1 | // Provides a C++11 implementation of a multi-producer, multi-consumer lock-free queue. |
2 | // An overview, including benchmark results, is provided here: |
3 | // http://moodycamel.com/blog/2014/a-fast-general-purpose-lock-free-queue-for-c++ |
4 | // The full design is also described in excruciating detail at: |
5 | // http://moodycamel.com/blog/2014/detailed-design-of-a-lock-free-queue |
6 | |
7 | // Simplified BSD license: |
8 | // Copyright (c) 2013-2016, Cameron Desrochers. |
9 | // All rights reserved. |
10 | // |
11 | // Redistribution and use in source and binary forms, with or without modification, |
12 | // are permitted provided that the following conditions are met: |
13 | // |
14 | // - Redistributions of source code must retain the above copyright notice, this list of |
15 | // conditions and the following disclaimer. |
16 | // - Redistributions in binary form must reproduce the above copyright notice, this list of |
17 | // conditions and the following disclaimer in the documentation and/or other materials |
18 | // provided with the distribution. |
19 | // |
20 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY |
21 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
22 | // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL |
23 | // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT |
25 | // OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
26 | // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR |
27 | // TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, |
28 | // EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | |
30 | |
31 | #pragma once |
32 | |
33 | #if defined(__GNUC__) |
34 | // Disable -Wconversion warnings (spuriously triggered when Traits::size_t and |
35 | // Traits::index_t are set to < 32 bits, causing integer promotion, causing warnings |
36 | // upon assigning any computed values) |
37 | |
38 | #endif |
39 | |
40 | #if defined(__APPLE__) |
41 | #include <TargetConditionals.h> |
42 | #endif |
43 | |
44 | #include <atomic> // Requires C++11. Sorry VS2010. |
45 | #include <cassert> |
46 | #include <cstddef> // for max_align_t |
47 | #include <cstdint> |
48 | #include <cstdlib> |
49 | #include <type_traits> |
50 | #include <algorithm> |
51 | #include <utility> |
52 | #include <limits> |
53 | #include <climits> // for CHAR_BIT |
54 | #include <array> |
55 | #include <thread> // partly for __WINPTHREADS_VERSION if on MinGW-w64 w/ POSIX threading |
56 | |
57 | // Platform-specific definitions of a numeric thread ID type and an invalid value |
58 | namespace duckdb_moodycamel { namespace details { |
59 | template<typename thread_id_t> struct thread_id_converter { |
60 | typedef thread_id_t thread_id_numeric_size_t; |
61 | typedef thread_id_t thread_id_hash_t; |
62 | static thread_id_hash_t prehash(thread_id_t const& x) { return x; } |
63 | }; |
64 | } } |
65 | #if defined(MCDBGQ_USE_RELACY) |
66 | namespace duckdb_moodycamel { namespace details { |
67 | typedef std::uint32_t thread_id_t; |
68 | static const thread_id_t invalid_thread_id = 0xFFFFFFFFU; |
69 | static const thread_id_t invalid_thread_id2 = 0xFFFFFFFEU; |
70 | static inline thread_id_t thread_id() { return rl::thread_index(); } |
71 | } } |
72 | #elif defined(_WIN32) || defined(__WINDOWS__) || defined(__WIN32__) |
73 | // No sense pulling in windows.h in a header, we'll manually declare the function |
74 | // we use and rely on backwards-compatibility for this not to break |
75 | extern "C" __declspec(dllimport) unsigned long __stdcall GetCurrentThreadId(void); |
76 | namespace duckdb_moodycamel { namespace details { |
77 | static_assert(sizeof(unsigned long) == sizeof(std::uint32_t), "Expected size of unsigned long to be 32 bits on Windows" ); |
78 | typedef std::uint32_t thread_id_t; |
79 | static const thread_id_t invalid_thread_id = 0; // See http://blogs.msdn.com/b/oldnewthing/archive/2004/02/23/78395.aspx |
80 | static const thread_id_t invalid_thread_id2 = 0xFFFFFFFFU; // Not technically guaranteed to be invalid, but is never used in practice. Note that all Win32 thread IDs are presently multiples of 4. |
81 | static inline thread_id_t thread_id() { return static_cast<thread_id_t>(::GetCurrentThreadId()); } |
82 | } } |
83 | #elif defined(__arm__) || defined(_M_ARM) || defined(__aarch64__) || (defined(__APPLE__) && TARGET_OS_IPHONE) |
84 | namespace duckdb_moodycamel { namespace details { |
85 | static_assert(sizeof(std::thread::id) == 4 || sizeof(std::thread::id) == 8, "std::thread::id is expected to be either 4 or 8 bytes" ); |
86 | |
87 | typedef std::thread::id thread_id_t; |
88 | static const thread_id_t invalid_thread_id; // Default ctor creates invalid ID |
89 | |
90 | // Note we don't define a invalid_thread_id2 since std::thread::id doesn't have one; it's |
91 | // only used if MOODYCAMEL_CPP11_THREAD_LOCAL_SUPPORTED is defined anyway, which it won't |
92 | // be. |
93 | static inline thread_id_t thread_id() { return std::this_thread::get_id(); } |
94 | |
95 | template<std::size_t> struct thread_id_size { }; |
96 | template<> struct thread_id_size<4> { typedef std::uint32_t numeric_t; }; |
97 | template<> struct thread_id_size<8> { typedef std::uint64_t numeric_t; }; |
98 | |
99 | template<> struct thread_id_converter<thread_id_t> { |
100 | typedef thread_id_size<sizeof(thread_id_t)>::numeric_t thread_id_numeric_size_t; |
101 | #ifndef __APPLE__ |
102 | typedef std::size_t thread_id_hash_t; |
103 | #else |
104 | typedef thread_id_numeric_size_t thread_id_hash_t; |
105 | #endif |
106 | |
107 | static thread_id_hash_t prehash(thread_id_t const& x) |
108 | { |
109 | #ifndef __APPLE__ |
110 | return std::hash<std::thread::id>()(x); |
111 | #else |
112 | return *reinterpret_cast<thread_id_hash_t const*>(&x); |
113 | #endif |
114 | } |
115 | }; |
116 | } } |
117 | #else |
118 | // Use a nice trick from this answer: http://stackoverflow.com/a/8438730/21475 |
119 | // In order to get a numeric thread ID in a platform-independent way, we use a thread-local |
120 | // static variable's address as a thread identifier :-) |
121 | #if defined(__GNUC__) || defined(__INTEL_COMPILER) |
122 | #define MOODYCAMEL_THREADLOCAL __thread |
123 | #elif defined(_MSC_VER) |
124 | #define MOODYCAMEL_THREADLOCAL __declspec(thread) |
125 | #else |
126 | // Assume C++11 compliant compiler |
127 | #define MOODYCAMEL_THREADLOCAL thread_local |
128 | #endif |
129 | namespace duckdb_moodycamel { namespace details { |
130 | typedef std::uintptr_t thread_id_t; |
131 | static const thread_id_t invalid_thread_id = 0; // Address can't be nullptr |
132 | #ifdef MOODYCAMEL_CPP11_THREAD_LOCAL_SUPPORTED |
133 | static const thread_id_t invalid_thread_id2 = 1; // Member accesses off a null pointer are also generally invalid. Plus it's not aligned. |
134 | #endif |
135 | inline thread_id_t thread_id() { static MOODYCAMEL_THREADLOCAL int x; return reinterpret_cast<thread_id_t>(&x); } |
136 | } } |
137 | #endif |
138 | |
139 | // Constexpr if |
140 | #ifndef MOODYCAMEL_CONSTEXPR_IF |
141 | #if (defined(_MSC_VER) && defined(_HAS_CXX17) && _HAS_CXX17) || __cplusplus > 201402L |
142 | #define MOODYCAMEL_CONSTEXPR_IF if constexpr |
143 | #define MOODYCAMEL_MAYBE_UNUSED [[maybe_unused]] |
144 | #else |
145 | #define MOODYCAMEL_CONSTEXPR_IF if |
146 | #define MOODYCAMEL_MAYBE_UNUSED |
147 | #endif |
148 | #endif |
149 | |
150 | // Exceptions |
151 | #ifndef MOODYCAMEL_EXCEPTIONS_ENABLED |
152 | #if (defined(_MSC_VER) && defined(_CPPUNWIND)) || (defined(__GNUC__) && defined(__EXCEPTIONS)) || (!defined(_MSC_VER) && !defined(__GNUC__)) |
153 | #define MOODYCAMEL_EXCEPTIONS_ENABLED |
154 | #endif |
155 | #endif |
156 | #ifdef MOODYCAMEL_EXCEPTIONS_ENABLED |
157 | #define MOODYCAMEL_TRY try |
158 | #define MOODYCAMEL_CATCH(...) catch(__VA_ARGS__) |
159 | #define MOODYCAMEL_RETHROW throw |
160 | #define MOODYCAMEL_THROW(expr) throw (expr) |
161 | #else |
162 | #define MOODYCAMEL_TRY MOODYCAMEL_CONSTEXPR_IF (true) |
163 | #define MOODYCAMEL_CATCH(...) else MOODYCAMEL_CONSTEXPR_IF (false) |
164 | #define MOODYCAMEL_RETHROW |
165 | #define MOODYCAMEL_THROW(expr) |
166 | #endif |
167 | |
168 | #ifndef MOODYCAMEL_NOEXCEPT |
169 | #if !defined(MOODYCAMEL_EXCEPTIONS_ENABLED) |
170 | #define MOODYCAMEL_NOEXCEPT |
171 | #define MOODYCAMEL_NOEXCEPT_CTOR(type, valueType, expr) true |
172 | #define MOODYCAMEL_NOEXCEPT_ASSIGN(type, valueType, expr) true |
173 | #elif defined(_MSC_VER) && defined(_NOEXCEPT) && _MSC_VER < 1800 |
174 | // VS2012's std::is_nothrow_[move_]constructible is broken and returns true when it shouldn't :-( |
175 | // We have to assume *all* non-trivial constructors may throw on VS2012! |
176 | #define MOODYCAMEL_NOEXCEPT _NOEXCEPT |
177 | #define MOODYCAMEL_NOEXCEPT_CTOR(type, valueType, expr) (std::is_rvalue_reference<valueType>::value && std::is_move_constructible<type>::value ? std::is_trivially_move_constructible<type>::value : std::is_trivially_copy_constructible<type>::value) |
178 | #define MOODYCAMEL_NOEXCEPT_ASSIGN(type, valueType, expr) ((std::is_rvalue_reference<valueType>::value && std::is_move_assignable<type>::value ? std::is_trivially_move_assignable<type>::value || std::is_nothrow_move_assignable<type>::value : std::is_trivially_copy_assignable<type>::value || std::is_nothrow_copy_assignable<type>::value) && MOODYCAMEL_NOEXCEPT_CTOR(type, valueType, expr)) |
179 | #elif defined(_MSC_VER) && defined(_NOEXCEPT) && _MSC_VER < 1900 |
180 | #define MOODYCAMEL_NOEXCEPT _NOEXCEPT |
181 | #define MOODYCAMEL_NOEXCEPT_CTOR(type, valueType, expr) (std::is_rvalue_reference<valueType>::value && std::is_move_constructible<type>::value ? std::is_trivially_move_constructible<type>::value || std::is_nothrow_move_constructible<type>::value : std::is_trivially_copy_constructible<type>::value || std::is_nothrow_copy_constructible<type>::value) |
182 | #define MOODYCAMEL_NOEXCEPT_ASSIGN(type, valueType, expr) ((std::is_rvalue_reference<valueType>::value && std::is_move_assignable<type>::value ? std::is_trivially_move_assignable<type>::value || std::is_nothrow_move_assignable<type>::value : std::is_trivially_copy_assignable<type>::value || std::is_nothrow_copy_assignable<type>::value) && MOODYCAMEL_NOEXCEPT_CTOR(type, valueType, expr)) |
183 | #else |
184 | #define MOODYCAMEL_NOEXCEPT noexcept |
185 | #define MOODYCAMEL_NOEXCEPT_CTOR(type, valueType, expr) noexcept(expr) |
186 | #define MOODYCAMEL_NOEXCEPT_ASSIGN(type, valueType, expr) noexcept(expr) |
187 | #endif |
188 | #endif |
189 | |
190 | #ifndef MOODYCAMEL_CPP11_THREAD_LOCAL_SUPPORTED |
191 | #ifdef MCDBGQ_USE_RELACY |
192 | #define MOODYCAMEL_CPP11_THREAD_LOCAL_SUPPORTED |
193 | #else |
194 | // VS2013 doesn't support `thread_local`, and MinGW-w64 w/ POSIX threading has a crippling bug: http://sourceforge.net/p/mingw-w64/bugs/445 |
195 | // g++ <=4.7 doesn't support thread_local either. |
196 | // Finally, iOS/ARM doesn't have support for it either, and g++/ARM allows it to compile but it's unconfirmed to actually work |
197 | #if (!defined(_MSC_VER) || _MSC_VER >= 1900) && (!defined(__MINGW32__) && !defined(__MINGW64__) || !defined(__WINPTHREADS_VERSION)) && (!defined(__GNUC__) || __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)) && (!defined(__APPLE__) || !TARGET_OS_IPHONE) && !defined(__arm__) && !defined(_M_ARM) && !defined(__aarch64__) |
198 | // Assume `thread_local` is fully supported in all other C++11 compilers/platforms |
199 | //#define MOODYCAMEL_CPP11_THREAD_LOCAL_SUPPORTED // always disabled for now since several users report having problems with it on |
200 | #endif |
201 | #endif |
202 | #endif |
203 | |
204 | // VS2012 doesn't support deleted functions. |
205 | // In this case, we declare the function normally but don't define it. A link error will be generated if the function is called. |
206 | #ifndef MOODYCAMEL_DELETE_FUNCTION |
207 | #if defined(_MSC_VER) && _MSC_VER < 1800 |
208 | #define MOODYCAMEL_DELETE_FUNCTION |
209 | #else |
210 | #define MOODYCAMEL_DELETE_FUNCTION = delete |
211 | #endif |
212 | #endif |
213 | |
214 | #ifndef MOODYCAMEL_ALIGNAS |
215 | // VS2013 doesn't support alignas or alignof |
216 | #if defined(_MSC_VER) && _MSC_VER <= 1800 |
217 | #define MOODYCAMEL_ALIGNAS(alignment) __declspec(align(alignment)) |
218 | #define MOODYCAMEL_ALIGNOF(obj) __alignof(obj) |
219 | #else |
220 | #define MOODYCAMEL_ALIGNAS(alignment) alignas(alignment) |
221 | #define MOODYCAMEL_ALIGNOF(obj) alignof(obj) |
222 | #endif |
223 | #endif |
224 | |
225 | |
226 | |
227 | // Compiler-specific likely/unlikely hints |
228 | namespace duckdb_moodycamel { namespace details { |
229 | |
230 | #if defined(__GNUC__) |
231 | static inline bool (likely)(bool x) { return __builtin_expect((x), true); } |
232 | // static inline bool (unlikely)(bool x) { return __builtin_expect((x), false); } |
233 | #else |
234 | static inline bool (likely)(bool x) { return x; } |
235 | // static inline bool (unlikely)(bool x) { return x; } |
236 | #endif |
237 | } } |
238 | |
239 | namespace duckdb_moodycamel { |
240 | namespace details { |
241 | template<typename T> |
242 | struct const_numeric_max { |
243 | static_assert(std::is_integral<T>::value, "const_numeric_max can only be used with integers" ); |
244 | static const T value = std::numeric_limits<T>::is_signed |
245 | ? (static_cast<T>(1) << (sizeof(T) * CHAR_BIT - 1)) - static_cast<T>(1) |
246 | : static_cast<T>(-1); |
247 | }; |
248 | |
249 | #if defined(__GLIBCXX__) |
250 | typedef ::max_align_t std_max_align_t; // libstdc++ forgot to add it to std:: for a while |
251 | #else |
252 | typedef std::max_align_t std_max_align_t; // Others (e.g. MSVC) insist it can *only* be accessed via std:: |
253 | #endif |
254 | |
255 | // Some platforms have incorrectly set max_align_t to a type with <8 bytes alignment even while supporting |
256 | // 8-byte aligned scalar values (*cough* 32-bit iOS). Work around this with our own union. See issue #64. |
257 | typedef union { |
258 | std_max_align_t x; |
259 | long long y; |
260 | void* z; |
261 | } max_align_t; |
262 | } |
263 | |
264 | // Default traits for the ConcurrentQueue. To change some of the |
265 | // traits without re-implementing all of them, inherit from this |
266 | // struct and shadow the declarations you wish to be different; |
267 | // since the traits are used as a template type parameter, the |
268 | // shadowed declarations will be used where defined, and the defaults |
269 | // otherwise. |
270 | struct ConcurrentQueueDefaultTraits |
271 | { |
272 | // General-purpose size type. std::size_t is strongly recommended. |
273 | typedef std::size_t size_t; |
274 | |
275 | // The type used for the enqueue and dequeue indices. Must be at least as |
276 | // large as size_t. Should be significantly larger than the number of elements |
277 | // you expect to hold at once, especially if you have a high turnover rate; |
278 | // for example, on 32-bit x86, if you expect to have over a hundred million |
279 | // elements or pump several million elements through your queue in a very |
280 | // short space of time, using a 32-bit type *may* trigger a race condition. |
281 | // A 64-bit int type is recommended in that case, and in practice will |
282 | // prevent a race condition no matter the usage of the queue. Note that |
283 | // whether the queue is lock-free with a 64-int type depends on the whether |
284 | // std::atomic<std::uint64_t> is lock-free, which is platform-specific. |
285 | typedef std::size_t index_t; |
286 | |
287 | // Internally, all elements are enqueued and dequeued from multi-element |
288 | // blocks; this is the smallest controllable unit. If you expect few elements |
289 | // but many producers, a smaller block size should be favoured. For few producers |
290 | // and/or many elements, a larger block size is preferred. A sane default |
291 | // is provided. Must be a power of 2. |
292 | static const size_t BLOCK_SIZE = 32; |
293 | |
294 | // For explicit producers (i.e. when using a producer token), the block is |
295 | // checked for being empty by iterating through a list of flags, one per element. |
296 | // For large block sizes, this is too inefficient, and switching to an atomic |
297 | // counter-based approach is faster. The switch is made for block sizes strictly |
298 | // larger than this threshold. |
299 | static const size_t EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD = 32; |
300 | |
301 | // How many full blocks can be expected for a single explicit producer? This should |
302 | // reflect that number's maximum for optimal performance. Must be a power of 2. |
303 | static const size_t EXPLICIT_INITIAL_INDEX_SIZE = 32; |
304 | |
305 | // How many full blocks can be expected for a single implicit producer? This should |
306 | // reflect that number's maximum for optimal performance. Must be a power of 2. |
307 | static const size_t IMPLICIT_INITIAL_INDEX_SIZE = 32; |
308 | |
309 | // The initial size of the hash table mapping thread IDs to implicit producers. |
310 | // Note that the hash is resized every time it becomes half full. |
311 | // Must be a power of two, and either 0 or at least 1. If 0, implicit production |
312 | // (using the enqueue methods without an explicit producer token) is disabled. |
313 | static const size_t INITIAL_IMPLICIT_PRODUCER_HASH_SIZE = 32; |
314 | |
315 | // Controls the number of items that an explicit consumer (i.e. one with a token) |
316 | // must consume before it causes all consumers to rotate and move on to the next |
317 | // internal queue. |
318 | static const std::uint32_t EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE = 256; |
319 | |
320 | // The maximum number of elements (inclusive) that can be enqueued to a sub-queue. |
321 | // Enqueue operations that would cause this limit to be surpassed will fail. Note |
322 | // that this limit is enforced at the block level (for performance reasons), i.e. |
323 | // it's rounded up to the nearest block size. |
324 | static const size_t MAX_SUBQUEUE_SIZE = details::const_numeric_max<size_t>::value; |
325 | |
326 | |
327 | #ifndef MCDBGQ_USE_RELACY |
328 | // Memory allocation can be customized if needed. |
329 | // malloc should return nullptr on failure, and handle alignment like std::malloc. |
330 | #if defined(malloc) || defined(free) |
331 | // Gah, this is 2015, stop defining macros that break standard code already! |
332 | // Work around malloc/free being special macros: |
333 | static inline void* WORKAROUND_malloc(size_t size) { return malloc(size); } |
334 | static inline void WORKAROUND_free(void* ptr) { return free(ptr); } |
335 | static inline void* (malloc)(size_t size) { return WORKAROUND_malloc(size); } |
336 | static inline void (free)(void* ptr) { return WORKAROUND_free(ptr); } |
337 | #else |
338 | static inline void* malloc(size_t size) { return std::malloc(size: size); } |
339 | static inline void free(void* ptr) { return std::free(ptr: ptr); } |
340 | #endif |
341 | #else |
342 | // Debug versions when running under the Relacy race detector (ignore |
343 | // these in user code) |
344 | static inline void* malloc(size_t size) { return rl::rl_malloc(size, $); } |
345 | static inline void free(void* ptr) { return rl::rl_free(ptr, $); } |
346 | #endif |
347 | }; |
348 | |
349 | |
350 | // When producing or consuming many elements, the most efficient way is to: |
351 | // 1) Use one of the bulk-operation methods of the queue with a token |
352 | // 2) Failing that, use the bulk-operation methods without a token |
353 | // 3) Failing that, create a token and use that with the single-item methods |
354 | // 4) Failing that, use the single-parameter methods of the queue |
355 | // Having said that, don't create tokens willy-nilly -- ideally there should be |
356 | // a maximum of one token per thread (of each kind). |
357 | struct ProducerToken; |
358 | struct ConsumerToken; |
359 | |
360 | template<typename T, typename Traits> class ConcurrentQueue; |
361 | template<typename T, typename Traits> class BlockingConcurrentQueue; |
362 | class ConcurrentQueueTests; |
363 | |
364 | |
365 | namespace details |
366 | { |
367 | struct ConcurrentQueueProducerTypelessBase |
368 | { |
369 | ConcurrentQueueProducerTypelessBase* next; |
370 | std::atomic<bool> inactive; |
371 | ProducerToken* token; |
372 | |
373 | ConcurrentQueueProducerTypelessBase() |
374 | : next(nullptr), inactive(false), token(nullptr) |
375 | { |
376 | } |
377 | }; |
378 | |
379 | template<bool use32> struct _hash_32_or_64 { |
380 | static inline std::uint32_t hash(std::uint32_t h) |
381 | { |
382 | // MurmurHash3 finalizer -- see https://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp |
383 | // Since the thread ID is already unique, all we really want to do is propagate that |
384 | // uniqueness evenly across all the bits, so that we can use a subset of the bits while |
385 | // reducing collisions significantly |
386 | h ^= h >> 16; |
387 | h *= 0x85ebca6b; |
388 | h ^= h >> 13; |
389 | h *= 0xc2b2ae35; |
390 | return h ^ (h >> 16); |
391 | } |
392 | }; |
393 | template<> struct _hash_32_or_64<1> { |
394 | static inline std::uint64_t hash(std::uint64_t h) |
395 | { |
396 | h ^= h >> 33; |
397 | h *= 0xff51afd7ed558ccd; |
