| 1 | /* |
| 2 | * Multi-precision integer library |
| 3 | * |
| 4 | * Copyright The Mbed TLS Contributors |
| 5 | * SPDX-License-Identifier: Apache-2.0 |
| 6 | * |
| 7 | * Licensed under the Apache License, Version 2.0 (the "License"); you may |
| 8 | * not use this file except in compliance with the License. |
| 9 | * You may obtain a copy of the License at |
| 10 | * |
| 11 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 12 | * |
| 13 | * Unless required by applicable law or agreed to in writing, software |
| 14 | * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| 15 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 16 | * See the License for the specific language governing permissions and |
| 17 | * limitations under the License. |
| 18 | */ |
| 19 | |
| 20 | /* |
| 21 | * The following sources were referenced in the design of this Multi-precision |
| 22 | * Integer library: |
| 23 | * |
| 24 | * [1] Handbook of Applied Cryptography - 1997 |
| 25 | * Menezes, van Oorschot and Vanstone |
| 26 | * |
| 27 | * [2] Multi-Precision Math |
| 28 | * Tom St Denis |
| 29 | * https://github.com/libtom/libtommath/blob/develop/tommath.pdf |
| 30 | * |
| 31 | * [3] GNU Multi-Precision Arithmetic Library |
| 32 | * https://gmplib.org/manual/index.html |
| 33 | * |
| 34 | */ |
| 35 | |
| 36 | #include "common.h" |
| 37 | |
| 38 | #if defined(MBEDTLS_BIGNUM_C) |
| 39 | |
| 40 | #include "mbedtls/bignum.h" |
| 41 | #include "bn_mul.h" |
| 42 | #include "mbedtls/platform_util.h" |
| 43 | #include "mbedtls/error.h" |
| 44 | #include "constant_time_internal.h" |
| 45 | |
| 46 | #include <limits.h> |
| 47 | #include <string.h> |
| 48 | |
| 49 | #if defined(MBEDTLS_PLATFORM_C) |
| 50 | #include "mbedtls/platform.h" |
| 51 | #else |
| 52 | #include <stdio.h> |
| 53 | #include <stdlib.h> |
| 54 | #define mbedtls_printf printf |
| 55 | #define mbedtls_calloc calloc |
| 56 | #define mbedtls_free free |
| 57 | #endif |
| 58 | |
| 59 | #define MPI_VALIDATE_RET( cond ) \ |
| 60 | MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA ) |
| 61 | #define MPI_VALIDATE( cond ) \ |
| 62 | MBEDTLS_INTERNAL_VALIDATE( cond ) |
| 63 | |
| 64 | #define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */ |
| 65 | #define biL (ciL << 3) /* bits in limb */ |
| 66 | #define biH (ciL << 2) /* half limb size */ |
| 67 | |
| 68 | #define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */ |
| 69 | |
| 70 | /* |
| 71 | * Convert between bits/chars and number of limbs |
| 72 | * Divide first in order to avoid potential overflows |
| 73 | */ |
| 74 | #define BITS_TO_LIMBS(i) ( (i) / biL + ( (i) % biL != 0 ) ) |
| 75 | #define CHARS_TO_LIMBS(i) ( (i) / ciL + ( (i) % ciL != 0 ) ) |
| 76 | |
| 77 | /* Implementation that should never be optimized out by the compiler */ |
| 78 | static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n ) |
| 79 | { |
| 80 | mbedtls_platform_zeroize( buf: v, ciL * n ); |
| 81 | } |
| 82 | |
| 83 | /* |
| 84 | * Initialize one MPI |
| 85 | */ |
| 86 | void mbedtls_mpi_init( mbedtls_mpi *X ) |
| 87 | { |
| 88 | MPI_VALIDATE( X != NULL ); |
| 89 | |
| 90 | X->s = 1; |
| 91 | X->n = 0; |
| 92 | X->p = NULL; |
| 93 | } |
| 94 | |
| 95 | /* |
| 96 | * Unallocate one MPI |
| 97 | */ |
| 98 | void mbedtls_mpi_free( mbedtls_mpi *X ) |
| 99 | { |
| 100 | if( X == NULL ) |
| 101 | return; |
| 102 | |
| 103 | if( X->p != NULL ) |
| 104 | { |
| 105 | mbedtls_mpi_zeroize( v: X->p, n: X->n ); |
| 106 | mbedtls_free( ptr: X->p ); |
| 107 | } |
| 108 | |
| 109 | X->s = 1; |
| 110 | X->n = 0; |
| 111 | X->p = NULL; |
| 112 | } |
| 113 | |
| 114 | /* |
| 115 | * Enlarge to the specified number of limbs |
| 116 | */ |
| 117 | int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs ) |
| 118 | { |
| 119 | mbedtls_mpi_uint *p; |
| 120 | MPI_VALIDATE_RET( X != NULL ); |
| 121 | |
| 122 | if( nblimbs > MBEDTLS_MPI_MAX_LIMBS ) |
| 123 | return( MBEDTLS_ERR_MPI_ALLOC_FAILED ); |
| 124 | |
| 125 | if( X->n < nblimbs ) |
| 126 | { |
| 127 | if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nmemb: nblimbs, ciL ) ) == NULL ) |
| 128 | return( MBEDTLS_ERR_MPI_ALLOC_FAILED ); |
| 129 | |
| 130 | if( X->p != NULL ) |
| 131 | { |
| 132 | memcpy( dest: p, src: X->p, n: X->n * ciL ); |
| 133 | mbedtls_mpi_zeroize( v: X->p, n: X->n ); |
| 134 | mbedtls_free( ptr: X->p ); |
| 135 | } |
| 136 | |
| 137 | X->n = nblimbs; |
| 138 | X->p = p; |
| 139 | } |
| 140 | |
| 141 | return( 0 ); |
| 142 | } |
| 143 | |
| 144 | /* |
| 145 | * Resize down as much as possible, |
| 146 | * while keeping at least the specified number of limbs |
| 147 | */ |
| 148 | int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs ) |
| 149 | { |
| 150 | mbedtls_mpi_uint *p; |
| 151 | size_t i; |
| 152 | MPI_VALIDATE_RET( X != NULL ); |
| 153 | |
| 154 | if( nblimbs > MBEDTLS_MPI_MAX_LIMBS ) |
| 155 | return( MBEDTLS_ERR_MPI_ALLOC_FAILED ); |
| 156 | |
| 157 | /* Actually resize up if there are currently fewer than nblimbs limbs. */ |
| 158 | if( X->n <= nblimbs ) |
| 159 | return( mbedtls_mpi_grow( X, nblimbs ) ); |
| 160 | /* After this point, then X->n > nblimbs and in particular X->n > 0. */ |
| 161 | |
| 162 | for( i = X->n - 1; i > 0; i-- ) |
| 163 | if( X->p[i] != 0 ) |
| 164 | break; |
| 165 | i++; |
| 166 | |
| 167 | if( i < nblimbs ) |
| 168 | i = nblimbs; |
| 169 | |
| 170 | if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nmemb: i, ciL ) ) == NULL ) |
| 171 | return( MBEDTLS_ERR_MPI_ALLOC_FAILED ); |
| 172 | |
| 173 | if( X->p != NULL ) |
| 174 | { |
| 175 | memcpy( dest: p, src: X->p, n: i * ciL ); |
| 176 | mbedtls_mpi_zeroize( v: X->p, n: X->n ); |
| 177 | mbedtls_free( ptr: X->p ); |
| 178 | } |
| 179 | |
| 180 | X->n = i; |
| 181 | X->p = p; |
| 182 | |
| 183 | return( 0 ); |
| 184 | } |
| 185 | |
| 186 | /* Resize X to have exactly n limbs and set it to 0. */ |
| 187 | static int mbedtls_mpi_resize_clear( mbedtls_mpi *X, size_t limbs ) |
| 188 | { |
| 189 | if( limbs == 0 ) |
| 190 | { |
| 191 | mbedtls_mpi_free( X ); |
| 192 | return( 0 ); |
| 193 | } |
| 194 | else if( X->n == limbs ) |
| 195 | { |
| 196 | memset( s: X->p, c: 0, n: limbs * ciL ); |
| 197 | X->s = 1; |
| 198 | return( 0 ); |
| 199 | } |
| 200 | else |
| 201 | { |
| 202 | mbedtls_mpi_free( X ); |
| 203 | return( mbedtls_mpi_grow( X, nblimbs: limbs ) ); |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | /* |
| 208 | * Copy the contents of Y into X. |
| 209 | * |
| 210 | * This function is not constant-time. Leading zeros in Y may be removed. |
| 211 | * |
| 212 | * Ensure that X does not shrink. This is not guaranteed by the public API, |
| 213 | * but some code in the bignum module relies on this property, for example |
| 214 | * in mbedtls_mpi_exp_mod(). |
| 215 | */ |
| 216 | int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y ) |
| 217 | { |
| 218 | int ret = 0; |
| 219 | size_t i; |
| 220 | MPI_VALIDATE_RET( X != NULL ); |
| 221 | MPI_VALIDATE_RET( Y != NULL ); |
| 222 | |
| 223 | if( X == Y ) |
| 224 | return( 0 ); |
| 225 | |
| 226 | if( Y->n == 0 ) |
| 227 | { |
| 228 | if( X->n != 0 ) |
| 229 | { |
| 230 | X->s = 1; |
| 231 | memset( s: X->p, c: 0, n: X->n * ciL ); |
| 232 | } |
| 233 | return( 0 ); |
| 234 | } |
| 235 | |
| 236 | for( i = Y->n - 1; i > 0; i-- ) |
| 237 | if( Y->p[i] != 0 ) |
| 238 | break; |
| 239 | i++; |
| 240 | |
| 241 | X->s = Y->s; |
| 242 | |
| 243 | if( X->n < i ) |
| 244 | { |
| 245 | MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) ); |
| 246 | } |
| 247 | else |
| 248 | { |
| 249 | memset( s: X->p + i, c: 0, n: ( X->n - i ) * ciL ); |
| 250 | } |
| 251 | |
| 252 | memcpy( dest: X->p, src: Y->p, n: i * ciL ); |
| 253 | |
| 254 | cleanup: |
| 255 | |
| 256 | return( ret ); |
| 257 | } |
| 258 | |
| 259 | /* |
| 260 | * Swap the contents of X and Y |
| 261 | */ |
| 262 | void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y ) |
| 263 | { |
| 264 | mbedtls_mpi T; |
| 265 | MPI_VALIDATE( X != NULL ); |
| 266 | MPI_VALIDATE( Y != NULL ); |
| 267 | |
| 268 | memcpy( dest: &T, src: X, n: sizeof( mbedtls_mpi ) ); |
| 269 | memcpy( dest: X, src: Y, n: sizeof( mbedtls_mpi ) ); |
| 270 | memcpy( dest: Y, src: &T, n: sizeof( mbedtls_mpi ) ); |
| 271 | } |
| 272 | |
| 273 | /* |
| 274 | * Set value from integer |
| 275 | */ |
| 276 | int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z ) |
| 277 | { |
| 278 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 279 | MPI_VALIDATE_RET( X != NULL ); |
| 280 | |
| 281 | MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) ); |
| 282 | memset( s: X->p, c: 0, n: X->n * ciL ); |
| 283 | |
| 284 | X->p[0] = ( z < 0 ) ? -z : z; |
| 285 | X->s = ( z < 0 ) ? -1 : 1; |
| 286 | |
| 287 | cleanup: |
| 288 | |
| 289 | return( ret ); |
| 290 | } |
| 291 | |
| 292 | /* |
| 293 | * Get a specific bit |
| 294 | */ |
| 295 | int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos ) |
| 296 | { |
| 297 | MPI_VALIDATE_RET( X != NULL ); |
| 298 | |
| 299 | if( X->n * biL <= pos ) |
| 300 | return( 0 ); |
| 301 | |
| 302 | return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 ); |
| 303 | } |
| 304 | |
| 305 | /* Get a specific byte, without range checks. */ |
| 306 | #define GET_BYTE( X, i ) \ |
| 307 | ( ( ( X )->p[( i ) / ciL] >> ( ( ( i ) % ciL ) * 8 ) ) & 0xff ) |
| 308 | |
| 309 | /* |
| 310 | * Set a bit to a specific value of 0 or 1 |
| 311 | */ |
| 312 | int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val ) |
| 313 | { |
| 314 | int ret = 0; |
| 315 | size_t off = pos / biL; |
| 316 | size_t idx = pos % biL; |
| 317 | MPI_VALIDATE_RET( X != NULL ); |
| 318 | |
| 319 | if( val != 0 && val != 1 ) |
| 320 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
| 321 | |
| 322 | if( X->n * biL <= pos ) |
| 323 | { |
| 324 | if( val == 0 ) |
| 325 | return( 0 ); |
| 326 | |
| 327 | MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) ); |
| 328 | } |
| 329 | |
| 330 | X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx ); |
| 331 | X->p[off] |= (mbedtls_mpi_uint) val << idx; |
| 332 | |
| 333 | cleanup: |
| 334 | |
| 335 | return( ret ); |
| 336 | } |
| 337 | |
| 338 | /* |
| 339 | * Return the number of less significant zero-bits |
| 340 | */ |
| 341 | size_t mbedtls_mpi_lsb( const mbedtls_mpi *X ) |
| 342 | { |
| 343 | size_t i, j, count = 0; |
| 344 | MBEDTLS_INTERNAL_VALIDATE_RET( X != NULL, 0 ); |
| 345 | |
| 346 | for( i = 0; i < X->n; i++ ) |
| 347 | for( j = 0; j < biL; j++, count++ ) |
| 348 | if( ( ( X->p[i] >> j ) & 1 ) != 0 ) |
| 349 | return( count ); |
| 350 | |
| 351 | return( 0 ); |
| 352 | } |
| 353 | |
| 354 | /* |
| 355 | * Count leading zero bits in a given integer |
| 356 | */ |
| 357 | static size_t mbedtls_clz( const mbedtls_mpi_uint x ) |
| 358 | { |
| 359 | size_t j; |
| 360 | mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1); |
| 361 | |
| 362 | for( j = 0; j < biL; j++ ) |
| 363 | { |
| 364 | if( x & mask ) break; |
| 365 | |
| 366 | mask >>= 1; |
| 367 | } |
| 368 | |
| 369 | return j; |
| 370 | } |
| 371 | |
| 372 | /* |
| 373 | * Return the number of bits |
| 374 | */ |
| 375 | size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X ) |
| 376 | { |
| 377 | size_t i, j; |
| 378 | |
| 379 | if( X->n == 0 ) |
| 380 | return( 0 ); |
| 381 | |
| 382 | for( i = X->n - 1; i > 0; i-- ) |
| 383 | if( X->p[i] != 0 ) |
| 384 | break; |
| 385 | |
| 386 | j = biL - mbedtls_clz( x: X->p[i] ); |
| 387 | |
| 388 | return( ( i * biL ) + j ); |
| 389 | } |
| 390 | |
| 391 | /* |
| 392 | * Return the total size in bytes |
| 393 | */ |
| 394 | size_t mbedtls_mpi_size( const mbedtls_mpi *X ) |
| 395 | { |
| 396 | return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 ); |
| 397 | } |
| 398 | |
| 399 | /* |
| 400 | * Convert an ASCII character to digit value |
| 401 | */ |
| 402 | static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c ) |
| 403 | { |
| 404 | *d = 255; |
| 405 | |
| 406 | if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30; |
| 407 | if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37; |
| 408 | if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57; |
| 409 | |
| 410 | if( *d >= (mbedtls_mpi_uint) radix ) |
| 411 | return( MBEDTLS_ERR_MPI_INVALID_CHARACTER ); |
| 412 | |
| 413 | return( 0 ); |
| 414 | } |
| 415 | |
| 416 | /* |
| 417 | * Import from an ASCII string |
| 418 | */ |
| 419 | int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s ) |
| 420 | { |
| 421 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 422 | size_t i, j, slen, n; |
| 423 | int sign = 1; |
| 424 | mbedtls_mpi_uint d; |
| 425 | mbedtls_mpi T; |
| 426 | MPI_VALIDATE_RET( X != NULL ); |
| 427 | MPI_VALIDATE_RET( s != NULL ); |
| 428 | |
| 429 | if( radix < 2 || radix > 16 ) |
| 430 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
| 431 | |
| 432 | mbedtls_mpi_init( X: &T ); |
| 433 | |
| 434 | if( s[0] == 0 ) |
| 435 | { |
| 436 | mbedtls_mpi_free( X ); |
