1 | /* |
2 | * The RSA public-key cryptosystem |
3 | * |
4 | * Copyright The Mbed TLS Contributors |
5 | * SPDX-License-Identifier: Apache-2.0 |
6 | * |
7 | * Licensed under the Apache License, Version 2.0 (the "License"); you may |
8 | * not use this file except in compliance with the License. |
9 | * You may obtain a copy of the License at |
10 | * |
11 | * http://www.apache.org/licenses/LICENSE-2.0 |
12 | * |
13 | * Unless required by applicable law or agreed to in writing, software |
14 | * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
15 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
16 | * See the License for the specific language governing permissions and |
17 | * limitations under the License. |
18 | */ |
19 | |
20 | /* |
21 | * The following sources were referenced in the design of this implementation |
22 | * of the RSA algorithm: |
23 | * |
24 | * [1] A method for obtaining digital signatures and public-key cryptosystems |
25 | * R Rivest, A Shamir, and L Adleman |
26 | * http://people.csail.mit.edu/rivest/pubs.html#RSA78 |
27 | * |
28 | * [2] Handbook of Applied Cryptography - 1997, Chapter 8 |
29 | * Menezes, van Oorschot and Vanstone |
30 | * |
31 | * [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks |
32 | * Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and |
33 | * Stefan Mangard |
34 | * https://arxiv.org/abs/1702.08719v2 |
35 | * |
36 | */ |
37 | |
38 | #include "common.h" |
39 | |
40 | #if defined(MBEDTLS_RSA_C) |
41 | |
42 | #include "mbedtls/rsa.h" |
43 | #include "rsa_alt_helpers.h" |
44 | #include "mbedtls/oid.h" |
45 | #include "mbedtls/platform_util.h" |
46 | #include "mbedtls/error.h" |
47 | #include "constant_time_internal.h" |
48 | #include "mbedtls/constant_time.h" |
49 | |
50 | #include <string.h> |
51 | |
52 | #if defined(MBEDTLS_PKCS1_V21) |
53 | #include "mbedtls/md.h" |
54 | #endif |
55 | |
56 | #if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__) && !defined(__NetBSD__) |
57 | #include <stdlib.h> |
58 | #endif |
59 | |
60 | #if defined(MBEDTLS_PLATFORM_C) |
61 | #include "mbedtls/platform.h" |
62 | #else |
63 | #include <stdio.h> |
64 | #define mbedtls_printf printf |
65 | #define mbedtls_calloc calloc |
66 | #define mbedtls_free free |
67 | #endif |
68 | |
69 | #if !defined(MBEDTLS_RSA_ALT) |
70 | |
71 | /* Parameter validation macros */ |
72 | #define RSA_VALIDATE_RET( cond ) \ |
73 | MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_RSA_BAD_INPUT_DATA ) |
74 | #define RSA_VALIDATE( cond ) \ |
75 | MBEDTLS_INTERNAL_VALIDATE( cond ) |
76 | |
77 | int mbedtls_rsa_import( mbedtls_rsa_context *ctx, |
78 | const mbedtls_mpi *N, |
79 | const mbedtls_mpi *P, const mbedtls_mpi *Q, |
80 | const mbedtls_mpi *D, const mbedtls_mpi *E ) |
81 | { |
82 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
83 | RSA_VALIDATE_RET( ctx != NULL ); |
84 | |
85 | if( ( N != NULL && ( ret = mbedtls_mpi_copy( X: &ctx->N, Y: N ) ) != 0 ) || |
86 | ( P != NULL && ( ret = mbedtls_mpi_copy( X: &ctx->P, Y: P ) ) != 0 ) || |
87 | ( Q != NULL && ( ret = mbedtls_mpi_copy( X: &ctx->Q, Y: Q ) ) != 0 ) || |
88 | ( D != NULL && ( ret = mbedtls_mpi_copy( X: &ctx->D, Y: D ) ) != 0 ) || |
89 | ( E != NULL && ( ret = mbedtls_mpi_copy( X: &ctx->E, Y: E ) ) != 0 ) ) |
90 | { |
91 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) ); |
92 | } |
93 | |
94 | if( N != NULL ) |
95 | ctx->len = mbedtls_mpi_size( X: &ctx->N ); |
96 | |
97 | return( 0 ); |
98 | } |
99 | |
100 | int mbedtls_rsa_import_raw( mbedtls_rsa_context *ctx, |
101 | unsigned char const *N, size_t N_len, |
102 | unsigned char const *P, size_t P_len, |
103 | unsigned char const *Q, size_t Q_len, |
104 | unsigned char const *D, size_t D_len, |
105 | unsigned char const *E, size_t E_len ) |
106 | { |
107 | int ret = 0; |
108 | RSA_VALIDATE_RET( ctx != NULL ); |
109 | |
110 | if( N != NULL ) |
111 | { |
112 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->N, N, N_len ) ); |
113 | ctx->len = mbedtls_mpi_size( X: &ctx->N ); |
114 | } |
115 | |
116 | if( P != NULL ) |
117 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->P, P, P_len ) ); |
118 | |
119 | if( Q != NULL ) |
120 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->Q, Q, Q_len ) ); |
121 | |
122 | if( D != NULL ) |
123 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->D, D, D_len ) ); |
124 | |
125 | if( E != NULL ) |
126 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->E, E, E_len ) ); |
127 | |
128 | cleanup: |
129 | |
130 | if( ret != 0 ) |
131 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) ); |
132 | |
133 | return( 0 ); |
134 | } |
135 | |
136 | /* |
137 | * Checks whether the context fields are set in such a way |
138 | * that the RSA primitives will be able to execute without error. |
139 | * It does *not* make guarantees for consistency of the parameters. |
140 | */ |
141 | static int rsa_check_context( mbedtls_rsa_context const *ctx, int is_priv, |
142 | int blinding_needed ) |
143 | { |
144 | #if !defined(MBEDTLS_RSA_NO_CRT) |
145 | /* blinding_needed is only used for NO_CRT to decide whether |
146 | * P,Q need to be present or not. */ |
147 | ((void) blinding_needed); |
148 | #endif |
149 | |
150 | if( ctx->len != mbedtls_mpi_size( X: &ctx->N ) || |
151 | ctx->len > MBEDTLS_MPI_MAX_SIZE ) |
152 | { |
153 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
154 | } |
155 | |
156 | /* |
157 | * 1. Modular exponentiation needs positive, odd moduli. |
158 | */ |
159 | |
160 | /* Modular exponentiation wrt. N is always used for |
161 | * RSA public key operations. */ |
162 | if( mbedtls_mpi_cmp_int( X: &ctx->N, z: 0 ) <= 0 || |
163 | mbedtls_mpi_get_bit( X: &ctx->N, pos: 0 ) == 0 ) |
164 | { |
165 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
166 | } |