398 | h ^= h >> 33; |
399 | h *= 0xc4ceb9fe1a85ec53; |
400 | return h ^ (h >> 33); |
401 | } |
402 | }; |
403 | template<std::size_t size> struct hash_32_or_64 : public _hash_32_or_64<(size > 4)> { }; |
404 | |
405 | static inline size_t hash_thread_id(thread_id_t id) |
406 | { |
407 | static_assert(sizeof(thread_id_t) <= 8, "Expected a platform where thread IDs are at most 64-bit values" ); |
408 | return static_cast<size_t>(hash_32_or_64<sizeof(thread_id_converter<thread_id_t>::thread_id_hash_t)>::hash( |
409 | h: thread_id_converter<thread_id_t>::prehash(x: id))); |
410 | } |
411 | |
412 | template<typename T> |
413 | static inline bool circular_less_than(T a, T b) |
414 | { |
415 | #ifdef _MSC_VER |
416 | #pragma warning(push) |
417 | #pragma warning(disable: 4554) |
418 | #endif |
419 | static_assert(std::is_integral<T>::value && !std::numeric_limits<T>::is_signed, "circular_less_than is intended to be used only with unsigned integer types" ); |
420 | return static_cast<T>(a - b) > static_cast<T>(static_cast<T>(1) << static_cast<T>(sizeof(T) * CHAR_BIT - 1)); |
421 | #ifdef _MSC_VER |
422 | #pragma warning(pop) |
423 | #endif |
424 | } |
425 | |
426 | template<typename U> |
427 | static inline char* align_for(char* ptr) |
428 | { |
429 | const std::size_t alignment = std::alignment_of<U>::value; |
430 | return ptr + (alignment - (reinterpret_cast<std::uintptr_t>(ptr) % alignment)) % alignment; |
431 | } |
432 | |
433 | template<typename T> |
434 | static inline T ceil_to_pow_2(T x) |
435 | { |
436 | static_assert(std::is_integral<T>::value && !std::numeric_limits<T>::is_signed, "ceil_to_pow_2 is intended to be used only with unsigned integer types" ); |
437 | |
438 | // Adapted from http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 |
439 | --x; |
440 | x |= x >> 1; |
441 | x |= x >> 2; |
442 | x |= x >> 4; |
443 | for (std::size_t i = 1; i < sizeof(T); i <<= 1) { |
444 | x |= x >> (i << 3); |
445 | } |
446 | ++x; |
447 | return x; |
448 | } |
449 | |
450 | template<typename T> |
451 | static inline void swap_relaxed(std::atomic<T>& left, std::atomic<T>& right) |
452 | { |
453 | T temp = std::move(left.load(std::memory_order_relaxed)); |
454 | left.store(std::move(right.load(std::memory_order_relaxed)), std::memory_order_relaxed); |
455 | right.store(std::move(temp), std::memory_order_relaxed); |
456 | } |
457 | |
458 | template<typename T> |
459 | static inline T const& nomove(T const& x) |
460 | { |
461 | return x; |
462 | } |
463 | |
464 | template<bool Enable> |
465 | struct nomove_if |
466 | { |
467 | template<typename T> |
468 | static inline T const& eval(T const& x) |
469 | { |
470 | return x; |
471 | } |
472 | }; |
473 | |
474 | template<> |
475 | struct nomove_if<false> |
476 | { |
477 | template<typename U> |
478 | static inline auto eval(U&& x) |
479 | -> decltype(std::forward<U>(x)) |
480 | { |
481 | return std::forward<U>(x); |
482 | } |
483 | }; |
484 | |
485 | template<typename It> |
486 | static inline auto deref_noexcept(It& it) MOODYCAMEL_NOEXCEPT -> decltype(*it) |
487 | { |
488 | return *it; |
489 | } |
490 | |
491 | #if defined(__clang__) || !defined(__GNUC__) || __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) |
492 | template<typename T> struct is_trivially_destructible : std::is_trivially_destructible<T> { }; |
493 | #else |
494 | template<typename T> struct is_trivially_destructible : std::has_trivial_destructor<T> { }; |
495 | #endif |
496 | |
497 | #ifdef MOODYCAMEL_CPP11_THREAD_LOCAL_SUPPORTED |
498 | #ifdef MCDBGQ_USE_RELACY |
499 | typedef RelacyThreadExitListener ThreadExitListener; |
500 | typedef RelacyThreadExitNotifier ThreadExitNotifier; |
501 | #else |
502 | struct ThreadExitListener |
503 | { |
504 | typedef void (*callback_t)(void*); |
505 | callback_t callback; |
506 | void* userData; |
507 | |
508 | ThreadExitListener* next; // reserved for use by the ThreadExitNotifier |
509 | }; |
510 | |
511 | |
512 | class ThreadExitNotifier |
513 | { |
514 | public: |
515 | static void subscribe(ThreadExitListener* listener) |
516 | { |
517 | auto& tlsInst = instance(); |
518 | listener->next = tlsInst.tail; |
519 | tlsInst.tail = listener; |
520 | } |
521 | |
522 | static void unsubscribe(ThreadExitListener* listener) |
523 | { |
524 | auto& tlsInst = instance(); |
525 | ThreadExitListener** prev = &tlsInst.tail; |
526 | for (auto ptr = tlsInst.tail; ptr != nullptr; ptr = ptr->next) { |
527 | if (ptr == listener) { |
528 | *prev = ptr->next; |
529 | break; |
530 | } |
531 | prev = &ptr->next; |
532 | } |
533 | } |
534 | |
535 | private: |
536 | ThreadExitNotifier() : tail(nullptr) { } |
537 | ThreadExitNotifier(ThreadExitNotifier const&) MOODYCAMEL_DELETE_FUNCTION; |
538 | ThreadExitNotifier& operator=(ThreadExitNotifier const&) MOODYCAMEL_DELETE_FUNCTION; |
539 | |
540 | ~ThreadExitNotifier() |
541 | { |
542 | // This thread is about to exit, let everyone know! |
543 | assert(this == &instance() && "If this assert fails, you likely have a buggy compiler! Change the preprocessor conditions such that MOODYCAMEL_CPP11_THREAD_LOCAL_SUPPORTED is no longer defined." ); |
544 | for (auto ptr = tail; ptr != nullptr; ptr = ptr->next) { |
545 | ptr->callback(ptr->userData); |
546 | } |
547 | } |
548 | |
549 | // Thread-local |
550 | static inline ThreadExitNotifier& instance() |
551 | { |
552 | static thread_local ThreadExitNotifier notifier; |
553 | return notifier; |
554 | } |
555 | |
556 | private: |
557 | ThreadExitListener* tail; |
558 | }; |
559 | #endif |
560 | #endif |
561 | |
562 | template<typename T> struct static_is_lock_free_num { enum { value = 0 }; }; |
563 | template<> struct static_is_lock_free_num<signed char> { enum { value = ATOMIC_CHAR_LOCK_FREE }; }; |
564 | template<> struct static_is_lock_free_num<short> { enum { value = ATOMIC_SHORT_LOCK_FREE }; }; |
565 | template<> struct static_is_lock_free_num<int> { enum { value = ATOMIC_INT_LOCK_FREE }; }; |
566 | template<> struct static_is_lock_free_num<long> { enum { value = ATOMIC_LONG_LOCK_FREE }; }; |
567 | template<> struct static_is_lock_free_num<long long> { enum { value = ATOMIC_LLONG_LOCK_FREE }; }; |
568 | template<typename T> struct static_is_lock_free : static_is_lock_free_num<typename std::make_signed<T>::type> { }; |
569 | template<> struct static_is_lock_free<bool> { enum { value = ATOMIC_BOOL_LOCK_FREE }; }; |
570 | template<typename U> struct static_is_lock_free<U*> { enum { value = ATOMIC_POINTER_LOCK_FREE }; }; |
571 | } |
572 | |
573 | |
574 | struct ProducerToken |
575 | { |
576 | template<typename T, typename Traits> |
577 | explicit ProducerToken(ConcurrentQueue<T, Traits>& queue); |
578 | |
579 | template<typename T, typename Traits> |
580 | explicit ProducerToken(BlockingConcurrentQueue<T, Traits>& queue); |
581 | |
582 | ProducerToken(ProducerToken&& other) MOODYCAMEL_NOEXCEPT |
583 | : producer(other.producer) |
584 | { |
585 | other.producer = nullptr; |
586 | if (producer != nullptr) { |
587 | producer->token = this; |
588 | } |
589 | } |
590 | |
591 | inline ProducerToken& operator=(ProducerToken&& other) MOODYCAMEL_NOEXCEPT |
592 | { |
593 | swap(other); |
594 | return *this; |
595 | } |
596 | |
597 | void swap(ProducerToken& other) MOODYCAMEL_NOEXCEPT |
598 | { |
599 | std::swap(a&: producer, b&: other.producer); |
600 | if (producer != nullptr) { |
601 | producer->token = this; |
602 | } |
603 | if (other.producer != nullptr) { |
604 | other.producer->token = &other; |
605 | } |
606 | } |
607 | |
608 | // A token is always valid unless: |
609 | // 1) Memory allocation failed during construction |
610 | // 2) It was moved via the move constructor |
611 | // (Note: assignment does a swap, leaving both potentially valid) |
612 | // 3) The associated queue was destroyed |
613 | // Note that if valid() returns true, that only indicates |
614 | // that the token is valid for use with a specific queue, |
615 | // but not which one; that's up to the user to track. |
616 | inline bool valid() const { return producer != nullptr; } |
617 | |
618 | ~ProducerToken() |
619 | { |
620 | if (producer != nullptr) { |
621 | producer->token = nullptr; |
622 | producer->inactive.store(i: true, m: std::memory_order_release); |
623 | } |
624 | } |
625 | |
626 | // Disable copying and assignment |
627 | ProducerToken(ProducerToken const&) MOODYCAMEL_DELETE_FUNCTION; |
628 | ProducerToken& operator=(ProducerToken const&) MOODYCAMEL_DELETE_FUNCTION; |
629 | |
630 | private: |
631 | template<typename T, typename Traits> friend class ConcurrentQueue; |
632 | friend class ConcurrentQueueTests; |
633 | |
634 | protected: |
635 | details::ConcurrentQueueProducerTypelessBase* producer; |
636 | }; |
637 | |
638 | |
639 | struct ConsumerToken |
640 | { |
641 | template<typename T, typename Traits> |
642 | explicit ConsumerToken(ConcurrentQueue<T, Traits>& q); |
643 | |
644 | template<typename T, typename Traits> |
645 | explicit ConsumerToken(BlockingConcurrentQueue<T, Traits>& q); |
646 | |
647 | ConsumerToken(ConsumerToken&& other) MOODYCAMEL_NOEXCEPT |
648 | : initialOffset(other.initialOffset), lastKnownGlobalOffset(other.lastKnownGlobalOffset), itemsConsumedFromCurrent(other.itemsConsumedFromCurrent), currentProducer(other.currentProducer), desiredProducer(other.desiredProducer) |
649 | { |
650 | } |
651 | |
652 | inline ConsumerToken& operator=(ConsumerToken&& other) MOODYCAMEL_NOEXCEPT |
653 | { |
654 | swap(other); |
655 | return *this; |
656 | } |
657 | |
658 | void swap(ConsumerToken& other) MOODYCAMEL_NOEXCEPT |
659 | { |
660 | std::swap(a&: initialOffset, b&: other.initialOffset); |
661 | std::swap(a&: lastKnownGlobalOffset, b&: other.lastKnownGlobalOffset); |
662 | std::swap(a&: itemsConsumedFromCurrent, b&: other.itemsConsumedFromCurrent); |
663 | std::swap(a&: currentProducer, b&: other.currentProducer); |
664 | std::swap(a&: desiredProducer, b&: other.desiredProducer); |
665 | } |
666 | |
667 | // Disable copying and assignment |
668 | ConsumerToken(ConsumerToken const&) MOODYCAMEL_DELETE_FUNCTION; |
669 | ConsumerToken& operator=(ConsumerToken const&) MOODYCAMEL_DELETE_FUNCTION; |
670 | |
671 | private: |
672 | template<typename T, typename Traits> friend class ConcurrentQueue; |
673 | friend class ConcurrentQueueTests; |
674 | |
675 | private: // but shared with ConcurrentQueue |
676 | std::uint32_t initialOffset; |
677 | std::uint32_t lastKnownGlobalOffset; |
678 | std::uint32_t itemsConsumedFromCurrent; |
679 | details::ConcurrentQueueProducerTypelessBase* currentProducer; |
680 | details::ConcurrentQueueProducerTypelessBase* desiredProducer; |
681 | }; |
682 | |
683 | // Need to forward-declare this swap because it's in a namespace. |
684 | // See http://stackoverflow.com/questions/4492062/why-does-a-c-friend-class-need-a-forward-declaration-only-in-other-namespaces |
685 | template<typename T, typename Traits> |
686 | inline void swap(typename ConcurrentQueue<T, Traits>::ImplicitProducerKVP& a, typename ConcurrentQueue<T, Traits>::ImplicitProducerKVP& b) MOODYCAMEL_NOEXCEPT; |
687 | |
688 | |
689 | template<typename T, typename Traits = ConcurrentQueueDefaultTraits> |
690 | class ConcurrentQueue |
691 | { |
692 | public: |
693 | typedef ::duckdb_moodycamel::ProducerToken producer_token_t; |
694 | typedef ::duckdb_moodycamel::ConsumerToken consumer_token_t; |
695 | |
696 | typedef typename Traits::index_t index_t; |
697 | typedef typename Traits::size_t size_t; |
698 | |
699 | static const size_t BLOCK_SIZE = static_cast<size_t>(Traits::BLOCK_SIZE); |
700 | static const size_t EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD = static_cast<size_t>(Traits::EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD); |
701 | static const size_t EXPLICIT_INITIAL_INDEX_SIZE = static_cast<size_t>(Traits::EXPLICIT_INITIAL_INDEX_SIZE); |
702 | static const size_t IMPLICIT_INITIAL_INDEX_SIZE = static_cast<size_t>(Traits::IMPLICIT_INITIAL_INDEX_SIZE); |
703 | static const size_t INITIAL_IMPLICIT_PRODUCER_HASH_SIZE = static_cast<size_t>(Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE); |
704 | static const std::uint32_t EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE = static_cast<std::uint32_t>(Traits::EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE); |
705 | #ifdef _MSC_VER |
706 | #pragma warning(push) |
707 | #pragma warning(disable: 4307) // + integral constant overflow (that's what the ternary expression is for!) |
708 | #pragma warning(disable: 4309) // static_cast: Truncation of constant value |
709 | #endif |
710 | static const size_t MAX_SUBQUEUE_SIZE = (details::const_numeric_max<size_t>::value - static_cast<size_t>(Traits::MAX_SUBQUEUE_SIZE) < BLOCK_SIZE) ? details::const_numeric_max<size_t>::value : ((static_cast<size_t>(Traits::MAX_SUBQUEUE_SIZE) + (BLOCK_SIZE - 1)) / BLOCK_SIZE * BLOCK_SIZE); |
711 | #ifdef _MSC_VER |
712 | #pragma warning(pop) |
713 | #endif |
714 | |
715 | static_assert(!std::numeric_limits<size_t>::is_signed && std::is_integral<size_t>::value, "Traits::size_t must be an unsigned integral type" ); |
716 | static_assert(!std::numeric_limits<index_t>::is_signed && std::is_integral<index_t>::value, "Traits::index_t must be an unsigned integral type" ); |
717 | static_assert(sizeof(index_t) >= sizeof(size_t), "Traits::index_t must be at least as wide as Traits::size_t" ); |
718 | static_assert((BLOCK_SIZE > 1) && !(BLOCK_SIZE & (BLOCK_SIZE - 1)), "Traits::BLOCK_SIZE must be a power of 2 (and at least 2)" ); |
719 | static_assert((EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD > 1) && !(EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD & (EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD - 1)), "Traits::EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD must be a power of 2 (and greater than 1)" ); |
720 | static_assert((EXPLICIT_INITIAL_INDEX_SIZE > 1) && !(EXPLICIT_INITIAL_INDEX_SIZE & (EXPLICIT_INITIAL_INDEX_SIZE - 1)), "Traits::EXPLICIT_INITIAL_INDEX_SIZE must be a power of 2 (and greater than 1)" ); |
721 | static_assert((IMPLICIT_INITIAL_INDEX_SIZE > 1) && !(IMPLICIT_INITIAL_INDEX_SIZE & (IMPLICIT_INITIAL_INDEX_SIZE - 1)), "Traits::IMPLICIT_INITIAL_INDEX_SIZE must be a power of 2 (and greater than 1)" ); |
722 | static_assert((INITIAL_IMPLICIT_PRODUCER_HASH_SIZE == 0) || !(INITIAL_IMPLICIT_PRODUCER_HASH_SIZE & (INITIAL_IMPLICIT_PRODUCER_HASH_SIZE - 1)), "Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE must be a power of 2" ); |
723 | static_assert(INITIAL_IMPLICIT_PRODUCER_HASH_SIZE == 0 || INITIAL_IMPLICIT_PRODUCER_HASH_SIZE >= 1, "Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE must be at least 1 (or 0 to disable implicit enqueueing)" ); |
724 | |
725 | public: |
726 | // Creates a queue with at least `capacity` element slots; note that the |
727 | // actual number of elements that can be inserted without additional memory |
728 | // allocation depends on the number of producers and the block size (e.g. if |
729 | // the block size is equal to `capacity`, only a single block will be allocated |
730 | // up-front, which means only a single producer will be able to enqueue elements |
731 | // without an extra allocation -- blocks aren't shared between producers). |
732 | // This method is not thread safe -- it is up to the user to ensure that the |
733 | // queue is fully constructed before it starts being used by other threads (this |
734 | // includes making the memory effects of construction visible, possibly with a |
735 | // memory barrier). |
736 | explicit ConcurrentQueue(size_t capacity = 6 * BLOCK_SIZE) |
737 | : producerListTail(nullptr), |
738 | producerCount(0), |
739 | initialBlockPoolIndex(0), |
740 | nextExplicitConsumerId(0), |
741 | globalExplicitConsumerOffset(0) |
742 | { |
743 | implicitProducerHashResizeInProgress.clear(m: std::memory_order_relaxed); |
744 | populate_initial_implicit_producer_hash(); |
745 | populate_initial_block_list(blockCount: capacity / BLOCK_SIZE + ((capacity & (BLOCK_SIZE - 1)) == 0 ? 0 : 1)); |
746 | |
747 | #ifdef MOODYCAMEL_QUEUE_INTERNAL_DEBUG |
748 | // Track all the producers using a fully-resolved typed list for |
749 | // each kind; this makes it possible to debug them starting from |
750 | // the root queue object (otherwise wacky casts are needed that |
751 | // don't compile in the debugger's expression evaluator). |
752 | explicitProducers.store(nullptr, std::memory_order_relaxed); |
753 | implicitProducers.store(nullptr, std::memory_order_relaxed); |
754 | #endif |
755 | } |
756 | |
757 | // Computes the correct amount of pre-allocated blocks for you based |
758 | // on the minimum number of elements you want available at any given |
759 | // time, and the maximum concurrent number of each type of producer. |
760 | ConcurrentQueue(size_t minCapacity, size_t maxExplicitProducers, size_t maxImplicitProducers) |
761 | : producerListTail(nullptr), |
762 | producerCount(0), |
763 | initialBlockPoolIndex(0), |
764 | nextExplicitConsumerId(0), |
765 | globalExplicitConsumerOffset(0) |
766 | { |
767 | implicitProducerHashResizeInProgress.clear(m: std::memory_order_relaxed); |
768 | populate_initial_implicit_producer_hash(); |
769 | size_t blocks = (((minCapacity + BLOCK_SIZE - 1) / BLOCK_SIZE) - 1) * (maxExplicitProducers + 1) + 2 * (maxExplicitProducers + maxImplicitProducers); |
770 | populate_initial_block_list(blockCount: blocks); |
771 | |
772 | #ifdef MOODYCAMEL_QUEUE_INTERNAL_DEBUG |
773 | explicitProducers.store(nullptr, std::memory_order_relaxed); |
774 | implicitProducers.store(nullptr, std::memory_order_relaxed); |
775 | #endif |
776 | } |
777 | |
778 | // Note: The queue should not be accessed concurrently while it's |
779 | // being deleted. It's up to the user to synchronize this. |
780 | // This method is not thread safe. |
781 | ~ConcurrentQueue() |
782 | { |
783 | // Destroy producers |
784 | auto ptr = producerListTail.load(std::memory_order_relaxed); |
785 | while (ptr != nullptr) { |
786 | auto next = ptr->next_prod(); |
787 | if (ptr->token != nullptr) { |
788 | ptr->token->producer = nullptr; |
789 | } |
790 | destroy(ptr); |
791 | ptr = next; |
792 | } |
793 | |
794 | // Destroy implicit producer hash tables |
795 | MOODYCAMEL_CONSTEXPR_IF (INITIAL_IMPLICIT_PRODUCER_HASH_SIZE != 0) { |
796 | auto hash = implicitProducerHash.load(std::memory_order_relaxed); |
797 | while (hash != nullptr) { |
798 | auto prev = hash->prev; |
799 | if (prev != nullptr) { // The last hash is part of this object and was not allocated dynamically |
800 | for (size_t i = 0; i != hash->capacity; ++i) { |
801 | hash->entries[i].~ImplicitProducerKVP(); |
802 | } |
803 | hash->~ImplicitProducerHash(); |
804 | (Traits::free)(hash); |
805 | } |
806 | hash = prev; |
807 | } |
808 | } |
809 | |
810 | // Destroy global free list |
811 | auto block = freeList.head_unsafe(); |
812 | while (block != nullptr) { |
813 | auto next = block->freeListNext.load(std::memory_order_relaxed); |
814 | if (block->dynamicallyAllocated) { |
815 | destroy(block); |
816 | } |
817 | block = next; |
818 | } |
819 | |
820 | // Destroy initial free list |
821 | destroy_array(initialBlockPool, initialBlockPoolSize); |
822 | } |
823 | |
824 | // Disable copying and copy assignment |
825 | ConcurrentQueue(ConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION; |
826 | ConcurrentQueue& operator=(ConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION; |
827 | |
828 | // Moving is supported, but note that it is *not* a thread-safe operation. |
829 | // Nobody can use the queue while it's being moved, and the memory effects |
830 | // of that move must be propagated to other threads before they can use it. |
831 | // Note: When a queue is moved, its tokens are still valid but can only be |
832 | // used with the destination queue (i.e. semantically they are moved along |
833 | // with the queue itself). |
834 | ConcurrentQueue(ConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT |
835 | : producerListTail(other.producerListTail.load(std::memory_order_relaxed)), |
836 | producerCount(other.producerCount.load(std::memory_order_relaxed)), |
837 | initialBlockPoolIndex(other.initialBlockPoolIndex.load(std::memory_order_relaxed)), |
838 | initialBlockPool(other.initialBlockPool), |
839 | initialBlockPoolSize(other.initialBlockPoolSize), |
840 | freeList(std::move(other.freeList)), |
841 | nextExplicitConsumerId(other.nextExplicitConsumerId.load(std::memory_order_relaxed)), |
842 | globalExplicitConsumerOffset(other.globalExplicitConsumerOffset.load(std::memory_order_relaxed)) |
843 | { |
844 | // Move the other one into this, and leave the other one as an empty queue |
845 | implicitProducerHashResizeInProgress.clear(m: std::memory_order_relaxed); |
846 | populate_initial_implicit_producer_hash(); |
847 | swap_implicit_producer_hashes(other); |
848 | |
849 | other.producerListTail.store(nullptr, std::memory_order_relaxed); |
850 | other.producerCount.store(0, std::memory_order_relaxed); |
851 | other.nextExplicitConsumerId.store(0, std::memory_order_relaxed); |
852 | other.globalExplicitConsumerOffset.store(0, std::memory_order_relaxed); |
853 | |
854 | #ifdef MOODYCAMEL_QUEUE_INTERNAL_DEBUG |
855 | explicitProducers.store(other.explicitProducers.load(std::memory_order_relaxed), std::memory_order_relaxed); |
