| 1 | // this software is distributed under the MIT License (http://www.opensource.org/licenses/MIT): | 
|---|
| 2 | // | 
|---|
| 3 | // Copyright 2018-2020, CWI, TU Munich, FSU Jena | 
|---|
| 4 | // | 
|---|
| 5 | // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files | 
|---|
| 6 | // (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, | 
|---|
| 7 | // merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | 
|---|
| 8 | // furnished to do so, subject to the following conditions: | 
|---|
| 9 | // | 
|---|
| 10 | // - The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. | 
|---|
| 11 | // | 
|---|
| 12 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES | 
|---|
| 13 | // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | 
|---|
| 14 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR | 
|---|
| 15 | // IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | 
|---|
| 16 | // | 
|---|
| 17 | // You can contact the authors via the FSST source repository : https://github.com/cwida/fsst | 
|---|
| 18 | #include "libfsst.hpp" | 
|---|
| 19 |  | 
|---|
| 20 | Symbol concat(Symbol a, Symbol b) { | 
|---|
| 21 | Symbol s; | 
|---|
| 22 | u32 length = a.length()+b.length(); | 
|---|
| 23 | if (length > Symbol::maxLength) length = Symbol::maxLength; | 
|---|
| 24 | s.set_code_len(FSST_CODE_MASK, len: length); | 
|---|
| 25 | s.val.num = (b.val.num << (8*a.length())) | a.val.num; | 
|---|
| 26 | return s; | 
|---|
| 27 | } | 
|---|
| 28 |  | 
|---|
| 29 | namespace std { | 
|---|
| 30 | template <> | 
|---|
| 31 | class hash<QSymbol> { | 
|---|
| 32 | public: | 
|---|
| 33 | size_t operator()(const QSymbol& q) const { | 
|---|
| 34 | uint64_t k = q.symbol.val.num; | 
|---|
| 35 | const uint64_t m = 0xc6a4a7935bd1e995; | 
|---|
| 36 | const int r = 47; | 
|---|
| 37 | uint64_t h = 0x8445d61a4e774912 ^ (8*m); | 
|---|
| 38 | k *= m; | 
|---|
| 39 | k ^= k >> r; | 
|---|
| 40 | k *= m; | 
|---|
| 41 | h ^= k; | 
|---|
| 42 | h *= m; | 
|---|
| 43 | h ^= h >> r; | 
|---|
| 44 | h *= m; | 
|---|
| 45 | h ^= h >> r; | 
|---|
| 46 | return h; | 
|---|
| 47 | } | 
|---|
| 48 | }; | 
|---|
| 49 | } | 
|---|
| 50 |  | 
|---|
| 51 | bool isEscapeCode(u16 pos) { return pos < FSST_CODE_BASE; } | 
|---|
| 52 |  | 
|---|
| 53 | std::ostream& operator<<(std::ostream& out, const Symbol& s) { | 
|---|
| 54 | for (u32 i=0; i<s.length(); i++) | 
|---|
| 55 | out << s.val.str[i]; | 
|---|
| 56 | return out; | 
|---|
| 57 | } | 
|---|
| 58 |  | 
|---|
| 59 | SymbolTable *(Counters& counters, vector<u8*> line, size_t len[], bool zeroTerminated=false) { | 
|---|
| 60 | SymbolTable *st = new SymbolTable(), *bestTable = new SymbolTable(); | 
|---|
| 61 | int bestGain = (int) -FSST_SAMPLEMAXSZ; // worst case (everything exception) | 
|---|
| 62 | size_t sampleFrac = 128; | 
|---|
| 63 |  | 
|---|
| 64 | // start by determining the terminator. We use the (lowest) most infrequent byte as terminator | 
|---|
| 65 | st->zeroTerminated = zeroTerminated; | 
|---|
| 66 | if (zeroTerminated) { | 
|---|
| 67 | st->terminator = 0; // except in case of zeroTerminated mode, then byte 0 is terminator regardless frequency | 
|---|
| 68 | } else { | 
|---|
| 69 | u16 byteHisto[256]; | 
|---|
| 70 | memset(s: byteHisto, c: 0, n: sizeof(byteHisto)); | 
|---|
| 71 | for(size_t i=0; i<line.size(); i++) { | 
|---|
| 72 | u8* cur = line[i]; | 
|---|
| 73 | u8* end = cur + len[i]; | 
|---|
| 74 | while(cur < end) byteHisto[*cur++]++; | 
|---|
| 75 | } | 
|---|
| 76 | u32 minSize = FSST_SAMPLEMAXSZ, i = st->terminator = 256; | 
|---|
| 77 | while(i-- > 0) { | 
|---|
| 78 | if (byteHisto[i] > minSize) continue; | 
|---|
| 79 | st->terminator = i; | 
|---|
| 80 | minSize = byteHisto[i]; | 
|---|
| 81 | } | 
|---|
| 82 | } | 
|---|
| 83 | assert(st->terminator != 256); | 
|---|
| 84 |  | 
|---|
| 85 | // a random number between 0 and 128 | 
|---|
| 86 | auto rnd128 = [&](size_t i) { return 1 + (FSST_HASH((i+1UL)*sampleFrac)&127); }; | 
|---|
| 87 |  | 
|---|
| 88 | // compress sample, and compute (pair-)frequencies | 
|---|
| 89 | auto compressCount = [&](SymbolTable *st, Counters &counters) { // returns gain | 
|---|
| 90 | int gain = 0; | 
|---|
| 91 |  | 
|---|
| 92 | for(size_t i=0; i<line.size(); i++) { | 
|---|
| 93 | u8* cur = line[i]; | 
|---|
| 94 | u8* end = cur + len[i]; | 
|---|
| 95 |  | 
|---|
| 96 | if (sampleFrac < 128) { | 