167 | |
168 | #if !defined(MBEDTLS_RSA_NO_CRT) |
169 | /* Modular exponentiation for P and Q is only |
170 | * used for private key operations and if CRT |
171 | * is used. */ |
172 | if( is_priv && |
173 | ( mbedtls_mpi_cmp_int( X: &ctx->P, z: 0 ) <= 0 || |
174 | mbedtls_mpi_get_bit( X: &ctx->P, pos: 0 ) == 0 || |
175 | mbedtls_mpi_cmp_int( X: &ctx->Q, z: 0 ) <= 0 || |
176 | mbedtls_mpi_get_bit( X: &ctx->Q, pos: 0 ) == 0 ) ) |
177 | { |
178 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
179 | } |
180 | #endif /* !MBEDTLS_RSA_NO_CRT */ |
181 | |
182 | /* |
183 | * 2. Exponents must be positive |
184 | */ |
185 | |
186 | /* Always need E for public key operations */ |
187 | if( mbedtls_mpi_cmp_int( X: &ctx->E, z: 0 ) <= 0 ) |
188 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
189 | |
190 | #if defined(MBEDTLS_RSA_NO_CRT) |
191 | /* For private key operations, use D or DP & DQ |
192 | * as (unblinded) exponents. */ |
193 | if( is_priv && mbedtls_mpi_cmp_int( &ctx->D, 0 ) <= 0 ) |
194 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
195 | #else |
196 | if( is_priv && |
197 | ( mbedtls_mpi_cmp_int( X: &ctx->DP, z: 0 ) <= 0 || |
198 | mbedtls_mpi_cmp_int( X: &ctx->DQ, z: 0 ) <= 0 ) ) |
199 | { |
200 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
201 | } |
202 | #endif /* MBEDTLS_RSA_NO_CRT */ |
203 | |
204 | /* Blinding shouldn't make exponents negative either, |
205 | * so check that P, Q >= 1 if that hasn't yet been |
206 | * done as part of 1. */ |
207 | #if defined(MBEDTLS_RSA_NO_CRT) |
208 | if( is_priv && blinding_needed && |
209 | ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 || |
210 | mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ) ) |
211 | { |
212 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
213 | } |
214 | #endif |
215 | |
216 | /* It wouldn't lead to an error if it wasn't satisfied, |
217 | * but check for QP >= 1 nonetheless. */ |
218 | #if !defined(MBEDTLS_RSA_NO_CRT) |
219 | if( is_priv && |
220 | mbedtls_mpi_cmp_int( X: &ctx->QP, z: 0 ) <= 0 ) |
221 | { |
222 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
223 | } |
224 | #endif |
225 | |
226 | return( 0 ); |
227 | } |
228 | |
229 | int mbedtls_rsa_complete( mbedtls_rsa_context *ctx ) |
230 | { |
231 | int ret = 0; |
232 | int have_N, have_P, have_Q, have_D, have_E; |
233 | #if !defined(MBEDTLS_RSA_NO_CRT) |
234 | int have_DP, have_DQ, have_QP; |
235 | #endif |
236 | int n_missing, pq_missing, d_missing, is_pub, is_priv; |
237 | |
238 | RSA_VALIDATE_RET( ctx != NULL ); |
239 | |
240 | have_N = ( mbedtls_mpi_cmp_int( X: &ctx->N, z: 0 ) != 0 ); |
241 | have_P = ( mbedtls_mpi_cmp_int( X: &ctx->P, z: 0 ) != 0 ); |
242 | have_Q = ( mbedtls_mpi_cmp_int( X: &ctx->Q, z: 0 ) != 0 ); |
243 | have_D = ( mbedtls_mpi_cmp_int( X: &ctx->D, z: 0 ) != 0 ); |
244 | have_E = ( mbedtls_mpi_cmp_int( X: &ctx->E, z: 0 ) != 0 ); |
245 | |
246 | #if !defined(MBEDTLS_RSA_NO_CRT) |
247 | have_DP = ( mbedtls_mpi_cmp_int( X: &ctx->DP, z: 0 ) != 0 ); |
248 | have_DQ = ( mbedtls_mpi_cmp_int( X: &ctx->DQ, z: 0 ) != 0 ); |
249 | have_QP = ( mbedtls_mpi_cmp_int( X: &ctx->QP, z: 0 ) != 0 ); |
250 | #endif |
251 | |
252 | /* |
253 | * Check whether provided parameters are enough |
254 | * to deduce all others. The following incomplete |
255 | * parameter sets for private keys are supported: |
256 | * |
257 | * (1) P, Q missing. |
258 | * (2) D and potentially N missing. |
259 | * |
260 | */ |
261 | |
262 | n_missing = have_P && have_Q && have_D && have_E; |
263 | pq_missing = have_N && !have_P && !have_Q && have_D && have_E; |
264 | d_missing = have_P && have_Q && !have_D && have_E; |
265 | is_pub = have_N && !have_P && !have_Q && !have_D && have_E; |
266 | |
267 | /* These three alternatives are mutually exclusive */ |
268 | is_priv = n_missing || pq_missing || d_missing; |
269 | |
270 | if( !is_priv && !is_pub ) |
271 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
272 | |
273 | /* |
274 | * Step 1: Deduce N if P, Q are provided. |
275 | */ |
276 | |
277 | if( !have_N && have_P && have_Q ) |
278 | { |
279 | if( ( ret = mbedtls_mpi_mul_mpi( X: &ctx->N, A: &ctx->P, |
280 | B: &ctx->Q ) ) != 0 ) |
281 | { |
282 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) ); |
283 | } |
284 | |
285 | ctx->len = mbedtls_mpi_size( X: &ctx->N ); |
286 | } |
287 | |
288 | /* |
289 | * Step 2: Deduce and verify all remaining core parameters. |
290 | */ |
291 | |
292 | if( pq_missing ) |
293 | { |
294 | ret = mbedtls_rsa_deduce_primes( N: &ctx->N, E: &ctx->E, D: &ctx->D, |
295 | P: &ctx->P, Q: &ctx->Q ); |
296 | if( ret != 0 ) |
297 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) ); |
298 | |
299 | } |
300 | else if( d_missing ) |
301 | { |
302 | if( ( ret = mbedtls_rsa_deduce_private_exponent( P: &ctx->P, |
303 | Q: &ctx->Q, |
304 | E: &ctx->E, |
305 | D: &ctx->D ) ) != 0 ) |
306 | { |
307 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) ); |
308 | } |
309 | } |
310 | |
311 | /* |
312 | * Step 3: Deduce all additional parameters specific |
313 | * to our current RSA implementation. |
314 | */ |
315 | |
316 | #if !defined(MBEDTLS_RSA_NO_CRT) |
317 | if( is_priv && ! ( have_DP && have_DQ && have_QP ) ) |
318 | { |
319 | ret = mbedtls_rsa_deduce_crt( P: &ctx->P, Q: &ctx->Q, D: &ctx->D, |
320 | DP: &ctx->DP, DQ: &ctx->DQ, QP: &ctx->QP ); |
321 | if( ret != 0 ) |
322 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) ); |
323 | } |
324 | #endif /* MBEDTLS_RSA_NO_CRT */ |
325 | |
326 | /* |
327 | * Step 3: Basic sanity checks |
328 | */ |
329 | |
330 | return( rsa_check_context( ctx, is_priv, blinding_needed: 1 ) ); |
331 | } |
332 | |
333 | int mbedtls_rsa_export_raw( const mbedtls_rsa_context *ctx, |
334 | unsigned char *N, size_t N_len, |
335 | unsigned char *P, size_t P_len, |