856 | other.explicitProducers.store(nullptr, std::memory_order_relaxed); |
857 | implicitProducers.store(other.implicitProducers.load(std::memory_order_relaxed), std::memory_order_relaxed); |
858 | other.implicitProducers.store(nullptr, std::memory_order_relaxed); |
859 | #endif |
860 | |
861 | other.initialBlockPoolIndex.store(0, std::memory_order_relaxed); |
862 | other.initialBlockPoolSize = 0; |
863 | other.initialBlockPool = nullptr; |
864 | |
865 | reown_producers(); |
866 | } |
867 | |
868 | inline ConcurrentQueue& operator=(ConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT |
869 | { |
870 | return swap_internal(other); |
871 | } |
872 | |
873 | // Swaps this queue's state with the other's. Not thread-safe. |
874 | // Swapping two queues does not invalidate their tokens, however |
875 | // the tokens that were created for one queue must be used with |
876 | // only the swapped queue (i.e. the tokens are tied to the |
877 | // queue's movable state, not the object itself). |
878 | inline void swap(ConcurrentQueue& other) MOODYCAMEL_NOEXCEPT |
879 | { |
880 | swap_internal(other); |
881 | } |
882 | |
883 | private: |
884 | ConcurrentQueue& swap_internal(ConcurrentQueue& other) |
885 | { |
886 | if (this == &other) { |
887 | return *this; |
888 | } |
889 | |
890 | details::swap_relaxed(producerListTail, other.producerListTail); |
891 | details::swap_relaxed(producerCount, other.producerCount); |
892 | details::swap_relaxed(initialBlockPoolIndex, other.initialBlockPoolIndex); |
893 | std::swap(initialBlockPool, other.initialBlockPool); |
894 | std::swap(initialBlockPoolSize, other.initialBlockPoolSize); |
895 | freeList.swap(other.freeList); |
896 | details::swap_relaxed(nextExplicitConsumerId, other.nextExplicitConsumerId); |
897 | details::swap_relaxed(globalExplicitConsumerOffset, other.globalExplicitConsumerOffset); |
898 | |
899 | swap_implicit_producer_hashes(other); |
900 | |
901 | reown_producers(); |
902 | other.reown_producers(); |
903 | |
904 | #ifdef MOODYCAMEL_QUEUE_INTERNAL_DEBUG |
905 | details::swap_relaxed(explicitProducers, other.explicitProducers); |
906 | details::swap_relaxed(implicitProducers, other.implicitProducers); |
907 | #endif |
908 | |
909 | return *this; |
910 | } |
911 | |
912 | public: |
913 | // Enqueues a single item (by copying it). |
914 | // Allocates memory if required. Only fails if memory allocation fails (or implicit |
915 | // production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0, |
916 | // or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). |
917 | // Thread-safe. |
918 | inline bool enqueue(T const& item) |
919 | { |
920 | MOODYCAMEL_CONSTEXPR_IF (INITIAL_IMPLICIT_PRODUCER_HASH_SIZE == 0) return false; |
921 | else return inner_enqueue<CanAlloc>(item); |
922 | } |
923 | |
924 | // Enqueues a single item (by moving it, if possible). |
925 | // Allocates memory if required. Only fails if memory allocation fails (or implicit |
926 | // production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0, |
927 | // or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). |
928 | // Thread-safe. |
929 | inline bool enqueue(T&& item) |
930 | { |
931 | MOODYCAMEL_CONSTEXPR_IF (INITIAL_IMPLICIT_PRODUCER_HASH_SIZE == 0) return false; |
932 | else return inner_enqueue<CanAlloc>(std::move(item)); |
933 | } |
934 | |
935 | // Enqueues a single item (by copying it) using an explicit producer token. |
936 | // Allocates memory if required. Only fails if memory allocation fails (or |
937 | // Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). |
938 | // Thread-safe. |
939 | inline bool enqueue(producer_token_t const& token, T const& item) |
940 | { |
941 | return inner_enqueue<CanAlloc>(token, item); |
942 | } |
943 | |
944 | // Enqueues a single item (by moving it, if possible) using an explicit producer token. |
945 | // Allocates memory if required. Only fails if memory allocation fails (or |
946 | // Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). |
947 | // Thread-safe. |
948 | inline bool enqueue(producer_token_t const& token, T&& item) |
949 | { |
950 | return inner_enqueue<CanAlloc>(token, std::move(item)); |
951 | } |
952 | |
953 | // Enqueues several items. |
954 | // Allocates memory if required. Only fails if memory allocation fails (or |
955 | // implicit production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE |
956 | // is 0, or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). |
957 | // Note: Use std::make_move_iterator if the elements should be moved instead of copied. |
958 | // Thread-safe. |
959 | template<typename It> |
960 | bool enqueue_bulk(It itemFirst, size_t count) |
961 | { |
962 | MOODYCAMEL_CONSTEXPR_IF (INITIAL_IMPLICIT_PRODUCER_HASH_SIZE == 0) return false; |
963 | else return inner_enqueue_bulk<CanAlloc>(itemFirst, count); |
964 | } |
965 | |
966 | // Enqueues several items using an explicit producer token. |
967 | // Allocates memory if required. Only fails if memory allocation fails |
968 | // (or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). |
969 | // Note: Use std::make_move_iterator if the elements should be moved |
970 | // instead of copied. |
971 | // Thread-safe. |
972 | template<typename It> |
973 | bool enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count) |
974 | { |
975 | return inner_enqueue_bulk<CanAlloc>(token, itemFirst, count); |
976 | } |
977 | |
978 | // Enqueues a single item (by copying it). |
979 | // Does not allocate memory. Fails if not enough room to enqueue (or implicit |
980 | // production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE |
981 | // is 0). |
982 | // Thread-safe. |
983 | inline bool try_enqueue(T const& item) |
984 | { |
985 | MOODYCAMEL_CONSTEXPR_IF (INITIAL_IMPLICIT_PRODUCER_HASH_SIZE == 0) return false; |
986 | else return inner_enqueue<CannotAlloc>(item); |
987 | } |
988 | |
989 | // Enqueues a single item (by moving it, if possible). |
990 | // Does not allocate memory (except for one-time implicit producer). |
991 | // Fails if not enough room to enqueue (or implicit production is |
992 | // disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0). |
993 | // Thread-safe. |
994 | inline bool try_enqueue(T&& item) |
995 | { |
996 | MOODYCAMEL_CONSTEXPR_IF (INITIAL_IMPLICIT_PRODUCER_HASH_SIZE == 0) return false; |
997 | else return inner_enqueue<CannotAlloc>(std::move(item)); |
998 | } |
999 | |
1000 | // Enqueues a single item (by copying it) using an explicit producer token. |
1001 | // Does not allocate memory. Fails if not enough room to enqueue. |
1002 | // Thread-safe. |
1003 | inline bool try_enqueue(producer_token_t const& token, T const& item) |
1004 | { |
1005 | return inner_enqueue<CannotAlloc>(token, item); |
1006 | } |
1007 | |
1008 | // Enqueues a single item (by moving it, if possible) using an explicit producer token. |
1009 | // Does not allocate memory. Fails if not enough room to enqueue. |
1010 | // Thread-safe. |
1011 | inline bool try_enqueue(producer_token_t const& token, T&& item) |
1012 | { |
1013 | return inner_enqueue<CannotAlloc>(token, std::move(item)); |
1014 | } |
1015 | |
1016 | // Enqueues several items. |
1017 | // Does not allocate memory (except for one-time implicit producer). |
1018 | // Fails if not enough room to enqueue (or implicit production is |
1019 | // disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0). |
1020 | // Note: Use std::make_move_iterator if the elements should be moved |
1021 | // instead of copied. |
1022 | // Thread-safe. |
1023 | template<typename It> |
1024 | bool try_enqueue_bulk(It itemFirst, size_t count) |
1025 | { |
1026 | MOODYCAMEL_CONSTEXPR_IF (INITIAL_IMPLICIT_PRODUCER_HASH_SIZE == 0) return false; |
1027 | else return inner_enqueue_bulk<CannotAlloc>(itemFirst, count); |
1028 | } |
1029 | |
1030 | // Enqueues several items using an explicit producer token. |
1031 | // Does not allocate memory. Fails if not enough room to enqueue. |
1032 | // Note: Use std::make_move_iterator if the elements should be moved |
1033 | // instead of copied. |
1034 | // Thread-safe. |
1035 | template<typename It> |
1036 | bool try_enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count) |
1037 | { |
1038 | return inner_enqueue_bulk<CannotAlloc>(token, itemFirst, count); |
1039 | } |
1040 | |
1041 | |
1042 | |
1043 | // Attempts to dequeue from the queue. |
1044 | // Returns false if all producer streams appeared empty at the time they |
1045 | // were checked (so, the queue is likely but not guaranteed to be empty). |
1046 | // Never allocates. Thread-safe. |
1047 | template<typename U> |
1048 | bool try_dequeue(U& item) |
1049 | { |
1050 | // Instead of simply trying each producer in turn (which could cause needless contention on the first |
1051 | // producer), we score them heuristically. |
1052 | size_t nonEmptyCount = 0; |
1053 | ProducerBase* best = nullptr; |
1054 | size_t bestSize = 0; |
1055 | for (auto ptr = producerListTail.load(std::memory_order_acquire); nonEmptyCount < 3 && ptr != nullptr; ptr = ptr->next_prod()) { |
1056 | auto size = ptr->size_approx(); |
1057 | if (size > 0) { |
1058 | if (size > bestSize) { |
1059 | bestSize = size; |
1060 | best = ptr; |
1061 | } |
1062 | ++nonEmptyCount; |
1063 | } |
1064 | } |
1065 | |
1066 | // If there was at least one non-empty queue but it appears empty at the time |
1067 | // we try to dequeue from it, we need to make sure every queue's been tried |
1068 | if (nonEmptyCount > 0) { |
1069 | if ((details::likely)(x: best->dequeue(item))) { |
1070 | return true; |
1071 | } |
1072 | for (auto ptr = producerListTail.load(std::memory_order_acquire); ptr != nullptr; ptr = ptr->next_prod()) { |
1073 | if (ptr != best && ptr->dequeue(item)) { |
1074 | return true; |
1075 | } |
1076 | } |
1077 | } |
1078 | return false; |
1079 | } |
1080 | |
1081 | // Attempts to dequeue from the queue. |
1082 | // Returns false if all producer streams appeared empty at the time they |
1083 | // were checked (so, the queue is likely but not guaranteed to be empty). |
1084 | // This differs from the try_dequeue(item) method in that this one does |
1085 | // not attempt to reduce contention by interleaving the order that producer |
1086 | // streams are dequeued from. So, using this method can reduce overall throughput |
1087 | // under contention, but will give more predictable results in single-threaded |
1088 | // consumer scenarios. This is mostly only useful for internal unit tests. |
1089 | // Never allocates. Thread-safe. |
1090 | template<typename U> |
1091 | bool try_dequeue_non_interleaved(U& item) |
1092 | { |
1093 | for (auto ptr = producerListTail.load(std::memory_order_acquire); ptr != nullptr; ptr = ptr->next_prod()) { |
1094 | if (ptr->dequeue(item)) { |
1095 | return true; |
1096 | } |
1097 | } |
1098 | return false; |
1099 | } |
1100 | |
1101 | // Attempts to dequeue from the queue using an explicit consumer token. |
1102 | // Returns false if all producer streams appeared empty at the time they |
1103 | // were checked (so, the queue is likely but not guaranteed to be empty). |
1104 | // Never allocates. Thread-safe. |
1105 | template<typename U> |
1106 | bool try_dequeue(consumer_token_t& token, U& item) |
1107 | { |
1108 | // The idea is roughly as follows: |
1109 | // Every 256 items from one producer, make everyone rotate (increase the global offset) -> this means the highest efficiency consumer dictates the rotation speed of everyone else, more or less |
1110 | // If you see that the global offset has changed, you must reset your consumption counter and move to your designated place |
1111 | // If there's no items where you're supposed to be, keep moving until you find a producer with some items |
1112 | // If the global offset has not changed but you've run out of items to consume, move over from your current position until you find an producer with something in it |
1113 | |
1114 | if (token.desiredProducer == nullptr || token.lastKnownGlobalOffset != globalExplicitConsumerOffset.load(m: std::memory_order_relaxed)) { |
1115 | if (!update_current_producer_after_rotation(token)) { |
1116 | return false; |
1117 | } |
1118 | } |
1119 | |
1120 | // If there was at least one non-empty queue but it appears empty at the time |
1121 | // we try to dequeue from it, we need to make sure every queue's been tried |
1122 | if (static_cast<ProducerBase*>(token.currentProducer)->dequeue(item)) { |
1123 | if (++token.itemsConsumedFromCurrent == EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE) { |
1124 | globalExplicitConsumerOffset.fetch_add(i: 1, m: std::memory_order_relaxed); |
1125 | } |
1126 | return true; |
1127 | } |
1128 | |
1129 | auto tail = producerListTail.load(std::memory_order_acquire); |
1130 | auto ptr = static_cast<ProducerBase*>(token.currentProducer)->next_prod(); |
1131 | if (ptr == nullptr) { |
1132 | ptr = tail; |
1133 | } |
1134 | while (ptr != static_cast<ProducerBase*>(token.currentProducer)) { |
1135 | if (ptr->dequeue(item)) { |
1136 | token.currentProducer = ptr; |
1137 | token.itemsConsumedFromCurrent = 1; |
1138 | return true; |
1139 | } |
1140 | ptr = ptr->next_prod(); |
1141 | if (ptr == nullptr) { |
1142 | ptr = tail; |
1143 | } |
1144 | } |
1145 | return false; |
1146 | } |
1147 | |
1148 | // Attempts to dequeue several elements from the queue. |
1149 | // Returns the number of items actually dequeued. |
1150 | // Returns 0 if all producer streams appeared empty at the time they |
1151 | // were checked (so, the queue is likely but not guaranteed to be empty). |
1152 | // Never allocates. Thread-safe. |
1153 | template<typename It> |
1154 | size_t try_dequeue_bulk(It itemFirst, size_t max) |
1155 | { |
1156 | size_t count = 0; |
1157 | for (auto ptr = producerListTail.load(std::memory_order_acquire); ptr != nullptr; ptr = ptr->next_prod()) { |
1158 | count += ptr->dequeue_bulk(itemFirst, max - count); |
1159 | if (count == max) { |
1160 | break; |
1161 | } |
1162 | } |
1163 | return count; |
1164 | } |
1165 | |
1166 | // Attempts to dequeue several elements from the queue using an explicit consumer token. |
1167 | // Returns the number of items actually dequeued. |
1168 | // Returns 0 if all producer streams appeared empty at the time they |
1169 | // were checked (so, the queue is likely but not guaranteed to be empty). |
1170 | // Never allocates. Thread-safe. |
1171 | template<typename It> |
1172 | size_t try_dequeue_bulk(consumer_token_t& token, It itemFirst, size_t max) |
1173 | { |
1174 | if (token.desiredProducer == nullptr || token.lastKnownGlobalOffset != globalExplicitConsumerOffset.load(m: std::memory_order_relaxed)) { |
1175 | if (!update_current_producer_after_rotation(token)) { |
1176 | return 0; |
1177 | } |
1178 | } |
1179 | |
1180 | size_t count = static_cast<ProducerBase*>(token.currentProducer)->dequeue_bulk(itemFirst, max); |
1181 | if (count == max) { |
1182 | if ((token.itemsConsumedFromCurrent += static_cast<std::uint32_t>(max)) >= EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE) { |
1183 | globalExplicitConsumerOffset.fetch_add(i: 1, m: std::memory_order_relaxed); |
1184 | } |
1185 | return max; |
1186 | } |
1187 | token.itemsConsumedFromCurrent += static_cast<std::uint32_t>(count); |
1188 | max -= count; |
1189 | |
1190 | auto tail = producerListTail.load(std::memory_order_acquire); |
1191 | auto ptr = static_cast<ProducerBase*>(token.currentProducer)->next_prod(); |
1192 | if (ptr == nullptr) { |
1193 | ptr = tail; |
1194 | } |
1195 | while (ptr != static_cast<ProducerBase*>(token.currentProducer)) { |
1196 | auto dequeued = ptr->dequeue_bulk(itemFirst, max); |
1197 | count += dequeued; |
1198 | if (dequeued != 0) { |
1199 | token.currentProducer = ptr; |
1200 | token.itemsConsumedFromCurrent = static_cast<std::uint32_t>(dequeued); |
1201 | } |
1202 | if (dequeued == max) { |
1203 | break; |
1204 | } |
1205 | max -= dequeued; |
1206 | ptr = ptr->next_prod(); |
1207 | if (ptr == nullptr) { |
1208 | ptr = tail; |
1209 | } |
1210 | } |
1211 | return count; |
1212 | } |
1213 | |
1214 | |
1215 | |
1216 | // Attempts to dequeue from a specific producer's inner queue. |
1217 | // If you happen to know which producer you want to dequeue from, this |
1218 | // is significantly faster than using the general-case try_dequeue methods. |
1219 | // Returns false if the producer's queue appeared empty at the time it |
1220 | // was checked (so, the queue is likely but not guaranteed to be empty). |
1221 | // Never allocates. Thread-safe. |
1222 | template<typename U> |
1223 | inline bool try_dequeue_from_producer(producer_token_t const& producer, U& item) |
1224 | { |
1225 | return static_cast<ExplicitProducer*>(producer.producer)->dequeue(item); |
1226 | } |
1227 | |
1228 | // Attempts to dequeue several elements from a specific producer's inner queue. |
1229 | // Returns the number of items actually dequeued. |
1230 | // If you happen to know which producer you want to dequeue from, this |
1231 | // is significantly faster than using the general-case try_dequeue methods. |
1232 | // Returns 0 if the producer's queue appeared empty at the time it |
1233 | // was checked (so, the queue is likely but not guaranteed to be empty). |
1234 | // Never allocates. Thread-safe. |
1235 | template<typename It> |
1236 | inline size_t try_dequeue_bulk_from_producer(producer_token_t const& producer, It itemFirst, size_t max) |
1237 | { |
1238 | return static_cast<ExplicitProducer*>(producer.producer)->dequeue_bulk(itemFirst, max); |
1239 | } |
1240 | |
1241 | |
1242 | // Returns an estimate of the total number of elements currently in the queue. This |
1243 | // estimate is only accurate if the queue has completely stabilized before it is called |
1244 | // (i.e. all enqueue and dequeue operations have completed and their memory effects are |
1245 | // visible on the calling thread, and no further operations start while this method is |
1246 | // being called). |
1247 | // Thread-safe. |
1248 | size_t size_approx() const |
1249 | { |
1250 | size_t size = 0; |
1251 | for (auto ptr = producerListTail.load(std::memory_order_acquire); ptr != nullptr; ptr = ptr->next_prod()) { |
1252 | size += ptr->size_approx(); |
1253 | } |
1254 | return size; |
1255 | } |
1256 | |
1257 | |
1258 | // Returns true if the underlying atomic variables used by |
1259 | // the queue are lock-free (they should be on most platforms). |
1260 | // Thread-safe. |
1261 | static bool is_lock_free() |
1262 | { |
1263 | return |
1264 | details::static_is_lock_free<bool>::value == 2 && |
1265 | details::static_is_lock_free<size_t>::value == 2 && |
1266 | details::static_is_lock_free<std::uint32_t>::value == 2 && |
1267 | details::static_is_lock_free<index_t>::value == 2 && |
1268 | details::static_is_lock_free<void*>::value == 2 && |
1269 | details::static_is_lock_free<typename details::thread_id_converter<details::thread_id_t>::thread_id_numeric_size_t>::value == 2; |
1270 | } |
1271 | |
1272 | |
1273 | private: |
1274 | friend struct ProducerToken; |
1275 | friend struct ConsumerToken; |
1276 | struct ExplicitProducer; |
1277 | friend struct ExplicitProducer; |
1278 | struct ImplicitProducer; |
1279 | friend struct ImplicitProducer; |
1280 | friend class ConcurrentQueueTests; |
1281 | |
1282 | enum AllocationMode { CanAlloc, CannotAlloc }; |
1283 | |
1284 | |
1285 | /////////////////////////////// |
1286 | // Queue methods |
1287 | /////////////////////////////// |
1288 | |
1289 | template<AllocationMode canAlloc, typename U> |
1290 | inline bool inner_enqueue(producer_token_t const& token, U&& element) |
1291 | { |
1292 | return static_cast<ExplicitProducer*>(token.producer)->ConcurrentQueue::ExplicitProducer::template enqueue<canAlloc>(std::forward<U>(element)); |
1293 | } |
1294 | |
1295 | template<AllocationMode canAlloc, typename U> |
1296 | inline bool inner_enqueue(U&& element) |
1297 | { |
1298 | auto producer = get_or_add_implicit_producer(); |
1299 | return producer == nullptr ? false : producer->ConcurrentQueue::ImplicitProducer::template enqueue<canAlloc>(std::forward<U>(element)); |
1300 | } |
1301 | |
1302 | template<AllocationMode canAlloc, typename It> |
1303 | inline bool inner_enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count) |
1304 | { |
1305 | return static_cast<ExplicitProducer*>(token.producer)->ConcurrentQueue::ExplicitProducer::template enqueue_bulk<canAlloc>(itemFirst, count); |
1306 | } |
1307 | |
1308 | template<AllocationMode canAlloc, typename It> |
1309 | inline bool inner_enqueue_bulk(It itemFirst, size_t count) |
1310 | { |
1311 | auto producer = get_or_add_implicit_producer(); |
1312 | return producer == nullptr ? false : producer->ConcurrentQueue::ImplicitProducer::template enqueue_bulk<canAlloc>(itemFirst, count); |
1313 | } |
1314 | |
1315 | inline bool update_current_producer_after_rotation(consumer_token_t& token) |
1316 | { |
1317 | // Ah, there's been a rotation, figure out where we should be! |
1318 | auto tail = producerListTail.load(std::memory_order_acquire); |
1319 | if (token.desiredProducer == nullptr && tail == nullptr) { |
1320 | return false; |
1321 | } |