| 437 | return( 0 ); |
| 438 | } |
| 439 | |
| 440 | if( s[0] == '-' ) |
| 441 | { |
| 442 | ++s; |
| 443 | sign = -1; |
| 444 | } |
| 445 | |
| 446 | slen = strlen( s: s ); |
| 447 | |
| 448 | if( radix == 16 ) |
| 449 | { |
| 450 | if( slen > MPI_SIZE_T_MAX >> 2 ) |
| 451 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
| 452 | |
| 453 | n = BITS_TO_LIMBS( slen << 2 ); |
| 454 | |
| 455 | MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) ); |
| 456 | MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) ); |
| 457 | |
| 458 | for( i = slen, j = 0; i > 0; i--, j++ ) |
| 459 | { |
| 460 | MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) ); |
| 461 | X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 ); |
| 462 | } |
| 463 | } |
| 464 | else |
| 465 | { |
| 466 | MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) ); |
| 467 | |
| 468 | for( i = 0; i < slen; i++ ) |
| 469 | { |
| 470 | MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) ); |
| 471 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) ); |
| 472 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) ); |
| 473 | } |
| 474 | } |
| 475 | |
| 476 | if( sign < 0 && mbedtls_mpi_bitlen( X ) != 0 ) |
| 477 | X->s = -1; |
| 478 | |
| 479 | cleanup: |
| 480 | |
| 481 | mbedtls_mpi_free( X: &T ); |
| 482 | |
| 483 | return( ret ); |
| 484 | } |
| 485 | |
| 486 | /* |
| 487 | * Helper to write the digits high-order first. |
| 488 | */ |
| 489 | static int mpi_write_hlp( mbedtls_mpi *X, int radix, |
| 490 | char **p, const size_t buflen ) |
| 491 | { |
| 492 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 493 | mbedtls_mpi_uint r; |
| 494 | size_t length = 0; |
| 495 | char *p_end = *p + buflen; |
| 496 | |
| 497 | do |
| 498 | { |
| 499 | if( length >= buflen ) |
| 500 | { |
| 501 | return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL ); |
| 502 | } |
| 503 | |
| 504 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) ); |
| 505 | MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) ); |
| 506 | /* |
| 507 | * Write the residue in the current position, as an ASCII character. |
| 508 | */ |
| 509 | if( r < 0xA ) |
| 510 | *(--p_end) = (char)( '0' + r ); |
| 511 | else |
| 512 | *(--p_end) = (char)( 'A' + ( r - 0xA ) ); |
| 513 | |
| 514 | length++; |
| 515 | } while( mbedtls_mpi_cmp_int( X, z: 0 ) != 0 ); |
| 516 | |
| 517 | memmove( dest: *p, src: p_end, n: length ); |
| 518 | *p += length; |
| 519 | |
| 520 | cleanup: |
| 521 | |
| 522 | return( ret ); |
| 523 | } |
| 524 | |
| 525 | /* |
| 526 | * Export into an ASCII string |
| 527 | */ |
| 528 | int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix, |
| 529 | char *buf, size_t buflen, size_t *olen ) |
| 530 | { |
| 531 | int ret = 0; |
| 532 | size_t n; |
| 533 | char *p; |
| 534 | mbedtls_mpi T; |
| 535 | MPI_VALIDATE_RET( X != NULL ); |
| 536 | MPI_VALIDATE_RET( olen != NULL ); |
| 537 | MPI_VALIDATE_RET( buflen == 0 || buf != NULL ); |
| 538 | |
| 539 | if( radix < 2 || radix > 16 ) |
| 540 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
| 541 | |
| 542 | n = mbedtls_mpi_bitlen( X ); /* Number of bits necessary to present `n`. */ |
| 543 | if( radix >= 4 ) n >>= 1; /* Number of 4-adic digits necessary to present |
| 544 | * `n`. If radix > 4, this might be a strict |
| 545 | * overapproximation of the number of |
| 546 | * radix-adic digits needed to present `n`. */ |
| 547 | if( radix >= 16 ) n >>= 1; /* Number of hexadecimal digits necessary to |
| 548 | * present `n`. */ |
| 549 | |
| 550 | n += 1; /* Terminating null byte */ |
| 551 | n += 1; /* Compensate for the divisions above, which round down `n` |
| 552 | * in case it's not even. */ |
| 553 | n += 1; /* Potential '-'-sign. */ |
| 554 | n += ( n & 1 ); /* Make n even to have enough space for hexadecimal writing, |
| 555 | * which always uses an even number of hex-digits. */ |
| 556 | |
| 557 | if( buflen < n ) |
| 558 | { |
| 559 | *olen = n; |
| 560 | return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL ); |
| 561 | } |
| 562 | |
| 563 | p = buf; |
| 564 | mbedtls_mpi_init( X: &T ); |
| 565 | |
| 566 | if( X->s == -1 ) |
| 567 | { |
| 568 | *p++ = '-'; |
| 569 | buflen--; |
| 570 | } |
| 571 | |
| 572 | if( radix == 16 ) |
| 573 | { |
| 574 | int c; |
| 575 | size_t i, j, k; |
| 576 | |
| 577 | for( i = X->n, k = 0; i > 0; i-- ) |
| 578 | { |
| 579 | for( j = ciL; j > 0; j-- ) |
| 580 | { |
| 581 | c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF; |
| 582 | |
| 583 | if( c == 0 && k == 0 && ( i + j ) != 2 ) |
| 584 | continue; |
| 585 | |
| 586 | *(p++) = "0123456789ABCDEF" [c / 16]; |
| 587 | *(p++) = "0123456789ABCDEF" [c % 16]; |
| 588 | k = 1; |
| 589 | } |
| 590 | } |
| 591 | } |
| 592 | else |
| 593 | { |
| 594 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) ); |
| 595 | |
| 596 | if( T.s == -1 ) |
| 597 | T.s = 1; |
| 598 | |
| 599 | MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p, buflen ) ); |
| 600 | } |
| 601 | |
| 602 | *p++ = '\0'; |
| 603 | *olen = p - buf; |
| 604 | |
| 605 | cleanup: |
| 606 | |
| 607 | mbedtls_mpi_free( X: &T ); |
| 608 | |
| 609 | return( ret ); |
| 610 | } |
| 611 | |
| 612 | #if defined(MBEDTLS_FS_IO) |
| 613 | /* |
| 614 | * Read X from an opened file |
| 615 | */ |
| 616 | int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin ) |
| 617 | { |
| 618 | mbedtls_mpi_uint d; |
| 619 | size_t slen; |
| 620 | char *p; |
| 621 | /* |
| 622 | * Buffer should have space for (short) label and decimal formatted MPI, |
| 623 | * newline characters and '\0' |
| 624 | */ |
| 625 | char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ]; |
| 626 | |
| 627 | MPI_VALIDATE_RET( X != NULL ); |
| 628 | MPI_VALIDATE_RET( fin != NULL ); |
| 629 | |
| 630 | if( radix < 2 || radix > 16 ) |
| 631 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
| 632 | |
| 633 | memset( s, 0, sizeof( s ) ); |
| 634 | if( fgets( s, sizeof( s ) - 1, fin ) == NULL ) |
| 635 | return( MBEDTLS_ERR_MPI_FILE_IO_ERROR ); |
| 636 | |
| 637 | slen = strlen( s ); |
| 638 | if( slen == sizeof( s ) - 2 ) |
| 639 | return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL ); |
| 640 | |
| 641 | if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; } |
| 642 | if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; } |
| 643 | |
| 644 | p = s + slen; |
| 645 | while( p-- > s ) |
| 646 | if( mpi_get_digit( &d, radix, *p ) != 0 ) |
| 647 | break; |
| 648 | |
| 649 | return( mbedtls_mpi_read_string( X, radix, p + 1 ) ); |
| 650 | } |
| 651 | |
| 652 | /* |
| 653 | * Write X into an opened file (or stdout if fout == NULL) |
| 654 | */ |
| 655 | int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout ) |
| 656 | { |
| 657 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 658 | size_t n, slen, plen; |
| 659 | /* |
| 660 | * Buffer should have space for (short) label and decimal formatted MPI, |
| 661 | * newline characters and '\0' |
| 662 | */ |
| 663 | char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ]; |
| 664 | MPI_VALIDATE_RET( X != NULL ); |
| 665 | |
| 666 | if( radix < 2 || radix > 16 ) |
| 667 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
| 668 | |
| 669 | memset( s, 0, sizeof( s ) ); |
| 670 | |
| 671 | MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) ); |
| 672 | |
| 673 | if( p == NULL ) p = "" ; |
| 674 | |
| 675 | plen = strlen( p ); |
| 676 | slen = strlen( s ); |
| 677 | s[slen++] = '\r'; |
| 678 | s[slen++] = '\n'; |
| 679 | |
| 680 | if( fout != NULL ) |
| 681 | { |
| 682 | if( fwrite( p, 1, plen, fout ) != plen || |
| 683 | fwrite( s, 1, slen, fout ) != slen ) |
| 684 | return( MBEDTLS_ERR_MPI_FILE_IO_ERROR ); |
| 685 | } |
| 686 | else |
| 687 | mbedtls_printf( "%s%s" , p, s ); |
| 688 | |
| 689 | cleanup: |
| 690 | |
| 691 | return( ret ); |
| 692 | } |
| 693 | #endif /* MBEDTLS_FS_IO */ |
| 694 | |
| 695 | |
| 696 | /* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint |
| 697 | * into the storage form used by mbedtls_mpi. */ |
| 698 | |
| 699 | static mbedtls_mpi_uint mpi_uint_bigendian_to_host_c( mbedtls_mpi_uint x ) |
| 700 | { |
| 701 | uint8_t i; |
| 702 | unsigned char *x_ptr; |
| 703 | mbedtls_mpi_uint tmp = 0; |
| 704 | |
| 705 | for( i = 0, x_ptr = (unsigned char*) &x; i < ciL; i++, x_ptr++ ) |
| 706 | { |
| 707 | tmp <<= CHAR_BIT; |
| 708 | tmp |= (mbedtls_mpi_uint) *x_ptr; |
| 709 | } |
| 710 | |
| 711 | return( tmp ); |
| 712 | } |
| 713 | |
| 714 | static mbedtls_mpi_uint mpi_uint_bigendian_to_host( mbedtls_mpi_uint x ) |
| 715 | { |
| 716 | #if defined(__BYTE_ORDER__) |
| 717 | |
| 718 | /* Nothing to do on bigendian systems. */ |
| 719 | #if ( __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ) |
| 720 | return( x ); |
| 721 | #endif /* __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ */ |
| 722 | |
| 723 | #if ( __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ) |
| 724 | |
| 725 | /* For GCC and Clang, have builtins for byte swapping. */ |
| 726 | #if defined(__GNUC__) && defined(__GNUC_PREREQ) |
| 727 | #if __GNUC_PREREQ(4,3) |
| 728 | #define have_bswap |
| 729 | #endif |
| 730 | #endif |
| 731 | |
| 732 | #if defined(__clang__) && defined(__has_builtin) |
| 733 | #if __has_builtin(__builtin_bswap32) && \ |
| 734 | __has_builtin(__builtin_bswap64) |
| 735 | #define have_bswap |
| 736 | #endif |
| 737 | #endif |
| 738 | |
| 739 | #if defined(have_bswap) |
| 740 | /* The compiler is hopefully able to statically evaluate this! */ |
| 741 | switch( sizeof(mbedtls_mpi_uint) ) |
| 742 | { |
| 743 | case 4: |
| 744 | return( __builtin_bswap32(x) ); |
| 745 | case 8: |
| 746 | return( __builtin_bswap64(x) ); |
| 747 | } |
| 748 | #endif |
| 749 | #endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */ |
| 750 | #endif /* __BYTE_ORDER__ */ |
| 751 | |
| 752 | /* Fall back to C-based reordering if we don't know the byte order |
| 753 | * or we couldn't use a compiler-specific builtin. */ |
| 754 | return( mpi_uint_bigendian_to_host_c( x ) ); |
| 755 | } |
| 756 | |
| 757 | static void mpi_bigendian_to_host( mbedtls_mpi_uint * const p, size_t limbs ) |
| 758 | { |
| 759 | mbedtls_mpi_uint *cur_limb_left; |
| 760 | mbedtls_mpi_uint *cur_limb_right; |
| 761 | if( limbs == 0 ) |
| 762 | return; |
| 763 | |
| 764 | /* |
| 765 | * Traverse limbs and |
| 766 | * - adapt byte-order in each limb |
| 767 | * - swap the limbs themselves. |
| 768 | * For that, simultaneously traverse the limbs from left to right |
| 769 | * and from right to left, as long as the left index is not bigger |
| 770 | * than the right index (it's not a problem if limbs is odd and the |
| 771 | * indices coincide in the last iteration). |
| 772 | */ |
| 773 | for( cur_limb_left = p, cur_limb_right = p + ( limbs - 1 ); |
| 774 | cur_limb_left <= cur_limb_right; |
| 775 | cur_limb_left++, cur_limb_right-- ) |
| 776 | { |
| 777 | mbedtls_mpi_uint tmp; |
| 778 | /* Note that if cur_limb_left == cur_limb_right, |
| 779 | * this code effectively swaps the bytes only once. */ |
| 780 | tmp = mpi_uint_bigendian_to_host( x: *cur_limb_left ); |
| 781 | *cur_limb_left = mpi_uint_bigendian_to_host( x: *cur_limb_right ); |
| 782 | *cur_limb_right = tmp; |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | /* |
| 787 | * Import X from unsigned binary data, little endian |
| 788 | */ |
| 789 | int mbedtls_mpi_read_binary_le( mbedtls_mpi *X, |
| 790 | const unsigned char *buf, size_t buflen ) |
| 791 | { |
| 792 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 793 | size_t i; |
| 794 | size_t const limbs = CHARS_TO_LIMBS( buflen ); |
| 795 | |
| 796 | /* Ensure that target MPI has exactly the necessary number of limbs */ |
| 797 | MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) ); |
| 798 | |
| 799 | for( i = 0; i < buflen; i++ ) |
| 800 | X->p[i / ciL] |= ((mbedtls_mpi_uint) buf[i]) << ((i % ciL) << 3); |
| 801 | |
| 802 | cleanup: |
| 803 | |
| 804 | /* |
| 805 | * This function is also used to import keys. However, wiping the buffers |
| 806 | * upon failure is not necessary because failure only can happen before any |
| 807 | * input is copied. |
| 808 | */ |
| 809 | return( ret ); |
| 810 | } |
| 811 | |
| 812 | /* |
| 813 | * Import X from unsigned binary data, big endian |
| 814 | */ |
| 815 | int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen ) |
| 816 | { |
| 817 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 818 | size_t const limbs = CHARS_TO_LIMBS( buflen ); |
| 819 | size_t const overhead = ( limbs * ciL ) - buflen; |
| 820 | unsigned char *Xp; |
| 821 | |
| 822 | MPI_VALIDATE_RET( X != NULL ); |
| 823 | MPI_VALIDATE_RET( buflen == 0 || buf != NULL ); |
| 824 | |
| 825 | /* Ensure that target MPI has exactly the necessary number of limbs */ |
| 826 | MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) ); |
| 827 | |
| 828 | /* Avoid calling `memcpy` with NULL source or destination argument, |