336 | unsigned char *Q, size_t Q_len, |
337 | unsigned char *D, size_t D_len, |
338 | unsigned char *E, size_t E_len ) |
339 | { |
340 | int ret = 0; |
341 | int is_priv; |
342 | RSA_VALIDATE_RET( ctx != NULL ); |
343 | |
344 | /* Check if key is private or public */ |
345 | is_priv = |
346 | mbedtls_mpi_cmp_int( X: &ctx->N, z: 0 ) != 0 && |
347 | mbedtls_mpi_cmp_int( X: &ctx->P, z: 0 ) != 0 && |
348 | mbedtls_mpi_cmp_int( X: &ctx->Q, z: 0 ) != 0 && |
349 | mbedtls_mpi_cmp_int( X: &ctx->D, z: 0 ) != 0 && |
350 | mbedtls_mpi_cmp_int( X: &ctx->E, z: 0 ) != 0; |
351 | |
352 | if( !is_priv ) |
353 | { |
354 | /* If we're trying to export private parameters for a public key, |
355 | * something must be wrong. */ |
356 | if( P != NULL || Q != NULL || D != NULL ) |
357 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
358 | |
359 | } |
360 | |
361 | if( N != NULL ) |
362 | MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->N, N, N_len ) ); |
363 | |
364 | if( P != NULL ) |
365 | MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->P, P, P_len ) ); |
366 | |
367 | if( Q != NULL ) |
368 | MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->Q, Q, Q_len ) ); |
369 | |
370 | if( D != NULL ) |
371 | MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->D, D, D_len ) ); |
372 | |
373 | if( E != NULL ) |
374 | MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->E, E, E_len ) ); |
375 | |
376 | cleanup: |
377 | |
378 | return( ret ); |
379 | } |
380 | |
381 | int mbedtls_rsa_export( const mbedtls_rsa_context *ctx, |
382 | mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q, |
383 | mbedtls_mpi *D, mbedtls_mpi *E ) |
384 | { |
385 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
386 | int is_priv; |
387 | RSA_VALIDATE_RET( ctx != NULL ); |
388 | |
389 | /* Check if key is private or public */ |
390 | is_priv = |
391 | mbedtls_mpi_cmp_int( X: &ctx->N, z: 0 ) != 0 && |
392 | mbedtls_mpi_cmp_int( X: &ctx->P, z: 0 ) != 0 && |
393 | mbedtls_mpi_cmp_int( X: &ctx->Q, z: 0 ) != 0 && |
394 | mbedtls_mpi_cmp_int( X: &ctx->D, z: 0 ) != 0 && |
395 | mbedtls_mpi_cmp_int( X: &ctx->E, z: 0 ) != 0; |
396 | |
397 | if( !is_priv ) |
398 | { |
399 | /* If we're trying to export private parameters for a public key, |
400 | * something must be wrong. */ |
401 | if( P != NULL || Q != NULL || D != NULL ) |
402 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
403 | |
404 | } |
405 | |
406 | /* Export all requested core parameters. */ |
407 | |
408 | if( ( N != NULL && ( ret = mbedtls_mpi_copy( X: N, Y: &ctx->N ) ) != 0 ) || |
409 | ( P != NULL && ( ret = mbedtls_mpi_copy( X: P, Y: &ctx->P ) ) != 0 ) || |
410 | ( Q != NULL && ( ret = mbedtls_mpi_copy( X: Q, Y: &ctx->Q ) ) != 0 ) || |
411 | ( D != NULL && ( ret = mbedtls_mpi_copy( X: D, Y: &ctx->D ) ) != 0 ) || |
412 | ( E != NULL && ( ret = mbedtls_mpi_copy( X: E, Y: &ctx->E ) ) != 0 ) ) |
413 | { |
414 | return( ret ); |
415 | } |
416 | |
417 | return( 0 ); |
418 | } |
419 | |
420 | /* |
421 | * Export CRT parameters |
422 | * This must also be implemented if CRT is not used, for being able to |
423 | * write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt |
424 | * can be used in this case. |
425 | */ |
426 | int mbedtls_rsa_export_crt( const mbedtls_rsa_context *ctx, |
427 | mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP ) |
428 | { |
429 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
430 | int is_priv; |
431 | RSA_VALIDATE_RET( ctx != NULL ); |
432 | |
433 | /* Check if key is private or public */ |
434 | is_priv = |
435 | mbedtls_mpi_cmp_int( X: &ctx->N, z: 0 ) != 0 && |
436 | mbedtls_mpi_cmp_int( X: &ctx->P, z: 0 ) != 0 && |
437 | mbedtls_mpi_cmp_int( X: &ctx->Q, z: 0 ) != 0 && |
438 | mbedtls_mpi_cmp_int( X: &ctx->D, z: 0 ) != 0 && |
439 | mbedtls_mpi_cmp_int( X: &ctx->E, z: 0 ) != 0; |
440 | |
441 | if( !is_priv ) |
442 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
443 | |
444 | #if !defined(MBEDTLS_RSA_NO_CRT) |
445 | /* Export all requested blinding parameters. */ |
446 | if( ( DP != NULL && ( ret = mbedtls_mpi_copy( X: DP, Y: &ctx->DP ) ) != 0 ) || |
447 | ( DQ != NULL && ( ret = mbedtls_mpi_copy( X: DQ, Y: &ctx->DQ ) ) != 0 ) || |
448 | ( QP != NULL && ( ret = mbedtls_mpi_copy( X: QP, Y: &ctx->QP ) ) != 0 ) ) |
449 | { |
450 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) ); |
451 | } |
452 | #else |
453 | if( ( ret = mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D, |
454 | DP, DQ, QP ) ) != 0 ) |
455 | { |
456 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) ); |
457 | } |
458 | #endif |
459 | |
460 | return( 0 ); |
461 | } |
462 | |
463 | /* |
464 | * Initialize an RSA context |
465 | */ |
466 | void mbedtls_rsa_init( mbedtls_rsa_context *ctx ) |
467 | { |
468 | RSA_VALIDATE( ctx != NULL ); |
469 | |
470 | memset( s: ctx, c: 0, n: sizeof( mbedtls_rsa_context ) ); |
471 | |
472 | ctx->padding = MBEDTLS_RSA_PKCS_V15; |
473 | ctx->hash_id = MBEDTLS_MD_NONE; |
474 | |
475 | #if defined(MBEDTLS_THREADING_C) |
476 | /* Set ctx->ver to nonzero to indicate that the mutex has been |
477 | * initialized and will need to be freed. */ |
478 | ctx->ver = 1; |
479 | mbedtls_mutex_init( &ctx->mutex ); |
480 | #endif |
481 | } |
482 | |
483 | /* |
484 | * Set padding for an existing RSA context |
485 | */ |
486 | int mbedtls_rsa_set_padding( mbedtls_rsa_context *ctx, int padding, |
487 | mbedtls_md_type_t hash_id ) |
488 | { |
489 | switch( padding ) |
490 | { |
491 | #if defined(MBEDTLS_PKCS1_V15) |
492 | case MBEDTLS_RSA_PKCS_V15: |
493 | break; |
494 | #endif |
495 | |
496 | #if defined(MBEDTLS_PKCS1_V21) |
497 | case MBEDTLS_RSA_PKCS_V21: |
498 | break; |
499 | #endif |
500 | default: |
501 | return( MBEDTLS_ERR_RSA_INVALID_PADDING ); |