1322 | auto prodCount = producerCount.load(m: std::memory_order_relaxed); |
1323 | auto globalOffset = globalExplicitConsumerOffset.load(m: std::memory_order_relaxed); |
1324 | if (token.desiredProducer == nullptr) { |
1325 | // Aha, first time we're dequeueing anything. |
1326 | // Figure out our local position |
1327 | // Note: offset is from start, not end, but we're traversing from end -- subtract from count first |
1328 | std::uint32_t offset = prodCount - 1 - (token.initialOffset % prodCount); |
1329 | token.desiredProducer = tail; |
1330 | for (std::uint32_t i = 0; i != offset; ++i) { |
1331 | token.desiredProducer = static_cast<ProducerBase*>(token.desiredProducer)->next_prod(); |
1332 | if (token.desiredProducer == nullptr) { |
1333 | token.desiredProducer = tail; |
1334 | } |
1335 | } |
1336 | } |
1337 | |
1338 | std::uint32_t delta = globalOffset - token.lastKnownGlobalOffset; |
1339 | if (delta >= prodCount) { |
1340 | delta = delta % prodCount; |
1341 | } |
1342 | for (std::uint32_t i = 0; i != delta; ++i) { |
1343 | token.desiredProducer = static_cast<ProducerBase*>(token.desiredProducer)->next_prod(); |
1344 | if (token.desiredProducer == nullptr) { |
1345 | token.desiredProducer = tail; |
1346 | } |
1347 | } |
1348 | |
1349 | token.lastKnownGlobalOffset = globalOffset; |
1350 | token.currentProducer = token.desiredProducer; |
1351 | token.itemsConsumedFromCurrent = 0; |
1352 | return true; |
1353 | } |
1354 | |
1355 | |
1356 | /////////////////////////// |
1357 | // Free list |
1358 | /////////////////////////// |
1359 | |
1360 | template <typename N> |
1361 | struct FreeListNode |
1362 | { |
1363 | FreeListNode() : freeListRefs(0), freeListNext(nullptr) { } |
1364 | |
1365 | std::atomic<std::uint32_t> freeListRefs; |
1366 | std::atomic<N*> freeListNext; |
1367 | }; |
1368 | |
1369 | // A simple CAS-based lock-free free list. Not the fastest thing in the world under heavy contention, but |
1370 | // simple and correct (assuming nodes are never freed until after the free list is destroyed), and fairly |
1371 | // speedy under low contention. |
1372 | template<typename N> // N must inherit FreeListNode or have the same fields (and initialization of them) |
1373 | struct FreeList |
1374 | { |
1375 | FreeList() : freeListHead(nullptr) { } |
1376 | FreeList(FreeList&& other) : freeListHead(other.freeListHead.load(std::memory_order_relaxed)) { other.freeListHead.store(nullptr, std::memory_order_relaxed); } |
1377 | void swap(FreeList& other) { details::swap_relaxed(freeListHead, other.freeListHead); } |
1378 | |
1379 | FreeList(FreeList const&) MOODYCAMEL_DELETE_FUNCTION; |
1380 | FreeList& operator=(FreeList const&) MOODYCAMEL_DELETE_FUNCTION; |
1381 | |
1382 | inline void add(N* node) |
1383 | { |
1384 | #ifdef MCDBGQ_NOLOCKFREE_FREELIST |
1385 | debug::DebugLock lock(mutex); |
1386 | #endif |
1387 | // We know that the should-be-on-freelist bit is 0 at this point, so it's safe to |
1388 | // set it using a fetch_add |
1389 | if (node->freeListRefs.fetch_add(SHOULD_BE_ON_FREELIST, std::memory_order_acq_rel) == 0) { |
1390 | // Oh look! We were the last ones referencing this node, and we know |
1391 | // we want to add it to the free list, so let's do it! |
1392 | add_knowing_refcount_is_zero(node); |
1393 | } |
1394 | } |
1395 | |
1396 | inline N* try_get() |
1397 | { |
1398 | #ifdef MCDBGQ_NOLOCKFREE_FREELIST |
1399 | debug::DebugLock lock(mutex); |
1400 | #endif |
1401 | auto head = freeListHead.load(std::memory_order_acquire); |
1402 | while (head != nullptr) { |
1403 | auto prevHead = head; |
1404 | auto refs = head->freeListRefs.load(std::memory_order_relaxed); |
1405 | if ((refs & REFS_MASK) == 0 || !head->freeListRefs.compare_exchange_strong(refs, refs + 1, std::memory_order_acquire, std::memory_order_relaxed)) { |
1406 | head = freeListHead.load(std::memory_order_acquire); |
1407 | continue; |
1408 | } |
1409 | |
1410 | // Good, reference count has been incremented (it wasn't at zero), which means we can read the |
1411 | // next and not worry about it changing between now and the time we do the CAS |
1412 | auto next = head->freeListNext.load(std::memory_order_relaxed); |
1413 | if (freeListHead.compare_exchange_strong(head, next, std::memory_order_acquire, std::memory_order_relaxed)) { |
1414 | // Yay, got the node. This means it was on the list, which means shouldBeOnFreeList must be false no |
1415 | // matter the refcount (because nobody else knows it's been taken off yet, it can't have been put back on). |
1416 | assert((head->freeListRefs.load(std::memory_order_relaxed) & SHOULD_BE_ON_FREELIST) == 0); |
1417 | |
1418 | // Decrease refcount twice, once for our ref, and once for the list's ref |
1419 | head->freeListRefs.fetch_sub(2, std::memory_order_release); |
1420 | return head; |
1421 | } |
1422 | |
1423 | // OK, the head must have changed on us, but we still need to decrease the refcount we increased. |
1424 | // Note that we don't need to release any memory effects, but we do need to ensure that the reference |
1425 | // count decrement happens-after the CAS on the head. |
1426 | refs = prevHead->freeListRefs.fetch_sub(1, std::memory_order_acq_rel); |
1427 | if (refs == SHOULD_BE_ON_FREELIST + 1) { |
1428 | add_knowing_refcount_is_zero(node: prevHead); |
1429 | } |
1430 | } |
1431 | |
1432 | return nullptr; |
1433 | } |
1434 | |
1435 | // Useful for traversing the list when there's no contention (e.g. to destroy remaining nodes) |
1436 | N* head_unsafe() const { return freeListHead.load(std::memory_order_relaxed); } |
1437 | |
1438 | private: |
1439 | inline void add_knowing_refcount_is_zero(N* node) |
1440 | { |
1441 | // Since the refcount is zero, and nobody can increase it once it's zero (except us, and we run |
1442 | // only one copy of this method per node at a time, i.e. the single thread case), then we know |
1443 | // we can safely change the next pointer of the node; however, once the refcount is back above |
1444 | // zero, then other threads could increase it (happens under heavy contention, when the refcount |
1445 | // goes to zero in between a load and a refcount increment of a node in try_get, then back up to |
1446 | // something non-zero, then the refcount increment is done by the other thread) -- so, if the CAS |
1447 | // to add the node to the actual list fails, decrease the refcount and leave the add operation to |
1448 | // the next thread who puts the refcount back at zero (which could be us, hence the loop). |
1449 | auto head = freeListHead.load(std::memory_order_relaxed); |
1450 | while (true) { |
1451 | node->freeListNext.store(head, std::memory_order_relaxed); |
1452 | node->freeListRefs.store(1, std::memory_order_release); |
1453 | if (!freeListHead.compare_exchange_strong(head, node, std::memory_order_release, std::memory_order_relaxed)) { |
1454 | // Hmm, the add failed, but we can only try again when the refcount goes back to zero |
1455 | if (node->freeListRefs.fetch_add(SHOULD_BE_ON_FREELIST - 1, std::memory_order_release) == 1) { |
1456 | continue; |
1457 | } |
1458 | } |
1459 | return; |
1460 | } |
1461 | } |
1462 | |
1463 | private: |
1464 | // Implemented like a stack, but where node order doesn't matter (nodes are inserted out of order under contention) |
1465 | std::atomic<N*> freeListHead; |
1466 | |
1467 | static const std::uint32_t REFS_MASK = 0x7FFFFFFF; |
1468 | static const std::uint32_t SHOULD_BE_ON_FREELIST = 0x80000000; |
1469 | |
1470 | #ifdef MCDBGQ_NOLOCKFREE_FREELIST |
1471 | debug::DebugMutex mutex; |
1472 | #endif |
1473 | }; |
1474 | |
1475 | |
1476 | /////////////////////////// |
1477 | // Block |
1478 | /////////////////////////// |
1479 | |
1480 | enum InnerQueueContext { implicit_context = 0, explicit_context = 1 }; |
1481 | |
1482 | struct Block |
1483 | { |
1484 | Block() |
1485 | : next(nullptr), elementsCompletelyDequeued(0), freeListRefs(0), freeListNext(nullptr), shouldBeOnFreeList(false), dynamicallyAllocated(true) |
1486 | { |
1487 | #ifdef MCDBGQ_TRACKMEM |
1488 | owner = nullptr; |
1489 | #endif |
1490 | } |
1491 | |
1492 | template<InnerQueueContext context> |
1493 | inline bool is_empty() const |
1494 | { |
1495 | MOODYCAMEL_CONSTEXPR_IF (context == explicit_context && BLOCK_SIZE <= EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD) { |
1496 | // Check flags |
1497 | for (size_t i = 0; i < BLOCK_SIZE; ++i) { |
1498 | if (!emptyFlags[i].load(std::memory_order_relaxed)) { |
1499 | return false; |
1500 | } |
1501 | } |
1502 | |
1503 | // Aha, empty; make sure we have all other memory effects that happened before the empty flags were set |
1504 | std::atomic_thread_fence(m: std::memory_order_acquire); |
1505 | return true; |
1506 | } |
1507 | else { |
1508 | // Check counter |
1509 | if (elementsCompletelyDequeued.load(std::memory_order_relaxed) == BLOCK_SIZE) { |
1510 | std::atomic_thread_fence(m: std::memory_order_acquire); |
1511 | return true; |
1512 | } |
1513 | assert(elementsCompletelyDequeued.load(std::memory_order_relaxed) <= BLOCK_SIZE); |
1514 | return false; |
1515 | } |
1516 | } |
1517 | |
1518 | // Returns true if the block is now empty (does not apply in explicit context) |
1519 | template<InnerQueueContext context> |
1520 | inline bool set_empty(MOODYCAMEL_MAYBE_UNUSED index_t i) |
1521 | { |
1522 | MOODYCAMEL_CONSTEXPR_IF (context == explicit_context && BLOCK_SIZE <= EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD) { |
1523 | // Set flag |
1524 | assert(!emptyFlags[BLOCK_SIZE - 1 - static_cast<size_t>(i & static_cast<index_t>(BLOCK_SIZE - 1))].load(std::memory_order_relaxed)); |
1525 | emptyFlags[BLOCK_SIZE - 1 - static_cast<size_t>(i & static_cast<index_t>(BLOCK_SIZE - 1))].store(true, std::memory_order_release); |
1526 | return false; |
1527 | } |
1528 | else { |
1529 | // Increment counter |
1530 | auto prevVal = elementsCompletelyDequeued.fetch_add(1, std::memory_order_release); |
1531 | assert(prevVal < BLOCK_SIZE); |
1532 | return prevVal == BLOCK_SIZE - 1; |
1533 | } |
1534 | } |
1535 | |
1536 | // Sets multiple contiguous item statuses to 'empty' (assumes no wrapping and count > 0). |
1537 | // Returns true if the block is now empty (does not apply in explicit context). |
1538 | template<InnerQueueContext context> |
1539 | inline bool set_many_empty(MOODYCAMEL_MAYBE_UNUSED index_t i, size_t count) |
1540 | { |
1541 | MOODYCAMEL_CONSTEXPR_IF (context == explicit_context && BLOCK_SIZE <= EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD) { |
1542 | // Set flags |
1543 | std::atomic_thread_fence(m: std::memory_order_release); |
1544 | i = BLOCK_SIZE - 1 - static_cast<size_t>(i & static_cast<index_t>(BLOCK_SIZE - 1)) - count + 1; |
1545 | for (size_t j = 0; j != count; ++j) { |
1546 | assert(!emptyFlags[i + j].load(std::memory_order_relaxed)); |
1547 | emptyFlags[i + j].store(true, std::memory_order_relaxed); |
1548 | } |
1549 | return false; |
1550 | } |
1551 | else { |
1552 | // Increment counter |
1553 | auto prevVal = elementsCompletelyDequeued.fetch_add(count, std::memory_order_release); |
1554 | assert(prevVal + count <= BLOCK_SIZE); |
1555 | return prevVal + count == BLOCK_SIZE; |
1556 | } |
1557 | } |
1558 | |
1559 | template<InnerQueueContext context> |
1560 | inline void set_all_empty() |
1561 | { |
1562 | MOODYCAMEL_CONSTEXPR_IF (context == explicit_context && BLOCK_SIZE <= EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD) { |
1563 | // Set all flags |
1564 | for (size_t i = 0; i != BLOCK_SIZE; ++i) { |
1565 | emptyFlags[i].store(true, std::memory_order_relaxed); |
1566 | } |
1567 | } |
1568 | else { |
1569 | // Reset counter |
1570 | elementsCompletelyDequeued.store(BLOCK_SIZE, std::memory_order_relaxed); |
1571 | } |
1572 | } |
1573 | |
1574 | template<InnerQueueContext context> |
1575 | inline void reset_empty() |
1576 | { |
1577 | MOODYCAMEL_CONSTEXPR_IF (context == explicit_context && BLOCK_SIZE <= EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD) { |
1578 | // Reset flags |
1579 | for (size_t i = 0; i != BLOCK_SIZE; ++i) { |
1580 | emptyFlags[i].store(false, std::memory_order_relaxed); |
1581 | } |
1582 | } |
1583 | else { |
1584 | // Reset counter |
1585 | elementsCompletelyDequeued.store(0, std::memory_order_relaxed); |
1586 | } |
1587 | } |
1588 | |
1589 | inline T* operator[](index_t idx) MOODYCAMEL_NOEXCEPT { return static_cast<T*>(static_cast<void*>(elements)) + static_cast<size_t>(idx & static_cast<index_t>(BLOCK_SIZE - 1)); } |
1590 | inline T const* operator[](index_t idx) const MOODYCAMEL_NOEXCEPT { return static_cast<T const*>(static_cast<void const*>(elements)) + static_cast<size_t>(idx & static_cast<index_t>(BLOCK_SIZE - 1)); } |
1591 | |
1592 | private: |
1593 | static_assert(std::alignment_of<T>::value <= sizeof(T), "The queue does not support types with an alignment greater than their size at this time" ); |
1594 | MOODYCAMEL_ALIGNAS(MOODYCAMEL_ALIGNOF(T)) char elements[sizeof(T) * BLOCK_SIZE]; |
1595 | public: |
1596 | Block* next; |
1597 | std::atomic<size_t> elementsCompletelyDequeued; |
1598 | std::atomic<bool> emptyFlags[BLOCK_SIZE <= EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD ? BLOCK_SIZE : 1]; |
1599 | public: |
1600 | std::atomic<std::uint32_t> freeListRefs; |
1601 | std::atomic<Block*> freeListNext; |
1602 | std::atomic<bool> shouldBeOnFreeList; |
1603 | bool dynamicallyAllocated; // Perhaps a better name for this would be 'isNotPartOfInitialBlockPool' |
1604 | |
1605 | #ifdef MCDBGQ_TRACKMEM |
1606 | void* owner; |
1607 | #endif |
1608 | }; |
1609 | static_assert(std::alignment_of<Block>::value >= std::alignment_of<T>::value, "Internal error: Blocks must be at least as aligned as the type they are wrapping" ); |
1610 | |
1611 | |
1612 | #ifdef MCDBGQ_TRACKMEM |
1613 | public: |
1614 | struct MemStats; |
1615 | private: |
1616 | #endif |
1617 | |
1618 | /////////////////////////// |
1619 | // Producer base |
1620 | /////////////////////////// |
1621 | |
1622 | struct ProducerBase : public details::ConcurrentQueueProducerTypelessBase |
1623 | { |
1624 | ProducerBase(ConcurrentQueue* parent_, bool isExplicit_) : |
1625 | tailIndex(0), |
1626 | headIndex(0), |
1627 | dequeueOptimisticCount(0), |
1628 | dequeueOvercommit(0), |
1629 | tailBlock(nullptr), |
1630 | isExplicit(isExplicit_), |
1631 | parent(parent_) |
1632 | { |
1633 | } |
1634 | |
1635 | virtual ~ProducerBase() { }; |
1636 | |
1637 | template<typename U> |
1638 | inline bool dequeue(U& element) |
1639 | { |
1640 | if (isExplicit) { |
1641 | return static_cast<ExplicitProducer*>(this)->dequeue(element); |
1642 | } |
1643 | else { |
1644 | return static_cast<ImplicitProducer*>(this)->dequeue(element); |
1645 | } |
1646 | } |
1647 | |
1648 | template<typename It> |
1649 | inline size_t dequeue_bulk(It& itemFirst, size_t max) |
1650 | { |
1651 | if (isExplicit) { |
1652 | return static_cast<ExplicitProducer*>(this)->dequeue_bulk(itemFirst, max); |
1653 | } |
1654 | else { |
1655 | return static_cast<ImplicitProducer*>(this)->dequeue_bulk(itemFirst, max); |
1656 | } |
1657 | } |
1658 | |
1659 | inline ProducerBase* next_prod() const { return static_cast<ProducerBase*>(next); } |
1660 | |
1661 | inline size_t size_approx() const |
1662 | { |
1663 | auto tail = tailIndex.load(std::memory_order_relaxed); |
1664 | auto head = headIndex.load(std::memory_order_relaxed); |
1665 | return details::circular_less_than(head, tail) ? static_cast<size_t>(tail - head) : 0; |
1666 | } |
1667 | |
1668 | inline index_t getTail() const { return tailIndex.load(std::memory_order_relaxed); } |
1669 | protected: |
1670 | std::atomic<index_t> tailIndex; // Where to enqueue to next |
1671 | std::atomic<index_t> headIndex; // Where to dequeue from next |
1672 | |
1673 | std::atomic<index_t> dequeueOptimisticCount; |
1674 | std::atomic<index_t> dequeueOvercommit; |
1675 | |
1676 | Block* tailBlock; |
1677 | |
1678 | public: |
1679 | bool isExplicit; |
1680 | ConcurrentQueue* parent; |
1681 | |
1682 | protected: |
1683 | #ifdef MCDBGQ_TRACKMEM |
1684 | friend struct MemStats; |
1685 | #endif |
1686 | }; |
1687 | |
1688 | |
1689 | /////////////////////////// |
1690 | // Explicit queue |
1691 | /////////////////////////// |
1692 | |
1693 | struct ExplicitProducer : public ProducerBase |
1694 | { |
1695 | explicit ExplicitProducer(ConcurrentQueue* parent_) : |
1696 | ProducerBase(parent_, true), |
1697 | blockIndex(nullptr), |
1698 | pr_blockIndexSlotsUsed(0), |
1699 | pr_blockIndexSize(EXPLICIT_INITIAL_INDEX_SIZE >> 1), |
1700 | pr_blockIndexFront(0), |
1701 | pr_blockIndexEntries(nullptr), |
1702 | pr_blockIndexRaw(nullptr) |
1703 | { |
1704 | size_t poolBasedIndexSize = details::ceil_to_pow_2(parent_->initialBlockPoolSize) >> 1; |
1705 | if (poolBasedIndexSize > pr_blockIndexSize) { |
1706 | pr_blockIndexSize = poolBasedIndexSize; |
1707 | } |
1708 | |
1709 | new_block_index(numberOfFilledSlotsToExpose: 0); // This creates an index with double the number of current entries, i.e. EXPLICIT_INITIAL_INDEX_SIZE |
1710 | } |
1711 | |
1712 | ~ExplicitProducer() |
1713 | { |
1714 | // Destruct any elements not yet dequeued. |
1715 | // Since we're in the destructor, we can assume all elements |
1716 | // are either completely dequeued or completely not (no halfways). |
1717 | if (this->tailBlock != nullptr) { // Note this means there must be a block index too |
1718 | // First find the block that's partially dequeued, if any |
1719 | Block* halfDequeuedBlock = nullptr; |
1720 | if ((this->headIndex.load(std::memory_order_relaxed) & static_cast<index_t>(BLOCK_SIZE - 1)) != 0) { |
1721 | // The head's not on a block boundary, meaning a block somewhere is partially dequeued |
1722 | // (or the head block is the tail block and was fully dequeued, but the head/tail are still not on a boundary) |
1723 | size_t i = (pr_blockIndexFront - pr_blockIndexSlotsUsed) & (pr_blockIndexSize - 1); |
1724 | while (details::circular_less_than<index_t>(pr_blockIndexEntries[i].base + BLOCK_SIZE, this->headIndex.load(std::memory_order_relaxed))) { |
1725 | i = (i + 1) & (pr_blockIndexSize - 1); |
1726 | } |
1727 | assert(details::circular_less_than<index_t>(pr_blockIndexEntries[i].base, this->headIndex.load(std::memory_order_relaxed))); |
1728 | halfDequeuedBlock = pr_blockIndexEntries[i].block; |
1729 | } |
1730 | |
1731 | // Start at the head block (note the first line in the loop gives us the head from the tail on the first iteration) |
1732 | auto block = this->tailBlock; |
1733 | do { |
1734 | block = block->next; |
1735 | if (block->ConcurrentQueue::Block::template is_empty<explicit_context>()) { |
1736 | continue; |
1737 | } |
1738 | |
1739 | size_t i = 0; // Offset into block |
1740 | if (block == halfDequeuedBlock) { |
1741 | i = static_cast<size_t>(this->headIndex.load(std::memory_order_relaxed) & static_cast<index_t>(BLOCK_SIZE - 1)); |
1742 | } |
1743 | |
1744 | // Walk through all the items in the block; if this is the tail block, we need to stop when we reach the tail index |
1745 | auto lastValidIndex = (this->tailIndex.load(std::memory_order_relaxed) & static_cast<index_t>(BLOCK_SIZE - 1)) == 0 ? BLOCK_SIZE : static_cast<size_t>(this->tailIndex.load(std::memory_order_relaxed) & static_cast<index_t>(BLOCK_SIZE - 1)); |
1746 | while (i != BLOCK_SIZE && (block != this->tailBlock || i != lastValidIndex)) { |
1747 | (*block)[i++]->~T(); |
1748 | } |
1749 | } while (block != this->tailBlock); |
1750 | } |
1751 | |
1752 | // Destroy all blocks that we own |
1753 | if (this->tailBlock != nullptr) { |
1754 | auto block = this->tailBlock; |
1755 | do { |
1756 | auto nextBlock = block->next; |
1757 | if (block->dynamicallyAllocated) { |
1758 | destroy(block); |
1759 | } |
1760 | else { |
1761 | this->parent->add_block_to_free_list(block); |
1762 | } |
1763 | block = nextBlock; |
1764 | } while (block != this->tailBlock); |
1765 | } |
1766 | |
1767 | // Destroy the block indices |
1768 | auto = static_cast<BlockIndexHeader*>(pr_blockIndexRaw); |
1769 | while (header != nullptr) { |
1770 | auto prev = static_cast<BlockIndexHeader*>(header->prev); |
1771 | header->~BlockIndexHeader(); |
1772 | (Traits::free)(header); |
1773 | header = prev; |
1774 | } |
1775 | } |
1776 | |
1777 | template<AllocationMode allocMode, typename U> |
1778 | inline bool enqueue(U&& element) |
1779 | { |
1780 | index_t currentTailIndex = this->tailIndex.load(std::memory_order_relaxed); |
1781 | index_t newTailIndex = 1 + currentTailIndex; |
1782 | if ((currentTailIndex & static_cast<index_t>(BLOCK_SIZE - 1)) == 0) { |
1783 | // We reached the end of a block, start a new one |
1784 | auto startBlock = this->tailBlock; |
1785 | auto originalBlockIndexSlotsUsed = pr_blockIndexSlotsUsed; |
1786 | if (this->tailBlock != nullptr && this->tailBlock->next->ConcurrentQueue::Block::template is_empty<explicit_context>()) { |
1787 | // We can re-use the block ahead of us, it's empty! |
1788 | this->tailBlock = this->tailBlock->next; |
1789 | this->tailBlock->ConcurrentQueue::Block::template reset_empty<explicit_context>(); |
1790 | |
1791 | // We'll put the block on the block index (guaranteed to be room since we're conceptually removing the |
1792 | // last block from it first -- except instead of removing then adding, we can just overwrite). |