|---|
| 97 | // in earlier rounds (sampleFrac < 128) we skip data in the sample (reduces overall work ~2x) | 
|---|
| 98 | if (rnd128(i) > sampleFrac) continue; | 
|---|
| 99 | } | 
|---|
| 100 | if (cur < end) { | 
|---|
| 101 | u8* start = cur; | 
|---|
| 102 | u16 code2 = 255, code1 = st->findLongestSymbol(cur, end); | 
|---|
| 103 | cur += st->symbols[code1].length(); | 
|---|
| 104 | gain += (int) (st->symbols[code1].length()-(1+isEscapeCode(pos: code1))); | 
|---|
| 105 | while (true) { | 
|---|
| 106 | // count single symbol (i.e. an option is not extending it) | 
|---|
| 107 | counters.count1Inc(pos1: code1); | 
|---|
| 108 |  | 
|---|
| 109 | // as an alternative, consider just using the next byte.. | 
|---|
| 110 | if (st->symbols[code1].length() != 1) // .. but do not count single byte symbols doubly | 
|---|
| 111 | counters.count1Inc(pos1: *start); | 
|---|
| 112 |  | 
|---|
| 113 | if (cur==end) { | 
|---|
| 114 | break; | 
|---|
| 115 | } | 
|---|
| 116 |  | 
|---|
| 117 | // now match a new symbol | 
|---|
| 118 | start = cur; | 
|---|
| 119 | if (cur<end-7) { | 
|---|
| 120 | u64 word = fsst_unaligned_load(V: cur); | 
|---|
| 121 | size_t code = word & 0xFFFFFF; | 
|---|
| 122 | size_t idx = FSST_HASH(code)&(st->hashTabSize-1); | 
|---|
| 123 | Symbol s = st->hashTab[idx]; | 
|---|
| 124 | code2 = st->shortCodes[word & 0xFFFF] & FSST_CODE_MASK; | 
|---|
| 125 | word &= (0xFFFFFFFFFFFFFFFF >> (u8) s.icl); | 
|---|
| 126 | if ((s.icl < FSST_ICL_FREE) & (s.val.num == word)) { | 
|---|
| 127 | code2 = s.code(); | 
|---|
| 128 | cur += s.length(); | 
|---|
| 129 | } else if (code2 >= FSST_CODE_BASE) { | 
|---|
| 130 | cur += 2; | 
|---|
| 131 | } else { | 
|---|
| 132 | code2 = st->byteCodes[word & 0xFF] & FSST_CODE_MASK; | 
|---|
| 133 | cur += 1; | 
|---|
| 134 | } | 
|---|
| 135 | } else { | 
|---|
| 136 | code2 = st->findLongestSymbol(cur, end); | 
|---|
| 137 | cur += st->symbols[code2].length(); | 
|---|
| 138 | } | 
|---|
| 139 |  | 
|---|
| 140 | // compute compressed output size | 
|---|
| 141 | gain += ((int) (cur-start))-(1+isEscapeCode(pos: code2)); | 
|---|
| 142 |  | 
|---|
| 143 | // now count the subsequent two symbols we encode as an extension codesibility | 
|---|
| 144 | if (sampleFrac < 128) { // no need to count pairs in final round | 
|---|
| 145 | // consider the symbol that is the concatenation of the two last symbols | 
|---|
| 146 | counters.count2Inc(pos1: code1, pos2: code2); | 
|---|
| 147 |  | 
|---|
| 148 | // as an alternative, consider just extending with the next byte.. | 
|---|
| 149 | if ((cur-start) > 1)  // ..but do not count single byte extensions doubly | 
|---|
| 150 | counters.count2Inc(pos1: code1, pos2: *start); | 
|---|
| 151 | } | 
|---|
| 152 | code1 = code2; | 
|---|
| 153 | } | 
|---|
| 154 | } | 
|---|
| 155 | } | 
|---|
| 156 | return gain; | 
|---|
| 157 | }; | 
|---|
| 158 |  | 
|---|
| 159 | auto makeTable = [&](SymbolTable *st, Counters &counters) { | 
|---|
| 160 | // hashmap of c (needed because we can generate duplicate candidates) | 
|---|
| 161 | unordered_set<QSymbol> cands; | 
|---|
| 162 |  | 
|---|
| 163 | // artificially make terminater the most frequent symbol so it gets included | 
|---|
| 164 | u16 terminator = st->nSymbols?FSST_CODE_BASE:st->terminator; | 
|---|
| 165 | counters.count1Set(pos1: terminator,val: 65535); | 
|---|
| 166 |  | 
|---|
| 167 | auto addOrInc = [&](unordered_set<QSymbol> &cands, Symbol s, u64 count) { | 
|---|
| 168 | if (count < (5*sampleFrac)/128) return; // improves both compression speed (less candidates), but also quality!! | 
|---|
| 169 | QSymbol q; | 
|---|
| 170 | q.symbol = s; | 
|---|
| 171 | q.gain = count * s.length(); | 
|---|
| 172 | auto it = cands.find(x: q); | 
|---|
| 173 | if (it != cands.end()) { | 
|---|
| 174 | q.gain += (*it).gain; | 
|---|
| 175 | cands.erase(x: *it); | 
|---|
| 176 | } | 
|---|
| 177 | cands.insert(x: q); | 
|---|
| 178 | }; | 
|---|
| 179 |  | 
|---|
| 180 | // add candidate symbols based on counted frequency | 
|---|
| 181 | for (u32 pos1=0; pos1<FSST_CODE_BASE+(size_t) st->nSymbols; pos1++) { | 
|---|
| 182 | u32 cnt1 = counters.count1GetNext(pos1); // may advance pos1!! | 
|---|
| 183 | if (!cnt1) continue; | 
|---|
| 184 |  | 
|---|
| 185 | // heuristic: promoting single-byte symbols (*8) helps reduce exception rates and increases [de]compression speed | 