| 829 | * even if buflen is 0. */ |
| 830 | if( buflen != 0 ) |
| 831 | { |
| 832 | Xp = (unsigned char*) X->p; |
| 833 | memcpy( dest: Xp + overhead, src: buf, n: buflen ); |
| 834 | |
| 835 | mpi_bigendian_to_host( p: X->p, limbs ); |
| 836 | } |
| 837 | |
| 838 | cleanup: |
| 839 | |
| 840 | /* |
| 841 | * This function is also used to import keys. However, wiping the buffers |
| 842 | * upon failure is not necessary because failure only can happen before any |
| 843 | * input is copied. |
| 844 | */ |
| 845 | return( ret ); |
| 846 | } |
| 847 | |
| 848 | /* |
| 849 | * Export X into unsigned binary data, little endian |
| 850 | */ |
| 851 | int mbedtls_mpi_write_binary_le( const mbedtls_mpi *X, |
| 852 | unsigned char *buf, size_t buflen ) |
| 853 | { |
| 854 | size_t stored_bytes = X->n * ciL; |
| 855 | size_t bytes_to_copy; |
| 856 | size_t i; |
| 857 | |
| 858 | if( stored_bytes < buflen ) |
| 859 | { |
| 860 | bytes_to_copy = stored_bytes; |
| 861 | } |
| 862 | else |
| 863 | { |
| 864 | bytes_to_copy = buflen; |
| 865 | |
| 866 | /* The output buffer is smaller than the allocated size of X. |
| 867 | * However X may fit if its leading bytes are zero. */ |
| 868 | for( i = bytes_to_copy; i < stored_bytes; i++ ) |
| 869 | { |
| 870 | if( GET_BYTE( X, i ) != 0 ) |
| 871 | return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL ); |
| 872 | } |
| 873 | } |
| 874 | |
| 875 | for( i = 0; i < bytes_to_copy; i++ ) |
| 876 | buf[i] = GET_BYTE( X, i ); |
| 877 | |
| 878 | if( stored_bytes < buflen ) |
| 879 | { |
| 880 | /* Write trailing 0 bytes */ |
| 881 | memset( s: buf + stored_bytes, c: 0, n: buflen - stored_bytes ); |
| 882 | } |
| 883 | |
| 884 | return( 0 ); |
| 885 | } |
| 886 | |
| 887 | /* |
| 888 | * Export X into unsigned binary data, big endian |
| 889 | */ |
| 890 | int mbedtls_mpi_write_binary( const mbedtls_mpi *X, |
| 891 | unsigned char *buf, size_t buflen ) |
| 892 | { |
| 893 | size_t stored_bytes; |
| 894 | size_t bytes_to_copy; |
| 895 | unsigned char *p; |
| 896 | size_t i; |
| 897 | |
| 898 | MPI_VALIDATE_RET( X != NULL ); |
| 899 | MPI_VALIDATE_RET( buflen == 0 || buf != NULL ); |
| 900 | |
| 901 | stored_bytes = X->n * ciL; |
| 902 | |
| 903 | if( stored_bytes < buflen ) |
| 904 | { |
| 905 | /* There is enough space in the output buffer. Write initial |
| 906 | * null bytes and record the position at which to start |
| 907 | * writing the significant bytes. In this case, the execution |
| 908 | * trace of this function does not depend on the value of the |
| 909 | * number. */ |
| 910 | bytes_to_copy = stored_bytes; |
| 911 | p = buf + buflen - stored_bytes; |
| 912 | memset( s: buf, c: 0, n: buflen - stored_bytes ); |
| 913 | } |
| 914 | else |
| 915 | { |
| 916 | /* The output buffer is smaller than the allocated size of X. |
| 917 | * However X may fit if its leading bytes are zero. */ |
| 918 | bytes_to_copy = buflen; |
| 919 | p = buf; |
| 920 | for( i = bytes_to_copy; i < stored_bytes; i++ ) |
| 921 | { |
| 922 | if( GET_BYTE( X, i ) != 0 ) |
| 923 | return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL ); |
| 924 | } |
| 925 | } |
| 926 | |
| 927 | for( i = 0; i < bytes_to_copy; i++ ) |
| 928 | p[bytes_to_copy - i - 1] = GET_BYTE( X, i ); |
| 929 | |
| 930 | return( 0 ); |
| 931 | } |
| 932 | |
| 933 | /* |
| 934 | * Left-shift: X <<= count |
| 935 | */ |
| 936 | int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count ) |
| 937 | { |
| 938 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 939 | size_t i, v0, t1; |
| 940 | mbedtls_mpi_uint r0 = 0, r1; |
| 941 | MPI_VALIDATE_RET( X != NULL ); |
| 942 | |
| 943 | v0 = count / (biL ); |
| 944 | t1 = count & (biL - 1); |
| 945 | |
| 946 | i = mbedtls_mpi_bitlen( X ) + count; |
| 947 | |
| 948 | if( X->n * biL < i ) |
| 949 | MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) ); |
| 950 | |
| 951 | ret = 0; |
| 952 | |
| 953 | /* |
| 954 | * shift by count / limb_size |
| 955 | */ |
| 956 | if( v0 > 0 ) |
| 957 | { |
| 958 | for( i = X->n; i > v0; i-- ) |
| 959 | X->p[i - 1] = X->p[i - v0 - 1]; |
| 960 | |
| 961 | for( ; i > 0; i-- ) |
| 962 | X->p[i - 1] = 0; |
| 963 | } |
| 964 | |
| 965 | /* |
| 966 | * shift by count % limb_size |
| 967 | */ |
| 968 | if( t1 > 0 ) |
| 969 | { |
| 970 | for( i = v0; i < X->n; i++ ) |
| 971 | { |
| 972 | r1 = X->p[i] >> (biL - t1); |
| 973 | X->p[i] <<= t1; |
| 974 | X->p[i] |= r0; |
| 975 | r0 = r1; |
| 976 | } |
| 977 | } |
| 978 | |
| 979 | cleanup: |
| 980 | |
| 981 | return( ret ); |
| 982 | } |
| 983 | |
| 984 | /* |
| 985 | * Right-shift: X >>= count |
| 986 | */ |
| 987 | int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count ) |
| 988 | { |
| 989 | size_t i, v0, v1; |
| 990 | mbedtls_mpi_uint r0 = 0, r1; |
| 991 | MPI_VALIDATE_RET( X != NULL ); |
| 992 | |
| 993 | v0 = count / biL; |
| 994 | v1 = count & (biL - 1); |
| 995 | |
| 996 | if( v0 > X->n || ( v0 == X->n && v1 > 0 ) ) |
| 997 | return mbedtls_mpi_lset( X, z: 0 ); |
| 998 | |
| 999 | /* |
| 1000 | * shift by count / limb_size |
| 1001 | */ |
| 1002 | if( v0 > 0 ) |
| 1003 | { |
| 1004 | for( i = 0; i < X->n - v0; i++ ) |
| 1005 | X->p[i] = X->p[i + v0]; |
| 1006 | |
| 1007 | for( ; i < X->n; i++ ) |
| 1008 | X->p[i] = 0; |
| 1009 | } |
| 1010 | |
| 1011 | /* |
| 1012 | * shift by count % limb_size |
| 1013 | */ |
| 1014 | if( v1 > 0 ) |
| 1015 | { |
| 1016 | for( i = X->n; i > 0; i-- ) |
| 1017 | { |
| 1018 | r1 = X->p[i - 1] << (biL - v1); |
| 1019 | X->p[i - 1] >>= v1; |
| 1020 | X->p[i - 1] |= r0; |
| 1021 | r0 = r1; |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | return( 0 ); |
| 1026 | } |
| 1027 | |
| 1028 | /* |
| 1029 | * Compare unsigned values |
| 1030 | */ |
| 1031 | int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y ) |
| 1032 | { |
| 1033 | size_t i, j; |
| 1034 | MPI_VALIDATE_RET( X != NULL ); |
| 1035 | MPI_VALIDATE_RET( Y != NULL ); |
| 1036 | |
| 1037 | for( i = X->n; i > 0; i-- ) |
| 1038 | if( X->p[i - 1] != 0 ) |
| 1039 | break; |
| 1040 | |
| 1041 | for( j = Y->n; j > 0; j-- ) |
| 1042 | if( Y->p[j - 1] != 0 ) |
| 1043 | break; |
| 1044 | |
| 1045 | if( i == 0 && j == 0 ) |
| 1046 | return( 0 ); |
| 1047 | |
| 1048 | if( i > j ) return( 1 ); |
| 1049 | if( j > i ) return( -1 ); |
| 1050 | |
| 1051 | for( ; i > 0; i-- ) |
| 1052 | { |
| 1053 | if( X->p[i - 1] > Y->p[i - 1] ) return( 1 ); |
| 1054 | if( X->p[i - 1] < Y->p[i - 1] ) return( -1 ); |
| 1055 | } |
| 1056 | |
| 1057 | return( 0 ); |
| 1058 | } |
| 1059 | |
| 1060 | /* |
| 1061 | * Compare signed values |
| 1062 | */ |
| 1063 | int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y ) |
| 1064 | { |
| 1065 | size_t i, j; |
| 1066 | MPI_VALIDATE_RET( X != NULL ); |
| 1067 | MPI_VALIDATE_RET( Y != NULL ); |
| 1068 | |
| 1069 | for( i = X->n; i > 0; i-- ) |
| 1070 | if( X->p[i - 1] != 0 ) |
| 1071 | break; |
| 1072 | |
| 1073 | for( j = Y->n; j > 0; j-- ) |
| 1074 | if( Y->p[j - 1] != 0 ) |
| 1075 | break; |
| 1076 | |
| 1077 | if( i == 0 && j == 0 ) |
| 1078 | return( 0 ); |
| 1079 | |
| 1080 | if( i > j ) return( X->s ); |
| 1081 | if( j > i ) return( -Y->s ); |
| 1082 | |
| 1083 | if( X->s > 0 && Y->s < 0 ) return( 1 ); |
| 1084 | if( Y->s > 0 && X->s < 0 ) return( -1 ); |
| 1085 | |
| 1086 | for( ; i > 0; i-- ) |
| 1087 | { |
| 1088 | if( X->p[i - 1] > Y->p[i - 1] ) return( X->s ); |
| 1089 | if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s ); |
| 1090 | } |
| 1091 | |
| 1092 | return( 0 ); |
| 1093 | } |
| 1094 | |
| 1095 | /* |
| 1096 | * Compare signed values |
| 1097 | */ |
| 1098 | int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z ) |
| 1099 | { |
| 1100 | mbedtls_mpi Y; |
| 1101 | mbedtls_mpi_uint p[1]; |
| 1102 | MPI_VALIDATE_RET( X != NULL ); |
| 1103 | |
| 1104 | *p = ( z < 0 ) ? -z : z; |
| 1105 | Y.s = ( z < 0 ) ? -1 : 1; |
| 1106 | Y.n = 1; |
| 1107 | Y.p = p; |
| 1108 | |
| 1109 | return( mbedtls_mpi_cmp_mpi( X, Y: &Y ) ); |
| 1110 | } |
| 1111 | |
| 1112 | /* |
| 1113 | * Unsigned addition: X = |A| + |B| (HAC 14.7) |
| 1114 | */ |
| 1115 | int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B ) |
| 1116 | { |
| 1117 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1118 | size_t i, j; |
| 1119 | mbedtls_mpi_uint *o, *p, c, tmp; |
| 1120 | MPI_VALIDATE_RET( X != NULL ); |
| 1121 | MPI_VALIDATE_RET( A != NULL ); |
| 1122 | MPI_VALIDATE_RET( B != NULL ); |
| 1123 | |
| 1124 | if( X == B ) |
| 1125 | { |
| 1126 | const mbedtls_mpi *T = A; A = X; B = T; |
| 1127 | } |
| 1128 | |
| 1129 | if( X != A ) |
| 1130 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) ); |
| 1131 | |
| 1132 | /* |
| 1133 | * X should always be positive as a result of unsigned additions. |
| 1134 | */ |
| 1135 | X->s = 1; |
| 1136 | |
| 1137 | for( j = B->n; j > 0; j-- ) |
| 1138 | if( B->p[j - 1] != 0 ) |
| 1139 | break; |
| 1140 | |
| 1141 | MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) ); |
| 1142 | |
| 1143 | o = B->p; p = X->p; c = 0; |
| 1144 | |
| 1145 | /* |
| 1146 | * tmp is used because it might happen that p == o |
| 1147 | */ |
| 1148 | for( i = 0; i < j; i++, o++, p++ ) |
| 1149 | { |
| 1150 | tmp= *o; |
| 1151 | *p += c; c = ( *p < c ); |
| 1152 | *p += tmp; c += ( *p < tmp ); |
| 1153 | } |
| 1154 | |
| 1155 | while( c != 0 ) |
| 1156 | { |
| 1157 | if( i >= X->n ) |
| 1158 | { |
| 1159 | MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + 1 ) ); |
| 1160 | p = X->p + i; |
| 1161 | } |
| 1162 | |
| 1163 | *p += c; c = ( *p < c ); i++; p++; |
| 1164 | } |
| 1165 | |
| 1166 | cleanup: |
| 1167 | |
| 1168 | return( ret ); |
| 1169 | } |
| 1170 | |
| 1171 | /** |
| 1172 | * Helper for mbedtls_mpi subtraction. |
| 1173 | * |
| 1174 | * Calculate l - r where l and r have the same size. |
| 1175 | * This function operates modulo (2^ciL)^n and returns the carry |
| 1176 | * (1 if there was a wraparound, i.e. if `l < r`, and 0 otherwise). |
| 1177 | * |
| 1178 | * d may be aliased to l or r. |
| 1179 | * |
| 1180 | * \param n Number of limbs of \p d, \p l and \p r. |
| 1181 | * \param[out] d The result of the subtraction. |
| 1182 | * \param[in] l The left operand. |
| 1183 | * \param[in] r The right operand. |
| 1184 | * |
| 1185 | * \return 1 if `l < r`. |
| 1186 | * 0 if `l >= r`. |
| 1187 | */ |
| 1188 | static mbedtls_mpi_uint mpi_sub_hlp( size_t n, |
| 1189 | mbedtls_mpi_uint *d, |
| 1190 | const mbedtls_mpi_uint *l, |
| 1191 | const mbedtls_mpi_uint *r ) |
| 1192 | { |
| 1193 | size_t i; |
| 1194 | mbedtls_mpi_uint c = 0, t, z; |
| 1195 | |
| 1196 | for( i = 0; i < n; i++ ) |
| 1197 | { |
| 1198 | z = ( l[i] < c ); t = l[i] - c; |
| 1199 | c = ( t < r[i] ) + z; d[i] = t - r[i]; |
| 1200 | } |
| 1201 | |
| 1202 | return( c ); |
| 1203 | } |
| 1204 | |
| 1205 | /* |
| 1206 | * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10) |
| 1207 | */ |
| 1208 | int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B ) |
| 1209 | { |
| 1210 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1211 | size_t n; |
| 1212 | mbedtls_mpi_uint carry; |
| 1213 | MPI_VALIDATE_RET( X != NULL ); |
| 1214 | MPI_VALIDATE_RET( A != NULL ); |
| 1215 | MPI_VALIDATE_RET( B != NULL ); |
| 1216 | |
| 1217 | for( n = B->n; n > 0; n-- ) |
| 1218 | if( B->p[n - 1] != 0 ) |
| 1219 | break; |
| 1220 | if( n > A->n ) |
| 1221 | { |
| 1222 | /* B >= (2^ciL)^n > A */ |
| 1223 | ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE; |
| 1224 | goto cleanup; |
| 1225 | } |
| 1226 | |
| 1227 | MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, A->n ) ); |
| 1228 | |
| 1229 | /* Set the high limbs of X to match A. Don't touch the lower limbs |
| 1230 | * because X might be aliased to B, and we must not overwrite the |
| 1231 | * significant digits of B. */ |
| 1232 | if( A->n > n ) |
| 1233 | memcpy( dest: X->p + n, src: A->p + n, n: ( A->n - n ) * ciL ); |
| 1234 | if( X->n > A->n ) |
| 1235 | memset( s: X->p + A->n, c: 0, n: ( X->n - A->n ) * ciL ); |
| 1236 | |
| 1237 | carry = mpi_sub_hlp( n, d: X->p, l: A->p, r: B->p ); |
| 1238 | if( carry != 0 ) |
| 1239 | { |
| 1240 | /* Propagate the carry to the first nonzero limb of X. */ |
| 1241 | for( ; n < X->n && X->p[n] == 0; n++ ) |
| 1242 | --X->p[n]; |
| 1243 | /* If we ran out of space for the carry, it means that the result |
| 1244 | * is negative. */ |
| 1245 | if( n == X->n ) |
| 1246 | { |
| 1247 | ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE; |
| 1248 | goto cleanup; |
| 1249 | } |
| 1250 | --X->p[n]; |
| 1251 | } |
| 1252 | |
| 1253 | /* X should always be positive as a result of unsigned subtractions. */ |
| 1254 | X->s = 1; |
| 1255 | |
| 1256 | cleanup: |
| 1257 | return( ret ); |
| 1258 | } |
| 1259 | |
| 1260 | /* |
| 1261 | * Signed addition: X = A + B |
| 1262 | */ |
| 1263 | int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B ) |
| 1264 | { |
| 1265 | int ret, s; |
| 1266 | MPI_VALIDATE_RET( X != NULL ); |
| 1267 | MPI_VALIDATE_RET( A != NULL ); |