1793 | // Note that there must be a valid block index here, since even if allocation failed in the ctor, |
1794 | // it would have been re-attempted when adding the first block to the queue; since there is such |
1795 | // a block, a block index must have been successfully allocated. |
1796 | } |
1797 | else { |
1798 | // Whatever head value we see here is >= the last value we saw here (relatively), |
1799 | // and <= its current value. Since we have the most recent tail, the head must be |
1800 | // <= to it. |
1801 | auto head = this->headIndex.load(std::memory_order_relaxed); |
1802 | assert(!details::circular_less_than<index_t>(currentTailIndex, head)); |
1803 | if (!details::circular_less_than<index_t>(head, currentTailIndex + BLOCK_SIZE) |
1804 | || (MAX_SUBQUEUE_SIZE != details::const_numeric_max<size_t>::value && (MAX_SUBQUEUE_SIZE == 0 || MAX_SUBQUEUE_SIZE - BLOCK_SIZE < currentTailIndex - head))) { |
1805 | // We can't enqueue in another block because there's not enough leeway -- the |
1806 | // tail could surpass the head by the time the block fills up! (Or we'll exceed |
1807 | // the size limit, if the second part of the condition was true.) |
1808 | return false; |
1809 | } |
1810 | // We're going to need a new block; check that the block index has room |
1811 | if (pr_blockIndexRaw == nullptr || pr_blockIndexSlotsUsed == pr_blockIndexSize) { |
1812 | // Hmm, the circular block index is already full -- we'll need |
1813 | // to allocate a new index. Note pr_blockIndexRaw can only be nullptr if |
1814 | // the initial allocation failed in the constructor. |
1815 | |
1816 | MOODYCAMEL_CONSTEXPR_IF (allocMode == CannotAlloc) { |
1817 | return false; |
1818 | } |
1819 | else if (!new_block_index(numberOfFilledSlotsToExpose: pr_blockIndexSlotsUsed)) { |
1820 | return false; |
1821 | } |
1822 | } |
1823 | |
1824 | // Insert a new block in the circular linked list |
1825 | auto newBlock = this->parent->ConcurrentQueue::template requisition_block<allocMode>(); |
1826 | if (newBlock == nullptr) { |
1827 | return false; |
1828 | } |
1829 | #ifdef MCDBGQ_TRACKMEM |
1830 | newBlock->owner = this; |
1831 | #endif |
1832 | newBlock->ConcurrentQueue::Block::template reset_empty<explicit_context>(); |
1833 | if (this->tailBlock == nullptr) { |
1834 | newBlock->next = newBlock; |
1835 | } |
1836 | else { |
1837 | newBlock->next = this->tailBlock->next; |
1838 | this->tailBlock->next = newBlock; |
1839 | } |
1840 | this->tailBlock = newBlock; |
1841 | ++pr_blockIndexSlotsUsed; |
1842 | } |
1843 | |
1844 | if (!MOODYCAMEL_NOEXCEPT_CTOR(T, U, new ((T*)nullptr) T(std::forward<U>(element)))) { |
1845 | // The constructor may throw. We want the element not to appear in the queue in |
1846 | // that case (without corrupting the queue): |
1847 | MOODYCAMEL_TRY { |
1848 | new ((*this->tailBlock)[currentTailIndex]) T(std::forward<U>(element)); |
1849 | } |
1850 | MOODYCAMEL_CATCH (...) { |
1851 | // Revert change to the current block, but leave the new block available |
1852 | // for next time |
1853 | pr_blockIndexSlotsUsed = originalBlockIndexSlotsUsed; |
1854 | this->tailBlock = startBlock == nullptr ? this->tailBlock : startBlock; |
1855 | MOODYCAMEL_RETHROW; |
1856 | } |
1857 | } |
1858 | else { |
1859 | (void)startBlock; |
1860 | (void)originalBlockIndexSlotsUsed; |
1861 | } |
1862 | |
1863 | // Add block to block index |
1864 | auto& entry = blockIndex.load(std::memory_order_relaxed)->entries[pr_blockIndexFront]; |
1865 | entry.base = currentTailIndex; |
1866 | entry.block = this->tailBlock; |
1867 | blockIndex.load(std::memory_order_relaxed)->front.store(pr_blockIndexFront, std::memory_order_release); |
1868 | pr_blockIndexFront = (pr_blockIndexFront + 1) & (pr_blockIndexSize - 1); |
1869 | |
1870 | if (!MOODYCAMEL_NOEXCEPT_CTOR(T, U, new ((T*)nullptr) T(std::forward<U>(element)))) { |
1871 | this->tailIndex.store(newTailIndex, std::memory_order_release); |
1872 | return true; |
1873 | } |
1874 | } |
1875 | |
1876 | // Enqueue |
1877 | new ((*this->tailBlock)[currentTailIndex]) T(std::forward<U>(element)); |
1878 | |
1879 | this->tailIndex.store(newTailIndex, std::memory_order_release); |
1880 | return true; |
1881 | } |
1882 | |
1883 | template<typename U> |
1884 | bool dequeue(U& element) |
1885 | { |
1886 | auto tail = this->tailIndex.load(std::memory_order_relaxed); |
1887 | auto overcommit = this->dequeueOvercommit.load(std::memory_order_relaxed); |
1888 | if (details::circular_less_than<index_t>(this->dequeueOptimisticCount.load(std::memory_order_relaxed) - overcommit, tail)) { |
1889 | // Might be something to dequeue, let's give it a try |
1890 | |
1891 | // Note that this if is purely for performance purposes in the common case when the queue is |
1892 | // empty and the values are eventually consistent -- we may enter here spuriously. |
1893 | |
1894 | // Note that whatever the values of overcommit and tail are, they are not going to change (unless we |
1895 | // change them) and must be the same value at this point (inside the if) as when the if condition was |
1896 | // evaluated. |
1897 | |
1898 | // We insert an acquire fence here to synchronize-with the release upon incrementing dequeueOvercommit below. |
1899 | // This ensures that whatever the value we got loaded into overcommit, the load of dequeueOptisticCount in |
1900 | // the fetch_add below will result in a value at least as recent as that (and therefore at least as large). |
1901 | // Note that I believe a compiler (signal) fence here would be sufficient due to the nature of fetch_add (all |
1902 | // read-modify-write operations are guaranteed to work on the latest value in the modification order), but |
1903 | // unfortunately that can't be shown to be correct using only the C++11 standard. |
1904 | // See http://stackoverflow.com/questions/18223161/what-are-the-c11-memory-ordering-guarantees-in-this-corner-case |
1905 | std::atomic_thread_fence(m: std::memory_order_acquire); |
1906 | |
1907 | // Increment optimistic counter, then check if it went over the boundary |
1908 | auto myDequeueCount = this->dequeueOptimisticCount.fetch_add(1, std::memory_order_relaxed); |
1909 | |
1910 | // Note that since dequeueOvercommit must be <= dequeueOptimisticCount (because dequeueOvercommit is only ever |
1911 | // incremented after dequeueOptimisticCount -- this is enforced in the `else` block below), and since we now |
1912 | // have a version of dequeueOptimisticCount that is at least as recent as overcommit (due to the release upon |
1913 | // incrementing dequeueOvercommit and the acquire above that synchronizes with it), overcommit <= myDequeueCount. |
1914 | // However, we can't assert this since both dequeueOptimisticCount and dequeueOvercommit may (independently) |
1915 | // overflow; in such a case, though, the logic still holds since the difference between the two is maintained. |
1916 | |
1917 | // Note that we reload tail here in case it changed; it will be the same value as before or greater, since |
1918 | // this load is sequenced after (happens after) the earlier load above. This is supported by read-read |
1919 | // coherency (as defined in the standard), explained here: http://en.cppreference.com/w/cpp/atomic/memory_order |
1920 | tail = this->tailIndex.load(std::memory_order_acquire); |
1921 | if ((details::likely)(x: details::circular_less_than<index_t>(myDequeueCount - overcommit, tail))) { |
1922 | // Guaranteed to be at least one element to dequeue! |
1923 | |
1924 | // Get the index. Note that since there's guaranteed to be at least one element, this |
1925 | // will never exceed tail. We need to do an acquire-release fence here since it's possible |
1926 | // that whatever condition got us to this point was for an earlier enqueued element (that |
1927 | // we already see the memory effects for), but that by the time we increment somebody else |
1928 | // has incremented it, and we need to see the memory effects for *that* element, which is |
1929 | // in such a case is necessarily visible on the thread that incremented it in the first |
1930 | // place with the more current condition (they must have acquired a tail that is at least |
1931 | // as recent). |
1932 | auto index = this->headIndex.fetch_add(1, std::memory_order_acq_rel); |
1933 | |
1934 | |
1935 | // Determine which block the element is in |
1936 | |
1937 | auto localBlockIndex = blockIndex.load(std::memory_order_acquire); |
1938 | auto localBlockIndexHead = localBlockIndex->front.load(std::memory_order_acquire); |
1939 | |
1940 | // We need to be careful here about subtracting and dividing because of index wrap-around. |
1941 | // When an index wraps, we need to preserve the sign of the offset when dividing it by the |
1942 | // block size (in order to get a correct signed block count offset in all cases): |
1943 | auto headBase = localBlockIndex->entries[localBlockIndexHead].base; |
1944 | auto blockBaseIndex = index & ~static_cast<index_t>(BLOCK_SIZE - 1); |
1945 | auto offset = static_cast<size_t>(static_cast<typename std::make_signed<index_t>::type>(blockBaseIndex - headBase) / BLOCK_SIZE); |
1946 | auto block = localBlockIndex->entries[(localBlockIndexHead + offset) & (localBlockIndex->size - 1)].block; |
1947 | |
1948 | // Dequeue |
1949 | auto& el = *((*block)[index]); |
1950 | if (!MOODYCAMEL_NOEXCEPT_ASSIGN(T, T&&, element = std::move(el))) { |
1951 | // Make sure the element is still fully dequeued and destroyed even if the assignment |
1952 | // throws |
1953 | struct Guard { |
1954 | Block* block; |
1955 | index_t index; |
1956 | |
1957 | ~Guard() |
1958 | { |
1959 | (*block)[index]->~T(); |
1960 | block->ConcurrentQueue::Block::template set_empty<explicit_context>(index); |
1961 | } |
1962 | } guard = { block, index }; |
1963 | |
1964 | element = std::move(el); // NOLINT |
1965 | } |
1966 | else { |
1967 | element = std::move(el); // NOLINT |
1968 | el.~T(); // NOLINT |
1969 | block->ConcurrentQueue::Block::template set_empty<explicit_context>(index); |
1970 | } |
1971 | |
1972 | return true; |
1973 | } |
1974 | else { |
1975 | // Wasn't anything to dequeue after all; make the effective dequeue count eventually consistent |
1976 | this->dequeueOvercommit.fetch_add(1, std::memory_order_release); // Release so that the fetch_add on dequeueOptimisticCount is guaranteed to happen before this write |
1977 | } |
1978 | } |
1979 | |
1980 | return false; |
1981 | } |
1982 | |
1983 | template<AllocationMode allocMode, typename It> |
1984 | bool enqueue_bulk(It itemFirst, size_t count) |
1985 | { |
1986 | // First, we need to make sure we have enough room to enqueue all of the elements; |
1987 | // this means pre-allocating blocks and putting them in the block index (but only if |
1988 | // all the allocations succeeded). |
1989 | index_t startTailIndex = this->tailIndex.load(std::memory_order_relaxed); |
1990 | auto startBlock = this->tailBlock; |
1991 | auto originalBlockIndexFront = pr_blockIndexFront; |
1992 | auto originalBlockIndexSlotsUsed = pr_blockIndexSlotsUsed; |
1993 | |
1994 | Block* firstAllocatedBlock = nullptr; |
1995 | |
1996 | // Figure out how many blocks we'll need to allocate, and do so |
1997 | size_t blockBaseDiff = ((startTailIndex + count - 1) & ~static_cast<index_t>(BLOCK_SIZE - 1)) - ((startTailIndex - 1) & ~static_cast<index_t>(BLOCK_SIZE - 1)); |
1998 | index_t currentTailIndex = (startTailIndex - 1) & ~static_cast<index_t>(BLOCK_SIZE - 1); |
1999 | if (blockBaseDiff > 0) { |
2000 | // Allocate as many blocks as possible from ahead |
2001 | while (blockBaseDiff > 0 && this->tailBlock != nullptr && this->tailBlock->next != firstAllocatedBlock && this->tailBlock->next->ConcurrentQueue::Block::template is_empty<explicit_context>()) { |
2002 | blockBaseDiff -= static_cast<index_t>(BLOCK_SIZE); |
2003 | currentTailIndex += static_cast<index_t>(BLOCK_SIZE); |
2004 | |
2005 | this->tailBlock = this->tailBlock->next; |
2006 | firstAllocatedBlock = firstAllocatedBlock == nullptr ? this->tailBlock : firstAllocatedBlock; |
2007 | |
2008 | auto& entry = blockIndex.load(std::memory_order_relaxed)->entries[pr_blockIndexFront]; |
2009 | entry.base = currentTailIndex; |
2010 | entry.block = this->tailBlock; |
2011 | pr_blockIndexFront = (pr_blockIndexFront + 1) & (pr_blockIndexSize - 1); |
2012 | } |
2013 | |
2014 | // Now allocate as many blocks as necessary from the block pool |
2015 | while (blockBaseDiff > 0) { |
2016 | blockBaseDiff -= static_cast<index_t>(BLOCK_SIZE); |
2017 | currentTailIndex += static_cast<index_t>(BLOCK_SIZE); |
2018 | |
2019 | auto head = this->headIndex.load(std::memory_order_relaxed); |
2020 | assert(!details::circular_less_than<index_t>(currentTailIndex, head)); |
2021 | bool full = !details::circular_less_than<index_t>(head, currentTailIndex + BLOCK_SIZE) || (MAX_SUBQUEUE_SIZE != details::const_numeric_max<size_t>::value && (MAX_SUBQUEUE_SIZE == 0 || MAX_SUBQUEUE_SIZE - BLOCK_SIZE < currentTailIndex - head)); |
2022 | if (pr_blockIndexRaw == nullptr || pr_blockIndexSlotsUsed == pr_blockIndexSize || full) { |
2023 | MOODYCAMEL_CONSTEXPR_IF (allocMode == CannotAlloc) { |
2024 | // Failed to allocate, undo changes (but keep injected blocks) |
2025 | pr_blockIndexFront = originalBlockIndexFront; |
2026 | pr_blockIndexSlotsUsed = originalBlockIndexSlotsUsed; |
2027 | this->tailBlock = startBlock == nullptr ? firstAllocatedBlock : startBlock; |
2028 | return false; |
2029 | } |
2030 | else if (full || !new_block_index(numberOfFilledSlotsToExpose: originalBlockIndexSlotsUsed)) { |
2031 | // Failed to allocate, undo changes (but keep injected blocks) |
2032 | pr_blockIndexFront = originalBlockIndexFront; |
2033 | pr_blockIndexSlotsUsed = originalBlockIndexSlotsUsed; |
2034 | this->tailBlock = startBlock == nullptr ? firstAllocatedBlock : startBlock; |
2035 | return false; |
2036 | } |
2037 | |
2038 | // pr_blockIndexFront is updated inside new_block_index, so we need to |
2039 | // update our fallback value too (since we keep the new index even if we |
2040 | // later fail) |
2041 | originalBlockIndexFront = originalBlockIndexSlotsUsed; |
2042 | } |
2043 | |
2044 | // Insert a new block in the circular linked list |
2045 | auto newBlock = this->parent->ConcurrentQueue::template requisition_block<allocMode>(); |
2046 | if (newBlock == nullptr) { |
2047 | pr_blockIndexFront = originalBlockIndexFront; |
2048 | pr_blockIndexSlotsUsed = originalBlockIndexSlotsUsed; |
2049 | this->tailBlock = startBlock == nullptr ? firstAllocatedBlock : startBlock; |
2050 | return false; |
2051 | } |
2052 | |
2053 | #ifdef MCDBGQ_TRACKMEM |
2054 | newBlock->owner = this; |
2055 | #endif |
2056 | newBlock->ConcurrentQueue::Block::template set_all_empty<explicit_context>(); |
2057 | if (this->tailBlock == nullptr) { |
2058 | newBlock->next = newBlock; |
2059 | } |
2060 | else { |
2061 | newBlock->next = this->tailBlock->next; |
2062 | this->tailBlock->next = newBlock; |
2063 | } |
2064 | this->tailBlock = newBlock; |
2065 | firstAllocatedBlock = firstAllocatedBlock == nullptr ? this->tailBlock : firstAllocatedBlock; |
2066 | |
2067 | ++pr_blockIndexSlotsUsed; |
2068 | |
2069 | auto& entry = blockIndex.load(std::memory_order_relaxed)->entries[pr_blockIndexFront]; |
2070 | entry.base = currentTailIndex; |
2071 | entry.block = this->tailBlock; |
2072 | pr_blockIndexFront = (pr_blockIndexFront + 1) & (pr_blockIndexSize - 1); |
2073 | } |
2074 | |
2075 | // Excellent, all allocations succeeded. Reset each block's emptiness before we fill them up, and |
2076 | // publish the new block index front |
2077 | auto block = firstAllocatedBlock; |
2078 | while (true) { |
2079 | block->ConcurrentQueue::Block::template reset_empty<explicit_context>(); |
2080 | if (block == this->tailBlock) { |
2081 | break; |
2082 | } |
2083 | block = block->next; |
2084 | } |
2085 | |
2086 | if (MOODYCAMEL_NOEXCEPT_CTOR(T, decltype(*itemFirst), new ((T*)nullptr) T(details::deref_noexcept(itemFirst)))) { |
2087 | blockIndex.load(std::memory_order_relaxed)->front.store((pr_blockIndexFront - 1) & (pr_blockIndexSize - 1), std::memory_order_release); |
2088 | } |
2089 | } |
2090 | |
2091 | // Enqueue, one block at a time |
2092 | index_t newTailIndex = startTailIndex + static_cast<index_t>(count); |
2093 | currentTailIndex = startTailIndex; |
2094 | auto endBlock = this->tailBlock; |
2095 | this->tailBlock = startBlock; |
2096 | assert((startTailIndex & static_cast<index_t>(BLOCK_SIZE - 1)) != 0 || firstAllocatedBlock != nullptr || count == 0); |
2097 | if ((startTailIndex & static_cast<index_t>(BLOCK_SIZE - 1)) == 0 && firstAllocatedBlock != nullptr) { |
2098 | this->tailBlock = firstAllocatedBlock; |
2099 | } |
2100 | while (true) { |
2101 | auto stopIndex = (currentTailIndex & ~static_cast<index_t>(BLOCK_SIZE - 1)) + static_cast<index_t>(BLOCK_SIZE); |
2102 | if (details::circular_less_than<index_t>(newTailIndex, stopIndex)) { |
2103 | stopIndex = newTailIndex; |
2104 | } |
2105 | if (MOODYCAMEL_NOEXCEPT_CTOR(T, decltype(*itemFirst), new ((T*)nullptr) T(details::deref_noexcept(itemFirst)))) { |
2106 | while (currentTailIndex != stopIndex) { |
2107 | new ((*this->tailBlock)[currentTailIndex++]) T(*itemFirst++); |
2108 | } |
2109 | } |
2110 | else { |
2111 | MOODYCAMEL_TRY { |
2112 | while (currentTailIndex != stopIndex) { |
2113 | // Must use copy constructor even if move constructor is available |
2114 | // because we may have to revert if there's an exception. |
2115 | // Sorry about the horrible templated next line, but it was the only way |
2116 | // to disable moving *at compile time*, which is important because a type |
2117 | // may only define a (noexcept) move constructor, and so calls to the |
2118 | // cctor will not compile, even if they are in an if branch that will never |
2119 | // be executed |
2120 | new ((*this->tailBlock)[currentTailIndex]) T(details::nomove_if<(bool)!MOODYCAMEL_NOEXCEPT_CTOR(T, decltype(*itemFirst), new ((T*)nullptr) T(details::deref_noexcept(itemFirst)))>::eval(*itemFirst)); |
2121 | ++currentTailIndex; |
2122 | ++itemFirst; |
2123 | } |
2124 | } |
2125 | MOODYCAMEL_CATCH (...) { |
2126 | // Oh dear, an exception's been thrown -- destroy the elements that |
2127 | // were enqueued so far and revert the entire bulk operation (we'll keep |
2128 | // any allocated blocks in our linked list for later, though). |
2129 | auto constructedStopIndex = currentTailIndex; |
2130 | auto lastBlockEnqueued = this->tailBlock; |
2131 | |
2132 | pr_blockIndexFront = originalBlockIndexFront; |
2133 | pr_blockIndexSlotsUsed = originalBlockIndexSlotsUsed; |
2134 | this->tailBlock = startBlock == nullptr ? firstAllocatedBlock : startBlock; |
2135 | |
2136 | if (!details::is_trivially_destructible<T>::value) { |
2137 | auto block = startBlock; |
2138 | if ((startTailIndex & static_cast<index_t>(BLOCK_SIZE - 1)) == 0) { |
2139 | block = firstAllocatedBlock; |
2140 | } |
2141 | currentTailIndex = startTailIndex; |
2142 | while (true) { |
2143 | stopIndex = (currentTailIndex & ~static_cast<index_t>(BLOCK_SIZE - 1)) + static_cast<index_t>(BLOCK_SIZE); |
2144 | if (details::circular_less_than<index_t>(constructedStopIndex, stopIndex)) { |
2145 | stopIndex = constructedStopIndex; |
2146 | } |
2147 | while (currentTailIndex != stopIndex) { |
2148 | (*block)[currentTailIndex++]->~T(); |
2149 | } |
2150 | if (block == lastBlockEnqueued) { |
2151 | break; |
2152 | } |
2153 | block = block->next; |
2154 | } |
2155 | } |
2156 | MOODYCAMEL_RETHROW; |
2157 | } |
2158 | } |
2159 | |
2160 | if (this->tailBlock == endBlock) { |
2161 | assert(currentTailIndex == newTailIndex); |
2162 | break; |
2163 | } |
2164 | this->tailBlock = this->tailBlock->next; |
2165 | } |
2166 | |
2167 | if (!MOODYCAMEL_NOEXCEPT_CTOR(T, decltype(*itemFirst), new ((T*)nullptr) T(details::deref_noexcept(itemFirst))) && firstAllocatedBlock != nullptr) { |
2168 | blockIndex.load(std::memory_order_relaxed)->front.store((pr_blockIndexFront - 1) & (pr_blockIndexSize - 1), std::memory_order_release); |
2169 | } |
2170 | |
2171 | this->tailIndex.store(newTailIndex, std::memory_order_release); |
2172 | return true; |
2173 | } |
2174 | |
2175 | template<typename It> |
2176 | size_t dequeue_bulk(It& itemFirst, size_t max) |
2177 | { |
2178 | auto tail = this->tailIndex.load(std::memory_order_relaxed); |
2179 | auto overcommit = this->dequeueOvercommit.load(std::memory_order_relaxed); |
2180 | auto desiredCount = static_cast<size_t>(tail - (this->dequeueOptimisticCount.load(std::memory_order_relaxed) - overcommit)); |
2181 | if (details::circular_less_than<size_t>(0, desiredCount)) { |
2182 | desiredCount = desiredCount < max ? desiredCount : max; |
2183 | std::atomic_thread_fence(m: std::memory_order_acquire); |
2184 | |
2185 | auto myDequeueCount = this->dequeueOptimisticCount.fetch_add(desiredCount, std::memory_order_relaxed);; |
2186 | |
2187 | tail = this->tailIndex.load(std::memory_order_acquire); |
2188 | auto actualCount = static_cast<size_t>(tail - (myDequeueCount - overcommit)); |
2189 | if (details::circular_less_than<size_t>(0, actualCount)) { |
2190 | actualCount = desiredCount < actualCount ? desiredCount : actualCount; |
2191 | if (actualCount < desiredCount) { |