|---|
| 186 | Symbol s1 = st->symbols[pos1]; | 
|---|
| 187 | addOrInc(cands, s1, ((s1.length()==1)?8LL:1LL)*cnt1); | 
|---|
| 188 |  | 
|---|
| 189 | if (sampleFrac >= 128 || // last round we do not create new (combined) symbols | 
|---|
| 190 | s1.length() == Symbol::maxLength || // symbol cannot be extended | 
|---|
| 191 | s1.val.str[0] == st->terminator) { // multi-byte symbols cannot contain the terminator byte | 
|---|
| 192 | continue; | 
|---|
| 193 | } | 
|---|
| 194 | for (u32 pos2=0; pos2<FSST_CODE_BASE+(size_t)st->nSymbols; pos2++) { | 
|---|
| 195 | u32 cnt2 = counters.count2GetNext(pos1, pos2); // may advance pos2!! | 
|---|
| 196 | if (!cnt2) continue; | 
|---|
| 197 |  | 
|---|
| 198 | // create a new symbol | 
|---|
| 199 | Symbol s2 = st->symbols[pos2]; | 
|---|
| 200 | Symbol s3 = concat(a: s1, b: s2); | 
|---|
| 201 | if (s2.val.str[0] != st->terminator) // multi-byte symbols cannot contain the terminator byte | 
|---|
| 202 | addOrInc(cands, s3, cnt2); | 
|---|
| 203 | } | 
|---|
| 204 | } | 
|---|
| 205 |  | 
|---|
| 206 | // insert candidates into priority queue (by gain) | 
|---|
| 207 | auto cmpGn = [](const QSymbol& q1, const QSymbol& q2) { return (q1.gain < q2.gain) || (q1.gain == q2.gain && q1.symbol.val.num > q2.symbol.val.num); }; | 
|---|
| 208 | priority_queue<QSymbol,vector<QSymbol>,decltype(cmpGn)> pq(cmpGn); | 
|---|
| 209 | for (auto& q : cands) | 
|---|
| 210 | pq.push(x: q); | 
|---|
| 211 |  | 
|---|
| 212 | // Create new symbol map using best candidates | 
|---|
| 213 | st->clear(); | 
|---|
| 214 | while (st->nSymbols < 255 && !pq.empty()) { | 
|---|
| 215 | QSymbol q = pq.top(); | 
|---|
| 216 | pq.pop(); | 
|---|
| 217 | st->add(s: q.symbol); | 
|---|
| 218 | } | 
|---|
| 219 | }; | 
|---|
| 220 |  | 
|---|
| 221 | u8 bestCounters[512*sizeof(u16)]; | 
|---|
| 222 | #ifdef NONOPT_FSST | 
|---|
| 223 | for(size_t frac : {127, 127, 127, 127, 127, 127, 127, 127, 127, 128}) { | 
|---|
| 224 | sampleFrac = frac; | 
|---|
| 225 | #else | 
|---|
| 226 | for(sampleFrac=8; true; sampleFrac += 30) { | 
|---|
| 227 | #endif | 
|---|
| 228 | memset(s: &counters, c: 0, n: sizeof(Counters)); | 
|---|
| 229 | long gain = compressCount(st, counters); | 
|---|
| 230 | if (gain >= bestGain) { // a new best solution! | 
|---|
| 231 | counters.backup1(buf: bestCounters); | 
|---|
| 232 | *bestTable = *st; bestGain = gain; | 
|---|
| 233 | } | 
|---|
| 234 | if (sampleFrac >= 128) break; // we do 5 rounds (sampleFrac=8,38,68,98,128) | 
|---|
| 235 | makeTable(st, counters); | 
|---|
| 236 | } | 
|---|
| 237 | delete st; | 
|---|
| 238 | counters.restore1(buf: bestCounters); | 
|---|
| 239 | makeTable(bestTable, counters); | 
|---|
| 240 | bestTable->finalize(zeroTerminated); // renumber codes for more efficient compression | 
|---|
| 241 | return bestTable; | 
|---|
| 242 | } | 
|---|
| 243 |  | 
|---|
| 244 | static inline size_t compressSIMD(SymbolTable &symbolTable, u8* symbolBase, size_t nlines, size_t len[], u8* line[], size_t size, u8* dst, size_t lenOut[], u8* strOut[], int unroll) { | 
|---|
| 245 | size_t curLine = 0, inOff = 0, outOff = 0, batchPos = 0, empty = 0, budget = size; | 
|---|
| 246 | u8 *lim = dst + size, *codeBase = symbolBase + (1<<18); // 512KB temp space for compressing 512 strings | 
|---|
| 247 | SIMDjob input[512];  // combined offsets of input strings (cur,end), and string #id (pos) and output (dst) pointer | 
|---|
| 248 | SIMDjob output[512]; // output are (pos:9,dst:19) end pointers (compute compressed length from this) | 
|---|
| 249 | size_t jobLine[512]; // for which line in the input sequence was this job (needed because we may split a line into multiple jobs) | 
|---|
| 250 |  | 
|---|
| 251 | while (curLine < nlines && outOff <= (1<<19)) { | 
|---|
| 252 | size_t prevLine = curLine, chunk, curOff = 0; | 
|---|
| 253 |  | 
|---|
| 254 | // bail out if the output buffer cannot hold the compressed next string fully | 
|---|
| 255 | if (((len[curLine]-curOff)*2 + 7) > budget) break; // see below for the +7 | 
|---|
| 256 | else budget -= (len[curLine]-curOff)*2; | 
|---|
| 257 |  | 
|---|
| 258 | strOut[curLine] = (u8*) 0; | 
|---|
| 259 | lenOut[curLine] = 0; | 
|---|
| 260 |  | 
|---|
| 261 | do { | 
|---|
| 262 | do { | 
|---|
| 263 | chunk = len[curLine] - curOff; | 
|---|
| 264 | if (chunk > 511) { | 
|---|