502 | } |
503 | |
504 | if( ( padding == MBEDTLS_RSA_PKCS_V21 ) && |
505 | ( hash_id != MBEDTLS_MD_NONE ) ) |
506 | { |
507 | const mbedtls_md_info_t *md_info; |
508 | |
509 | md_info = mbedtls_md_info_from_type( md_type: hash_id ); |
510 | if( md_info == NULL ) |
511 | return( MBEDTLS_ERR_RSA_INVALID_PADDING ); |
512 | } |
513 | |
514 | ctx->padding = padding; |
515 | ctx->hash_id = hash_id; |
516 | |
517 | return( 0 ); |
518 | } |
519 | |
520 | /* |
521 | * Get length in bytes of RSA modulus |
522 | */ |
523 | |
524 | size_t mbedtls_rsa_get_len( const mbedtls_rsa_context *ctx ) |
525 | { |
526 | return( ctx->len ); |
527 | } |
528 | |
529 | |
530 | #if defined(MBEDTLS_GENPRIME) |
531 | |
532 | /* |
533 | * Generate an RSA keypair |
534 | * |
535 | * This generation method follows the RSA key pair generation procedure of |
536 | * FIPS 186-4 if 2^16 < exponent < 2^256 and nbits = 2048 or nbits = 3072. |
537 | */ |
538 | int mbedtls_rsa_gen_key( mbedtls_rsa_context *ctx, |
539 | int (*f_rng)(void *, unsigned char *, size_t), |
540 | void *p_rng, |
541 | unsigned int nbits, int exponent ) |
542 | { |
543 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
544 | mbedtls_mpi H, G, L; |
545 | int prime_quality = 0; |
546 | RSA_VALIDATE_RET( ctx != NULL ); |
547 | RSA_VALIDATE_RET( f_rng != NULL ); |
548 | |
549 | /* |
550 | * If the modulus is 1024 bit long or shorter, then the security strength of |
551 | * the RSA algorithm is less than or equal to 80 bits and therefore an error |
552 | * rate of 2^-80 is sufficient. |
553 | */ |
554 | if( nbits > 1024 ) |
555 | prime_quality = MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR; |
556 | |
557 | mbedtls_mpi_init( &H ); |
558 | mbedtls_mpi_init( &G ); |
559 | mbedtls_mpi_init( &L ); |
560 | |
561 | if( nbits < 128 || exponent < 3 || nbits % 2 != 0 ) |
562 | { |
563 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
564 | goto cleanup; |
565 | } |
566 | |
567 | /* |
568 | * find primes P and Q with Q < P so that: |
569 | * 1. |P-Q| > 2^( nbits / 2 - 100 ) |
570 | * 2. GCD( E, (P-1)*(Q-1) ) == 1 |
571 | * 3. E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 ) |
572 | */ |
573 | MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &ctx->E, exponent ) ); |
574 | |
575 | do |
576 | { |
577 | MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->P, nbits >> 1, |
578 | prime_quality, f_rng, p_rng ) ); |
579 | |
580 | MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->Q, nbits >> 1, |
581 | prime_quality, f_rng, p_rng ) ); |
582 | |
583 | /* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */ |
584 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &H, &ctx->P, &ctx->Q ) ); |
585 | if( mbedtls_mpi_bitlen( &H ) <= ( ( nbits >= 200 ) ? ( ( nbits >> 1 ) - 99 ) : 0 ) ) |
586 | continue; |
587 | |
588 | /* not required by any standards, but some users rely on the fact that P > Q */ |
589 | if( H.s < 0 ) |
590 | mbedtls_mpi_swap( &ctx->P, &ctx->Q ); |
591 | |
592 | /* Temporarily replace P,Q by P-1, Q-1 */ |
593 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->P, &ctx->P, 1 ) ); |
594 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->Q, &ctx->Q, 1 ) ); |
595 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &H, &ctx->P, &ctx->Q ) ); |
596 | |
597 | /* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */ |
598 | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->E, &H ) ); |
599 | if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 ) |
600 | continue; |
601 | |
602 | /* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */ |
603 | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->P, &ctx->Q ) ); |
604 | MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &L, NULL, &H, &G ) ); |
605 | MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &ctx->D, &ctx->E, &L ) ); |
606 | |
607 | if( mbedtls_mpi_bitlen( &ctx->D ) <= ( ( nbits + 1 ) / 2 ) ) // (FIPS 186-4 §B.3.1 criterion 3(a)) |
608 | continue; |
609 | |
610 | break; |
611 | } |
612 | while( 1 ); |
613 | |
614 | /* Restore P,Q */ |
615 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->P, &ctx->P, 1 ) ); |
616 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->Q, &ctx->Q, 1 ) ); |
617 | |
618 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) ); |
619 | |
620 | ctx->len = mbedtls_mpi_size( &ctx->N ); |
621 | |
622 | #if !defined(MBEDTLS_RSA_NO_CRT) |
623 | /* |
624 | * DP = D mod (P - 1) |
625 | * DQ = D mod (Q - 1) |
626 | * QP = Q^-1 mod P |
627 | */ |
628 | MBEDTLS_MPI_CHK( mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D, |
629 | &ctx->DP, &ctx->DQ, &ctx->QP ) ); |
630 | #endif /* MBEDTLS_RSA_NO_CRT */ |
631 | |
632 | /* Double-check */ |
633 | MBEDTLS_MPI_CHK( mbedtls_rsa_check_privkey( ctx ) ); |
634 | |
635 | cleanup: |
636 | |
637 | mbedtls_mpi_free( &H ); |
638 | mbedtls_mpi_free( &G ); |
639 | mbedtls_mpi_free( &L ); |
640 | |
641 | if( ret != 0 ) |
642 | { |
643 | mbedtls_rsa_free( ctx ); |
644 | |
645 | if( ( -ret & ~0x7f ) == 0 ) |
646 | ret = MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_KEY_GEN_FAILED, ret ); |
647 | return( ret ); |
648 | } |
649 | |
650 | return( 0 ); |
651 | } |
652 | |
653 | #endif /* MBEDTLS_GENPRIME */ |
654 | |
655 | /* |
656 | * Check a public RSA key |
657 | */ |
658 | int mbedtls_rsa_check_pubkey( const mbedtls_rsa_context *ctx ) |
659 | { |
660 | RSA_VALIDATE_RET( ctx != NULL ); |
661 | |
662 | if( rsa_check_context( ctx, is_priv: 0 /* public */, blinding_needed: 0 /* no blinding */ ) != 0 ) |
663 | return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); |
664 | |
665 | if( mbedtls_mpi_bitlen( X: &ctx->N ) < 128 ) |
666 | { |
667 | return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); |
668 | } |
669 | |
670 | if( mbedtls_mpi_get_bit( X: &ctx->E, pos: 0 ) == 0 || |