2192 | this->dequeueOvercommit.fetch_add(desiredCount - actualCount, std::memory_order_release); |
2193 | } |
2194 | |
2195 | // Get the first index. Note that since there's guaranteed to be at least actualCount elements, this |
2196 | // will never exceed tail. |
2197 | auto firstIndex = this->headIndex.fetch_add(actualCount, std::memory_order_acq_rel); |
2198 | |
2199 | // Determine which block the first element is in |
2200 | auto localBlockIndex = blockIndex.load(std::memory_order_acquire); |
2201 | auto localBlockIndexHead = localBlockIndex->front.load(std::memory_order_acquire); |
2202 | |
2203 | auto headBase = localBlockIndex->entries[localBlockIndexHead].base; |
2204 | auto firstBlockBaseIndex = firstIndex & ~static_cast<index_t>(BLOCK_SIZE - 1); |
2205 | auto offset = static_cast<size_t>(static_cast<typename std::make_signed<index_t>::type>(firstBlockBaseIndex - headBase) / BLOCK_SIZE); |
2206 | auto indexIndex = (localBlockIndexHead + offset) & (localBlockIndex->size - 1); |
2207 | |
2208 | // Iterate the blocks and dequeue |
2209 | auto index = firstIndex; |
2210 | do { |
2211 | auto firstIndexInBlock = index; |
2212 | auto endIndex = (index & ~static_cast<index_t>(BLOCK_SIZE - 1)) + static_cast<index_t>(BLOCK_SIZE); |
2213 | endIndex = details::circular_less_than<index_t>(firstIndex + static_cast<index_t>(actualCount), endIndex) ? firstIndex + static_cast<index_t>(actualCount) : endIndex; |
2214 | auto block = localBlockIndex->entries[indexIndex].block; |
2215 | if (MOODYCAMEL_NOEXCEPT_ASSIGN(T, T&&, details::deref_noexcept(itemFirst) = std::move((*(*block)[index])))) { |
2216 | while (index != endIndex) { |
2217 | auto& el = *((*block)[index]); |
2218 | *itemFirst++ = std::move(el); |
2219 | el.~T(); |
2220 | ++index; |
2221 | } |
2222 | } |
2223 | else { |
2224 | MOODYCAMEL_TRY { |
2225 | while (index != endIndex) { |
2226 | auto& el = *((*block)[index]); |
2227 | *itemFirst = std::move(el); |
2228 | ++itemFirst; |
2229 | el.~T(); |
2230 | ++index; |
2231 | } |
2232 | } |
2233 | MOODYCAMEL_CATCH (...) { |
2234 | // It's too late to revert the dequeue, but we can make sure that all |
2235 | // the dequeued objects are properly destroyed and the block index |
2236 | // (and empty count) are properly updated before we propagate the exception |
2237 | do { |
2238 | block = localBlockIndex->entries[indexIndex].block; |
2239 | while (index != endIndex) { |
2240 | (*block)[index++]->~T(); |
2241 | } |
2242 | block->ConcurrentQueue::Block::template set_many_empty<explicit_context>(firstIndexInBlock, static_cast<size_t>(endIndex - firstIndexInBlock)); |
2243 | indexIndex = (indexIndex + 1) & (localBlockIndex->size - 1); |
2244 | |
2245 | firstIndexInBlock = index; |
2246 | endIndex = (index & ~static_cast<index_t>(BLOCK_SIZE - 1)) + static_cast<index_t>(BLOCK_SIZE); |
2247 | endIndex = details::circular_less_than<index_t>(firstIndex + static_cast<index_t>(actualCount), endIndex) ? firstIndex + static_cast<index_t>(actualCount) : endIndex; |
2248 | } while (index != firstIndex + actualCount); |
2249 | |
2250 | MOODYCAMEL_RETHROW; |
2251 | } |
2252 | } |
2253 | block->ConcurrentQueue::Block::template set_many_empty<explicit_context>(firstIndexInBlock, static_cast<size_t>(endIndex - firstIndexInBlock)); |
2254 | indexIndex = (indexIndex + 1) & (localBlockIndex->size - 1); |
2255 | } while (index != firstIndex + actualCount); |
2256 | |
2257 | return actualCount; |
2258 | } |
2259 | else { |
2260 | // Wasn't anything to dequeue after all; make the effective dequeue count eventually consistent |
2261 | this->dequeueOvercommit.fetch_add(desiredCount, std::memory_order_release); |
2262 | } |
2263 | } |
2264 | |
2265 | return 0; |
2266 | } |
2267 | |
2268 | private: |
2269 | struct BlockIndexEntry |
2270 | { |
2271 | index_t base; |
2272 | Block* block; |
2273 | }; |
2274 | |
2275 | struct |
2276 | { |
2277 | size_t ; |
2278 | std::atomic<size_t> ; // Current slot (not next, like pr_blockIndexFront) |
2279 | BlockIndexEntry* ; |
2280 | void* ; |
2281 | }; |
2282 | |
2283 | |
2284 | bool new_block_index(size_t numberOfFilledSlotsToExpose) |
2285 | { |
2286 | auto prevBlockSizeMask = pr_blockIndexSize - 1; |
2287 | |
2288 | // Create the new block |
2289 | pr_blockIndexSize <<= 1; |
2290 | auto newRawPtr = static_cast<char*>((Traits::malloc)(sizeof(BlockIndexHeader) + std::alignment_of<BlockIndexEntry>::value - 1 + sizeof(BlockIndexEntry) * pr_blockIndexSize)); |
2291 | if (newRawPtr == nullptr) { |
2292 | pr_blockIndexSize >>= 1; // Reset to allow graceful retry |
2293 | return false; |
2294 | } |
2295 | |
2296 | auto newBlockIndexEntries = reinterpret_cast<BlockIndexEntry*>(details::align_for<BlockIndexEntry>(newRawPtr + sizeof(BlockIndexHeader))); |
2297 | |
2298 | // Copy in all the old indices, if any |
2299 | size_t j = 0; |
2300 | if (pr_blockIndexSlotsUsed != 0) { |
2301 | auto i = (pr_blockIndexFront - pr_blockIndexSlotsUsed) & prevBlockSizeMask; |
2302 | do { |
2303 | newBlockIndexEntries[j++] = pr_blockIndexEntries[i]; |
2304 | i = (i + 1) & prevBlockSizeMask; |
2305 | } while (i != pr_blockIndexFront); |
2306 | } |
2307 | |
2308 | // Update everything |
2309 | auto = new (newRawPtr) BlockIndexHeader; |
2310 | header->size = pr_blockIndexSize; |
2311 | header->front.store(numberOfFilledSlotsToExpose - 1, std::memory_order_relaxed); |
2312 | header->entries = newBlockIndexEntries; |
2313 | header->prev = pr_blockIndexRaw; // we link the new block to the old one so we can free it later |
2314 | |
2315 | pr_blockIndexFront = j; |
2316 | pr_blockIndexEntries = newBlockIndexEntries; |
2317 | pr_blockIndexRaw = newRawPtr; |
2318 | blockIndex.store(header, std::memory_order_release); |
2319 | |
2320 | return true; |
2321 | } |
2322 | |
2323 | private: |
2324 | std::atomic<BlockIndexHeader*> blockIndex; |
2325 | |
2326 | // To be used by producer only -- consumer must use the ones in referenced by blockIndex |
2327 | size_t pr_blockIndexSlotsUsed; |
2328 | size_t pr_blockIndexSize; |
2329 | size_t pr_blockIndexFront; // Next slot (not current) |
2330 | BlockIndexEntry* pr_blockIndexEntries; |
2331 | void* pr_blockIndexRaw; |
2332 | |
2333 | #ifdef MOODYCAMEL_QUEUE_INTERNAL_DEBUG |
2334 | public: |
2335 | ExplicitProducer* nextExplicitProducer; |
2336 | private: |
2337 | #endif |
2338 | |
2339 | #ifdef MCDBGQ_TRACKMEM |
2340 | friend struct MemStats; |
2341 | #endif |
2342 | }; |
2343 | |
2344 | |
2345 | ////////////////////////////////// |
2346 | // Implicit queue |
2347 | ////////////////////////////////// |
2348 | |
2349 | struct ImplicitProducer : public ProducerBase |
2350 | { |
2351 | ImplicitProducer(ConcurrentQueue* parent_) : |
2352 | ProducerBase(parent_, false), |
2353 | nextBlockIndexCapacity(IMPLICIT_INITIAL_INDEX_SIZE), |
2354 | blockIndex(nullptr) |
2355 | { |
2356 | new_block_index(); |
2357 | } |
2358 | |
2359 | ~ImplicitProducer() |
2360 | { |
2361 | // Note that since we're in the destructor we can assume that all enqueue/dequeue operations |
2362 | // completed already; this means that all undequeued elements are placed contiguously across |
2363 | // contiguous blocks, and that only the first and last remaining blocks can be only partially |
2364 | // empty (all other remaining blocks must be completely full). |
2365 | |
2366 | #ifdef MOODYCAMEL_CPP11_THREAD_LOCAL_SUPPORTED |
2367 | // Unregister ourselves for thread termination notification |
2368 | if (!this->inactive.load(std::memory_order_relaxed)) { |
2369 | details::ThreadExitNotifier::unsubscribe(&threadExitListener); |
2370 | } |
2371 | #endif |
2372 | |
2373 | // Destroy all remaining elements! |
2374 | auto tail = this->tailIndex.load(std::memory_order_relaxed); |
2375 | auto index = this->headIndex.load(std::memory_order_relaxed); |
2376 | Block* block = nullptr; |
2377 | assert(index == tail || details::circular_less_than(index, tail)); |
2378 | bool forceFreeLastBlock = index != tail; // If we enter the loop, then the last (tail) block will not be freed |
2379 | while (index != tail) { |
2380 | if ((index & static_cast<index_t>(BLOCK_SIZE - 1)) == 0 || block == nullptr) { |
2381 | if (block != nullptr) { |
2382 | // Free the old block |
2383 | this->parent->add_block_to_free_list(block); |
2384 | } |
2385 | |
2386 | block = get_block_index_entry_for_index(index)->value.load(std::memory_order_relaxed); |
2387 | } |
2388 | |
2389 | ((*block)[index])->~T(); |
2390 | ++index; |
2391 | } |
2392 | // Even if the queue is empty, there's still one block that's not on the free list |
2393 | // (unless the head index reached the end of it, in which case the tail will be poised |
2394 | // to create a new block). |
2395 | if (this->tailBlock != nullptr && (forceFreeLastBlock || (tail & static_cast<index_t>(BLOCK_SIZE - 1)) != 0)) { |
2396 | this->parent->add_block_to_free_list(this->tailBlock); |
2397 | } |
2398 | |
2399 | // Destroy block index |
2400 | auto localBlockIndex = blockIndex.load(std::memory_order_relaxed); |
2401 | if (localBlockIndex != nullptr) { |
2402 | for (size_t i = 0; i != localBlockIndex->capacity; ++i) { |
2403 | localBlockIndex->index[i]->~BlockIndexEntry(); |
2404 | } |
2405 | do { |
2406 | auto prev = localBlockIndex->prev; |
2407 | localBlockIndex->~BlockIndexHeader(); |
2408 | (Traits::free)(localBlockIndex); |
2409 | localBlockIndex = prev; |
2410 | } while (localBlockIndex != nullptr); |
2411 | } |
2412 | } |
2413 | |
2414 | template<AllocationMode allocMode, typename U> |
2415 | inline bool enqueue(U&& element) |
2416 | { |
2417 | index_t currentTailIndex = this->tailIndex.load(std::memory_order_relaxed); |
2418 | index_t newTailIndex = 1 + currentTailIndex; |
2419 | if ((currentTailIndex & static_cast<index_t>(BLOCK_SIZE - 1)) == 0) { |
2420 | // We reached the end of a block, start a new one |
2421 | auto head = this->headIndex.load(std::memory_order_relaxed); |
2422 | assert(!details::circular_less_than<index_t>(currentTailIndex, head)); |
2423 | if (!details::circular_less_than<index_t>(head, currentTailIndex + BLOCK_SIZE) || (MAX_SUBQUEUE_SIZE != details::const_numeric_max<size_t>::value && (MAX_SUBQUEUE_SIZE == 0 || MAX_SUBQUEUE_SIZE - BLOCK_SIZE < currentTailIndex - head))) { |
2424 | return false; |
2425 | } |
2426 | #ifdef MCDBGQ_NOLOCKFREE_IMPLICITPRODBLOCKINDEX |
2427 | debug::DebugLock lock(mutex); |
2428 | #endif |
2429 | // Find out where we'll be inserting this block in the block index |
2430 | BlockIndexEntry* idxEntry; |
2431 | if (!insert_block_index_entry<allocMode>(idxEntry, currentTailIndex)) { |
2432 | return false; |
2433 | } |
2434 | |
2435 | // Get ahold of a new block |
2436 | auto newBlock = this->parent->ConcurrentQueue::template requisition_block<allocMode>(); |
2437 | if (newBlock == nullptr) { |
2438 | rewind_block_index_tail(); |
2439 | idxEntry->value.store(nullptr, std::memory_order_relaxed); |
2440 | return false; |
2441 | } |
2442 | #ifdef MCDBGQ_TRACKMEM |
2443 | newBlock->owner = this; |
2444 | #endif |
2445 | newBlock->ConcurrentQueue::Block::template reset_empty<implicit_context>(); |
2446 | |
2447 | if (!MOODYCAMEL_NOEXCEPT_CTOR(T, U, new ((T*)nullptr) T(std::forward<U>(element)))) { |
2448 | // May throw, try to insert now before we publish the fact that we have this new block |
2449 | MOODYCAMEL_TRY { |
2450 | new ((*newBlock)[currentTailIndex]) T(std::forward<U>(element)); |
2451 | } |
2452 | MOODYCAMEL_CATCH (...) { |
2453 | rewind_block_index_tail(); |
2454 | idxEntry->value.store(nullptr, std::memory_order_relaxed); |
2455 | this->parent->add_block_to_free_list(newBlock); |
2456 | MOODYCAMEL_RETHROW; |
2457 | } |
2458 | } |
2459 | |
2460 | // Insert the new block into the index |
2461 | idxEntry->value.store(newBlock, std::memory_order_relaxed); |
2462 | |
2463 | this->tailBlock = newBlock; |
2464 | |
2465 | if (!MOODYCAMEL_NOEXCEPT_CTOR(T, U, new ((T*)nullptr) T(std::forward<U>(element)))) { |
2466 | this->tailIndex.store(newTailIndex, std::memory_order_release); |
2467 | return true; |
2468 | } |
2469 | } |
2470 | |
2471 | // Enqueue |
2472 | new ((*this->tailBlock)[currentTailIndex]) T(std::forward<U>(element)); |
2473 | |
2474 | this->tailIndex.store(newTailIndex, std::memory_order_release); |
2475 | return true; |
2476 | } |
2477 | |
2478 | template<typename U> |
2479 | bool dequeue(U& element) |
2480 | { |
2481 | // See ExplicitProducer::dequeue for rationale and explanation |
2482 | index_t tail = this->tailIndex.load(std::memory_order_relaxed); |
2483 | index_t overcommit = this->dequeueOvercommit.load(std::memory_order_relaxed); |
2484 | if (details::circular_less_than<index_t>(this->dequeueOptimisticCount.load(std::memory_order_relaxed) - overcommit, tail)) { |
2485 | std::atomic_thread_fence(m: std::memory_order_acquire); |
2486 | |
2487 | index_t myDequeueCount = this->dequeueOptimisticCount.fetch_add(1, std::memory_order_relaxed); |
2488 | tail = this->tailIndex.load(std::memory_order_acquire); |
2489 | if ((details::likely)(x: details::circular_less_than<index_t>(myDequeueCount - overcommit, tail))) { |
2490 | index_t index = this->headIndex.fetch_add(1, std::memory_order_acq_rel); |
2491 | |
2492 | // Determine which block the element is in |
2493 | auto entry = get_block_index_entry_for_index(index); |
2494 | |
2495 | // Dequeue |
2496 | auto block = entry->value.load(std::memory_order_relaxed); |
2497 | auto& el = *((*block)[index]); |
2498 | |
2499 | if (!MOODYCAMEL_NOEXCEPT_ASSIGN(T, T&&, element = std::move(el))) { |
2500 | #ifdef MCDBGQ_NOLOCKFREE_IMPLICITPRODBLOCKINDEX |
2501 | // Note: Acquiring the mutex with every dequeue instead of only when a block |
2502 | // is released is very sub-optimal, but it is, after all, purely debug code. |
2503 | debug::DebugLock lock(producer->mutex); |
2504 | #endif |
2505 | struct Guard { |
2506 | Block* block; |
2507 | index_t index; |
2508 | BlockIndexEntry* entry; |
2509 | ConcurrentQueue* parent; |
2510 | |
2511 | ~Guard() |
2512 | { |
2513 | (*block)[index]->~T(); |
2514 | if (block->ConcurrentQueue::Block::template set_empty<implicit_context>(index)) { |
2515 | entry->value.store(nullptr, std::memory_order_relaxed); |
2516 | parent->add_block_to_free_list(block); |
2517 | } |
2518 | } |
2519 | } guard = { block, index, entry, this->parent }; |
2520 | |
2521 | element = std::move(el); // NOLINT |
2522 | } |
2523 | else { |
2524 | element = std::move(el); // NOLINT |
2525 | el.~T(); // NOLINT |
2526 | |
2527 | if (block->ConcurrentQueue::Block::template set_empty<implicit_context>(index)) { |
2528 | { |
2529 | #ifdef MCDBGQ_NOLOCKFREE_IMPLICITPRODBLOCKINDEX |
2530 | debug::DebugLock lock(mutex); |
2531 | #endif |
2532 | // Add the block back into the global free pool (and remove from block index) |
2533 | entry->value.store(nullptr, std::memory_order_relaxed); |
2534 | } |
2535 | this->parent->add_block_to_free_list(block); // releases the above store |
2536 | } |
2537 | } |
2538 | |
2539 | return true; |
2540 | } |
2541 | else { |
2542 | this->dequeueOvercommit.fetch_add(1, std::memory_order_release); |
2543 | } |
2544 | } |
2545 | |
2546 | return false; |
2547 | } |
2548 | |
2549 | template<AllocationMode allocMode, typename It> |
2550 | bool enqueue_bulk(It itemFirst, size_t count) |
2551 | { |
2552 | // First, we need to make sure we have enough room to enqueue all of the elements; |
2553 | // this means pre-allocating blocks and putting them in the block index (but only if |
2554 | // all the allocations succeeded). |
2555 | |
2556 | // Note that the tailBlock we start off with may not be owned by us any more; |
2557 | // this happens if it was filled up exactly to the top (setting tailIndex to |
2558 | // the first index of the next block which is not yet allocated), then dequeued |
2559 | // completely (putting it on the free list) before we enqueue again. |
2560 | |
2561 | index_t startTailIndex = this->tailIndex.load(std::memory_order_relaxed); |
2562 | auto startBlock = this->tailBlock; |
2563 | Block* firstAllocatedBlock = nullptr; |
2564 | auto endBlock = this->tailBlock; |
2565 | |
2566 | // Figure out how many blocks we'll need to allocate, and do so |
2567 | size_t blockBaseDiff = ((startTailIndex + count - 1) & ~static_cast<index_t>(BLOCK_SIZE - 1)) - ((startTailIndex - 1) & ~static_cast<index_t>(BLOCK_SIZE - 1)); |
2568 | index_t currentTailIndex = (startTailIndex - 1) & ~static_cast<index_t>(BLOCK_SIZE - 1); |
2569 | if (blockBaseDiff > 0) { |
2570 | #ifdef MCDBGQ_NOLOCKFREE_IMPLICITPRODBLOCKINDEX |
2571 | debug::DebugLock lock(mutex); |
2572 | #endif |
2573 | do { |
2574 | blockBaseDiff -= static_cast<index_t>(BLOCK_SIZE); |
2575 | currentTailIndex += static_cast<index_t>(BLOCK_SIZE); |
2576 | |
2577 | // Find out where we'll be inserting this block in the block index |
2578 | BlockIndexEntry* idxEntry = nullptr; // initialization here unnecessary but compiler can't always tell |
2579 | Block* newBlock; |
2580 | bool indexInserted = false; |
2581 | auto head = this->headIndex.load(std::memory_order_relaxed); |
2582 | assert(!details::circular_less_than<index_t>(currentTailIndex, head)); |
2583 | bool full = !details::circular_less_than<index_t>(head, currentTailIndex + BLOCK_SIZE) || (MAX_SUBQUEUE_SIZE != details::const_numeric_max<size_t>::value && (MAX_SUBQUEUE_SIZE == 0 || MAX_SUBQUEUE_SIZE - BLOCK_SIZE < currentTailIndex - head)); |
2584 | if (full || !(indexInserted = insert_block_index_entry<allocMode>(idxEntry, currentTailIndex)) || (newBlock = this->parent->ConcurrentQueue::template requisition_block<allocMode>()) == nullptr) { |
2585 | // Index allocation or block allocation failed; revert any other allocations |
2586 | // and index insertions done so far for this operation |
2587 | if (indexInserted) { |
2588 | rewind_block_index_tail(); |
2589 | idxEntry->value.store(nullptr, std::memory_order_relaxed); |
2590 | } |
2591 | currentTailIndex = (startTailIndex - 1) & ~static_cast<index_t>(BLOCK_SIZE - 1); |
2592 | for (auto block = firstAllocatedBlock; block != nullptr; block = block->next) { |
2593 | currentTailIndex += static_cast<index_t>(BLOCK_SIZE); |
2594 | idxEntry = get_block_index_entry_for_index(index: currentTailIndex); |
2595 | idxEntry->value.store(nullptr, std::memory_order_relaxed); |
2596 | rewind_block_index_tail(); |
2597 | } |
2598 | this->parent->add_blocks_to_free_list(firstAllocatedBlock); |
2599 | this->tailBlock = startBlock; |
2600 | |
2601 | return false; |
2602 | } |
2603 | |
2604 | #ifdef MCDBGQ_TRACKMEM |
2605 | newBlock->owner = this; |
2606 | #endif |
2607 | newBlock->ConcurrentQueue::Block::template reset_empty<implicit_context>(); |
2608 | newBlock->next = nullptr; |
2609 | |
2610 | // Insert the new block into the index |
2611 | idxEntry->value.store(newBlock, std::memory_order_relaxed); |
2612 | |
2613 | // Store the chain of blocks so that we can undo if later allocations fail, |
2614 | // and so that we can find the blocks when we do the actual enqueueing |
2615 | if ((startTailIndex & static_cast<index_t>(BLOCK_SIZE - 1)) != 0 || firstAllocatedBlock != nullptr) { |
2616 | assert(this->tailBlock != nullptr); |
2617 | this->tailBlock->next = newBlock; |
2618 | } |
2619 | this->tailBlock = newBlock; |
2620 | endBlock = newBlock; |
2621 | firstAllocatedBlock = firstAllocatedBlock == nullptr ? newBlock : firstAllocatedBlock; |
2622 | } while (blockBaseDiff > 0); |
2623 | } |
2624 | |
2625 | // Enqueue, one block at a time |
2626 | index_t newTailIndex = startTailIndex + static_cast<index_t>(count); |
2627 | currentTailIndex = startTailIndex; |
2628 | this->tailBlock = startBlock; |
2629 | assert((startTailIndex & static_cast<index_t>(BLOCK_SIZE - 1)) != 0 || firstAllocatedBlock != nullptr || count == 0); |
2630 | if ((startTailIndex & static_cast<index_t>(BLOCK_SIZE - 1)) == 0 && firstAllocatedBlock != nullptr) { |
2631 | this->tailBlock = firstAllocatedBlock; |
2632 | } |
2633 | while (true) { |
2634 | auto stopIndex = (currentTailIndex & ~static_cast<index_t>(BLOCK_SIZE - 1)) + static_cast<index_t>(BLOCK_SIZE); |
2635 | if (details::circular_less_than<index_t>(newTailIndex, stopIndex)) { |
2636 | stopIndex = newTailIndex; |
2637 | } |
2638 | if (MOODYCAMEL_NOEXCEPT_CTOR(T, decltype(*itemFirst), new ((T*)nullptr) T(details::deref_noexcept(itemFirst)))) { |
2639 | while (currentTailIndex != stopIndex) { |
2640 | new ((*this->tailBlock)[currentTailIndex++]) T(*itemFirst++); |
2641 | } |
2642 | } |
2643 | else { |
2644 | MOODYCAMEL_TRY { |
2645 | while (currentTailIndex != stopIndex) { |
2646 | new ((*this->tailBlock)[currentTailIndex]) T(details::nomove_if<(bool)!MOODYCAMEL_NOEXCEPT_CTOR(T, decltype(*itemFirst), new ((T*)nullptr) T(details::deref_noexcept(itemFirst)))>::eval(*itemFirst)); |
2647 | ++currentTailIndex; |
2648 | ++itemFirst; |
2649 | } |
2650 | } |
2651 | MOODYCAMEL_CATCH (...) { |
2652 | auto constructedStopIndex = currentTailIndex; |
2653 | auto lastBlockEnqueued = this->tailBlock; |
2654 | |
2655 | if (!details::is_trivially_destructible<T>::value) { |
2656 | auto block = startBlock; |
2657 | if ((startTailIndex & static_cast<index_t>(BLOCK_SIZE - 1)) == 0) { |
2658 | block = firstAllocatedBlock; |
2659 | } |
2660 | currentTailIndex = startTailIndex; |
2661 | while (true) { |
2662 | stopIndex = (currentTailIndex & ~static_cast<index_t>(BLOCK_SIZE - 1)) + static_cast<index_t>(BLOCK_SIZE); |