| 265 | chunk = 511; // large strings need to be chopped up into segments of 511 bytes | 
|---|
| 266 | } | 
|---|
| 267 | // create a job in this batch | 
|---|
| 268 | SIMDjob job; | 
|---|
| 269 | job.cur = inOff; | 
|---|
| 270 | job.end = job.cur + chunk; | 
|---|
| 271 | job.pos = batchPos; | 
|---|
| 272 | job.out = outOff; | 
|---|
| 273 |  | 
|---|
| 274 | // worst case estimate for compressed size (+7 is for the scatter that writes extra 7 zeros) | 
|---|
| 275 | outOff += 7 + 2*(size_t)(job.end - job.cur); // note, total size needed is 512*(511*2+7) bytes. | 
|---|
| 276 | if (outOff > (1<<19)) break; // simdbuf may get full, stop before this chunk | 
|---|
| 277 |  | 
|---|
| 278 | // register job in this batch | 
|---|
| 279 | input[batchPos] = job; | 
|---|
| 280 | jobLine[batchPos] = curLine; | 
|---|
| 281 |  | 
|---|
| 282 | if (chunk == 0) { | 
|---|
| 283 | empty++; // detect empty chunks -- SIMD code cannot handle empty strings, so they need to be filtered out | 
|---|
| 284 | } else { | 
|---|
| 285 | // copy string chunk into temp buffer | 
|---|
| 286 | memcpy(dest: symbolBase + inOff, src: line[curLine] + curOff, n: chunk); | 
|---|
| 287 | inOff += chunk; | 
|---|
| 288 | curOff += chunk; | 
|---|
| 289 | symbolBase[inOff++] = (u8) symbolTable.terminator; // write an extra char at the end that will not be encoded | 
|---|
| 290 | } | 
|---|
| 291 | if (++batchPos == 512) break; | 
|---|
| 292 | } while(curOff < len[curLine]); | 
|---|
| 293 |  | 
|---|
| 294 | if ((batchPos == 512) || (outOff > (1<<19)) || (++curLine >= nlines)) { // cannot accumulate more? | 
|---|
| 295 | if (batchPos-empty >= 32) { // if we have enough work, fire off fsst_compressAVX512 (32 is due to max 4x8 unrolling) | 
|---|
| 296 | // radix-sort jobs on length (longest string first) | 
|---|
| 297 | // -- this provides best load balancing and allows to skip empty jobs at the end | 
|---|
| 298 | u16 sortpos[513]; | 
|---|
| 299 | memset(s: sortpos, c: 0, n: sizeof(sortpos)); | 
|---|
| 300 |  | 
|---|
| 301 | // calculate length histo | 
|---|
| 302 | for(size_t i=0; i<batchPos; i++) { | 
|---|
| 303 | size_t len = input[i].end - input[i].cur; | 
|---|
| 304 | sortpos[512UL - len]++; | 
|---|
| 305 | } | 
|---|
| 306 | // calculate running sum | 
|---|
| 307 | for(size_t i=1; i<=512; i++) | 
|---|
| 308 | sortpos[i] += sortpos[i-1]; | 
|---|
| 309 |  | 
|---|
| 310 | // move jobs to their final destination | 
|---|
| 311 | SIMDjob inputOrdered[512]; | 
|---|
| 312 | for(size_t i=0; i<batchPos; i++) { | 
|---|
| 313 | size_t len = input[i].end - input[i].cur; | 
|---|
| 314 | size_t pos = sortpos[511UL - len]++; | 
|---|
| 315 | inputOrdered[pos] = input[i]; | 
|---|
| 316 | } | 
|---|
| 317 | // finally.. SIMD compress max 256KB of simdbuf into (max) 512KB of simdbuf (but presumably much less..) | 
|---|
| 318 | for(size_t done = duckdb_fsst_compressAVX512(symbolTable, codeBase, symbolBase, input: inputOrdered, output, n: batchPos-empty, unroll); | 
|---|
| 319 | done < batchPos; done++) output[done] = inputOrdered[done]; | 
|---|
| 320 | } else { | 
|---|
| 321 | memcpy(dest: output, src: input, n: batchPos*sizeof(SIMDjob)); | 
|---|
| 322 | } | 
|---|
| 323 |  | 
|---|
| 324 | // finish encoding (unfinished strings in process, plus the few last strings not yet processed) | 
|---|
| 325 | for(size_t i=0; i<batchPos; i++) { | 
|---|
| 326 | SIMDjob job = output[i]; | 
|---|
| 327 | if (job.cur < job.end) { // finish encoding this string with scalar code | 
|---|
| 328 | u8* cur = symbolBase + job.cur; | 
|---|
| 329 | u8* end = symbolBase + job.end; | 
|---|
| 330 | u8* out = codeBase + job.out; | 
|---|
| 331 | while (cur < end) { | 
|---|
| 332 | u64 word = fsst_unaligned_load(V: cur); | 
|---|
| 333 | size_t code = symbolTable.shortCodes[word & 0xFFFF]; | 
|---|
| 334 | size_t pos = word & 0xFFFFFF; | 
|---|
| 335 | size_t idx = FSST_HASH(pos)&(symbolTable.hashTabSize-1); | 
|---|
| 336 | Symbol s = symbolTable.hashTab[idx]; | 
|---|
| 337 | out[1] = (u8) word; // speculatively write out escaped byte | 
|---|
| 338 | word &= (0xFFFFFFFFFFFFFFFF >> (u8) s.icl); | 
|---|
| 339 | if ((s.icl < FSST_ICL_FREE) && s.val.num == word) { | 
|---|
| 340 | *out++ = (u8) s.code(); cur += s.length(); | 
|---|
| 341 | } else { | 
|---|
| 342 | // could be a 2-byte or 1-byte code, or miss | 
|---|
| 343 | // handle everything with predication | 
|---|
