrary expressions left |
| 442 | if (!arbitrary_expressions.empty()) { |
| 443 | // we can only evaluate scalar arbitrary expressions for inner joins |
| 444 | if (join_type != JoinType::INNER) { |
| 445 | throw BinderException( |
| 446 | "Join condition for non-inner LATERAL JOIN must be a comparison between the left and right side" ); |
| 447 | } |
| 448 | auto filter = make_uniq<LogicalFilter>(); |
| 449 | filter->expressions = std::move(arbitrary_expressions); |
| 450 | filter->AddChild(child: std::move(delim_join)); |
| 451 | return std::move(filter); |
| 452 | } |
| 453 | return std::move(delim_join); |
| 454 | } |
| 455 | |
| 456 | } // namespace duckdb |
| 457 | |