| 1268 | MPI_VALIDATE_RET( B != NULL ); |
| 1269 | |
| 1270 | s = A->s; |
| 1271 | if( A->s * B->s < 0 ) |
| 1272 | { |
| 1273 | if( mbedtls_mpi_cmp_abs( X: A, Y: B ) >= 0 ) |
| 1274 | { |
| 1275 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) ); |
| 1276 | X->s = s; |
| 1277 | } |
| 1278 | else |
| 1279 | { |
| 1280 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) ); |
| 1281 | X->s = -s; |
| 1282 | } |
| 1283 | } |
| 1284 | else |
| 1285 | { |
| 1286 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) ); |
| 1287 | X->s = s; |
| 1288 | } |
| 1289 | |
| 1290 | cleanup: |
| 1291 | |
| 1292 | return( ret ); |
| 1293 | } |
| 1294 | |
| 1295 | /* |
| 1296 | * Signed subtraction: X = A - B |
| 1297 | */ |
| 1298 | int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B ) |
| 1299 | { |
| 1300 | int ret, s; |
| 1301 | MPI_VALIDATE_RET( X != NULL ); |
| 1302 | MPI_VALIDATE_RET( A != NULL ); |
| 1303 | MPI_VALIDATE_RET( B != NULL ); |
| 1304 | |
| 1305 | s = A->s; |
| 1306 | if( A->s * B->s > 0 ) |
| 1307 | { |
| 1308 | if( mbedtls_mpi_cmp_abs( X: A, Y: B ) >= 0 ) |
| 1309 | { |
| 1310 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) ); |
| 1311 | X->s = s; |
| 1312 | } |
| 1313 | else |
| 1314 | { |
| 1315 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) ); |
| 1316 | X->s = -s; |
| 1317 | } |
| 1318 | } |
| 1319 | else |
| 1320 | { |
| 1321 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) ); |
| 1322 | X->s = s; |
| 1323 | } |
| 1324 | |
| 1325 | cleanup: |
| 1326 | |
| 1327 | return( ret ); |
| 1328 | } |
| 1329 | |
| 1330 | /* |
| 1331 | * Signed addition: X = A + b |
| 1332 | */ |
| 1333 | int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b ) |
| 1334 | { |
| 1335 | mbedtls_mpi B; |
| 1336 | mbedtls_mpi_uint p[1]; |
| 1337 | MPI_VALIDATE_RET( X != NULL ); |
| 1338 | MPI_VALIDATE_RET( A != NULL ); |
| 1339 | |
| 1340 | p[0] = ( b < 0 ) ? -b : b; |
| 1341 | B.s = ( b < 0 ) ? -1 : 1; |
| 1342 | B.n = 1; |
| 1343 | B.p = p; |
| 1344 | |
| 1345 | return( mbedtls_mpi_add_mpi( X, A, B: &B ) ); |
| 1346 | } |
| 1347 | |
| 1348 | /* |
| 1349 | * Signed subtraction: X = A - b |
| 1350 | */ |
| 1351 | int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b ) |
| 1352 | { |
| 1353 | mbedtls_mpi B; |
| 1354 | mbedtls_mpi_uint p[1]; |
| 1355 | MPI_VALIDATE_RET( X != NULL ); |
| 1356 | MPI_VALIDATE_RET( A != NULL ); |
| 1357 | |
| 1358 | p[0] = ( b < 0 ) ? -b : b; |
| 1359 | B.s = ( b < 0 ) ? -1 : 1; |
| 1360 | B.n = 1; |
| 1361 | B.p = p; |
| 1362 | |
| 1363 | return( mbedtls_mpi_sub_mpi( X, A, B: &B ) ); |
| 1364 | } |
| 1365 | |
| 1366 | /** Helper for mbedtls_mpi multiplication. |
| 1367 | * |
| 1368 | * Add \p b * \p s to \p d. |
| 1369 | * |
| 1370 | * \param i The number of limbs of \p s. |
| 1371 | * \param[in] s A bignum to multiply, of size \p i. |
| 1372 | * It may overlap with \p d, but only if |
| 1373 | * \p d <= \p s. |
| 1374 | * Its leading limb must not be \c 0. |
| 1375 | * \param[in,out] d The bignum to add to. |
| 1376 | * It must be sufficiently large to store the |
| 1377 | * result of the multiplication. This means |
| 1378 | * \p i + 1 limbs if \p d[\p i - 1] started as 0 and \p b |
| 1379 | * is not known a priori. |
| 1380 | * \param b A scalar to multiply. |
| 1381 | */ |
| 1382 | static |
| 1383 | #if defined(__APPLE__) && defined(__arm__) |
| 1384 | /* |
| 1385 | * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn) |
| 1386 | * appears to need this to prevent bad ARM code generation at -O3. |
| 1387 | */ |
| 1388 | __attribute__ ((noinline)) |
| 1389 | #endif |
| 1390 | void mpi_mul_hlp( size_t i, |
| 1391 | const mbedtls_mpi_uint *s, |
| 1392 | mbedtls_mpi_uint *d, |
| 1393 | mbedtls_mpi_uint b ) |
| 1394 | { |
| 1395 | mbedtls_mpi_uint c = 0; |
| 1396 | |
| 1397 | #if defined(MULADDC_HUIT) |
| 1398 | for( ; i >= 8; i -= 8 ) |
| 1399 | { |
| 1400 | MULADDC_INIT |
| 1401 | MULADDC_HUIT |
| 1402 | MULADDC_STOP |
| 1403 | } |
| 1404 | |
| 1405 | for( ; i > 0; i-- ) |
| 1406 | { |
| 1407 | MULADDC_INIT |
| 1408 | MULADDC_CORE |
| 1409 | MULADDC_STOP |
| 1410 | } |
| 1411 | #else /* MULADDC_HUIT */ |
| 1412 | for( ; i >= 16; i -= 16 ) |
| 1413 | { |
| 1414 | MULADDC_INIT |
| 1415 | MULADDC_CORE MULADDC_CORE |
| 1416 | MULADDC_CORE MULADDC_CORE |
| 1417 | MULADDC_CORE MULADDC_CORE |
| 1418 | MULADDC_CORE MULADDC_CORE |
| 1419 | |
| 1420 | MULADDC_CORE MULADDC_CORE |
| 1421 | MULADDC_CORE MULADDC_CORE |
| 1422 | MULADDC_CORE MULADDC_CORE |
| 1423 | MULADDC_CORE MULADDC_CORE |
| 1424 | MULADDC_STOP |
| 1425 | } |
| 1426 | |
| 1427 | for( ; i >= 8; i -= 8 ) |
| 1428 | { |
| 1429 | MULADDC_INIT |
| 1430 | MULADDC_CORE MULADDC_CORE |
| 1431 | MULADDC_CORE MULADDC_CORE |
| 1432 | |
| 1433 | MULADDC_CORE MULADDC_CORE |
| 1434 | MULADDC_CORE MULADDC_CORE |
| 1435 | MULADDC_STOP |
| 1436 | } |
| 1437 | |
| 1438 | for( ; i > 0; i-- ) |
| 1439 | { |
| 1440 | MULADDC_INIT |
| 1441 | MULADDC_CORE |
| 1442 | MULADDC_STOP |
| 1443 | } |
| 1444 | #endif /* MULADDC_HUIT */ |
| 1445 | |
| 1446 | while( c != 0 ) |
| 1447 | { |
| 1448 | *d += c; c = ( *d < c ); d++; |
| 1449 | } |
| 1450 | } |
| 1451 | |
| 1452 | /* |
| 1453 | * Baseline multiplication: X = A * B (HAC 14.12) |
| 1454 | */ |
| 1455 | int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B ) |
| 1456 | { |
| 1457 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1458 | size_t i, j; |
| 1459 | mbedtls_mpi TA, TB; |
| 1460 | int result_is_zero = 0; |
| 1461 | MPI_VALIDATE_RET( X != NULL ); |
| 1462 | MPI_VALIDATE_RET( A != NULL ); |
| 1463 | MPI_VALIDATE_RET( B != NULL ); |
| 1464 | |
| 1465 | mbedtls_mpi_init( X: &TA ); mbedtls_mpi_init( X: &TB ); |
| 1466 | |
| 1467 | if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; } |
| 1468 | if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; } |
| 1469 | |
| 1470 | for( i = A->n; i > 0; i-- ) |
| 1471 | if( A->p[i - 1] != 0 ) |
| 1472 | break; |
| 1473 | if( i == 0 ) |
| 1474 | result_is_zero = 1; |
| 1475 | |
| 1476 | for( j = B->n; j > 0; j-- ) |
| 1477 | if( B->p[j - 1] != 0 ) |
| 1478 | break; |
| 1479 | if( j == 0 ) |
| 1480 | result_is_zero = 1; |
| 1481 | |
| 1482 | MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) ); |
| 1483 | MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) ); |
| 1484 | |
| 1485 | for( ; j > 0; j-- ) |
| 1486 | mpi_mul_hlp( i, s: A->p, d: X->p + j - 1, b: B->p[j - 1] ); |
| 1487 | |
| 1488 | /* If the result is 0, we don't shortcut the operation, which reduces |
| 1489 | * but does not eliminate side channels leaking the zero-ness. We do |
| 1490 | * need to take care to set the sign bit properly since the library does |
| 1491 | * not fully support an MPI object with a value of 0 and s == -1. */ |
| 1492 | if( result_is_zero ) |
| 1493 | X->s = 1; |
| 1494 | else |
| 1495 | X->s = A->s * B->s; |
| 1496 | |
| 1497 | cleanup: |
| 1498 | |
| 1499 | mbedtls_mpi_free( X: &TB ); mbedtls_mpi_free( X: &TA ); |
| 1500 | |
| 1501 | return( ret ); |
| 1502 | } |
| 1503 | |
| 1504 | /* |
| 1505 | * Baseline multiplication: X = A * b |
| 1506 | */ |
| 1507 | int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b ) |
| 1508 | { |
| 1509 | MPI_VALIDATE_RET( X != NULL ); |
| 1510 | MPI_VALIDATE_RET( A != NULL ); |
| 1511 | |
| 1512 | /* mpi_mul_hlp can't deal with a leading 0. */ |
| 1513 | size_t n = A->n; |
| 1514 | while( n > 0 && A->p[n - 1] == 0 ) |
| 1515 | --n; |
| 1516 | |
| 1517 | /* The general method below doesn't work if n==0 or b==0. By chance |
| 1518 | * calculating the result is trivial in those cases. */ |
| 1519 | if( b == 0 || n == 0 ) |
| 1520 | { |
| 1521 | return( mbedtls_mpi_lset( X, z: 0 ) ); |
| 1522 | } |
| 1523 | |
| 1524 | /* Calculate A*b as A + A*(b-1) to take advantage of mpi_mul_hlp */ |
| 1525 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1526 | /* In general, A * b requires 1 limb more than b. If |
| 1527 | * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same |
| 1528 | * number of limbs as A and the call to grow() is not required since |
| 1529 | * copy() will take care of the growth if needed. However, experimentally, |
| 1530 | * making the call to grow() unconditional causes slightly fewer |
| 1531 | * calls to calloc() in ECP code, presumably because it reuses the |
| 1532 | * same mpi for a while and this way the mpi is more likely to directly |
| 1533 | * grow to its final size. */ |
| 1534 | MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n + 1 ) ); |
| 1535 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) ); |
| 1536 | mpi_mul_hlp( i: n, s: A->p, d: X->p, b: b - 1 ); |
| 1537 | |
| 1538 | cleanup: |
| 1539 | return( ret ); |
| 1540 | } |
| 1541 | |
| 1542 | /* |
| 1543 | * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and |
| 1544 | * mbedtls_mpi_uint divisor, d |
| 1545 | */ |
| 1546 | static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1, |
| 1547 | mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r ) |
| 1548 | { |
| 1549 | #if defined(MBEDTLS_HAVE_UDBL) |
| 1550 | mbedtls_t_udbl dividend, quotient; |
| 1551 | #else |
| 1552 | const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH; |
| 1553 | const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1; |
| 1554 | mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient; |
| 1555 | mbedtls_mpi_uint u0_msw, u0_lsw; |
| 1556 | size_t s; |
| 1557 | #endif |
| 1558 | |
| 1559 | /* |
| 1560 | * Check for overflow |
| 1561 | */ |
| 1562 | if( 0 == d || u1 >= d ) |
| 1563 | { |
| 1564 | if (r != NULL) *r = ~0; |
| 1565 | |
| 1566 | return ( ~0 ); |
| 1567 | } |
| 1568 | |
| 1569 | #if defined(MBEDTLS_HAVE_UDBL) |
| 1570 | dividend = (mbedtls_t_udbl) u1 << biL; |
| 1571 | dividend |= (mbedtls_t_udbl) u0; |
| 1572 | quotient = dividend / d; |
| 1573 | if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 ) |
| 1574 | quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1; |
| 1575 | |
| 1576 | if( r != NULL ) |
| 1577 | *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) ); |
| 1578 | |
| 1579 | return (mbedtls_mpi_uint) quotient; |
| 1580 | #else |
| 1581 | |
| 1582 | /* |
| 1583 | * Algorithm D, Section 4.3.1 - The Art of Computer Programming |
| 1584 | * Vol. 2 - Seminumerical Algorithms, Knuth |
| 1585 | */ |
| 1586 | |
| 1587 | /* |
| 1588 | * Normalize the divisor, d, and dividend, u0, u1 |
| 1589 | */ |
| 1590 | s = mbedtls_clz( d ); |
| 1591 | d = d << s; |
| 1592 | |
| 1593 | u1 = u1 << s; |
| 1594 | u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) ); |
| 1595 | u0 = u0 << s; |
| 1596 | |
| 1597 | d1 = d >> biH; |
| 1598 | d0 = d & uint_halfword_mask; |
| 1599 | |
| 1600 | u0_msw = u0 >> biH; |
| 1601 | u0_lsw = u0 & uint_halfword_mask; |
| 1602 | |
| 1603 | /* |
| 1604 | * Find the first quotient and remainder |
| 1605 | */ |
| 1606 | q1 = u1 / d1; |
| 1607 | r0 = u1 - d1 * q1; |
| 1608 | |
| 1609 | while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) ) |
| 1610 | { |
| 1611 | q1 -= 1; |
| 1612 | r0 += d1; |
| 1613 | |
| 1614 | if ( r0 >= radix ) break; |
| 1615 | } |
| 1616 | |
| 1617 | rAX = ( u1 * radix ) + ( u0_msw - q1 * d ); |
| 1618 | q0 = rAX / d1; |
| 1619 | r0 = rAX - q0 * d1; |
| 1620 | |
| 1621 | while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) ) |
| 1622 | { |
| 1623 | q0 -= 1; |
| 1624 | r0 += d1; |
| 1625 | |
| 1626 | if ( r0 >= radix ) break; |
| 1627 | } |
| 1628 | |
| 1629 | if (r != NULL) |
| 1630 | *r = ( rAX * radix + u0_lsw - q0 * d ) >> s; |
| 1631 | |
| 1632 | quotient = q1 * radix + q0; |
| 1633 | |
| 1634 | return quotient; |
| 1635 | #endif |
| 1636 | } |
| 1637 | |
| 1638 | /* |
| 1639 | * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20) |
| 1640 | */ |
| 1641 | int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A, |
| 1642 | const mbedtls_mpi *B ) |
| 1643 | { |
| 1644 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1645 | size_t i, n, t, k; |
| 1646 | mbedtls_mpi X, Y, Z, T1, T2; |
| 1647 | mbedtls_mpi_uint TP2[3]; |
| 1648 | MPI_VALIDATE_RET( A != NULL ); |
| 1649 | MPI_VALIDATE_RET( B != NULL ); |
| 1650 | |
| 1651 | if( mbedtls_mpi_cmp_int( X: B, z: 0 ) == 0 ) |
| 1652 | return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO ); |
| 1653 | |
| 1654 | mbedtls_mpi_init( X: &X ); mbedtls_mpi_init( X: &Y ); mbedtls_mpi_init( X: &Z ); |
| 1655 | mbedtls_mpi_init( X: &T1 ); |
| 1656 | /* |
| 1657 | * Avoid dynamic memory allocations for constant-size T2. |
| 1658 | * |
| 1659 | * T2 is used for comparison only and the 3 limbs are assigned explicitly, |
| 1660 | * so nobody increase the size of the MPI and we're safe to use an on-stack |
| 1661 | * buffer. |
| 1662 | */ |
| 1663 | T2.s = 1; |
| 1664 | T2.n = sizeof( TP2 ) / sizeof( *TP2 ); |
| 1665 | T2.p = TP2; |
| 1666 | |
| 1667 | if( mbedtls_mpi_cmp_abs( X: A, Y: B ) < 0 ) |
| 1668 | { |
| 1669 | if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) ); |
| 1670 | if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) ); |