671 | mbedtls_mpi_bitlen( X: &ctx->E ) < 2 || |
672 | mbedtls_mpi_cmp_mpi( X: &ctx->E, Y: &ctx->N ) >= 0 ) |
673 | { |
674 | return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); |
675 | } |
676 | |
677 | return( 0 ); |
678 | } |
679 | |
680 | /* |
681 | * Check for the consistency of all fields in an RSA private key context |
682 | */ |
683 | int mbedtls_rsa_check_privkey( const mbedtls_rsa_context *ctx ) |
684 | { |
685 | RSA_VALIDATE_RET( ctx != NULL ); |
686 | |
687 | if( mbedtls_rsa_check_pubkey( ctx ) != 0 || |
688 | rsa_check_context( ctx, is_priv: 1 /* private */, blinding_needed: 1 /* blinding */ ) != 0 ) |
689 | { |
690 | return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); |
691 | } |
692 | |
693 | if( mbedtls_rsa_validate_params( N: &ctx->N, P: &ctx->P, Q: &ctx->Q, |
694 | D: &ctx->D, E: &ctx->E, NULL, NULL ) != 0 ) |
695 | { |
696 | return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); |
697 | } |
698 | |
699 | #if !defined(MBEDTLS_RSA_NO_CRT) |
700 | else if( mbedtls_rsa_validate_crt( P: &ctx->P, Q: &ctx->Q, D: &ctx->D, |
701 | DP: &ctx->DP, DQ: &ctx->DQ, QP: &ctx->QP ) != 0 ) |
702 | { |
703 | return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); |
704 | } |
705 | #endif |
706 | |
707 | return( 0 ); |
708 | } |
709 | |
710 | /* |
711 | * Check if contexts holding a public and private key match |
712 | */ |
713 | int mbedtls_rsa_check_pub_priv( const mbedtls_rsa_context *pub, |
714 | const mbedtls_rsa_context *prv ) |
715 | { |
716 | RSA_VALIDATE_RET( pub != NULL ); |
717 | RSA_VALIDATE_RET( prv != NULL ); |
718 | |
719 | if( mbedtls_rsa_check_pubkey( ctx: pub ) != 0 || |
720 | mbedtls_rsa_check_privkey( ctx: prv ) != 0 ) |
721 | { |
722 | return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); |
723 | } |
724 | |
725 | if( mbedtls_mpi_cmp_mpi( X: &pub->N, Y: &prv->N ) != 0 || |
726 | mbedtls_mpi_cmp_mpi( X: &pub->E, Y: &prv->E ) != 0 ) |
727 | { |
728 | return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); |
729 | } |
730 | |
731 | return( 0 ); |
732 | } |
733 | |
734 | /* |
735 | * Do an RSA public key operation |
736 | */ |
737 | int mbedtls_rsa_public( mbedtls_rsa_context *ctx, |
738 | const unsigned char *input, |
739 | unsigned char *output ) |
740 | { |
741 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
742 | size_t olen; |
743 | mbedtls_mpi T; |
744 | RSA_VALIDATE_RET( ctx != NULL ); |
745 | RSA_VALIDATE_RET( input != NULL ); |
746 | RSA_VALIDATE_RET( output != NULL ); |
747 | |
748 | if( rsa_check_context( ctx, is_priv: 0 /* public */, blinding_needed: 0 /* no blinding */ ) ) |
749 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
750 | |
751 | mbedtls_mpi_init( X: &T ); |
752 | |
753 | #if defined(MBEDTLS_THREADING_C) |
754 | if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 ) |
755 | return( ret ); |
756 | #endif |
757 | |
758 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) ); |
759 | |
760 | if( mbedtls_mpi_cmp_mpi( X: &T, Y: &ctx->N ) >= 0 ) |
761 | { |
762 | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
763 | goto cleanup; |
764 | } |
765 | |
766 | olen = ctx->len; |
767 | MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) ); |
768 | MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) ); |
769 | |
770 | cleanup: |
771 | #if defined(MBEDTLS_THREADING_C) |
772 | if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 ) |
773 | return( MBEDTLS_ERR_THREADING_MUTEX_ERROR ); |
774 | #endif |
775 | |
776 | mbedtls_mpi_free( X: &T ); |
777 | |
778 | if( ret != 0 ) |
779 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_PUBLIC_FAILED, ret ) ); |
780 | |
781 | return( 0 ); |
782 | } |
783 | |
784 | /* |
785 | * Generate or update blinding values, see section 10 of: |
786 | * KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA, |
787 | * DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer |
788 | * Berlin Heidelberg, 1996. p. 104-113. |
789 | */ |
790 | static int rsa_prepare_blinding( mbedtls_rsa_context *ctx, |
791 | int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) |
792 | { |
793 | int ret, count = 0; |
794 | mbedtls_mpi R; |
795 | |
796 | mbedtls_mpi_init( X: &R ); |
797 | |
798 | if( ctx->Vf.p != NULL ) |
799 | { |
800 | /* We already have blinding values, just update them by squaring */ |
801 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &ctx->Vi ) ); |
802 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) ); |
803 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vf, &ctx->Vf, &ctx->Vf ) ); |
804 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vf, &ctx->Vf, &ctx->N ) ); |
805 | |
806 | goto cleanup; |
807 | } |
808 | |
809 | /* Unblinding value: Vf = random number, invertible mod N */ |
810 | do { |
811 | if( count++ > 10 ) |
812 | { |
813 | ret = MBEDTLS_ERR_RSA_RNG_FAILED; |
814 | goto cleanup; |
815 | } |
816 | |
817 | MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &ctx->Vf, ctx->len - 1, f_rng, p_rng ) ); |
818 | |
819 | /* Compute Vf^-1 as R * (R Vf)^-1 to avoid leaks from inv_mod. */ |
820 | MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, ctx->len - 1, f_rng, p_rng ) ); |
821 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vf, &R ) ); |
822 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) ); |
823 | |
824 | /* At this point, Vi is invertible mod N if and only if both Vf and R |
825 | * are invertible mod N. If one of them isn't, we don't need to know |
826 | * which one, we just loop and choose new values for both of them. |
827 | * (Each iteration succeeds with overwhelming probability.) */ |
828 | ret = mbedtls_mpi_inv_mod( X: &ctx->Vi, A: &ctx->Vi, N: &ctx->N ); |
829 | if( ret != 0 && ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE ) |