2663 | if (details::circular_less_than<index_t>(constructedStopIndex, stopIndex)) { |
2664 | stopIndex = constructedStopIndex; |
2665 | } |
2666 | while (currentTailIndex != stopIndex) { |
2667 | (*block)[currentTailIndex++]->~T(); |
2668 | } |
2669 | if (block == lastBlockEnqueued) { |
2670 | break; |
2671 | } |
2672 | block = block->next; |
2673 | } |
2674 | } |
2675 | |
2676 | currentTailIndex = (startTailIndex - 1) & ~static_cast<index_t>(BLOCK_SIZE - 1); |
2677 | for (auto block = firstAllocatedBlock; block != nullptr; block = block->next) { |
2678 | currentTailIndex += static_cast<index_t>(BLOCK_SIZE); |
2679 | auto idxEntry = get_block_index_entry_for_index(index: currentTailIndex); |
2680 | idxEntry->value.store(nullptr, std::memory_order_relaxed); |
2681 | rewind_block_index_tail(); |
2682 | } |
2683 | this->parent->add_blocks_to_free_list(firstAllocatedBlock); |
2684 | this->tailBlock = startBlock; |
2685 | MOODYCAMEL_RETHROW; |
2686 | } |
2687 | } |
2688 | |
2689 | if (this->tailBlock == endBlock) { |
2690 | assert(currentTailIndex == newTailIndex); |
2691 | break; |
2692 | } |
2693 | this->tailBlock = this->tailBlock->next; |
2694 | } |
2695 | this->tailIndex.store(newTailIndex, std::memory_order_release); |
2696 | return true; |
2697 | } |
2698 | |
2699 | template<typename It> |
2700 | size_t dequeue_bulk(It& itemFirst, size_t max) |
2701 | { |
2702 | auto tail = this->tailIndex.load(std::memory_order_relaxed); |
2703 | auto overcommit = this->dequeueOvercommit.load(std::memory_order_relaxed); |
2704 | auto desiredCount = static_cast<size_t>(tail - (this->dequeueOptimisticCount.load(std::memory_order_relaxed) - overcommit)); |
2705 | if (details::circular_less_than<size_t>(0, desiredCount)) { |
2706 | desiredCount = desiredCount < max ? desiredCount : max; |
2707 | std::atomic_thread_fence(m: std::memory_order_acquire); |
2708 | |
2709 | auto myDequeueCount = this->dequeueOptimisticCount.fetch_add(desiredCount, std::memory_order_relaxed); |
2710 | |
2711 | tail = this->tailIndex.load(std::memory_order_acquire); |
2712 | auto actualCount = static_cast<size_t>(tail - (myDequeueCount - overcommit)); |
2713 | if (details::circular_less_than<size_t>(0, actualCount)) { |
2714 | actualCount = desiredCount < actualCount ? desiredCount : actualCount; |
2715 | if (actualCount < desiredCount) { |
2716 | this->dequeueOvercommit.fetch_add(desiredCount - actualCount, std::memory_order_release); |
2717 | } |
2718 | |
2719 | // Get the first index. Note that since there's guaranteed to be at least actualCount elements, this |
2720 | // will never exceed tail. |
2721 | auto firstIndex = this->headIndex.fetch_add(actualCount, std::memory_order_acq_rel); |
2722 | |
2723 | // Iterate the blocks and dequeue |
2724 | auto index = firstIndex; |
2725 | BlockIndexHeader* localBlockIndex; |
2726 | auto indexIndex = get_block_index_index_for_index(index, localBlockIndex); |
2727 | do { |
2728 | auto blockStartIndex = index; |
2729 | auto endIndex = (index & ~static_cast<index_t>(BLOCK_SIZE - 1)) + static_cast<index_t>(BLOCK_SIZE); |
2730 | endIndex = details::circular_less_than<index_t>(firstIndex + static_cast<index_t>(actualCount), endIndex) ? firstIndex + static_cast<index_t>(actualCount) : endIndex; |
2731 | |
2732 | auto entry = localBlockIndex->index[indexIndex]; |
2733 | auto block = entry->value.load(std::memory_order_relaxed); |
2734 | if (MOODYCAMEL_NOEXCEPT_ASSIGN(T, T&&, details::deref_noexcept(itemFirst) = std::move((*(*block)[index])))) { |
2735 | while (index != endIndex) { |
2736 | auto& el = *((*block)[index]); |
2737 | *itemFirst++ = std::move(el); |
2738 | el.~T(); |
2739 | ++index; |
2740 | } |
2741 | } |
2742 | else { |
2743 | MOODYCAMEL_TRY { |
2744 | while (index != endIndex) { |
2745 | auto& el = *((*block)[index]); |
2746 | *itemFirst = std::move(el); |
2747 | ++itemFirst; |
2748 | el.~T(); |
2749 | ++index; |
2750 | } |
2751 | } |
2752 | MOODYCAMEL_CATCH (...) { |
2753 | do { |
2754 | entry = localBlockIndex->index[indexIndex]; |
2755 | block = entry->value.load(std::memory_order_relaxed); |
2756 | while (index != endIndex) { |
2757 | (*block)[index++]->~T(); |
2758 | } |
2759 | |
2760 | if (block->ConcurrentQueue::Block::template set_many_empty<implicit_context>(blockStartIndex, static_cast<size_t>(endIndex - blockStartIndex))) { |
2761 | #ifdef MCDBGQ_NOLOCKFREE_IMPLICITPRODBLOCKINDEX |
2762 | debug::DebugLock lock(mutex); |
2763 | #endif |
2764 | entry->value.store(nullptr, std::memory_order_relaxed); |
2765 | this->parent->add_block_to_free_list(block); |
2766 | } |
2767 | indexIndex = (indexIndex + 1) & (localBlockIndex->capacity - 1); |
2768 | |
2769 | blockStartIndex = index; |
2770 | endIndex = (index & ~static_cast<index_t>(BLOCK_SIZE - 1)) + static_cast<index_t>(BLOCK_SIZE); |
2771 | endIndex = details::circular_less_than<index_t>(firstIndex + static_cast<index_t>(actualCount), endIndex) ? firstIndex + static_cast<index_t>(actualCount) : endIndex; |
2772 | } while (index != firstIndex + actualCount); |
2773 | |
2774 | MOODYCAMEL_RETHROW; |
2775 | } |
2776 | } |
2777 | if (block->ConcurrentQueue::Block::template set_many_empty<implicit_context>(blockStartIndex, static_cast<size_t>(endIndex - blockStartIndex))) { |
2778 | { |
2779 | #ifdef MCDBGQ_NOLOCKFREE_IMPLICITPRODBLOCKINDEX |
2780 | debug::DebugLock lock(mutex); |
2781 | #endif |
2782 | // Note that the set_many_empty above did a release, meaning that anybody who acquires the block |
2783 | // we're about to free can use it safely since our writes (and reads!) will have happened-before then. |
2784 | entry->value.store(nullptr, std::memory_order_relaxed); |
2785 | } |
2786 | this->parent->add_block_to_free_list(block); // releases the above store |
2787 | } |
2788 | indexIndex = (indexIndex + 1) & (localBlockIndex->capacity - 1); |
2789 | } while (index != firstIndex + actualCount); |
2790 | |
2791 | return actualCount; |
2792 | } |
2793 | else { |
2794 | this->dequeueOvercommit.fetch_add(desiredCount, std::memory_order_release); |
2795 | } |
2796 | } |
2797 | |
2798 | return 0; |
2799 | } |
2800 | |
2801 | private: |
2802 | // The block size must be > 1, so any number with the low bit set is an invalid block base index |
2803 | static const index_t INVALID_BLOCK_BASE = 1; |
2804 | |
2805 | struct BlockIndexEntry |
2806 | { |
2807 | std::atomic<index_t> key; |
2808 | std::atomic<Block*> value; |
2809 | }; |
2810 | |
2811 | struct |
2812 | { |
2813 | size_t ; |
2814 | std::atomic<size_t> ; |
2815 | BlockIndexEntry* ; |
2816 | BlockIndexEntry** ; |
2817 | BlockIndexHeader* ; |
2818 | }; |
2819 | |
2820 | template<AllocationMode allocMode> |
2821 | inline bool insert_block_index_entry(BlockIndexEntry*& idxEntry, index_t blockStartIndex) |
2822 | { |
2823 | auto localBlockIndex = blockIndex.load(std::memory_order_relaxed); // We're the only writer thread, relaxed is OK |
2824 | if (localBlockIndex == nullptr) { |
2825 | return false; // this can happen if new_block_index failed in the constructor |
2826 | } |
2827 | auto newTail = (localBlockIndex->tail.load(std::memory_order_relaxed) + 1) & (localBlockIndex->capacity - 1); |
2828 | idxEntry = localBlockIndex->index[newTail]; |
2829 | if (idxEntry->key.load(std::memory_order_relaxed) == INVALID_BLOCK_BASE || |
2830 | idxEntry->value.load(std::memory_order_relaxed) == nullptr) { |
2831 | |
2832 | idxEntry->key.store(blockStartIndex, std::memory_order_relaxed); |
2833 | localBlockIndex->tail.store(newTail, std::memory_order_release); |
2834 | return true; |
2835 | } |
2836 | |
2837 | // No room in the old block index, try to allocate another one! |
2838 | MOODYCAMEL_CONSTEXPR_IF (allocMode == CannotAlloc) { |
2839 | return false; |
2840 | } |
2841 | else if (!new_block_index()) { |
2842 | return false; |
2843 | } |
2844 | localBlockIndex = blockIndex.load(std::memory_order_relaxed); |
2845 | newTail = (localBlockIndex->tail.load(std::memory_order_relaxed) + 1) & (localBlockIndex->capacity - 1); |
2846 | idxEntry = localBlockIndex->index[newTail]; |
2847 | assert(idxEntry->key.load(std::memory_order_relaxed) == INVALID_BLOCK_BASE); |
2848 | idxEntry->key.store(blockStartIndex, std::memory_order_relaxed); |
2849 | localBlockIndex->tail.store(newTail, std::memory_order_release); |
2850 | return true; |
2851 | } |
2852 | |
2853 | inline void rewind_block_index_tail() |
2854 | { |
2855 | auto localBlockIndex = blockIndex.load(std::memory_order_relaxed); |
2856 | localBlockIndex->tail.store((localBlockIndex->tail.load(std::memory_order_relaxed) - 1) & (localBlockIndex->capacity - 1), std::memory_order_relaxed); |
2857 | } |
2858 | |
2859 | inline BlockIndexEntry* get_block_index_entry_for_index(index_t index) const |
2860 | { |
2861 | BlockIndexHeader* localBlockIndex; |
2862 | auto idx = get_block_index_index_for_index(index, localBlockIndex); |
2863 | return localBlockIndex->index[idx]; |
2864 | } |
2865 | |
2866 | inline size_t (index_t index, BlockIndexHeader*& localBlockIndex) const |
2867 | { |
2868 | #ifdef MCDBGQ_NOLOCKFREE_IMPLICITPRODBLOCKINDEX |
2869 | debug::DebugLock lock(mutex); |
2870 | #endif |
2871 | index &= ~static_cast<index_t>(BLOCK_SIZE - 1); |
2872 | localBlockIndex = blockIndex.load(std::memory_order_acquire); |
2873 | auto tail = localBlockIndex->tail.load(std::memory_order_acquire); |
2874 | auto tailBase = localBlockIndex->index[tail]->key.load(std::memory_order_relaxed); |
2875 | assert(tailBase != INVALID_BLOCK_BASE); |
2876 | // Note: Must use division instead of shift because the index may wrap around, causing a negative |
2877 | // offset, whose negativity we want to preserve |
2878 | auto offset = static_cast<size_t>(static_cast<typename std::make_signed<index_t>::type>(index - tailBase) / BLOCK_SIZE); |
2879 | size_t idx = (tail + offset) & (localBlockIndex->capacity - 1); |
2880 | assert(localBlockIndex->index[idx]->key.load(std::memory_order_relaxed) == index && localBlockIndex->index[idx]->value.load(std::memory_order_relaxed) != nullptr); |
2881 | return idx; |
2882 | } |
2883 | |
2884 | bool new_block_index() |
2885 | { |
2886 | auto prev = blockIndex.load(std::memory_order_relaxed); |
2887 | size_t prevCapacity = prev == nullptr ? 0 : prev->capacity; |
2888 | auto entryCount = prev == nullptr ? nextBlockIndexCapacity : prevCapacity; |
2889 | auto raw = static_cast<char*>((Traits::malloc)( |
2890 | sizeof(BlockIndexHeader) + |
2891 | std::alignment_of<BlockIndexEntry>::value - 1 + sizeof(BlockIndexEntry) * entryCount + |
2892 | std::alignment_of<BlockIndexEntry*>::value - 1 + sizeof(BlockIndexEntry*) * nextBlockIndexCapacity)); |
2893 | if (raw == nullptr) { |
2894 | return false; |
2895 | } |
2896 | |
2897 | auto = new (raw) BlockIndexHeader; |
2898 | auto entries = reinterpret_cast<BlockIndexEntry*>(details::align_for<BlockIndexEntry>(raw + sizeof(BlockIndexHeader))); |
2899 | auto index = reinterpret_cast<BlockIndexEntry**>(details::align_for<BlockIndexEntry*>(reinterpret_cast<char*>(entries) + sizeof(BlockIndexEntry) * entryCount)); |
2900 | if (prev != nullptr) { |
2901 | auto prevTail = prev->tail.load(std::memory_order_relaxed); |
2902 | auto prevPos = prevTail; |
2903 | size_t i = 0; |
2904 | do { |
2905 | prevPos = (prevPos + 1) & (prev->capacity - 1); |
2906 | index[i++] = prev->index[prevPos]; |
2907 | } while (prevPos != prevTail); |
2908 | assert(i == prevCapacity); |
2909 | } |
2910 | for (size_t i = 0; i != entryCount; ++i) { |
2911 | new (entries + i) BlockIndexEntry; |
2912 | entries[i].key.store(INVALID_BLOCK_BASE, std::memory_order_relaxed); |
2913 | index[prevCapacity + i] = entries + i; |
2914 | } |
2915 | header->prev = prev; |
2916 | header->entries = entries; |
2917 | header->index = index; |
2918 | header->capacity = nextBlockIndexCapacity; |
2919 | header->tail.store((prevCapacity - 1) & (nextBlockIndexCapacity - 1), std::memory_order_relaxed); |
2920 | |
2921 | blockIndex.store(header, std::memory_order_release); |
2922 | |
2923 | nextBlockIndexCapacity <<= 1; |
2924 | |
2925 | return true; |
2926 | } |
2927 | |
2928 | private: |
2929 | size_t nextBlockIndexCapacity; |
2930 | std::atomic<BlockIndexHeader*> blockIndex; |
2931 | |
2932 | #ifdef MOODYCAMEL_CPP11_THREAD_LOCAL_SUPPORTED |
2933 | public: |
2934 | details::ThreadExitListener threadExitListener; |
2935 | private: |
2936 | #endif |
2937 | |
2938 | #ifdef MOODYCAMEL_QUEUE_INTERNAL_DEBUG |
2939 | public: |
2940 | ImplicitProducer* nextImplicitProducer; |
2941 | private: |
2942 | #endif |
2943 | |
2944 | #ifdef MCDBGQ_NOLOCKFREE_IMPLICITPRODBLOCKINDEX |
2945 | mutable debug::DebugMutex mutex; |
2946 | #endif |
2947 | #ifdef MCDBGQ_TRACKMEM |
2948 | friend struct MemStats; |
2949 | #endif |
2950 | }; |
2951 | |
2952 | |
2953 | ////////////////////////////////// |
2954 | // Block pool manipulation |
2955 | ////////////////////////////////// |
2956 | |
2957 | void populate_initial_block_list(size_t blockCount) |
2958 | { |
2959 | initialBlockPoolSize = blockCount; |
2960 | if (initialBlockPoolSize == 0) { |
2961 | initialBlockPool = nullptr; |
2962 | return; |
2963 | } |
2964 | |
2965 | initialBlockPool = create_array<Block>(blockCount); |
2966 | if (initialBlockPool == nullptr) { |
2967 | initialBlockPoolSize = 0; |
2968 | } |
2969 | for (size_t i = 0; i < initialBlockPoolSize; ++i) { |
2970 | initialBlockPool[i].dynamicallyAllocated = false; |
2971 | } |
2972 | } |
2973 | |
2974 | inline Block* try_get_block_from_initial_pool() |
2975 | { |
2976 | if (initialBlockPoolIndex.load(std::memory_order_relaxed) >= initialBlockPoolSize) { |
2977 | return nullptr; |
2978 | } |
2979 | |
2980 | auto index = initialBlockPoolIndex.fetch_add(1, std::memory_order_relaxed); |
2981 | |
2982 | return index < initialBlockPoolSize ? (initialBlockPool + index) : nullptr; |
2983 | } |
2984 | |
2985 | inline void add_block_to_free_list(Block* block) |
2986 | { |
2987 | #ifdef MCDBGQ_TRACKMEM |
2988 | block->owner = nullptr; |
2989 | #endif |
2990 | freeList.add(block); |
2991 | } |
2992 | |
2993 | inline void add_blocks_to_free_list(Block* block) |
2994 | { |
2995 | while (block != nullptr) { |
2996 | auto next = block->next; |
2997 | add_block_to_free_list(block); |
2998 | block = next; |
2999 | } |
3000 | } |
3001 | |
3002 | inline Block* try_get_block_from_free_list() |
3003 | { |
3004 | return freeList.try_get(); |
3005 | } |
3006 | |
3007 | // Gets a free block from one of the memory pools, or allocates a new one (if applicable) |
3008 | template<AllocationMode canAlloc> |
3009 | Block* requisition_block() |
3010 | { |
3011 | auto block = try_get_block_from_initial_pool(); |
3012 | if (block != nullptr) { |
3013 | return block; |
3014 | } |
3015 | |
3016 | block = try_get_block_from_free_list(); |
3017 | if (block != nullptr) { |
3018 | return block; |
3019 | } |
3020 | |
3021 | MOODYCAMEL_CONSTEXPR_IF (canAlloc == CanAlloc) { |
3022 | return create<Block>(); |
3023 | } |
3024 | else { |
3025 | return nullptr; |
3026 | } |
3027 | } |
3028 | |
3029 | |
3030 | #ifdef MCDBGQ_TRACKMEM |
3031 | public: |
3032 | struct MemStats { |
3033 | size_t allocatedBlocks; |
3034 | size_t usedBlocks; |
3035 | size_t freeBlocks; |
3036 | size_t ownedBlocksExplicit; |
3037 | size_t ownedBlocksImplicit; |
3038 | size_t implicitProducers; |
3039 | size_t explicitProducers; |
3040 | size_t elementsEnqueued; |
3041 | size_t blockClassBytes; |
3042 | size_t queueClassBytes; |
3043 | size_t implicitBlockIndexBytes; |
3044 | size_t explicitBlockIndexBytes; |
3045 | |
3046 | friend class ConcurrentQueue; |
3047 | |
3048 | private: |
3049 | static MemStats getFor(ConcurrentQueue* q) |
3050 | { |
3051 | MemStats stats = { 0 }; |
3052 | |
3053 | stats.elementsEnqueued = q->size_approx(); |
3054 | |
3055 | auto block = q->freeList.head_unsafe(); |
3056 | while (block != nullptr) { |
3057 | ++stats.allocatedBlocks; |
3058 | ++stats.freeBlocks; |
3059 | block = block->freeListNext.load(std::memory_order_relaxed); |
3060 | } |
3061 | |
3062 | for (auto ptr = q->producerListTail.load(std::memory_order_acquire); ptr != nullptr; ptr = ptr->next_prod()) { |
3063 | bool implicit = dynamic_cast<ImplicitProducer*>(ptr) != nullptr; |
3064 | stats.implicitProducers += implicit ? 1 : 0; |
3065 | stats.explicitProducers += implicit ? 0 : 1; |
3066 | |
3067 | if (implicit) { |
3068 | auto prod = static_cast<ImplicitProducer*>(ptr); |
3069 | stats.queueClassBytes += sizeof(ImplicitProducer); |
3070 | auto head = prod->headIndex.load(std::memory_order_relaxed); |
3071 | auto tail = prod->tailIndex.load(std::memory_order_relaxed); |
3072 | auto hash = prod->blockIndex.load(std::memory_order_relaxed); |
3073 | if (hash != nullptr) { |
3074 | for (size_t i = 0; i != hash->capacity; ++i) { |
3075 | if (hash->index[i]->key.load(std::memory_order_relaxed) != ImplicitProducer::INVALID_BLOCK_BASE && hash->index[i]->value.load(std::memory_order_relaxed) != nullptr) { |
3076 | ++stats.allocatedBlocks; |
3077 | ++stats.ownedBlocksImplicit; |
3078 | } |
3079 | } |
3080 | stats.implicitBlockIndexBytes += hash->capacity * sizeof(typename ImplicitProducer::BlockIndexEntry); |
3081 | for (; hash != nullptr; hash = hash->prev) { |
3082 | stats.implicitBlockIndexBytes += sizeof(typename ImplicitProducer::BlockIndexHeader) + hash->capacity * sizeof(typename ImplicitProducer::BlockIndexEntry*); |
3083 | } |
3084 | } |
3085 | for (; details::circular_less_than<index_t>(head, tail); head += BLOCK_SIZE) { |
3086 | //auto block = prod->get_block_index_entry_for_index(head); |
3087 | ++stats.usedBlocks; |
3088 | } |
3089 | } |
3090 | else { |
3091 | auto prod = static_cast<ExplicitProducer*>(ptr); |
3092 | stats.queueClassBytes += sizeof(ExplicitProducer); |
3093 | auto tailBlock = prod->tailBlock; |
3094 | bool wasNonEmpty = false; |
3095 | if (tailBlock != nullptr) { |
3096 | auto block = tailBlock; |
3097 | do { |
3098 | ++stats.allocatedBlocks; |
3099 | if (!block->ConcurrentQueue::Block::template is_empty<explicit_context>() || wasNonEmpty) { |
3100 | ++stats.usedBlocks; |
3101 | wasNonEmpty = wasNonEmpty || block != tailBlock; |
3102 | } |
3103 | ++stats.ownedBlocksExplicit; |
3104 | block = block->next; |
3105 | } while (block != tailBlock); |
3106 | } |
3107 | auto index = prod->blockIndex.load(std::memory_order_relaxed); |
3108 | while (index != nullptr) { |
3109 | stats.explicitBlockIndexBytes += sizeof(typename ExplicitProducer::BlockIndexHeader) + index->size * sizeof(typename ExplicitProducer::BlockIndexEntry); |
3110 | index = static_cast<typename ExplicitProducer::BlockIndexHeader*>(index->prev); |
3111 | } |
3112 | } |
3113 | } |
3114 | |
3115 | auto freeOnInitialPool = q->initialBlockPoolIndex.load(std::memory_order_relaxed) >= q->initialBlockPoolSize ? 0 : q->initialBlockPoolSize - q->initialBlockPoolIndex.load(std::memory_order_relaxed); |
3116 | stats.allocatedBlocks += freeOnInitialPool; |
3117 | stats.freeBlocks += freeOnInitialPool; |
3118 | |
3119 | stats.blockClassBytes = sizeof(Block) * stats.allocatedBlocks; |
3120 | stats.queueClassBytes += sizeof(ConcurrentQueue); |
3121 | |
3122 | return stats; |
3123 | } |
3124 | }; |
3125 | |
3126 | // For debugging only. Not thread-safe. |
3127 | MemStats getMemStats() |
3128 | { |
3129 | return MemStats::getFor(this); |
3130 | } |
3131 | private: |
3132 | friend struct MemStats; |
3133 | #endif |
3134 | |
3135 | |
3136 | ////////////////////////////////// |
3137 | // Producer list manipulation |
3138 | ////////////////////////////////// |
3139 | |
3140 | ProducerBase* recycle_or_create_producer(bool isExplicit) |
3141 | { |
3142 | bool recycled; |
3143 | return recycle_or_create_producer(isExplicit, recycled); |
3144 | } |
3145 | |
3146 | ProducerBase* recycle_or_create_producer(bool isExplicit, bool& recycled) |
3147 | { |
3148 | #ifdef MCDBGQ_NOLOCKFREE_IMPLICITPRODHASH |
3149 | debug::DebugLock lock(implicitProdMutex); |
3150 | #endif |
3151 | // Try to re-use one first |
3152 | for (auto ptr = producerListTail.load(std::memory_order_acquire); ptr != nullptr; ptr = ptr->next_prod()) { |
3153 | if (ptr->inactive.load(std::memory_order_relaxed) && ptr->isExplicit == isExplicit) { |
3154 | bool expected = true; |
3155 | if (ptr->inactive.compare_exchange_strong(expected, /* desired */ false, std::memory_order_acquire, std::memory_order_relaxed)) { |
3156 | // We caught one! It's been marked as activated, the caller can have it |
3157 | recycled = true; |
3158 | return ptr; |
3159 | } |
3160 | } |
3161 | } |
3162 | |
3163 | recycled = false; |
3164 | return add_producer(producer: isExplicit ? static_cast<ProducerBase*>(create<ExplicitProducer>(this)) : create<ImplicitProducer>(this)); |
3165 | } |
3166 | |
3167 | ProducerBase* add_producer(ProducerBase* producer) |
3168 | { |
3169 | // Handle failed memory allocation |
3170 | if (producer == nullptr) { |
3171 | return nullptr; |
3172 | } |
3173 | |
3174 | producerCount.fetch_add(i: 1, m: std::memory_order_relaxed); |
3175 | |
3176 | // Add it to the lock-free list |
3177 | auto prevTail = producerListTail.load(std::memory_order_relaxed); |
3178 | do { |
3179 | producer->next = prevTail; |
3180 | } while (!producerListTail.compare_exchange_weak(prevTail, producer, std::memory_order_release, std::memory_order_relaxed)); |