| 1671 | return( 0 ); |
| 1672 | } |
| 1673 | |
| 1674 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) ); |
| 1675 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) ); |
| 1676 | X.s = Y.s = 1; |
| 1677 | |
| 1678 | MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) ); |
| 1679 | MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) ); |
| 1680 | MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, A->n + 2 ) ); |
| 1681 | |
| 1682 | k = mbedtls_mpi_bitlen( X: &Y ) % biL; |
| 1683 | if( k < biL - 1 ) |
| 1684 | { |
| 1685 | k = biL - 1 - k; |
| 1686 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) ); |
| 1687 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) ); |
| 1688 | } |
| 1689 | else k = 0; |
| 1690 | |
| 1691 | n = X.n - 1; |
| 1692 | t = Y.n - 1; |
| 1693 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) ); |
| 1694 | |
| 1695 | while( mbedtls_mpi_cmp_mpi( X: &X, Y: &Y ) >= 0 ) |
| 1696 | { |
| 1697 | Z.p[n - t]++; |
| 1698 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) ); |
| 1699 | } |
| 1700 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) ); |
| 1701 | |
| 1702 | for( i = n; i > t ; i-- ) |
| 1703 | { |
| 1704 | if( X.p[i] >= Y.p[t] ) |
| 1705 | Z.p[i - t - 1] = ~0; |
| 1706 | else |
| 1707 | { |
| 1708 | Z.p[i - t - 1] = mbedtls_int_div_int( u1: X.p[i], u0: X.p[i - 1], |
| 1709 | d: Y.p[t], NULL); |
| 1710 | } |
| 1711 | |
| 1712 | T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2]; |
| 1713 | T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1]; |
| 1714 | T2.p[2] = X.p[i]; |
| 1715 | |
| 1716 | Z.p[i - t - 1]++; |
| 1717 | do |
| 1718 | { |
| 1719 | Z.p[i - t - 1]--; |
| 1720 | |
| 1721 | MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) ); |
| 1722 | T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1]; |
| 1723 | T1.p[1] = Y.p[t]; |
| 1724 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) ); |
| 1725 | } |
| 1726 | while( mbedtls_mpi_cmp_mpi( X: &T1, Y: &T2 ) > 0 ); |
| 1727 | |
| 1728 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) ); |
| 1729 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) ); |
| 1730 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) ); |
| 1731 | |
| 1732 | if( mbedtls_mpi_cmp_int( X: &X, z: 0 ) < 0 ) |
| 1733 | { |
| 1734 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) ); |
| 1735 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) ); |
| 1736 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) ); |
| 1737 | Z.p[i - t - 1]--; |
| 1738 | } |
| 1739 | } |
| 1740 | |
| 1741 | if( Q != NULL ) |
| 1742 | { |
| 1743 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) ); |
| 1744 | Q->s = A->s * B->s; |
| 1745 | } |
| 1746 | |
| 1747 | if( R != NULL ) |
| 1748 | { |
| 1749 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) ); |
| 1750 | X.s = A->s; |
| 1751 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) ); |
| 1752 | |
| 1753 | if( mbedtls_mpi_cmp_int( X: R, z: 0 ) == 0 ) |
| 1754 | R->s = 1; |
| 1755 | } |
| 1756 | |
| 1757 | cleanup: |
| 1758 | |
| 1759 | mbedtls_mpi_free( X: &X ); mbedtls_mpi_free( X: &Y ); mbedtls_mpi_free( X: &Z ); |
| 1760 | mbedtls_mpi_free( X: &T1 ); |
| 1761 | mbedtls_platform_zeroize( buf: TP2, len: sizeof( TP2 ) ); |
| 1762 | |
| 1763 | return( ret ); |
| 1764 | } |
| 1765 | |
| 1766 | /* |
| 1767 | * Division by int: A = Q * b + R |
| 1768 | */ |
| 1769 | int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R, |
| 1770 | const mbedtls_mpi *A, |
| 1771 | mbedtls_mpi_sint b ) |
| 1772 | { |
| 1773 | mbedtls_mpi B; |
| 1774 | mbedtls_mpi_uint p[1]; |
| 1775 | MPI_VALIDATE_RET( A != NULL ); |
| 1776 | |
| 1777 | p[0] = ( b < 0 ) ? -b : b; |
| 1778 | B.s = ( b < 0 ) ? -1 : 1; |
| 1779 | B.n = 1; |
| 1780 | B.p = p; |
| 1781 | |
| 1782 | return( mbedtls_mpi_div_mpi( Q, R, A, B: &B ) ); |
| 1783 | } |
| 1784 | |
| 1785 | /* |
| 1786 | * Modulo: R = A mod B |
| 1787 | */ |
| 1788 | int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B ) |
| 1789 | { |
| 1790 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1791 | MPI_VALIDATE_RET( R != NULL ); |
| 1792 | MPI_VALIDATE_RET( A != NULL ); |
| 1793 | MPI_VALIDATE_RET( B != NULL ); |
| 1794 | |
| 1795 | if( mbedtls_mpi_cmp_int( X: B, z: 0 ) < 0 ) |
| 1796 | return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE ); |
| 1797 | |
| 1798 | MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) ); |
| 1799 | |
| 1800 | while( mbedtls_mpi_cmp_int( X: R, z: 0 ) < 0 ) |
| 1801 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) ); |
| 1802 | |
| 1803 | while( mbedtls_mpi_cmp_mpi( X: R, Y: B ) >= 0 ) |
| 1804 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) ); |
| 1805 | |
| 1806 | cleanup: |
| 1807 | |
| 1808 | return( ret ); |
| 1809 | } |
| 1810 | |
| 1811 | /* |
| 1812 | * Modulo: r = A mod b |
| 1813 | */ |
| 1814 | int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b ) |
| 1815 | { |
| 1816 | size_t i; |
| 1817 | mbedtls_mpi_uint x, y, z; |
| 1818 | MPI_VALIDATE_RET( r != NULL ); |
| 1819 | MPI_VALIDATE_RET( A != NULL ); |
| 1820 | |
| 1821 | if( b == 0 ) |
| 1822 | return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO ); |
| 1823 | |
| 1824 | if( b < 0 ) |
| 1825 | return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE ); |
| 1826 | |
| 1827 | /* |
| 1828 | * handle trivial cases |
| 1829 | */ |
| 1830 | if( b == 1 ) |
| 1831 | { |
| 1832 | *r = 0; |
| 1833 | return( 0 ); |
| 1834 | } |
| 1835 | |
| 1836 | if( b == 2 ) |
| 1837 | { |
| 1838 | *r = A->p[0] & 1; |
| 1839 | return( 0 ); |
| 1840 | } |
| 1841 | |
| 1842 | /* |
| 1843 | * general case |
| 1844 | */ |
| 1845 | for( i = A->n, y = 0; i > 0; i-- ) |
| 1846 | { |
| 1847 | x = A->p[i - 1]; |
| 1848 | y = ( y << biH ) | ( x >> biH ); |
| 1849 | z = y / b; |
| 1850 | y -= z * b; |
| 1851 | |
| 1852 | x <<= biH; |
| 1853 | y = ( y << biH ) | ( x >> biH ); |
| 1854 | z = y / b; |
| 1855 | y -= z * b; |
| 1856 | } |
| 1857 | |
| 1858 | /* |
| 1859 | * If A is negative, then the current y represents a negative value. |
| 1860 | * Flipping it to the positive side. |
| 1861 | */ |
| 1862 | if( A->s < 0 && y != 0 ) |
| 1863 | y = b - y; |
| 1864 | |
| 1865 | *r = y; |
| 1866 | |
| 1867 | return( 0 ); |
| 1868 | } |
| 1869 | |
| 1870 | /* |
| 1871 | * Fast Montgomery initialization (thanks to Tom St Denis) |
| 1872 | */ |
| 1873 | static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N ) |
| 1874 | { |
| 1875 | mbedtls_mpi_uint x, m0 = N->p[0]; |
| 1876 | unsigned int i; |
| 1877 | |
| 1878 | x = m0; |
| 1879 | x += ( ( m0 + 2 ) & 4 ) << 1; |
| 1880 | |
| 1881 | for( i = biL; i >= 8; i /= 2 ) |
| 1882 | x *= ( 2 - ( m0 * x ) ); |
| 1883 | |
| 1884 | *mm = ~x + 1; |
| 1885 | } |
| 1886 | |
| 1887 | /** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36) |
| 1888 | * |
| 1889 | * \param[in,out] A One of the numbers to multiply. |
| 1890 | * It must have at least as many limbs as N |
| 1891 | * (A->n >= N->n), and any limbs beyond n are ignored. |
| 1892 | * On successful completion, A contains the result of |
| 1893 | * the multiplication A * B * R^-1 mod N where |
| 1894 | * R = (2^ciL)^n. |
| 1895 | * \param[in] B One of the numbers to multiply. |
| 1896 | * It must be nonzero and must not have more limbs than N |
| 1897 | * (B->n <= N->n). |
| 1898 | * \param[in] N The modulo. N must be odd. |
| 1899 | * \param mm The value calculated by `mpi_montg_init(&mm, N)`. |
| 1900 | * This is -N^-1 mod 2^ciL. |
| 1901 | * \param[in,out] T A bignum for temporary storage. |
| 1902 | * It must be at least twice the limb size of N plus 2 |
| 1903 | * (T->n >= 2 * (N->n + 1)). |
| 1904 | * Its initial content is unused and |
| 1905 | * its final content is indeterminate. |
| 1906 | * Note that unlike the usual convention in the library |
| 1907 | * for `const mbedtls_mpi*`, the content of T can change. |
| 1908 | */ |
| 1909 | static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm, |
| 1910 | const mbedtls_mpi *T ) |
| 1911 | { |
| 1912 | size_t i, n, m; |
| 1913 | mbedtls_mpi_uint u0, u1, *d; |
| 1914 | |
| 1915 | memset( s: T->p, c: 0, n: T->n * ciL ); |
| 1916 | |
| 1917 | d = T->p; |
| 1918 | n = N->n; |
| 1919 | m = ( B->n < n ) ? B->n : n; |
| 1920 | |
| 1921 | for( i = 0; i < n; i++ ) |
| 1922 | { |
| 1923 | /* |
| 1924 | * T = (T + u0*B + u1*N) / 2^biL |
| 1925 | */ |
| 1926 | u0 = A->p[i]; |
| 1927 | u1 = ( d[0] + u0 * B->p[0] ) * mm; |
| 1928 | |
| 1929 | mpi_mul_hlp( i: m, s: B->p, d, b: u0 ); |
| 1930 | mpi_mul_hlp( i: n, s: N->p, d, b: u1 ); |
| 1931 | |
| 1932 | *d++ = u0; d[n + 1] = 0; |
| 1933 | } |
| 1934 | |
| 1935 | /* At this point, d is either the desired result or the desired result |
| 1936 | * plus N. We now potentially subtract N, avoiding leaking whether the |
| 1937 | * subtraction is performed through side channels. */ |
| 1938 | |
| 1939 | /* Copy the n least significant limbs of d to A, so that |
| 1940 | * A = d if d < N (recall that N has n limbs). */ |
| 1941 | memcpy( dest: A->p, src: d, n: n * ciL ); |
| 1942 | /* If d >= N then we want to set A to d - N. To prevent timing attacks, |
| 1943 | * do the calculation without using conditional tests. */ |
| 1944 | /* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */ |
| 1945 | d[n] += 1; |
| 1946 | d[n] -= mpi_sub_hlp( n, d, l: d, r: N->p ); |
| 1947 | /* If d0 < N then d < (2^biL)^n |
| 1948 | * so d[n] == 0 and we want to keep A as it is. |
| 1949 | * If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n |
| 1950 | * so d[n] == 1 and we want to set A to the result of the subtraction |
| 1951 | * which is d - (2^biL)^n, i.e. the n least significant limbs of d. |
| 1952 | * This exactly corresponds to a conditional assignment. */ |
| 1953 | mbedtls_ct_mpi_uint_cond_assign( n, dest: A->p, src: d, condition: (unsigned char) d[n] ); |
| 1954 | } |
| 1955 | |
| 1956 | /* |
| 1957 | * Montgomery reduction: A = A * R^-1 mod N |
| 1958 | * |
| 1959 | * See mpi_montmul() regarding constraints and guarantees on the parameters. |
| 1960 | */ |
| 1961 | static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N, |
| 1962 | mbedtls_mpi_uint mm, const mbedtls_mpi *T ) |
| 1963 | { |
| 1964 | mbedtls_mpi_uint z = 1; |
| 1965 | mbedtls_mpi U; |
| 1966 | |
| 1967 | U.n = U.s = (int) z; |
| 1968 | U.p = &z; |
| 1969 | |
| 1970 | mpi_montmul( A, B: &U, N, mm, T ); |
| 1971 | } |
| 1972 | |
| 1973 | /** |
| 1974 | * Select an MPI from a table without leaking the index. |
| 1975 | * |
| 1976 | * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it |
| 1977 | * reads the entire table in order to avoid leaking the value of idx to an |
| 1978 | * attacker able to observe memory access patterns. |
| 1979 | * |
| 1980 | * \param[out] R Where to write the selected MPI. |
| 1981 | * \param[in] T The table to read from. |
| 1982 | * \param[in] T_size The number of elements in the table. |
| 1983 | * \param[in] idx The index of the element to select; |
| 1984 | * this must satisfy 0 <= idx < T_size. |
| 1985 | * |
| 1986 | * \return \c 0 on success, or a negative error code. |
| 1987 | */ |
| 1988 | static int mpi_select( mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx ) |
| 1989 | { |
| 1990 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1991 | |
| 1992 | for( size_t i = 0; i < T_size; i++ ) |
| 1993 | { |
| 1994 | MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( R, &T[i], |
| 1995 | (unsigned char) mbedtls_ct_size_bool_eq( i, idx ) ) ); |
| 1996 | } |
| 1997 | |
| 1998 | cleanup: |
| 1999 | return( ret ); |
| 2000 | } |
| 2001 | |
| 2002 | /* |
| 2003 | * Sliding-window exponentiation: X = A^E mod N (HAC 14.85) |
| 2004 | */ |
| 2005 | int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A, |
| 2006 | const mbedtls_mpi *E, const mbedtls_mpi *N, |
| 2007 | mbedtls_mpi *prec_RR ) |
| 2008 | { |
| 2009 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 2010 | size_t wbits, wsize, one = 1; |
| 2011 | size_t i, j, nblimbs; |
| 2012 | size_t bufsize, nbits; |
| 2013 | mbedtls_mpi_uint ei, mm, state; |
| 2014 | mbedtls_mpi RR, T, W[ 1 << MBEDTLS_MPI_WINDOW_SIZE ], WW, Apos; |
| 2015 | int neg; |
| 2016 | |
| 2017 | MPI_VALIDATE_RET( X != NULL ); |
| 2018 | MPI_VALIDATE_RET( A != NULL ); |
| 2019 | MPI_VALIDATE_RET( E != NULL ); |
| 2020 | MPI_VALIDATE_RET( N != NULL ); |
| 2021 | |
| 2022 | if( mbedtls_mpi_cmp_int( X: N, z: 0 ) <= 0 || ( N->p[0] & 1 ) == 0 ) |
| 2023 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
| 2024 | |
| 2025 | if( mbedtls_mpi_cmp_int( X: E, z: 0 ) < 0 ) |
| 2026 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
| 2027 | |
| 2028 | if( mbedtls_mpi_bitlen( X: E ) > MBEDTLS_MPI_MAX_BITS || |
| 2029 | mbedtls_mpi_bitlen( X: N ) > MBEDTLS_MPI_MAX_BITS ) |
| 2030 | return ( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
| 2031 | |
| 2032 | /* |
| 2033 | * Init temps and window size |
| 2034 | */ |