830 | goto cleanup; |
831 | |
832 | } while( ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE ); |
833 | |
834 | /* Finish the computation of Vf^-1 = R * (R Vf)^-1 */ |
835 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &R ) ); |
836 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) ); |
837 | |
838 | /* Blinding value: Vi = Vf^(-e) mod N |
839 | * (Vi already contains Vf^-1 at this point) */ |
840 | MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN ) ); |
841 | |
842 | |
843 | cleanup: |
844 | mbedtls_mpi_free( X: &R ); |
845 | |
846 | return( ret ); |
847 | } |
848 | |
849 | /* |
850 | * Exponent blinding supposed to prevent side-channel attacks using multiple |
851 | * traces of measurements to recover the RSA key. The more collisions are there, |
852 | * the more bits of the key can be recovered. See [3]. |
853 | * |
854 | * Collecting n collisions with m bit long blinding value requires 2^(m-m/n) |
855 | * observations on avarage. |
856 | * |
857 | * For example with 28 byte blinding to achieve 2 collisions the adversary has |
858 | * to make 2^112 observations on avarage. |
859 | * |
860 | * (With the currently (as of 2017 April) known best algorithms breaking 2048 |
861 | * bit RSA requires approximately as much time as trying out 2^112 random keys. |
862 | * Thus in this sense with 28 byte blinding the security is not reduced by |
863 | * side-channel attacks like the one in [3]) |
864 | * |
865 | * This countermeasure does not help if the key recovery is possible with a |
866 | * single trace. |
867 | */ |
868 | #define RSA_EXPONENT_BLINDING 28 |
869 | |
870 | /* |
871 | * Do an RSA private key operation |
872 | */ |
873 | int mbedtls_rsa_private( mbedtls_rsa_context *ctx, |
874 | int (*f_rng)(void *, unsigned char *, size_t), |
875 | void *p_rng, |
876 | const unsigned char *input, |
877 | unsigned char *output ) |
878 | { |
879 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
880 | size_t olen; |
881 | |
882 | /* Temporary holding the result */ |
883 | mbedtls_mpi T; |
884 | |
885 | /* Temporaries holding P-1, Q-1 and the |
886 | * exponent blinding factor, respectively. */ |
887 | mbedtls_mpi P1, Q1, R; |
888 | |
889 | #if !defined(MBEDTLS_RSA_NO_CRT) |
890 | /* Temporaries holding the results mod p resp. mod q. */ |
891 | mbedtls_mpi TP, TQ; |
892 | |
893 | /* Temporaries holding the blinded exponents for |
894 | * the mod p resp. mod q computation (if used). */ |
895 | mbedtls_mpi DP_blind, DQ_blind; |
896 | |
897 | /* Pointers to actual exponents to be used - either the unblinded |
898 | * or the blinded ones, depending on the presence of a PRNG. */ |
899 | mbedtls_mpi *DP = &ctx->DP; |
900 | mbedtls_mpi *DQ = &ctx->DQ; |
901 | #else |
902 | /* Temporary holding the blinded exponent (if used). */ |
903 | mbedtls_mpi D_blind; |
904 | |
905 | /* Pointer to actual exponent to be used - either the unblinded |
906 | * or the blinded one, depending on the presence of a PRNG. */ |
907 | mbedtls_mpi *D = &ctx->D; |
908 | #endif /* MBEDTLS_RSA_NO_CRT */ |
909 | |
910 | /* Temporaries holding the initial input and the double |
911 | * checked result; should be the same in the end. */ |
912 | mbedtls_mpi I, C; |
913 | |
914 | RSA_VALIDATE_RET( ctx != NULL ); |
915 | RSA_VALIDATE_RET( input != NULL ); |
916 | RSA_VALIDATE_RET( output != NULL ); |
917 | |
918 | if( f_rng == NULL ) |
919 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
920 | |
921 | if( rsa_check_context( ctx, is_priv: 1 /* private key checks */, |
922 | blinding_needed: 1 /* blinding on */ ) != 0 ) |
923 | { |
924 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
925 | } |
926 | |
927 | #if defined(MBEDTLS_THREADING_C) |
928 | if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 ) |
929 | return( ret ); |
930 | #endif |
931 | |
932 | /* MPI Initialization */ |
933 | mbedtls_mpi_init( X: &T ); |
934 | |
935 | mbedtls_mpi_init( X: &P1 ); |
936 | mbedtls_mpi_init( X: &Q1 ); |
937 | mbedtls_mpi_init( X: &R ); |
938 | |
939 | #if defined(MBEDTLS_RSA_NO_CRT) |
940 | mbedtls_mpi_init( &D_blind ); |
941 | #else |
942 | mbedtls_mpi_init( X: &DP_blind ); |
943 | mbedtls_mpi_init( X: &DQ_blind ); |
944 | #endif |
945 | |
946 | #if !defined(MBEDTLS_RSA_NO_CRT) |
947 | mbedtls_mpi_init( X: &TP ); mbedtls_mpi_init( X: &TQ ); |
948 | #endif |
949 | |
950 | mbedtls_mpi_init( X: &I ); |
951 | mbedtls_mpi_init( X: &C ); |
952 | |
953 | /* End of MPI initialization */ |
954 | |
955 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) ); |
956 | if( mbedtls_mpi_cmp_mpi( X: &T, Y: &ctx->N ) >= 0 ) |
957 | { |
958 | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
959 | goto cleanup; |
960 | } |
961 | |
962 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &I, &T ) ); |
963 | |
964 | /* |
965 | * Blinding |
966 | * T = T * Vi mod N |
967 | */ |
968 | MBEDTLS_MPI_CHK( rsa_prepare_blinding( ctx, f_rng, p_rng ) ); |
969 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vi ) ); |
970 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) ); |
971 | |
972 | /* |
973 | * Exponent blinding |
974 | */ |
975 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &P1, &ctx->P, 1 ) ); |
976 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &Q1, &ctx->Q, 1 ) ); |
977 | |
978 | #if defined(MBEDTLS_RSA_NO_CRT) |
979 | /* |
980 | * D_blind = ( P - 1 ) * ( Q - 1 ) * R + D |
981 | */ |
982 | MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING, |
983 | f_rng, p_rng ) ); |
984 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &P1, &Q1 ) ); |
985 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &D_blind, &R ) ); |
986 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &D_blind, &D_blind, &ctx->D ) ); |
987 | |
988 | D = &D_blind; |
989 | #else |
990 | /* |