3181 | |
3182 | #ifdef MOODYCAMEL_QUEUE_INTERNAL_DEBUG |
3183 | if (producer->isExplicit) { |
3184 | auto prevTailExplicit = explicitProducers.load(std::memory_order_relaxed); |
3185 | do { |
3186 | static_cast<ExplicitProducer*>(producer)->nextExplicitProducer = prevTailExplicit; |
3187 | } while (!explicitProducers.compare_exchange_weak(prevTailExplicit, static_cast<ExplicitProducer*>(producer), std::memory_order_release, std::memory_order_relaxed)); |
3188 | } |
3189 | else { |
3190 | auto prevTailImplicit = implicitProducers.load(std::memory_order_relaxed); |
3191 | do { |
3192 | static_cast<ImplicitProducer*>(producer)->nextImplicitProducer = prevTailImplicit; |
3193 | } while (!implicitProducers.compare_exchange_weak(prevTailImplicit, static_cast<ImplicitProducer*>(producer), std::memory_order_release, std::memory_order_relaxed)); |
3194 | } |
3195 | #endif |
3196 | |
3197 | return producer; |
3198 | } |
3199 | |
3200 | void reown_producers() |
3201 | { |
3202 | // After another instance is moved-into/swapped-with this one, all the |
3203 | // producers we stole still think their parents are the other queue. |
3204 | // So fix them up! |
3205 | for (auto ptr = producerListTail.load(std::memory_order_relaxed); ptr != nullptr; ptr = ptr->next_prod()) { |
3206 | ptr->parent = this; |
3207 | } |
3208 | } |
3209 | |
3210 | |
3211 | ////////////////////////////////// |
3212 | // Implicit producer hash |
3213 | ////////////////////////////////// |
3214 | |
3215 | struct ImplicitProducerKVP |
3216 | { |
3217 | std::atomic<details::thread_id_t> key; |
3218 | ImplicitProducer* value; // No need for atomicity since it's only read by the thread that sets it in the first place |
3219 | |
3220 | ImplicitProducerKVP() : value(nullptr) { } |
3221 | |
3222 | ImplicitProducerKVP(ImplicitProducerKVP&& other) MOODYCAMEL_NOEXCEPT |
3223 | { |
3224 | key.store(other.key.load(std::memory_order_relaxed), std::memory_order_relaxed); |
3225 | value = other.value; |
3226 | } |
3227 | |
3228 | inline ImplicitProducerKVP& operator=(ImplicitProducerKVP&& other) MOODYCAMEL_NOEXCEPT |
3229 | { |
3230 | swap(other); |
3231 | return *this; |
3232 | } |
3233 | |
3234 | inline void swap(ImplicitProducerKVP& other) MOODYCAMEL_NOEXCEPT |
3235 | { |
3236 | if (this != &other) { |
3237 | details::swap_relaxed(key, other.key); |
3238 | std::swap(value, other.value); |
3239 | } |
3240 | } |
3241 | }; |
3242 | |
3243 | template<typename XT, typename XTraits> |
3244 | friend void duckdb_moodycamel::swap(typename ConcurrentQueue<XT, XTraits>::ImplicitProducerKVP&, typename ConcurrentQueue<XT, XTraits>::ImplicitProducerKVP&) MOODYCAMEL_NOEXCEPT; |
3245 | |
3246 | struct ImplicitProducerHash |
3247 | { |
3248 | size_t capacity; |
3249 | ImplicitProducerKVP* entries; |
3250 | ImplicitProducerHash* prev; |
3251 | }; |
3252 | |
3253 | inline void populate_initial_implicit_producer_hash() |
3254 | { |
3255 | MOODYCAMEL_CONSTEXPR_IF (INITIAL_IMPLICIT_PRODUCER_HASH_SIZE == 0) { |
3256 | return; |
3257 | } |
3258 | else { |
3259 | implicitProducerHashCount.store(0, std::memory_order_relaxed); |
3260 | auto hash = &initialImplicitProducerHash; |
3261 | hash->capacity = INITIAL_IMPLICIT_PRODUCER_HASH_SIZE; |
3262 | hash->entries = &initialImplicitProducerHashEntries[0]; |
3263 | for (size_t i = 0; i != INITIAL_IMPLICIT_PRODUCER_HASH_SIZE; ++i) { |
3264 | initialImplicitProducerHashEntries[i].key.store(details::invalid_thread_id, std::memory_order_relaxed); |
3265 | } |
3266 | hash->prev = nullptr; |
3267 | implicitProducerHash.store(hash, std::memory_order_relaxed); |
3268 | } |
3269 | } |
3270 | |
3271 | void swap_implicit_producer_hashes(ConcurrentQueue& other) |
3272 | { |
3273 | MOODYCAMEL_CONSTEXPR_IF (INITIAL_IMPLICIT_PRODUCER_HASH_SIZE == 0) { |
3274 | return; |
3275 | } |
3276 | else { |
3277 | // Swap (assumes our implicit producer hash is initialized) |
3278 | initialImplicitProducerHashEntries.swap(other.initialImplicitProducerHashEntries); |
3279 | initialImplicitProducerHash.entries = &initialImplicitProducerHashEntries[0]; |
3280 | other.initialImplicitProducerHash.entries = &other.initialImplicitProducerHashEntries[0]; |
3281 | |
3282 | details::swap_relaxed(implicitProducerHashCount, other.implicitProducerHashCount); |
3283 | |
3284 | details::swap_relaxed(implicitProducerHash, other.implicitProducerHash); |
3285 | if (implicitProducerHash.load(std::memory_order_relaxed) == &other.initialImplicitProducerHash) { |
3286 | implicitProducerHash.store(&initialImplicitProducerHash, std::memory_order_relaxed); |
3287 | } |
3288 | else { |
3289 | ImplicitProducerHash* hash; |
3290 | for (hash = implicitProducerHash.load(std::memory_order_relaxed); hash->prev != &other.initialImplicitProducerHash; hash = hash->prev) { |
3291 | continue; |
3292 | } |
3293 | hash->prev = &initialImplicitProducerHash; |
3294 | } |
3295 | if (other.implicitProducerHash.load(std::memory_order_relaxed) == &initialImplicitProducerHash) { |
3296 | other.implicitProducerHash.store(&other.initialImplicitProducerHash, std::memory_order_relaxed); |
3297 | } |
3298 | else { |
3299 | ImplicitProducerHash* hash; |
3300 | for (hash = other.implicitProducerHash.load(std::memory_order_relaxed); hash->prev != &initialImplicitProducerHash; hash = hash->prev) { |
3301 | continue; |
3302 | } |
3303 | hash->prev = &other.initialImplicitProducerHash; |
3304 | } |
3305 | } |
3306 | } |
3307 | |
3308 | // Only fails (returns nullptr) if memory allocation fails |
3309 | ImplicitProducer* get_or_add_implicit_producer() |
3310 | { |
3311 | // Note that since the data is essentially thread-local (key is thread ID), |
3312 | // there's a reduced need for fences (memory ordering is already consistent |
3313 | // for any individual thread), except for the current table itself. |
3314 | |
3315 | // Start by looking for the thread ID in the current and all previous hash tables. |
3316 | // If it's not found, it must not be in there yet, since this same thread would |
3317 | // have added it previously to one of the tables that we traversed. |
3318 | |
3319 | // Code and algorithm adapted from http://preshing.com/20130605/the-worlds-simplest-lock-free-hash-table |
3320 | |
3321 | #ifdef MCDBGQ_NOLOCKFREE_IMPLICITPRODHASH |
3322 | debug::DebugLock lock(implicitProdMutex); |
3323 | #endif |
3324 | |
3325 | auto id = details::thread_id(); |
3326 | auto hashedId = details::hash_thread_id(id); |
3327 | |
3328 | auto mainHash = implicitProducerHash.load(std::memory_order_acquire); |
3329 | assert(mainHash != nullptr); // silence clang-tidy and MSVC warnings (hash cannot be null) |
3330 | for (auto hash = mainHash; hash != nullptr; hash = hash->prev) { |
3331 | // Look for the id in this hash |
3332 | auto index = hashedId; |
3333 | while (true) { // Not an infinite loop because at least one slot is free in the hash table |
3334 | index &= hash->capacity - 1; |
3335 | |
3336 | auto probedKey = hash->entries[index].key.load(std::memory_order_relaxed); |
3337 | if (probedKey == id) { |
3338 | // Found it! If we had to search several hashes deep, though, we should lazily add it |
3339 | // to the current main hash table to avoid the extended search next time. |
3340 | // Note there's guaranteed to be room in the current hash table since every subsequent |
3341 | // table implicitly reserves space for all previous tables (there's only one |
3342 | // implicitProducerHashCount). |
3343 | auto value = hash->entries[index].value; |
3344 | if (hash != mainHash) { |
3345 | index = hashedId; |
3346 | while (true) { |
3347 | index &= mainHash->capacity - 1; |
3348 | probedKey = mainHash->entries[index].key.load(std::memory_order_relaxed); |
3349 | auto empty = details::invalid_thread_id; |
3350 | #ifdef MOODYCAMEL_CPP11_THREAD_LOCAL_SUPPORTED |
3351 | auto reusable = details::invalid_thread_id2; |
3352 | if ((probedKey == empty && mainHash->entries[index].key.compare_exchange_strong(empty, id, std::memory_order_relaxed, std::memory_order_relaxed)) || |
3353 | (probedKey == reusable && mainHash->entries[index].key.compare_exchange_strong(reusable, id, std::memory_order_acquire, std::memory_order_acquire))) { |
3354 | #else |
3355 | if ((probedKey == empty && mainHash->entries[index].key.compare_exchange_strong(empty, id, std::memory_order_relaxed, std::memory_order_relaxed))) { |
3356 | #endif |
3357 | mainHash->entries[index].value = value; |
3358 | break; |
3359 | } |
3360 | ++index; |
3361 | } |
3362 | } |
3363 | |
3364 | return value; |
3365 | } |
3366 | if (probedKey == details::invalid_thread_id) { |
3367 | break; // Not in this hash table |
3368 | } |
3369 | ++index; |
3370 | } |
3371 | } |
3372 | |
3373 | // Insert! |
3374 | auto newCount = 1 + implicitProducerHashCount.fetch_add(1, std::memory_order_relaxed); |
3375 | while (true) { |
3376 | // NOLINTNEXTLINE(clang-analyzer-core.NullDereference) |
3377 | if (newCount >= (mainHash->capacity >> 1) && !implicitProducerHashResizeInProgress.test_and_set(m: std::memory_order_acquire)) { |
3378 | // We've acquired the resize lock, try to allocate a bigger hash table. |
3379 | // Note the acquire fence synchronizes with the release fence at the end of this block, and hence when |
3380 | // we reload implicitProducerHash it must be the most recent version (it only gets changed within this |
3381 | // locked block). |
3382 | mainHash = implicitProducerHash.load(std::memory_order_acquire); |
3383 | if (newCount >= (mainHash->capacity >> 1)) { |
3384 | auto newCapacity = mainHash->capacity << 1; |
3385 | while (newCount >= (newCapacity >> 1)) { |
3386 | newCapacity <<= 1; |
3387 | } |
3388 | auto raw = static_cast<char*>((Traits::malloc)(sizeof(ImplicitProducerHash) + std::alignment_of<ImplicitProducerKVP>::value - 1 + sizeof(ImplicitProducerKVP) * newCapacity)); |
3389 | if (raw == nullptr) { |
3390 | // Allocation failed |
3391 | implicitProducerHashCount.fetch_sub(1, std::memory_order_relaxed); |
3392 | implicitProducerHashResizeInProgress.clear(m: std::memory_order_relaxed); |
3393 | return nullptr; |
3394 | } |
3395 | |
3396 | auto newHash = new (raw) ImplicitProducerHash; |
3397 | newHash->capacity = newCapacity; |
3398 | newHash->entries = reinterpret_cast<ImplicitProducerKVP*>(details::align_for<ImplicitProducerKVP>(raw + sizeof(ImplicitProducerHash))); |
3399 | for (size_t i = 0; i != newCapacity; ++i) { |
3400 | new (newHash->entries + i) ImplicitProducerKVP; |
3401 | newHash->entries[i].key.store(details::invalid_thread_id, std::memory_order_relaxed); |
3402 | } |
3403 | newHash->prev = mainHash; |
3404 | implicitProducerHash.store(newHash, std::memory_order_release); |
3405 | implicitProducerHashResizeInProgress.clear(m: std::memory_order_release); |
3406 | mainHash = newHash; |
3407 | } |
3408 | else { |
3409 | implicitProducerHashResizeInProgress.clear(m: std::memory_order_release); |
3410 | } |
3411 | } |
3412 | |
3413 | // If it's < three-quarters full, add to the old one anyway so that we don't have to wait for the next table |
3414 | // to finish being allocated by another thread (and if we just finished allocating above, the condition will |
3415 | // always be true) |
3416 | if (newCount < (mainHash->capacity >> 1) + (mainHash->capacity >> 2)) { |
3417 | bool recycled; |
3418 | auto producer = static_cast<ImplicitProducer*>(recycle_or_create_producer(false, recycled)); |
3419 | if (producer == nullptr) { |
3420 | implicitProducerHashCount.fetch_sub(1, std::memory_order_relaxed); |
3421 | return nullptr; |
3422 | } |
3423 | if (recycled) { |
3424 | implicitProducerHashCount.fetch_sub(1, std::memory_order_relaxed); |
3425 | } |
3426 | |
3427 | #ifdef MOODYCAMEL_CPP11_THREAD_LOCAL_SUPPORTED |
3428 | producer->threadExitListener.callback = &ConcurrentQueue::implicit_producer_thread_exited_callback; |
3429 | producer->threadExitListener.userData = producer; |
3430 | details::ThreadExitNotifier::subscribe(&producer->threadExitListener); |
3431 | #endif |
3432 | |
3433 | auto index = hashedId; |
3434 | while (true) { |
3435 | index &= mainHash->capacity - 1; |
3436 | auto probedKey = mainHash->entries[index].key.load(std::memory_order_relaxed); |
3437 | |
3438 | auto empty = details::invalid_thread_id; |
3439 | #ifdef MOODYCAMEL_CPP11_THREAD_LOCAL_SUPPORTED |
3440 | auto reusable = details::invalid_thread_id2; |
3441 | if ((probedKey == empty && mainHash->entries[index].key.compare_exchange_strong(empty, id, std::memory_order_relaxed, std::memory_order_relaxed)) || |
3442 | (probedKey == reusable && mainHash->entries[index].key.compare_exchange_strong(reusable, id, std::memory_order_acquire, std::memory_order_acquire))) { |
3443 | #else |
3444 | if ((probedKey == empty && mainHash->entries[index].key.compare_exchange_strong(empty, id, std::memory_order_relaxed, std::memory_order_relaxed))) { |
3445 | #endif |
3446 | mainHash->entries[index].value = producer; |
3447 | break; |
3448 | } |
3449 | ++index; |
3450 | } |
3451 | return producer; |
3452 | } |
3453 | |
3454 | // Hmm, the old hash is quite full and somebody else is busy allocating a new one. |
3455 | // We need to wait for the allocating thread to finish (if it succeeds, we add, if not, |
3456 | // we try to allocate ourselves). |
3457 | mainHash = implicitProducerHash.load(std::memory_order_acquire); |
3458 | } |
3459 | } |
3460 | |
3461 | #ifdef MOODYCAMEL_CPP11_THREAD_LOCAL_SUPPORTED |
3462 | void implicit_producer_thread_exited(ImplicitProducer* producer) |
3463 | { |
3464 | // Remove from thread exit listeners |
3465 | details::ThreadExitNotifier::unsubscribe(&producer->threadExitListener); |
3466 | |
3467 | // Remove from hash |
3468 | #ifdef MCDBGQ_NOLOCKFREE_IMPLICITPRODHASH |
3469 | debug::DebugLock lock(implicitProdMutex); |
3470 | #endif |
3471 | auto hash = implicitProducerHash.load(std::memory_order_acquire); |
3472 | assert(hash != nullptr); // The thread exit listener is only registered if we were added to a hash in the first place |
3473 | auto id = details::thread_id(); |
3474 | auto hashedId = details::hash_thread_id(id); |
3475 | details::thread_id_t probedKey; |
3476 | |
3477 | // We need to traverse all the hashes just in case other threads aren't on the current one yet and are |
3478 | // trying to add an entry thinking there's a free slot (because they reused a producer) |
3479 | for (; hash != nullptr; hash = hash->prev) { |
3480 | auto index = hashedId; |
3481 | do { |
3482 | index &= hash->capacity - 1; |
3483 | probedKey = hash->entries[index].key.load(std::memory_order_relaxed); |
3484 | if (probedKey == id) { |
3485 | hash->entries[index].key.store(details::invalid_thread_id2, std::memory_order_release); |
3486 | break; |
3487 | } |
3488 | ++index; |
3489 | } while (probedKey != details::invalid_thread_id); // Can happen if the hash has changed but we weren't put back in it yet, or if we weren't added to this hash in the first place |
3490 | } |
3491 | |
3492 | // Mark the queue as being recyclable |
3493 | producer->inactive.store(true, std::memory_order_release); |
3494 | } |
3495 | |
3496 | static void implicit_producer_thread_exited_callback(void* userData) |
3497 | { |
3498 | auto producer = static_cast<ImplicitProducer*>(userData); |
3499 | auto queue = producer->parent; |
3500 | queue->implicit_producer_thread_exited(producer); |
3501 | } |
3502 | #endif |
3503 | |
3504 | ////////////////////////////////// |
3505 | // Utility functions |
3506 | ////////////////////////////////// |
3507 | |
3508 | template<typename TAlign> |
3509 | static inline void* aligned_malloc(size_t size) |
3510 | { |
3511 | if (std::alignment_of<TAlign>::value <= std::alignment_of<details::max_align_t>::value) |
3512 | return (Traits::malloc)(size); |
3513 | size_t alignment = std::alignment_of<TAlign>::value; |
3514 | void* raw = (Traits::malloc)(size + alignment - 1 + sizeof(void*)); |
3515 | if (!raw) |
3516 | return nullptr; |
3517 | char* ptr = details::align_for<TAlign>(reinterpret_cast<char*>(raw) + sizeof(void*)); |
3518 | *(reinterpret_cast<void**>(ptr) - 1) = raw; |
3519 | return ptr; |
3520 | } |
3521 | |
3522 | template<typename TAlign> |
3523 | static inline void aligned_free(void* ptr) |
3524 | { |
3525 | if (std::alignment_of<TAlign>::value <= std::alignment_of<details::max_align_t>::value) |
3526 | return (Traits::free)(ptr); |
3527 | (Traits::free)(ptr ? *(reinterpret_cast<void**>(ptr) - 1) : nullptr); |
3528 | } |
3529 | |
3530 | template<typename U> |
3531 | static inline U* create_array(size_t count) |
3532 | { |
3533 | assert(count > 0); |
3534 | U* p = static_cast<U*>(aligned_malloc<U>(sizeof(U) * count)); |
3535 | if (p == nullptr) |
3536 | return nullptr; |
3537 | |
3538 | for (size_t i = 0; i != count; ++i) |
3539 | new (p + i) U(); |
3540 | return p; |
3541 | } |
3542 | |
3543 | template<typename U> |
3544 | static inline void destroy_array(U* p, size_t count) |
3545 | { |
3546 | if (p != nullptr) { |
3547 | assert(count > 0); |
3548 | for (size_t i = count; i != 0; ) |
3549 | (p + --i)->~U(); |
3550 | } |
3551 | aligned_free<U>(p); |
3552 | } |
3553 | |
3554 | template<typename U> |
3555 | static inline U* create() |
3556 | { |
3557 | void* p = aligned_malloc<U>(sizeof(U)); |
3558 | return p != nullptr ? new (p) U : nullptr; |
3559 | } |
3560 | |
3561 | template<typename U, typename A1> |
3562 | static inline U* create(A1&& a1) |
3563 | { |
3564 | void* p = aligned_malloc<U>(sizeof(U)); |
3565 | return p != nullptr ? new (p) U(std::forward<A1>(a1)) : nullptr; |
3566 | } |
3567 | |
3568 | template<typename U> |
3569 | static inline void destroy(U* p) |
3570 | { |
3571 | if (p != nullptr) |
3572 | p->~U(); |
3573 | aligned_free<U>(p); |
3574 | } |
3575 | |
3576 | private: |
3577 | std::atomic<ProducerBase*> producerListTail; |
3578 | std::atomic<std::uint32_t> producerCount; |
3579 | |
3580 | std::atomic<size_t> initialBlockPoolIndex; |
3581 | Block* initialBlockPool; |
3582 | size_t initialBlockPoolSize; |
3583 | |
3584 | #ifndef MCDBGQ_USEDEBUGFREELIST |
3585 | FreeList<Block> freeList; |
3586 | #else |
3587 | debug::DebugFreeList<Block> freeList; |
3588 | #endif |
3589 | |
3590 | std::atomic<ImplicitProducerHash*> implicitProducerHash; |
3591 | std::atomic<size_t> implicitProducerHashCount; // Number of slots logically used |
3592 | ImplicitProducerHash initialImplicitProducerHash; |
3593 | std::array<ImplicitProducerKVP, INITIAL_IMPLICIT_PRODUCER_HASH_SIZE> initialImplicitProducerHashEntries; |
3594 | std::atomic_flag implicitProducerHashResizeInProgress; |
3595 | |
3596 | std::atomic<std::uint32_t> nextExplicitConsumerId; |
3597 | std::atomic<std::uint32_t> globalExplicitConsumerOffset; |
3598 | |
3599 | #ifdef MCDBGQ_NOLOCKFREE_IMPLICITPRODHASH |
3600 | debug::DebugMutex implicitProdMutex; |
3601 | #endif |
3602 | |
3603 | #ifdef MOODYCAMEL_QUEUE_INTERNAL_DEBUG |
3604 | std::atomic<ExplicitProducer*> explicitProducers; |
3605 | std::atomic<ImplicitProducer*> implicitProducers; |
3606 | #endif |
3607 | }; |
3608 | |
3609 | |
3610 | template<typename T, typename Traits> |
3611 | ProducerToken::ProducerToken(ConcurrentQueue<T, Traits>& queue) |
3612 | : producer(queue.recycle_or_create_producer(true)) |
3613 | { |
3614 | if (producer != nullptr) { |
3615 | producer->token = this; |
3616 | } |
3617 | } |
3618 | |
3619 | template<typename T, typename Traits> |
3620 | ProducerToken::ProducerToken(BlockingConcurrentQueue<T, Traits>& queue) |
3621 | : producer(reinterpret_cast<ConcurrentQueue<T, Traits>*>(&queue)->recycle_or_create_producer(true)) |
3622 | { |
3623 | if (producer != nullptr) { |
3624 | producer->token = this; |
3625 | } |
3626 | } |
3627 | |
3628 | template<typename T, typename Traits> |
3629 | ConsumerToken::ConsumerToken(ConcurrentQueue<T, Traits>& queue) |
3630 | : itemsConsumedFromCurrent(0), currentProducer(nullptr), desiredProducer(nullptr) |
3631 | { |
3632 | initialOffset = queue.nextExplicitConsumerId.fetch_add(1, std::memory_order_release); |
3633 | lastKnownGlobalOffset = -1; |
3634 | } |
3635 | |
3636 | template<typename T, typename Traits> |
3637 | ConsumerToken::ConsumerToken(BlockingConcurrentQueue<T, Traits>& queue) |
3638 | : itemsConsumedFromCurrent(0), currentProducer(nullptr), desiredProducer(nullptr) |
3639 | { |
3640 | initialOffset = reinterpret_cast<ConcurrentQueue<T, Traits>*>(&queue)->nextExplicitConsumerId.fetch_add(1, std::memory_order_release); |
3641 | lastKnownGlobalOffset = -1; |
3642 | } |
3643 | |
3644 | template<typename T, typename Traits> |
3645 | inline void swap(ConcurrentQueue<T, Traits>& a, ConcurrentQueue<T, Traits>& b) MOODYCAMEL_NOEXCEPT |
3646 | { |
3647 | a.swap(b); |
3648 | } |
3649 | |
3650 | inline void swap(ProducerToken& a, ProducerToken& b) MOODYCAMEL_NOEXCEPT |
3651 | { |
3652 | a.swap(other&: b); |
3653 | } |
3654 | |
3655 | inline void swap(ConsumerToken& a, ConsumerToken& b) MOODYCAMEL_NOEXCEPT |
3656 | { |
3657 | a.swap(other&: b); |
3658 | } |
3659 | |
3660 | template<typename T, typename Traits> |
3661 | inline void swap(typename ConcurrentQueue<T, Traits>::ImplicitProducerKVP& a, typename ConcurrentQueue<T, Traits>::ImplicitProducerKVP& b) MOODYCAMEL_NOEXCEPT |
3662 | { |
3663 | a.swap(b); |
3664 | } |
3665 | |
3666 | } |
3667 | |
3668 | |