| 2035 | mpi_montg_init( mm: &mm, N ); |
| 2036 | mbedtls_mpi_init( X: &RR ); mbedtls_mpi_init( X: &T ); |
| 2037 | mbedtls_mpi_init( X: &Apos ); |
| 2038 | mbedtls_mpi_init( X: &WW ); |
| 2039 | memset( s: W, c: 0, n: sizeof( W ) ); |
| 2040 | |
| 2041 | i = mbedtls_mpi_bitlen( X: E ); |
| 2042 | |
| 2043 | wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 : |
| 2044 | ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1; |
| 2045 | |
| 2046 | #if( MBEDTLS_MPI_WINDOW_SIZE < 6 ) |
| 2047 | if( wsize > MBEDTLS_MPI_WINDOW_SIZE ) |
| 2048 | wsize = MBEDTLS_MPI_WINDOW_SIZE; |
| 2049 | #endif |
| 2050 | |
| 2051 | j = N->n + 1; |
| 2052 | /* All W[i] and X must have at least N->n limbs for the mpi_montmul() |
| 2053 | * and mpi_montred() calls later. Here we ensure that W[1] and X are |
| 2054 | * large enough, and later we'll grow other W[i] to the same length. |
| 2055 | * They must not be shrunk midway through this function! |
| 2056 | */ |
| 2057 | MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) ); |
| 2058 | MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) ); |
| 2059 | MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) ); |
| 2060 | |
| 2061 | /* |
| 2062 | * Compensate for negative A (and correct at the end) |
| 2063 | */ |
| 2064 | neg = ( A->s == -1 ); |
| 2065 | if( neg ) |
| 2066 | { |
| 2067 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) ); |
| 2068 | Apos.s = 1; |
| 2069 | A = &Apos; |
| 2070 | } |
| 2071 | |
| 2072 | /* |
| 2073 | * If 1st call, pre-compute R^2 mod N |
| 2074 | */ |
| 2075 | if( prec_RR == NULL || prec_RR->p == NULL ) |
| 2076 | { |
| 2077 | MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) ); |
| 2078 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) ); |
| 2079 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) ); |
| 2080 | |
| 2081 | if( prec_RR != NULL ) |
| 2082 | memcpy( dest: prec_RR, src: &RR, n: sizeof( mbedtls_mpi ) ); |
| 2083 | } |
| 2084 | else |
| 2085 | memcpy( dest: &RR, src: prec_RR, n: sizeof( mbedtls_mpi ) ); |
| 2086 | |
| 2087 | /* |
| 2088 | * W[1] = A * R^2 * R^-1 mod N = A * R mod N |
| 2089 | */ |
| 2090 | if( mbedtls_mpi_cmp_mpi( X: A, Y: N ) >= 0 ) |
| 2091 | { |
| 2092 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) ); |
| 2093 | /* This should be a no-op because W[1] is already that large before |
| 2094 | * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow |
| 2095 | * in mpi_montmul() below, so let's make sure. */ |
| 2096 | MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], N->n + 1 ) ); |
| 2097 | } |
| 2098 | else |
| 2099 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) ); |
| 2100 | |
| 2101 | /* Note that this is safe because W[1] always has at least N->n limbs |
| 2102 | * (it grew above and was preserved by mbedtls_mpi_copy()). */ |
| 2103 | mpi_montmul( A: &W[1], B: &RR, N, mm, T: &T ); |
| 2104 | |
| 2105 | /* |
| 2106 | * X = R^2 * R^-1 mod N = R mod N |
| 2107 | */ |
| 2108 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) ); |
| 2109 | mpi_montred( A: X, N, mm, T: &T ); |
| 2110 | |
| 2111 | if( wsize > 1 ) |
| 2112 | { |
| 2113 | /* |
| 2114 | * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1) |
| 2115 | */ |
| 2116 | j = one << ( wsize - 1 ); |
| 2117 | |
| 2118 | MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) ); |
| 2119 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) ); |
| 2120 | |
| 2121 | for( i = 0; i < wsize - 1; i++ ) |
| 2122 | mpi_montmul( A: &W[j], B: &W[j], N, mm, T: &T ); |
| 2123 | |
| 2124 | /* |
| 2125 | * W[i] = W[i - 1] * W[1] |
| 2126 | */ |
| 2127 | for( i = j + 1; i < ( one << wsize ); i++ ) |
| 2128 | { |
| 2129 | MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) ); |
| 2130 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) ); |
| 2131 | |
| 2132 | mpi_montmul( A: &W[i], B: &W[1], N, mm, T: &T ); |
| 2133 | } |
| 2134 | } |
| 2135 | |
| 2136 | nblimbs = E->n; |
| 2137 | bufsize = 0; |
| 2138 | nbits = 0; |
| 2139 | wbits = 0; |
| 2140 | state = 0; |
| 2141 | |
| 2142 | while( 1 ) |
| 2143 | { |
| 2144 | if( bufsize == 0 ) |
| 2145 | { |
| 2146 | if( nblimbs == 0 ) |
| 2147 | break; |
| 2148 | |
| 2149 | nblimbs--; |
| 2150 | |
| 2151 | bufsize = sizeof( mbedtls_mpi_uint ) << 3; |
| 2152 | } |
| 2153 | |
| 2154 | bufsize--; |
| 2155 | |
| 2156 | ei = (E->p[nblimbs] >> bufsize) & 1; |
| 2157 | |
| 2158 | /* |
| 2159 | * skip leading 0s |
| 2160 | */ |
| 2161 | if( ei == 0 && state == 0 ) |
| 2162 | continue; |
| 2163 | |
| 2164 | if( ei == 0 && state == 1 ) |
| 2165 | { |
| 2166 | /* |
| 2167 | * out of window, square X |
| 2168 | */ |
| 2169 | mpi_montmul( A: X, B: X, N, mm, T: &T ); |
| 2170 | continue; |
| 2171 | } |
| 2172 | |
| 2173 | /* |
| 2174 | * add ei to current window |
| 2175 | */ |
| 2176 | state = 2; |
| 2177 | |
| 2178 | nbits++; |
| 2179 | wbits |= ( ei << ( wsize - nbits ) ); |
| 2180 | |
| 2181 | if( nbits == wsize ) |
| 2182 | { |
| 2183 | /* |
| 2184 | * X = X^wsize R^-1 mod N |
| 2185 | */ |
| 2186 | for( i = 0; i < wsize; i++ ) |
| 2187 | mpi_montmul( A: X, B: X, N, mm, T: &T ); |
| 2188 | |
| 2189 | /* |
| 2190 | * X = X * W[wbits] R^-1 mod N |
| 2191 | */ |
| 2192 | MBEDTLS_MPI_CHK( mpi_select( &WW, W, (size_t) 1 << wsize, wbits ) ); |
| 2193 | mpi_montmul( A: X, B: &WW, N, mm, T: &T ); |
| 2194 | |
| 2195 | state--; |
| 2196 | nbits = 0; |
| 2197 | wbits = 0; |
| 2198 | } |
| 2199 | } |
| 2200 | |
| 2201 | /* |
| 2202 | * process the remaining bits |
| 2203 | */ |
| 2204 | for( i = 0; i < nbits; i++ ) |
| 2205 | { |
| 2206 | mpi_montmul( A: X, B: X, N, mm, T: &T ); |
| 2207 | |
| 2208 | wbits <<= 1; |
| 2209 | |
| 2210 | if( ( wbits & ( one << wsize ) ) != 0 ) |
| 2211 | mpi_montmul( A: X, B: &W[1], N, mm, T: &T ); |
| 2212 | } |
| 2213 | |
| 2214 | /* |
| 2215 | * X = A^E * R * R^-1 mod N = A^E mod N |
| 2216 | */ |
| 2217 | mpi_montred( A: X, N, mm, T: &T ); |
| 2218 | |
| 2219 | if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 ) |
| 2220 | { |
| 2221 | X->s = -1; |
| 2222 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) ); |
| 2223 | } |
| 2224 | |
| 2225 | cleanup: |
| 2226 | |
| 2227 | for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ ) |
| 2228 | mbedtls_mpi_free( X: &W[i] ); |
| 2229 | |
| 2230 | mbedtls_mpi_free( X: &W[1] ); mbedtls_mpi_free( X: &T ); mbedtls_mpi_free( X: &Apos ); |
| 2231 | mbedtls_mpi_free( X: &WW ); |
| 2232 | |
| 2233 | if( prec_RR == NULL || prec_RR->p == NULL ) |
| 2234 | mbedtls_mpi_free( X: &RR ); |
| 2235 | |
| 2236 | return( ret ); |
| 2237 | } |
| 2238 | |
| 2239 | /* |
| 2240 | * Greatest common divisor: G = gcd(A, B) (HAC 14.54) |
| 2241 | */ |
| 2242 | int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B ) |
| 2243 | { |
| 2244 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 2245 | size_t lz, lzt; |
| 2246 | mbedtls_mpi TA, TB; |
| 2247 | |
| 2248 | MPI_VALIDATE_RET( G != NULL ); |
| 2249 | MPI_VALIDATE_RET( A != NULL ); |
| 2250 | MPI_VALIDATE_RET( B != NULL ); |
| 2251 | |
| 2252 | mbedtls_mpi_init( X: &TA ); mbedtls_mpi_init( X: &TB ); |
| 2253 | |
| 2254 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); |
| 2255 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); |
| 2256 | |
| 2257 | lz = mbedtls_mpi_lsb( X: &TA ); |
| 2258 | lzt = mbedtls_mpi_lsb( X: &TB ); |
| 2259 | |
| 2260 | /* The loop below gives the correct result when A==0 but not when B==0. |
| 2261 | * So have a special case for B==0. Leverage the fact that we just |
| 2262 | * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test |
| 2263 | * slightly more efficient than cmp_int(). */ |
| 2264 | if( lzt == 0 && mbedtls_mpi_get_bit( X: &TB, pos: 0 ) == 0 ) |
| 2265 | { |
| 2266 | ret = mbedtls_mpi_copy( X: G, Y: A ); |
| 2267 | goto cleanup; |
| 2268 | } |
| 2269 | |
| 2270 | if( lzt < lz ) |
| 2271 | lz = lzt; |
| 2272 | |
| 2273 | TA.s = TB.s = 1; |
| 2274 | |
| 2275 | /* We mostly follow the procedure described in HAC 14.54, but with some |
| 2276 | * minor differences: |
| 2277 | * - Sequences of multiplications or divisions by 2 are grouped into a |
| 2278 | * single shift operation. |
| 2279 | * - The procedure in HAC assumes that 0 < TB <= TA. |
| 2280 | * - The condition TB <= TA is not actually necessary for correctness. |
| 2281 | * TA and TB have symmetric roles except for the loop termination |
| 2282 | * condition, and the shifts at the beginning of the loop body |
| 2283 | * remove any significance from the ordering of TA vs TB before |
| 2284 | * the shifts. |
| 2285 | * - If TA = 0, the loop goes through 0 iterations and the result is |
| 2286 | * correctly TB. |
| 2287 | * - The case TB = 0 was short-circuited above. |
| 2288 | * |
| 2289 | * For the correctness proof below, decompose the original values of |
| 2290 | * A and B as |
| 2291 | * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1 |
| 2292 | * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1 |
| 2293 | * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'), |
| 2294 | * and gcd(A',B') is odd or 0. |
| 2295 | * |
| 2296 | * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB). |
| 2297 | * The code maintains the following invariant: |
| 2298 | * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I) |
| 2299 | */ |
| 2300 | |
| 2301 | /* Proof that the loop terminates: |
| 2302 | * At each iteration, either the right-shift by 1 is made on a nonzero |
| 2303 | * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases |
| 2304 | * by at least 1, or the right-shift by 1 is made on zero and then |
| 2305 | * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted |
| 2306 | * since in that case TB is calculated from TB-TA with the condition TB>TA). |
| 2307 | */ |
| 2308 | while( mbedtls_mpi_cmp_int( X: &TA, z: 0 ) != 0 ) |
| 2309 | { |
| 2310 | /* Divisions by 2 preserve the invariant (I). */ |
| 2311 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) ); |
| 2312 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) ); |
| 2313 | |
| 2314 | /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd, |
| 2315 | * TA-TB is even so the division by 2 has an integer result. |
| 2316 | * Invariant (I) is preserved since any odd divisor of both TA and TB |
| 2317 | * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2 |
| 2318 | * also divides TB, and any odd divisior of both TB and |TA-TB|/2 also |
| 2319 | * divides TA. |
| 2320 | */ |
| 2321 | if( mbedtls_mpi_cmp_mpi( X: &TA, Y: &TB ) >= 0 ) |
| 2322 | { |
| 2323 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) ); |
| 2324 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) ); |
| 2325 | } |
| 2326 | else |
| 2327 | { |
| 2328 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) ); |
| 2329 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) ); |
| 2330 | } |
| 2331 | /* Note that one of TA or TB is still odd. */ |
| 2332 | } |
| 2333 | |
| 2334 | /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k. |
| 2335 | * At the loop exit, TA = 0, so gcd(TA,TB) = TB. |
| 2336 | * - If there was at least one loop iteration, then one of TA or TB is odd, |
| 2337 | * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case, |
| 2338 | * lz = min(a,b) so gcd(A,B) = 2^lz * TB. |
| 2339 | * - If there was no loop iteration, then A was 0, and gcd(A,B) = B. |
| 2340 | * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well. |
| 2341 | */ |
| 2342 | |
| 2343 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) ); |
| 2344 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) ); |
| 2345 | |
| 2346 | cleanup: |
| 2347 | |
| 2348 | mbedtls_mpi_free( X: &TA ); mbedtls_mpi_free( X: &TB ); |
| 2349 | |
| 2350 | return( ret ); |
| 2351 | } |
| 2352 | |
| 2353 | /* Fill X with n_bytes random bytes. |
| 2354 | * X must already have room for those bytes. |
| 2355 | * The ordering of the bytes returned from the RNG is suitable for |
| 2356 | * deterministic ECDSA (see RFC 6979 §3.3 and mbedtls_mpi_random()). |
| 2357 | * The size and sign of X are unchanged. |
| 2358 | * n_bytes must not be 0. |
| 2359 | */ |
| 2360 | static int mpi_fill_random_internal( |
| 2361 | mbedtls_mpi *X, size_t n_bytes, |
| 2362 | int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) |
| 2363 | { |
| 2364 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 2365 | const size_t limbs = CHARS_TO_LIMBS( n_bytes ); |
| 2366 | const size_t overhead = ( limbs * ciL ) - n_bytes; |
| 2367 | |
| 2368 | if( X->n < limbs ) |
| 2369 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
| 2370 | |
| 2371 | memset( s: X->p, c: 0, n: overhead ); |
| 2372 | memset( s: (unsigned char *) X->p + limbs * ciL, c: 0, n: ( X->n - limbs ) * ciL ); |
| 2373 | MBEDTLS_MPI_CHK( f_rng( p_rng, (unsigned char *) X->p + overhead, n_bytes ) ); |
| 2374 | mpi_bigendian_to_host( p: X->p, limbs ); |
| 2375 | |
| 2376 | cleanup: |
| 2377 | return( ret ); |
| 2378 | } |
| 2379 | |
| 2380 | /* |