991 | * DP_blind = ( P - 1 ) * R + DP |
992 | */ |
993 | MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING, |
994 | f_rng, p_rng ) ); |
995 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DP_blind, &P1, &R ) ); |
996 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DP_blind, &DP_blind, |
997 | &ctx->DP ) ); |
998 | |
999 | DP = &DP_blind; |
1000 | |
1001 | /* |
1002 | * DQ_blind = ( Q - 1 ) * R + DQ |
1003 | */ |
1004 | MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING, |
1005 | f_rng, p_rng ) ); |
1006 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DQ_blind, &Q1, &R ) ); |
1007 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DQ_blind, &DQ_blind, |
1008 | &ctx->DQ ) ); |
1009 | |
1010 | DQ = &DQ_blind; |
1011 | #endif /* MBEDTLS_RSA_NO_CRT */ |
1012 | |
1013 | #if defined(MBEDTLS_RSA_NO_CRT) |
1014 | MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, D, &ctx->N, &ctx->RN ) ); |
1015 | #else |
1016 | /* |
1017 | * Faster decryption using the CRT |
1018 | * |
1019 | * TP = input ^ dP mod P |
1020 | * TQ = input ^ dQ mod Q |
1021 | */ |
1022 | |
1023 | MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TP, &T, DP, &ctx->P, &ctx->RP ) ); |
1024 | MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TQ, &T, DQ, &ctx->Q, &ctx->RQ ) ); |
1025 | |
1026 | /* |
1027 | * T = (TP - TQ) * (Q^-1 mod P) mod P |
1028 | */ |
1029 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &TP, &TQ ) ); |
1030 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->QP ) ); |
1031 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &TP, &ctx->P ) ); |
1032 | |
1033 | /* |
1034 | * T = TQ + T * Q |
1035 | */ |
1036 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->Q ) ); |
1037 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T, &TQ, &TP ) ); |
1038 | #endif /* MBEDTLS_RSA_NO_CRT */ |
1039 | |
1040 | /* |
1041 | * Unblind |
1042 | * T = T * Vf mod N |
1043 | */ |
1044 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vf ) ); |
1045 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) ); |
1046 | |
1047 | /* Verify the result to prevent glitching attacks. */ |
1048 | MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &C, &T, &ctx->E, |
1049 | &ctx->N, &ctx->RN ) ); |
1050 | if( mbedtls_mpi_cmp_mpi( X: &C, Y: &I ) != 0 ) |
1051 | { |
1052 | ret = MBEDTLS_ERR_RSA_VERIFY_FAILED; |
1053 | goto cleanup; |
1054 | } |
1055 | |
1056 | olen = ctx->len; |
1057 | MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) ); |
1058 | |
1059 | cleanup: |
1060 | #if defined(MBEDTLS_THREADING_C) |
1061 | if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 ) |
1062 | return( MBEDTLS_ERR_THREADING_MUTEX_ERROR ); |
1063 | #endif |
1064 | |
1065 | mbedtls_mpi_free( X: &P1 ); |
1066 | mbedtls_mpi_free( X: &Q1 ); |
1067 | mbedtls_mpi_free( X: &R ); |
1068 | |
1069 | #if defined(MBEDTLS_RSA_NO_CRT) |
1070 | mbedtls_mpi_free( &D_blind ); |
1071 | #else |
1072 | mbedtls_mpi_free( X: &DP_blind ); |
1073 | mbedtls_mpi_free( X: &DQ_blind ); |
1074 | #endif |
1075 | |
1076 | mbedtls_mpi_free( X: &T ); |
1077 | |
1078 | #if !defined(MBEDTLS_RSA_NO_CRT) |
1079 | mbedtls_mpi_free( X: &TP ); mbedtls_mpi_free( X: &TQ ); |
1080 | #endif |
1081 | |
1082 | mbedtls_mpi_free( X: &C ); |
1083 | mbedtls_mpi_free( X: &I ); |
1084 | |
1085 | if( ret != 0 && ret >= -0x007f ) |
1086 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_PRIVATE_FAILED, ret ) ); |
1087 | |
1088 | return( ret ); |
1089 | } |
1090 | |
1091 | #if defined(MBEDTLS_PKCS1_V21) |
1092 | /** |
1093 | * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer. |
1094 | * |
1095 | * \param dst buffer to mask |
1096 | * \param dlen length of destination buffer |
1097 | * \param src source of the mask generation |
1098 | * \param slen length of the source buffer |
1099 | * \param md_ctx message digest context to use |
1100 | */ |
1101 | static int mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src, |
1102 | size_t slen, mbedtls_md_context_t *md_ctx ) |
1103 | { |
1104 | unsigned char mask[MBEDTLS_MD_MAX_SIZE]; |
1105 | unsigned char counter[4]; |
1106 | unsigned char *p; |
1107 | unsigned int hlen; |
1108 | size_t i, use_len; |
1109 | int ret = 0; |
1110 | |
1111 | memset( mask, 0, MBEDTLS_MD_MAX_SIZE ); |
1112 | memset( counter, 0, 4 ); |
1113 | |
1114 | hlen = mbedtls_md_get_size( md_ctx->md_info ); |
1115 | |
1116 | /* Generate and apply dbMask */ |
1117 | p = dst; |
1118 | |
1119 | while( dlen > 0 ) |
1120 | { |
1121 | use_len = hlen; |
1122 | if( dlen < hlen ) |
1123 | use_len = dlen; |
1124 | |
1125 | if( ( ret = mbedtls_md_starts( md_ctx ) ) != 0 ) |
1126 | goto exit; |
1127 | if( ( ret = mbedtls_md_update( md_ctx, src, slen ) ) != 0 ) |
1128 | goto exit; |
1129 | if( ( ret = mbedtls_md_update( md_ctx, counter, 4 ) ) != 0 ) |
1130 | goto exit; |
1131 | if( ( ret = mbedtls_md_finish( md_ctx, mask ) ) != 0 ) |
1132 | goto exit; |
1133 | |
1134 | for( i = 0; i < use_len; ++i ) |
1135 | *p++ ^= mask[i]; |
1136 | |
1137 | counter[3]++; |
1138 | |
1139 | dlen -= use_len; |
1140 | } |
1141 | |
1142 | exit: |
1143 | mbedtls_platform_zeroize( mask, sizeof( mask ) ); |
1144 | |
1145 | return( ret ); |
1146 | } |
1147 | #endif /* MBEDTLS_PKCS1_V21 */ |
1148 | |
1149 | #if defined(MBEDTLS_PKCS1_V21) |
1150 | /* |
1151 | * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function |
1152 | */ |
1153 | int mbedtls_rsa_rsaes_oaep_encrypt( mbedtls_rsa_context *ctx, |
1154 | int (*f_rng)(void *, unsigned char *, size_t), |
1155 | void *p_rng, |
1156 | const unsigned char *label, size_t label_len, |
1157 | size_t ilen, |
1158 | const unsigned char *input, |
1159 | unsigned char *output ) |
1160 | { |
1161 | size_t olen; |
1162 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