| 344 | *out = (u8) code; | 
|---|
| 345 | out += 1+((code&FSST_CODE_BASE)>>8); | 
|---|
| 346 | cur += (code>>FSST_LEN_BITS); | 
|---|
| 347 | } | 
|---|
| 348 | } | 
|---|
| 349 | job.out = out - codeBase; | 
|---|
| 350 | } | 
|---|
| 351 | // postprocess job info | 
|---|
| 352 | job.cur = 0; | 
|---|
| 353 | job.end = job.out - input[job.pos].out; // misuse .end field as compressed size | 
|---|
| 354 | job.out = input[job.pos].out; // reset offset to start of encoded string | 
|---|
| 355 | input[job.pos] = job; | 
|---|
| 356 | } | 
|---|
| 357 |  | 
|---|
| 358 | // copy out the result data | 
|---|
| 359 | for(size_t i=0; i<batchPos; i++) { | 
|---|
| 360 | size_t lineNr = jobLine[i]; // the sort must be order-preserving, as we concatenate results string in order | 
|---|
| 361 | size_t sz = input[i].end; // had stored compressed lengths here | 
|---|
| 362 | if (!strOut[lineNr]) strOut[lineNr] = dst; // first segment will be the strOut pointer | 
|---|
| 363 | lenOut[lineNr] += sz; // add segment (lenOut starts at 0 for this reason) | 
|---|
| 364 | memcpy(dest: dst, src: codeBase+input[i].out, n: sz); | 
|---|
| 365 | dst += sz; | 
|---|
| 366 | } | 
|---|
| 367 |  | 
|---|
| 368 | // go for the next batch of 512 chunks | 
|---|
| 369 | inOff = outOff = batchPos = empty = 0; | 
|---|
| 370 | budget = (size_t) (lim - dst); | 
|---|
| 371 | } | 
|---|
| 372 | } while (curLine == prevLine && outOff <= (1<<19)); | 
|---|
| 373 | } | 
|---|
| 374 | return curLine; | 
|---|
| 375 | } | 
|---|
| 376 |  | 
|---|
| 377 |  | 
|---|
| 378 | // optimized adaptive *scalar* compression method | 
|---|
| 379 | static inline size_t compressBulk(SymbolTable &symbolTable, size_t nlines, size_t lenIn[], u8* strIn[], size_t size, u8* out, size_t lenOut[], u8* strOut[], bool noSuffixOpt, bool avoidBranch) { | 
|---|
| 380 | u8 *cur = NULL, *end =  NULL, *lim = out + size; | 
|---|
| 381 | size_t curLine, suffixLim = symbolTable.suffixLim; | 
|---|
| 382 | u8 byteLim = symbolTable.nSymbols + symbolTable.zeroTerminated - symbolTable.lenHisto[0]; | 
|---|
| 383 |  | 
|---|
| 384 | u8 buf[512+7] = {}; /* +7 sentinel is to avoid 8-byte unaligned-loads going beyond 511 out-of-bounds */ | 
|---|
| 385 |  | 
|---|
| 386 | // three variants are possible. dead code falls away since the bool arguments are constants | 
|---|
| 387 | auto compressVariant = [&](bool noSuffixOpt, bool avoidBranch) { | 
|---|
| 388 | while (cur < end) { | 
|---|
| 389 | u64 word = fsst_unaligned_load(V: cur); | 
|---|
| 390 | size_t code = symbolTable.shortCodes[word & 0xFFFF]; | 
|---|
| 391 | if (noSuffixOpt && ((u8) code) < suffixLim) { | 
|---|
| 392 | // 2 byte code without having to worry about longer matches | 
|---|
| 393 | *out++ = (u8) code; cur += 2; | 
|---|
| 394 | } else { | 
|---|
| 395 | size_t pos = word & 0xFFFFFF; | 
|---|
| 396 | size_t idx = FSST_HASH(pos)&(symbolTable.hashTabSize-1); | 
|---|
| 397 | Symbol s = symbolTable.hashTab[idx]; | 
|---|
| 398 | out[1] = (u8) word; // speculatively write out escaped byte | 
|---|
| 399 | word &= (0xFFFFFFFFFFFFFFFF >> (u8) s.icl); | 
|---|
| 400 | if ((s.icl < FSST_ICL_FREE) && s.val.num == word) { | 
|---|
| 401 | *out++ = (u8) s.code(); cur += s.length(); | 
|---|
| 402 | } else if (avoidBranch) { | 
|---|
| 403 | // could be a 2-byte or 1-byte code, or miss | 
|---|
| 404 | // handle everything with predication | 
|---|
| 405 | *out = (u8) code; | 
|---|
| 406 | out += 1+((code&FSST_CODE_BASE)>>8); | 
|---|
| 407 | cur += (code>>FSST_LEN_BITS); | 
|---|
| 408 | } else if ((u8) code < byteLim) { | 
|---|
| 409 | // 2 byte code after checking there is no longer pattern | 
|---|
| 410 | *out++ = (u8) code; cur += 2; | 
|---|
| 411 | } else { | 
|---|
| 412 | // 1 byte code or miss. | 
|---|
| 413 | *out = (u8) code; | 
|---|
| 414 | out += 1+((code&FSST_CODE_BASE)>>8); // predicated - tested with a branch, that was always worse | 
|---|
| 415 | cur++; | 
|---|
| 416 | } | 
|---|
| 417 | } | 
|---|
| 418 | } | 
|---|
| 419 | }; | 
|---|
| 420 |  | 
|---|
| 421 | for(curLine=0; curLine<nlines; curLine++) { | 
|---|
| 422 | size_t chunk, curOff = 0; | 
|---|
| 423 | strOut[curLine] = out; | 
|---|
| 424 | do { | 
|---|
| 425 | cur = strIn[curLine] + curOff; | 
|---|
| 426 | chunk = lenIn[curLine] - curOff; | 
|---|
| 427 | if (chunk > 511) { | 
|---|