| 2381 | * Fill X with size bytes of random. |
| 2382 | * |
| 2383 | * Use a temporary bytes representation to make sure the result is the same |
| 2384 | * regardless of the platform endianness (useful when f_rng is actually |
| 2385 | * deterministic, eg for tests). |
| 2386 | */ |
| 2387 | int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size, |
| 2388 | int (*f_rng)(void *, unsigned char *, size_t), |
| 2389 | void *p_rng ) |
| 2390 | { |
| 2391 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 2392 | size_t const limbs = CHARS_TO_LIMBS( size ); |
| 2393 | |
| 2394 | MPI_VALIDATE_RET( X != NULL ); |
| 2395 | MPI_VALIDATE_RET( f_rng != NULL ); |
| 2396 | |
| 2397 | /* Ensure that target MPI has exactly the necessary number of limbs */ |
| 2398 | MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) ); |
| 2399 | if( size == 0 ) |
| 2400 | return( 0 ); |
| 2401 | |
| 2402 | ret = mpi_fill_random_internal( X, n_bytes: size, f_rng, p_rng ); |
| 2403 | |
| 2404 | cleanup: |
| 2405 | return( ret ); |
| 2406 | } |
| 2407 | |
| 2408 | int mbedtls_mpi_random( mbedtls_mpi *X, |
| 2409 | mbedtls_mpi_sint min, |
| 2410 | const mbedtls_mpi *N, |
| 2411 | int (*f_rng)(void *, unsigned char *, size_t), |
| 2412 | void *p_rng ) |
| 2413 | { |
| 2414 | int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
| 2415 | int count; |
| 2416 | unsigned lt_lower = 1, lt_upper = 0; |
| 2417 | size_t n_bits = mbedtls_mpi_bitlen( X: N ); |
| 2418 | size_t n_bytes = ( n_bits + 7 ) / 8; |
| 2419 | mbedtls_mpi lower_bound; |
| 2420 | |
| 2421 | if( min < 0 ) |
| 2422 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
| 2423 | if( mbedtls_mpi_cmp_int( X: N, z: min ) <= 0 ) |
| 2424 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
| 2425 | |
| 2426 | /* |
| 2427 | * When min == 0, each try has at worst a probability 1/2 of failing |
| 2428 | * (the msb has a probability 1/2 of being 0, and then the result will |
| 2429 | * be < N), so after 30 tries failure probability is a most 2**(-30). |
| 2430 | * |
| 2431 | * When N is just below a power of 2, as is the case when generating |
| 2432 | * a random scalar on most elliptic curves, 1 try is enough with |
| 2433 | * overwhelming probability. When N is just above a power of 2, |
| 2434 | * as when generating a random scalar on secp224k1, each try has |
| 2435 | * a probability of failing that is almost 1/2. |
| 2436 | * |
| 2437 | * The probabilities are almost the same if min is nonzero but negligible |
| 2438 | * compared to N. This is always the case when N is crypto-sized, but |
| 2439 | * it's convenient to support small N for testing purposes. When N |
| 2440 | * is small, use a higher repeat count, otherwise the probability of |
| 2441 | * failure is macroscopic. |
| 2442 | */ |
| 2443 | count = ( n_bytes > 4 ? 30 : 250 ); |
| 2444 | |
| 2445 | mbedtls_mpi_init( X: &lower_bound ); |
| 2446 | |
| 2447 | /* Ensure that target MPI has exactly the same number of limbs |
| 2448 | * as the upper bound, even if the upper bound has leading zeros. |
| 2449 | * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */ |
| 2450 | MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, N->n ) ); |
| 2451 | MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &lower_bound, N->n ) ); |
| 2452 | MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &lower_bound, min ) ); |
| 2453 | |
| 2454 | /* |
| 2455 | * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA) |
| 2456 | * when f_rng is a suitably parametrized instance of HMAC_DRBG: |
| 2457 | * - use the same byte ordering; |
| 2458 | * - keep the leftmost n_bits bits of the generated octet string; |
| 2459 | * - try until result is in the desired range. |
| 2460 | * This also avoids any bias, which is especially important for ECDSA. |
| 2461 | */ |
| 2462 | do |
| 2463 | { |
| 2464 | MBEDTLS_MPI_CHK( mpi_fill_random_internal( X, n_bytes, f_rng, p_rng ) ); |
| 2465 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, 8 * n_bytes - n_bits ) ); |
| 2466 | |
| 2467 | if( --count == 0 ) |
| 2468 | { |
| 2469 | ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
| 2470 | goto cleanup; |
| 2471 | } |
| 2472 | |
| 2473 | MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, &lower_bound, <_lower ) ); |
| 2474 | MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, N, <_upper ) ); |
| 2475 | } |
| 2476 | while( lt_lower != 0 || lt_upper == 0 ); |
| 2477 | |
| 2478 | cleanup: |
| 2479 | mbedtls_mpi_free( X: &lower_bound ); |
| 2480 | return( ret ); |
| 2481 | } |
| 2482 | |
| 2483 | /* |
| 2484 | * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64) |
| 2485 | */ |
| 2486 | int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N ) |
| 2487 | { |
| 2488 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 2489 | mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2; |
| 2490 | MPI_VALIDATE_RET( X != NULL ); |
| 2491 | MPI_VALIDATE_RET( A != NULL ); |
| 2492 | MPI_VALIDATE_RET( N != NULL ); |
| 2493 | |
| 2494 | if( mbedtls_mpi_cmp_int( X: N, z: 1 ) <= 0 ) |
| 2495 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
| 2496 | |
| 2497 | mbedtls_mpi_init( X: &TA ); mbedtls_mpi_init( X: &TU ); mbedtls_mpi_init( X: &U1 ); mbedtls_mpi_init( X: &U2 ); |
| 2498 | mbedtls_mpi_init( X: &G ); mbedtls_mpi_init( X: &TB ); mbedtls_mpi_init( X: &TV ); |
| 2499 | mbedtls_mpi_init( X: &V1 ); mbedtls_mpi_init( X: &V2 ); |
| 2500 | |
| 2501 | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) ); |
| 2502 | |
| 2503 | if( mbedtls_mpi_cmp_int( X: &G, z: 1 ) != 0 ) |
| 2504 | { |
| 2505 | ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
| 2506 | goto cleanup; |
| 2507 | } |
| 2508 | |
| 2509 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) ); |
| 2510 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) ); |
| 2511 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) ); |
| 2512 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) ); |
| 2513 | |
| 2514 | MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) ); |
| 2515 | MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) ); |
| 2516 | MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) ); |
| 2517 | MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) ); |
| 2518 | |
| 2519 | do |
| 2520 | { |
| 2521 | while( ( TU.p[0] & 1 ) == 0 ) |
| 2522 | { |
| 2523 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) ); |
| 2524 | |
| 2525 | if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 ) |
| 2526 | { |
| 2527 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) ); |
| 2528 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) ); |
| 2529 | } |
| 2530 | |
| 2531 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) ); |
| 2532 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) ); |
| 2533 | } |
| 2534 | |
| 2535 | while( ( TV.p[0] & 1 ) == 0 ) |
| 2536 | { |
| 2537 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) ); |
| 2538 | |
| 2539 | if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 ) |
| 2540 | { |
| 2541 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) ); |
| 2542 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) ); |
| 2543 | } |
| 2544 | |
| 2545 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) ); |
| 2546 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) ); |
| 2547 | } |
| 2548 | |
| 2549 | if( mbedtls_mpi_cmp_mpi( X: &TU, Y: &TV ) >= 0 ) |
| 2550 | { |
| 2551 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) ); |
| 2552 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) ); |
| 2553 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) ); |
| 2554 | } |
| 2555 | else |
| 2556 | { |
| 2557 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) ); |
| 2558 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) ); |
| 2559 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) ); |
| 2560 | } |
| 2561 | } |
| 2562 | while( mbedtls_mpi_cmp_int( X: &TU, z: 0 ) != 0 ); |
| 2563 | |
| 2564 | while( mbedtls_mpi_cmp_int( X: &V1, z: 0 ) < 0 ) |
| 2565 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) ); |
| 2566 | |
| 2567 | while( mbedtls_mpi_cmp_mpi( X: &V1, Y: N ) >= 0 ) |
| 2568 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) ); |
| 2569 | |
| 2570 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) ); |
| 2571 | |
| 2572 | cleanup: |
| 2573 | |
| 2574 | mbedtls_mpi_free( X: &TA ); mbedtls_mpi_free( X: &TU ); mbedtls_mpi_free( X: &U1 ); mbedtls_mpi_free( X: &U2 ); |
| 2575 | mbedtls_mpi_free( X: &G ); mbedtls_mpi_free( X: &TB ); mbedtls_mpi_free( X: &TV ); |
| 2576 | mbedtls_mpi_free( X: &V1 ); mbedtls_mpi_free( X: &V2 ); |
| 2577 | |
| 2578 | return( ret ); |
| 2579 | } |
| 2580 | |
| 2581 | #if defined(MBEDTLS_GENPRIME) |
| 2582 | |
| 2583 | static const int small_prime[] = |
| 2584 | { |
| 2585 | 3, 5, 7, 11, 13, 17, 19, 23, |
| 2586 | 29, 31, 37, 41, 43, 47, 53, 59, |
| 2587 | 61, 67, 71, 73, 79, 83, 89, 97, |
| 2588 | 101, 103, 107, 109, 113, 127, 131, 137, |
| 2589 | 139, 149, 151, 157, 163, 167, 173, 179, |
| 2590 | 181, 191, 193, 197, 199, 211, 223, 227, |
| 2591 | 229, 233, 239, 241, 251, 257, 263, 269, |
| 2592 | 271, 277, 281, 283, 293, 307, 311, 313, |
| 2593 | 317, 331, 337, 347, 349, 353, 359, 367, |
| 2594 | 373, 379, 383, 389, 397, 401, 409, 419, |
| 2595 | 421, 431, 433, 439, 443, 449, 457, 461, |
| 2596 | 463, 467, 479, 487, 491, 499, 503, 509, |
| 2597 | 521, 523, 541, 547, 557, 563, 569, 571, |
| 2598 | 577, 587, 593, 599, 601, 607, 613, 617, |
| 2599 | 619, 631, 641, 643, 647, 653, 659, 661, |
| 2600 | 673, 677, 683, 691, 701, 709, 719, 727, |
| 2601 | 733, 739, 743, 751, 757, 761, 769, 773, |
| 2602 | 787, 797, 809, 811, 821, 823, 827, 829, |
| 2603 | 839, 853, 857, 859, 863, 877, 881, 883, |
| 2604 | 887, 907, 911, 919, 929, 937, 941, 947, |
| 2605 | 953, 967, 971, 977, 983, 991, 997, -103 |
| 2606 | }; |
| 2607 | |
| 2608 | /* |
| 2609 | * Small divisors test (X must be positive) |
| 2610 | * |
| 2611 | * Return values: |
| 2612 | * 0: no small factor (possible prime, more tests needed) |
| 2613 | * 1: certain prime |
| 2614 | * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime |
| 2615 | * other negative: error |
| 2616 | */ |
| 2617 | static int mpi_check_small_factors( const mbedtls_mpi *X ) |
| 2618 | { |
| 2619 | int ret = 0; |
| 2620 | size_t i; |
| 2621 | mbedtls_mpi_uint r; |
| 2622 | |
| 2623 | if( ( X->p[0] & 1 ) == 0 ) |
| 2624 | return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE ); |
| 2625 | |
| 2626 | for( i = 0; small_prime[i] > 0; i++ ) |
| 2627 | { |
| 2628 | if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 ) |
| 2629 | return( 1 ); |
| 2630 | |
| 2631 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) ); |
| 2632 | |
| 2633 | if( r == 0 ) |
| 2634 | return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE ); |
| 2635 | } |
| 2636 | |
| 2637 | cleanup: |
| 2638 | return( ret ); |
| 2639 | } |
| 2640 | |
| 2641 | /* |
| 2642 | * Miller-Rabin pseudo-primality test (HAC 4.24) |
| 2643 | */ |
| 2644 | static int mpi_miller_rabin( const mbedtls_mpi *X, size_t rounds, |
| 2645 | int (*f_rng)(void *, unsigned char *, size_t), |
| 2646 | void *p_rng ) |
| 2647 | { |
| 2648 | int ret, count; |
| 2649 | size_t i, j, k, s; |
| 2650 | mbedtls_mpi W, R, T, A, RR; |
| 2651 | |
| 2652 | MPI_VALIDATE_RET( X != NULL ); |
| 2653 | MPI_VALIDATE_RET( f_rng != NULL ); |
| 2654 | |
| 2655 | mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R ); |
| 2656 | mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A ); |
| 2657 | mbedtls_mpi_init( &RR ); |
| 2658 | |
| 2659 | /* |
| 2660 | * W = |X| - 1 |
| 2661 | * R = W >> lsb( W ) |
| 2662 | */ |
| 2663 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) ); |
| 2664 | s = mbedtls_mpi_lsb( &W ); |
| 2665 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) ); |
| 2666 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) ); |
| 2667 | |
| 2668 | for( i = 0; i < rounds; i++ ) |
| 2669 | { |
| 2670 | /* |
| 2671 | * pick a random A, 1 < A < |X| - 1 |
| 2672 | */ |
| 2673 | count = 0; |
| 2674 | do { |
| 2675 | MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) ); |
| 2676 | |
| 2677 | j = mbedtls_mpi_bitlen( &A ); |
| 2678 | k = mbedtls_mpi_bitlen( &W ); |
| 2679 | if (j > k) { |
| 2680 | A.p[A.n - 1] &= ( (mbedtls_mpi_uint) 1 << ( k - ( A.n - 1 ) * biL - 1 ) ) - 1; |
| 2681 | } |
| 2682 | |
| 2683 | if (count++ > 30) { |
| 2684 | ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
| 2685 | goto cleanup; |
| 2686 | } |
| 2687 | |
| 2688 | } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 || |
| 2689 | mbedtls_mpi_cmp_int( &A, 1 ) <= 0 ); |
| 2690 | |
| 2691 | /* |
| 2692 | * A = A^R mod |X| |
| 2693 | */ |
| 2694 | MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) ); |
| 2695 | |
| 2696 | if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 || |
| 2697 | mbedtls_mpi_cmp_int( &A, 1 ) == 0 ) |