| 428 | chunk = 511; // we need to compress in chunks of 511 in order to be byte-compatible with simd-compressed FSST | 
|---|
| 429 | } | 
|---|
| 430 | if ((2*chunk+7) > (size_t) (lim-out)) { | 
|---|
| 431 | return curLine; // out of memory | 
|---|
| 432 | } | 
|---|
| 433 | // copy the string to the 511-byte buffer | 
|---|
| 434 | memcpy(dest: buf, src: cur, n: chunk); | 
|---|
| 435 | buf[chunk] = (u8) symbolTable.terminator; | 
|---|
| 436 | cur = buf; | 
|---|
| 437 | end = cur + chunk; | 
|---|
| 438 |  | 
|---|
| 439 | // based on symboltable stats, choose a variant that is nice to the branch predictor | 
|---|
| 440 | if (noSuffixOpt) { | 
|---|
| 441 | compressVariant(true,false); | 
|---|
| 442 | } else if (avoidBranch) { | 
|---|
| 443 | compressVariant(false,true); | 
|---|
| 444 | } else { | 
|---|
| 445 | compressVariant(false, false); | 
|---|
| 446 | } | 
|---|
| 447 | } while((curOff += chunk) < lenIn[curLine]); | 
|---|
| 448 | lenOut[curLine] = (size_t) (out - strOut[curLine]); | 
|---|
| 449 | } | 
|---|
| 450 | return curLine; | 
|---|
| 451 | } | 
|---|
| 452 |  | 
|---|
| 453 | #define FSST_SAMPLELINE ((size_t) 512) | 
|---|
| 454 |  | 
|---|
| 455 | // quickly select a uniformly random set of lines such that we have between [FSST_SAMPLETARGET,FSST_SAMPLEMAXSZ) string bytes | 
|---|
| 456 | vector<u8*> makeSample(u8* sampleBuf, u8* strIn[], size_t *lenIn, size_t nlines, | 
|---|
| 457 | unique_ptr<vector<size_t>>& sample_len_out) { | 
|---|
| 458 | size_t totSize = 0; | 
|---|
| 459 | vector<u8*> sample; | 
|---|
| 460 |  | 
|---|
| 461 | for(size_t i=0; i<nlines; i++) | 
|---|
| 462 | totSize += lenIn[i]; | 
|---|
| 463 | if (totSize < FSST_SAMPLETARGET) { | 
|---|
| 464 | for(size_t i=0; i<nlines; i++) | 
|---|
| 465 | sample.push_back(x: strIn[i]); | 
|---|
| 466 | } else { | 
|---|
| 467 | size_t sampleRnd = FSST_HASH(4637947); | 
|---|
| 468 | u8* sampleLim = sampleBuf + FSST_SAMPLETARGET; | 
|---|
| 469 |  | 
|---|
| 470 | sample_len_out = unique_ptr<vector<size_t>>(new vector<size_t>()); | 
|---|
| 471 | sample_len_out->reserve(n: nlines + FSST_SAMPLEMAXSZ/FSST_SAMPLELINE); | 
|---|
| 472 |  | 
|---|
| 473 | // This fails if we have a lot of small strings and a few big ones? | 
|---|
| 474 | while(sampleBuf < sampleLim) { | 
|---|
| 475 | // choose a non-empty line | 
|---|
| 476 | sampleRnd = FSST_HASH(sampleRnd); | 
|---|
| 477 | size_t linenr = sampleRnd % nlines; | 
|---|
| 478 | while (lenIn[linenr] == 0) | 
|---|
| 479 | if (++linenr == nlines) linenr = 0; | 
|---|
| 480 |  | 
|---|
| 481 | // choose a chunk | 
|---|
| 482 | size_t chunks = 1 + ((lenIn[linenr]-1) / FSST_SAMPLELINE); | 
|---|
| 483 | sampleRnd = FSST_HASH(sampleRnd); | 
|---|
| 484 | size_t chunk = FSST_SAMPLELINE*(sampleRnd % chunks); | 
|---|
| 485 |  | 
|---|
| 486 | // add the chunk to the sample | 
|---|
| 487 | size_t len = min(lenIn[linenr]-chunk,FSST_SAMPLELINE); | 
|---|
| 488 | memcpy(dest: sampleBuf, src: strIn[linenr]+chunk, n: len); | 
|---|
| 489 | sample.push_back(x: sampleBuf); | 
|---|
| 490 |  | 
|---|
| 491 | sample_len_out->push_back(x: len); | 
|---|
| 492 | sampleBuf += len; | 
|---|
| 493 | } | 
|---|
| 494 | } | 
|---|
| 495 | return sample; | 
|---|
| 496 | } | 
|---|
| 497 |  | 
|---|
| 498 | extern "C"duckdb_fsst_encoder_t* duckdb_fsst_create(size_t n, size_t lenIn[], u8 *strIn[], int zeroTerminated) { | 
|---|
| 499 | u8* sampleBuf = new u8[FSST_SAMPLEMAXSZ]; | 
|---|
| 500 | unique_ptr<vector<size_t>> sample_sizes; | 
|---|
| 501 | vector<u8*> sample = makeSample(sampleBuf, strIn, lenIn, nlines: n?n:1, sample_len_out&: sample_sizes); // careful handling of input to get a right-size and representative sample | 
|---|
| 502 | Encoder *encoder = new Encoder(); | 
|---|
| 503 | size_t* sampleLen = sample_sizes ? sample_sizes->data() : &lenIn[0]; | 
|---|
| 504 | encoder->symbolTable = shared_ptr<SymbolTable>(buildSymbolTable(counters&: encoder->counters, line: sample, len: sampleLen, zeroTerminated)); | 
|---|
| 505 | delete[] sampleBuf; | 
|---|
| 506 | return (duckdb_fsst_encoder_t*) encoder; | 
|---|
| 507 | } | 
|---|
| 508 |  | 
|---|
| 509 | /* create another encoder instance, necessary to do multi-threaded encoding using the same symbol table */ | 
|---|
| 510 | extern "C"duckdb_fsst_encoder_t* duckdb_fsst_duplicate(duckdb_fsst_encoder_t *encoder) { | 
|---|
| 511 | Encoder *e = new Encoder(); | 
|---|
| 512 | e->symbolTable = ((Encoder*)encoder)->symbolTable; // it is a shared_ptr | 
|---|
| 513 | return (duckdb_fsst_encoder_t*) e; | 
|---|
| 514 | } | 
|---|
| 515 |  | 
|---|
| 516 | // export a symbol table in compact format. | 
|---|
| 517 | extern "C"u32 duckdb_fsst_export(duckdb_fsst_encoder_t *encoder, u8 *buf) { | 
|---|
| 518 | Encoder *e = (Encoder*) encoder; | 
|---|
| 519 | // In ->version there is a versionnr, but we hide also suffixLim/terminator/nSymbols there. | 
|---|
| 520 | // This is sufficient in principle to *reconstruct* a duckdb_fsst_encoder_t from a duckdb_fsst_decoder_t | 
|---|
| 521 | // (such functionality could be useful to append compressed data to an existing block). | 
|---|
| 522 | // | 
|---|
| 523 | // However, the hash function in the encoder hash table is endian-sensitive, and given its | 
|---|
| 524 | // 'lossy perfect' hashing scheme is *unable* to contain other-endian-produced symbol tables. | 
|---|
| 525 | // Doing a endian-conversion during hashing will be slow and self-defeating. | 
|---|
| 526 | // | 
|---|
| 527 | // Overall, we could support reconstructing an encoder for incremental compression, but | 
|---|
| 528 | // should enforce equal-endianness. Bit of a bummer. Not going there now. | 
|---|
| 529 | // | 
|---|
| 530 | // The version field is now there just for future-proofness, but not used yet | 
|---|
| 531 |  | 
|---|
| 532 | // version allows keeping track of fsst versions, track endianness, and encoder reconstruction | 
|---|
| 533 | u64 version = (FSST_VERSION << 32) |  // version is 24 bits, most significant byte is 0 | 
|---|
| 534 | (((u64) e->symbolTable->suffixLim) << 24) | | 
|---|
| 535 | (((u64) e->symbolTable->terminator) << 16) | | 
|---|
| 536 | (((u64) e->symbolTable->nSymbols) << 8) | | 
|---|
| 537 | FSST_ENDIAN_MARKER; // least significant byte is nonzero | 
|---|
| 538 |  | 
|---|
| 539 | /* do not assume unaligned reads here */ | 
|---|
| 540 | memcpy(dest: buf, src: &version, n: 8); | 
|---|
| 541 | buf[8] = e->symbolTable->zeroTerminated; | 
|---|
| 542 | for(u32 i=0; i<8; i++) | 
|---|
| 543 | buf[9+i] = (u8) e->symbolTable->lenHisto[i]; | 
|---|
| 544 | u32 pos = 17; | 
|---|
| 545 |  | 
|---|
| 546 | // emit only the used bytes of the symbols | 
|---|
| 547 | for(u32 i = e->symbolTable->zeroTerminated; i < e->symbolTable->nSymbols; i++) | 
|---|
| 548 | for(u32 j = 0; j < e->symbolTable->symbols[i].length(); j++) | 
|---|
| 549 | buf[pos++] = e->symbolTable->symbols[i].val.str[j]; // serialize used symbol bytes | 
|---|
| 550 |  | 
|---|
| 551 | return pos; // length of what was serialized | 
|---|
| 552 | } | 
|---|
| 553 |  | 
|---|
| 554 | #define FSST_CORRUPT 32774747032022883 /* 7-byte number in little endian containing "corrupt" */ | 
|---|
| 555 |  | 
|---|
| 556 | extern "C"u32 duckdb_fsst_import(duckdb_fsst_decoder_t *decoder, u8 *buf) { | 
|---|
| 557 | u64 version = 0; | 
|---|
| 558 | u32 code, pos = 17; | 
|---|
| 559 | u8 lenHisto[8]; | 
|---|
| 560 |  | 
|---|
| 561 | // version field (first 8 bytes) is now there just for future-proofness, unused still (skipped) | 
|---|
| 562 | memcpy(dest: &version, src: buf, n: 8); | 
|---|
| 563 | if ((version>>32) != FSST_VERSION) return 0; | 
|---|
| 564 | decoder->zeroTerminated = buf[8]&1; | 
|---|
| 565 | memcpy(dest: lenHisto, src: buf+9, n: 8); | 
|---|
| 566 |  | 
|---|
| 567 | // in case of zero-terminated, first symbol is "" (zero always, may be overwritten) | 
|---|
| 568 | decoder->len[0] = 1; | 
|---|
| 569 | decoder->symbol[0] = 0; | 
|---|
| 570 |  | 
|---|
| 571 | // we use lenHisto[0] as 1-byte symbol run length (at the end) | 
|---|
| 572 | code = decoder->zeroTerminated; | 
|---|
| 573 | if (decoder->zeroTerminated) lenHisto[0]--; // if zeroTerminated, then symbol "" aka 1-byte code=0, is not stored at the end | 
|---|
| 574 |  | 
|---|
| 575 | // now get all symbols from the buffer | 
|---|
| 576 | for(u32 l=1; l<=8; l++) { /* l = 1,2,3,4,5,6,7,8 */ | 
|---|
| 577 | for(u32 i=0; i < lenHisto[(l&7) /* 1,2,3,4,5,6,7,0 */]; i++, code++)  { | 
|---|
| 578 | decoder->len[code] = (l&7)+1; /* len = 2,3,4,5,6,7,8,1  */ | 
|---|
| 579 | decoder->symbol[code] = 0; | 
|---|
| 580 | for(u32 j=0; j<decoder->len[code]; j++) | 
|---|
| 581 | ((u8*) &decoder->symbol[code])[j] = buf[pos++]; // note this enforces 'little endian' symbols | 
|---|
| 582 | } | 
|---|
| 583 | } | 
|---|