| 2698 | continue; |
| 2699 | |
| 2700 | j = 1; |
| 2701 | while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ) |
| 2702 | { |
| 2703 | /* |
| 2704 | * A = A * A mod |X| |
| 2705 | */ |
| 2706 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) ); |
| 2707 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X ) ); |
| 2708 | |
| 2709 | if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 ) |
| 2710 | break; |
| 2711 | |
| 2712 | j++; |
| 2713 | } |
| 2714 | |
| 2715 | /* |
| 2716 | * not prime if A != |X| - 1 or A == 1 |
| 2717 | */ |
| 2718 | if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 || |
| 2719 | mbedtls_mpi_cmp_int( &A, 1 ) == 0 ) |
| 2720 | { |
| 2721 | ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
| 2722 | break; |
| 2723 | } |
| 2724 | } |
| 2725 | |
| 2726 | cleanup: |
| 2727 | mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R ); |
| 2728 | mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A ); |
| 2729 | mbedtls_mpi_free( &RR ); |
| 2730 | |
| 2731 | return( ret ); |
| 2732 | } |
| 2733 | |
| 2734 | /* |
| 2735 | * Pseudo-primality test: small factors, then Miller-Rabin |
| 2736 | */ |
| 2737 | int mbedtls_mpi_is_prime_ext( const mbedtls_mpi *X, int rounds, |
| 2738 | int (*f_rng)(void *, unsigned char *, size_t), |
| 2739 | void *p_rng ) |
| 2740 | { |
| 2741 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 2742 | mbedtls_mpi XX; |
| 2743 | MPI_VALIDATE_RET( X != NULL ); |
| 2744 | MPI_VALIDATE_RET( f_rng != NULL ); |
| 2745 | |
| 2746 | XX.s = 1; |
| 2747 | XX.n = X->n; |
| 2748 | XX.p = X->p; |
| 2749 | |
| 2750 | if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 || |
| 2751 | mbedtls_mpi_cmp_int( &XX, 1 ) == 0 ) |
| 2752 | return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE ); |
| 2753 | |
| 2754 | if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 ) |
| 2755 | return( 0 ); |
| 2756 | |
| 2757 | if( ( ret = mpi_check_small_factors( &XX ) ) != 0 ) |
| 2758 | { |
| 2759 | if( ret == 1 ) |
| 2760 | return( 0 ); |
| 2761 | |
| 2762 | return( ret ); |
| 2763 | } |
| 2764 | |
| 2765 | return( mpi_miller_rabin( &XX, rounds, f_rng, p_rng ) ); |
| 2766 | } |
| 2767 | |
| 2768 | /* |
| 2769 | * Prime number generation |
| 2770 | * |
| 2771 | * To generate an RSA key in a way recommended by FIPS 186-4, both primes must |
| 2772 | * be either 1024 bits or 1536 bits long, and flags must contain |
| 2773 | * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR. |
| 2774 | */ |
| 2775 | int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags, |
| 2776 | int (*f_rng)(void *, unsigned char *, size_t), |
| 2777 | void *p_rng ) |
| 2778 | { |
| 2779 | #ifdef MBEDTLS_HAVE_INT64 |
| 2780 | // ceil(2^63.5) |
| 2781 | #define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL |
| 2782 | #else |
| 2783 | // ceil(2^31.5) |
| 2784 | #define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U |
| 2785 | #endif |
| 2786 | int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
| 2787 | size_t k, n; |
| 2788 | int rounds; |
| 2789 | mbedtls_mpi_uint r; |
| 2790 | mbedtls_mpi Y; |
| 2791 | |
| 2792 | MPI_VALIDATE_RET( X != NULL ); |
| 2793 | MPI_VALIDATE_RET( f_rng != NULL ); |
| 2794 | |
| 2795 | if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS ) |
| 2796 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
| 2797 | |
| 2798 | mbedtls_mpi_init( &Y ); |
| 2799 | |
| 2800 | n = BITS_TO_LIMBS( nbits ); |
| 2801 | |
| 2802 | if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 ) |
| 2803 | { |
| 2804 | /* |
| 2805 | * 2^-80 error probability, number of rounds chosen per HAC, table 4.4 |
| 2806 | */ |
| 2807 | rounds = ( ( nbits >= 1300 ) ? 2 : ( nbits >= 850 ) ? 3 : |
| 2808 | ( nbits >= 650 ) ? 4 : ( nbits >= 350 ) ? 8 : |
| 2809 | ( nbits >= 250 ) ? 12 : ( nbits >= 150 ) ? 18 : 27 ); |
| 2810 | } |
| 2811 | else |
| 2812 | { |
| 2813 | /* |
| 2814 | * 2^-100 error probability, number of rounds computed based on HAC, |
| 2815 | * fact 4.48 |
| 2816 | */ |
| 2817 | rounds = ( ( nbits >= 1450 ) ? 4 : ( nbits >= 1150 ) ? 5 : |
| 2818 | ( nbits >= 1000 ) ? 6 : ( nbits >= 850 ) ? 7 : |
| 2819 | ( nbits >= 750 ) ? 8 : ( nbits >= 500 ) ? 13 : |
| 2820 | ( nbits >= 250 ) ? 28 : ( nbits >= 150 ) ? 40 : 51 ); |
| 2821 | } |
| 2822 | |
| 2823 | while( 1 ) |
| 2824 | { |
| 2825 | MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) ); |
| 2826 | /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */ |
| 2827 | if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue; |
| 2828 | |
| 2829 | k = n * biL; |
| 2830 | if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) ); |
| 2831 | X->p[0] |= 1; |
| 2832 | |
| 2833 | if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 ) |
| 2834 | { |
| 2835 | ret = mbedtls_mpi_is_prime_ext( X, rounds, f_rng, p_rng ); |
| 2836 | |
| 2837 | if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE ) |
| 2838 | goto cleanup; |
| 2839 | } |
| 2840 | else |
| 2841 | { |
| 2842 | /* |
| 2843 | * An necessary condition for Y and X = 2Y + 1 to be prime |
| 2844 | * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3). |
| 2845 | * Make sure it is satisfied, while keeping X = 3 mod 4 |
| 2846 | */ |
| 2847 | |
| 2848 | X->p[0] |= 2; |
| 2849 | |
| 2850 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) ); |
| 2851 | if( r == 0 ) |
| 2852 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) ); |
| 2853 | else if( r == 1 ) |
| 2854 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) ); |
| 2855 | |
| 2856 | /* Set Y = (X-1) / 2, which is X / 2 because X is odd */ |
| 2857 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) ); |
| 2858 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) ); |
| 2859 | |
| 2860 | while( 1 ) |
| 2861 | { |
| 2862 | /* |
| 2863 | * First, check small factors for X and Y |
| 2864 | * before doing Miller-Rabin on any of them |
| 2865 | */ |
| 2866 | if( ( ret = mpi_check_small_factors( X ) ) == 0 && |
| 2867 | ( ret = mpi_check_small_factors( &Y ) ) == 0 && |
| 2868 | ( ret = mpi_miller_rabin( X, rounds, f_rng, p_rng ) ) |
| 2869 | == 0 && |
| 2870 | ( ret = mpi_miller_rabin( &Y, rounds, f_rng, p_rng ) ) |
| 2871 | == 0 ) |
| 2872 | goto cleanup; |
| 2873 | |
| 2874 | if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE ) |
| 2875 | goto cleanup; |
| 2876 | |
| 2877 | /* |
| 2878 | * Next candidates. We want to preserve Y = (X-1) / 2 and |
| 2879 | * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3) |
| 2880 | * so up Y by 6 and X by 12. |
| 2881 | */ |
| 2882 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) ); |
| 2883 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) ); |
| 2884 | } |
| 2885 | } |
| 2886 | } |
| 2887 | |
| 2888 | cleanup: |
| 2889 | |
| 2890 | mbedtls_mpi_free( &Y ); |
| 2891 | |
| 2892 | return( ret ); |
| 2893 | } |
| 2894 | |
| 2895 | #endif /* MBEDTLS_GENPRIME */ |
| 2896 | |
| 2897 | #if defined(MBEDTLS_SELF_TEST) |
| 2898 | |
| 2899 | #define GCD_PAIR_COUNT 3 |
| 2900 | |
| 2901 | static const int gcd_pairs[GCD_PAIR_COUNT][3] = |
| 2902 | { |
| 2903 | { 693, 609, 21 }, |
| 2904 | { 1764, 868, 28 }, |
| 2905 | { 768454923, 542167814, 1 } |
| 2906 | }; |
| 2907 | |
| 2908 | /* |
| 2909 | * Checkup routine |
| 2910 | */ |
| 2911 | int mbedtls_mpi_self_test( int verbose ) |
| 2912 | { |
| 2913 | int ret, i; |
| 2914 | mbedtls_mpi A, E, N, X, Y, U, V; |
| 2915 | |
| 2916 | mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X ); |
| 2917 | mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V ); |
| 2918 | |
| 2919 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16, |
| 2920 | "EFE021C2645FD1DC586E69184AF4A31E" \ |
| 2921 | "D5F53E93B5F123FA41680867BA110131" \ |
| 2922 | "944FE7952E2517337780CB0DB80E61AA" \ |
| 2923 | "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) ); |
| 2924 | |
| 2925 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16, |
| 2926 | "B2E7EFD37075B9F03FF989C7C5051C20" \ |
| 2927 | "34D2A323810251127E7BF8625A4F49A5" \ |
| 2928 | "F3E27F4DA8BD59C47D6DAABA4C8127BD" \ |
| 2929 | "5B5C25763222FEFCCFC38B832366C29E" ) ); |
| 2930 | |
| 2931 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16, |
| 2932 | "0066A198186C18C10B2F5ED9B522752A" \ |
| 2933 | "9830B69916E535C8F047518A889A43A5" \ |
| 2934 | "94B6BED27A168D31D4A52F88925AA8F5" ) ); |
| 2935 | |
| 2936 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) ); |
| 2937 | |
| 2938 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16, |
| 2939 | "602AB7ECA597A3D6B56FF9829A5E8B85" \ |
| 2940 | "9E857EA95A03512E2BAE7391688D264A" \ |
| 2941 | "A5663B0341DB9CCFD2C4C5F421FEC814" \ |
| 2942 | "8001B72E848A38CAE1C65F78E56ABDEF" \ |
| 2943 | "E12D3C039B8A02D6BE593F0BBBDA56F1" \ |
| 2944 | "ECF677152EF804370C1A305CAF3B5BF1" \ |
| 2945 | "30879B56C61DE584A0F53A2447A51E" ) ); |
| 2946 | |
| 2947 | if( verbose != 0 ) |
| 2948 | mbedtls_printf( " MPI test #1 (mul_mpi): " ); |
| 2949 | |
| 2950 | if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ) |
| 2951 | { |
| 2952 | if( verbose != 0 ) |
| 2953 | mbedtls_printf( "failed\n" ); |
| 2954 | |
| 2955 | ret = 1; |
| 2956 | goto cleanup; |
| 2957 | } |
| 2958 | |
| 2959 | if( verbose != 0 ) |
| 2960 | mbedtls_printf( "passed\n" ); |
| 2961 | |
| 2962 | MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) ); |
| 2963 | |
| 2964 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16, |
| 2965 | "256567336059E52CAE22925474705F39A94" ) ); |
| 2966 | |
| 2967 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16, |
| 2968 | "6613F26162223DF488E9CD48CC132C7A" \ |
| 2969 | "0AC93C701B001B092E4E5B9F73BCD27B" \ |
| 2970 | "9EE50D0657C77F374E903CDFA4C642" ) ); |
| 2971 | |
| 2972 | if( verbose != 0 ) |
| 2973 | mbedtls_printf( " MPI test #2 (div_mpi): " ); |
| 2974 | |
| 2975 | if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 || |
| 2976 | mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 ) |
| 2977 | { |
| 2978 | if( verbose != 0 ) |
| 2979 | mbedtls_printf( "failed\n" ); |
| 2980 | |
| 2981 | ret = 1; |
| 2982 | goto cleanup; |
| 2983 | } |
| 2984 | |
| 2985 | if( verbose != 0 ) |
| 2986 | mbedtls_printf( "passed\n" ); |
| 2987 | |
| 2988 | MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) ); |
| 2989 | |
| 2990 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16, |
| 2991 | "36E139AEA55215609D2816998ED020BB" \ |
| 2992 | "BD96C37890F65171D948E9BC7CBAA4D9" \ |
| 2993 | "325D24D6A3C12710F10A09FA08AB87" ) ); |
| 2994 | |
| 2995 | if( verbose != 0 ) |
| 2996 | mbedtls_printf( " MPI test #3 (exp_mod): " ); |
| 2997 | |
| 2998 | if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ) |
| 2999 | { |
| 3000 | if( verbose != 0 ) |
| 3001 | mbedtls_printf( "failed\n" ); |
| 3002 | |
| 3003 | ret = 1; |
| 3004 | goto cleanup; |
| 3005 | } |
| 3006 | |
| 3007 | if( verbose != 0 ) |
| 3008 | mbedtls_printf( "passed\n" ); |
| 3009 | |
| 3010 | MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) ); |
| 3011 | |
| 3012 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16, |
| 3013 | "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \ |
| 3014 | "C3DBA76456363A10869622EAC2DD84EC" \ |
| 3015 | "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) ); |
| 3016 | |
| 3017 | if( verbose != 0 ) |
| 3018 | mbedtls_printf( " MPI test #4 (inv_mod): " ); |
| 3019 | |
| 3020 | if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ) |
| 3021 | { |
| 3022 | if( verbose != 0 ) |
| 3023 | mbedtls_printf( "failed\n" ); |
| 3024 | |
| 3025 | ret = 1; |
| 3026 | goto cleanup; |
| 3027 | } |
| 3028 | |
| 3029 | if( verbose != 0 ) |
| 3030 | mbedtls_printf( "passed\n" ); |
| 3031 | |
| 3032 | if( verbose != 0 ) |
| 3033 | mbedtls_printf( " MPI test #5 (simple gcd): " ); |
| 3034 | |
| 3035 | for( i = 0; i < GCD_PAIR_COUNT; i++ ) |
| 3036 | { |
| 3037 | MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) ); |
| 3038 | MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) ); |
| 3039 | |
| 3040 | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) ); |
| 3041 | |
| 3042 | if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 ) |
| 3043 | { |
| 3044 | if( verbose != 0 ) |
| 3045 | mbedtls_printf( "failed at %d\n" , i ); |
| 3046 | |
| 3047 | ret = 1; |
| 3048 | goto cleanup; |
| 3049 | } |
| 3050 | } |
| 3051 | |
| 3052 | if( verbose != 0 ) |
| 3053 | mbedtls_printf( "passed\n" ); |
| 3054 | |
| 3055 | cleanup: |
| 3056 | |
| 3057 | if( ret != 0 && verbose != 0 ) |
| 3058 | mbedtls_printf( "Unexpected error, return code = %08X\n" , (unsigned int) ret ); |
| 3059 | |
| 3060 | mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X ); |
| 3061 | mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V ); |
| 3062 | |
| 3063 | if( verbose != 0 ) |
| 3064 | mbedtls_printf( "\n" ); |
| 3065 | |
| 3066 | return( ret ); |
| 3067 | } |
| 3068 | |
| 3069 | #endif /* MBEDTLS_SELF_TEST */ |
| 3070 | |
| 3071 | #endif /* MBEDTLS_BIGNUM_C */ |
| 3072 | |