| 584 | if (decoder->zeroTerminated) lenHisto[0]++; | 
|---|
| 585 |  | 
|---|
| 586 | // fill unused symbols with text "corrupt". Gives a chance to detect corrupted code sequences (if there are unused symbols). | 
|---|
| 587 | while(code<255) { | 
|---|
| 588 | decoder->symbol[code] = FSST_CORRUPT; | 
|---|
| 589 | decoder->len[code++] = 8; | 
|---|
| 590 | } | 
|---|
| 591 | return pos; | 
|---|
| 592 | } | 
|---|
| 593 |  | 
|---|
| 594 | // runtime check for simd | 
|---|
| 595 | inline size_t _compressImpl(Encoder *e, size_t nlines, size_t lenIn[], u8 *strIn[], size_t size, u8 *output, size_t *lenOut, u8 *strOut[], bool noSuffixOpt, bool avoidBranch, int simd) { | 
|---|
| 596 | #ifndef NONOPT_FSST | 
|---|
| 597 | if (simd && duckdb_fsst_hasAVX512()) | 
|---|
| 598 | return compressSIMD(symbolTable&: *e->symbolTable, symbolBase: e->simdbuf, nlines, len: lenIn, line: strIn, size, dst: output, lenOut, strOut, unroll: simd); | 
|---|
| 599 | #endif | 
|---|
| 600 | (void) simd; | 
|---|
| 601 | return compressBulk(symbolTable&: *e->symbolTable, nlines, lenIn, strIn, size, out: output, lenOut, strOut, noSuffixOpt, avoidBranch); | 
|---|
| 602 | } | 
|---|
| 603 | size_t compressImpl(Encoder *e, size_t nlines, size_t lenIn[], u8 *strIn[], size_t size, u8 *output, size_t *lenOut, u8 *strOut[], bool noSuffixOpt, bool avoidBranch, int simd) { | 
|---|
| 604 | return _compressImpl(e, nlines, lenIn, strIn, size, output, lenOut, strOut, noSuffixOpt, avoidBranch, simd); | 
|---|
| 605 | } | 
|---|
| 606 |  | 
|---|
| 607 | // adaptive choosing of scalar compression method based on symbol length histogram | 
|---|
| 608 | inline size_t _compressAuto(Encoder *e, size_t nlines, size_t lenIn[], u8 *strIn[], size_t size, u8 *output, size_t *lenOut, u8 *strOut[], int simd) { | 
|---|
| 609 | bool avoidBranch = false, noSuffixOpt = false; | 
|---|
| 610 | if (100*e->symbolTable->lenHisto[1] > 65*e->symbolTable->nSymbols && 100*e->symbolTable->suffixLim > 95*e->symbolTable->lenHisto[1]) { | 
|---|
| 611 | noSuffixOpt = true; | 
|---|
| 612 | } else if ((e->symbolTable->lenHisto[0] > 24 && e->symbolTable->lenHisto[0] < 92) && | 
|---|
| 613 | (e->symbolTable->lenHisto[0] < 43 || e->symbolTable->lenHisto[6] + e->symbolTable->lenHisto[7] < 29) && | 
|---|
| 614 | (e->symbolTable->lenHisto[0] < 72 || e->symbolTable->lenHisto[2] < 72)) { | 
|---|
| 615 | avoidBranch = true; | 
|---|
| 616 | } | 
|---|
| 617 | return _compressImpl(e, nlines, lenIn, strIn, size, output, lenOut, strOut, noSuffixOpt, avoidBranch, simd); | 
|---|
| 618 | } | 
|---|
| 619 | size_t compressAuto(Encoder *e, size_t nlines, size_t lenIn[], u8 *strIn[], size_t size, u8 *output, size_t *lenOut, u8 *strOut[], int simd) { | 
|---|
| 620 | return _compressAuto(e, nlines, lenIn, strIn, size, output, lenOut, strOut, simd); | 
|---|
| 621 | } | 
|---|
| 622 |  | 
|---|
| 623 | // the main compression function (everything automatic) | 
|---|
| 624 | extern "C"size_t duckdb_fsst_compress(duckdb_fsst_encoder_t *encoder, size_t nlines, size_t lenIn[], u8 *strIn[], size_t size, u8 *output, size_t *lenOut, u8 *strOut[]) { | 
|---|
| 625 | // to be faster than scalar, simd needs 64 lines or more of length >=12; or fewer lines, but big ones (totLen > 32KB) | 
|---|
| 626 | size_t totLen = accumulate(first: lenIn, last: lenIn+nlines, init: 0); | 
|---|
| 627 | int simd = totLen > nlines*12 && (nlines > 64 || totLen > (size_t) 1<<15); | 
|---|
| 628 | return _compressAuto(e: (Encoder*) encoder, nlines, lenIn, strIn, size, output, lenOut, strOut, simd: 3*simd); | 
|---|
| 629 | } | 
|---|
| 630 |  | 
|---|
| 631 | /* deallocate encoder */ | 
|---|
| 632 | extern "C"void duckdb_fsst_destroy(duckdb_fsst_encoder_t* encoder) { | 
|---|
| 633 | Encoder *e = (Encoder*) encoder; | 
|---|
| 634 | delete e; | 
|---|
| 635 | } | 
|---|
| 636 |  | 
|---|
| 637 | /* very lazy implementation relying on export and import */ | 
|---|
| 638 | extern "C"duckdb_fsst_decoder_t duckdb_fsst_decoder(duckdb_fsst_encoder_t *encoder) { | 
|---|
| 639 | u8 buf[sizeof(duckdb_fsst_decoder_t)]; | 
|---|
| 640 | u32 cnt1 = duckdb_fsst_export(encoder, buf); | 
|---|
| 641 | duckdb_fsst_decoder_t decoder; | 
|---|
| 642 | u32 cnt2 = duckdb_fsst_import(decoder: &decoder, buf); | 
|---|
| 643 | assert(cnt1 == cnt2); (void) cnt1; (void) cnt2; | 
|---|
| 644 | return decoder; | 
|---|
| 645 | } | 
|---|