1163 | unsigned char *p = output; |
1164 | unsigned int hlen; |
1165 | const mbedtls_md_info_t *md_info; |
1166 | mbedtls_md_context_t md_ctx; |
1167 | |
1168 | RSA_VALIDATE_RET( ctx != NULL ); |
1169 | RSA_VALIDATE_RET( output != NULL ); |
1170 | RSA_VALIDATE_RET( ilen == 0 || input != NULL ); |
1171 | RSA_VALIDATE_RET( label_len == 0 || label != NULL ); |
1172 | |
1173 | if( f_rng == NULL ) |
1174 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1175 | |
1176 | md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id ); |
1177 | if( md_info == NULL ) |
1178 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1179 | |
1180 | olen = ctx->len; |
1181 | hlen = mbedtls_md_get_size( md_info ); |
1182 | |
1183 | /* first comparison checks for overflow */ |
1184 | if( ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2 ) |
1185 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1186 | |
1187 | memset( output, 0, olen ); |
1188 | |
1189 | *p++ = 0; |
1190 | |
1191 | /* Generate a random octet string seed */ |
1192 | if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 ) |
1193 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) ); |
1194 | |
1195 | p += hlen; |
1196 | |
1197 | /* Construct DB */ |
1198 | if( ( ret = mbedtls_md( md_info, label, label_len, p ) ) != 0 ) |
1199 | return( ret ); |
1200 | p += hlen; |
1201 | p += olen - 2 * hlen - 2 - ilen; |
1202 | *p++ = 1; |
1203 | if( ilen != 0 ) |
1204 | memcpy( p, input, ilen ); |
1205 | |
1206 | mbedtls_md_init( &md_ctx ); |
1207 | if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 ) |
1208 | goto exit; |
1209 | |
1210 | /* maskedDB: Apply dbMask to DB */ |
1211 | if( ( ret = mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen, |
1212 | &md_ctx ) ) != 0 ) |
1213 | goto exit; |
1214 | |
1215 | /* maskedSeed: Apply seedMask to seed */ |
1216 | if( ( ret = mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1, |
1217 | &md_ctx ) ) != 0 ) |
1218 | goto exit; |
1219 | |
1220 | exit: |
1221 | mbedtls_md_free( &md_ctx ); |
1222 | |
1223 | if( ret != 0 ) |
1224 | return( ret ); |
1225 | |
1226 | return( mbedtls_rsa_public( ctx, output, output ) ); |
1227 | } |
1228 | #endif /* MBEDTLS_PKCS1_V21 */ |
1229 | |
1230 | #if defined(MBEDTLS_PKCS1_V15) |
1231 | /* |
1232 | * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function |
1233 | */ |
1234 | int mbedtls_rsa_rsaes_pkcs1_v15_encrypt( mbedtls_rsa_context *ctx, |
1235 | int (*f_rng)(void *, unsigned char *, size_t), |
1236 | void *p_rng, size_t ilen, |
1237 | const unsigned char *input, |
1238 | unsigned char *output ) |
1239 | { |
1240 | size_t nb_pad, olen; |
1241 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
1242 | unsigned char *p = output; |
1243 | |
1244 | RSA_VALIDATE_RET( ctx != NULL ); |
1245 | RSA_VALIDATE_RET( output != NULL ); |
1246 | RSA_VALIDATE_RET( ilen == 0 || input != NULL ); |
1247 | |
1248 | olen = ctx->len; |
1249 | |
1250 | /* first comparison checks for overflow */ |
1251 | if( ilen + 11 < ilen || olen < ilen + 11 ) |
1252 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1253 | |
1254 | nb_pad = olen - 3 - ilen; |
1255 | |
1256 | *p++ = 0; |
1257 | |
1258 | if( f_rng == NULL ) |
1259 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1260 | |
1261 | *p++ = MBEDTLS_RSA_CRYPT; |
1262 | |
1263 | while( nb_pad-- > 0 ) |
1264 | { |
1265 | int rng_dl = 100; |
1266 | |
1267 | do { |
1268 | ret = f_rng( p_rng, p, 1 ); |
1269 | } while( *p == 0 && --rng_dl && ret == 0 ); |
1270 | |
1271 | /* Check if RNG failed to generate data */ |
1272 | if( rng_dl == 0 || ret != 0 ) |
1273 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) ); |
1274 | |
1275 | p++; |
1276 | } |
1277 | |
1278 | *p++ = 0; |
1279 | if( ilen != 0 ) |
1280 | memcpy( dest: p, src: input, n: ilen ); |
1281 | |
1282 | return( mbedtls_rsa_public( ctx, input: output, output ) ); |
1283 | } |
1284 | #endif /* MBEDTLS_PKCS1_V15 */ |
1285 | |
1286 | /* |
1287 | * Add the message padding, then do an RSA operation |
1288 | */ |
1289 | int mbedtls_rsa_pkcs1_encrypt( mbedtls_rsa_context *ctx, |
1290 | int (*f_rng)(void *, unsigned char *, size_t), |
1291 | void *p_rng, |
1292 | size_t ilen, |
1293 | const unsigned char *input, |
1294 | unsigned char *output ) |
1295 | { |
1296 | RSA_VALIDATE_RET( ctx != NULL ); |
1297 | RSA_VALIDATE_RET( output != NULL ); |
1298 | RSA_VALIDATE_RET( ilen == 0 || input != NULL ); |
1299 | |
1300 | switch( ctx->padding ) |
1301 | { |
1302 | #if defined(MBEDTLS_PKCS1_V15) |
1303 | case MBEDTLS_RSA_PKCS_V15: |
1304 | return mbedtls_rsa_rsaes_pkcs1_v15_encrypt( ctx, f_rng, p_rng, |
1305 | ilen, input, output ); |
1306 | #endif |
1307 | |
1308 | #if defined(MBEDTLS_PKCS1_V21) |
1309 | case MBEDTLS_RSA_PKCS_V21: |
1310 | return mbedtls_rsa_rsaes_oaep_encrypt( ctx, f_rng, p_rng, NULL, 0, |
1311 | ilen, input, output ); |
1312 | #endif |
1313 | |
1314 | default: |
1315 | return( MBEDTLS_ERR_RSA_INVALID_PADDING ); |
1316 | } |
1317 | } |
1318 | |
1319 | #if defined(MBEDTLS_PKCS1_V21) |
1320 | /* |
1321 | * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function |
1322 | */ |
1323 | int mbedtls_rsa_rsaes_oaep_decrypt( mbedtls_rsa_context *ctx, |
1324 | int (*f_rng)(void *, unsigned char *, size_t), |
1325 | void *p_rng, |
1326 | const unsigned char *label, size_t label_len, |
1327 | size_t *olen, |
1328 | const unsigned char *input, |
1329 | unsigned char *output, |
1330 | size_t output_max_len ) |
1331 | { |
1332 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
1333 | size_t ilen, i, pad_len; |
1334 | unsigned char *p, bad, pad_done; |
1335 | unsigned char buf[MBEDTLS_MPI_MAX_SIZE]; |
1336 | unsigned char lhash[MBEDTLS_MD_MAX_SIZE]; |
1337 | unsigned int hlen; |
1338 | const mbedtls_md_info_t *md_info; |
1339 | mbedtls_md_context_t md_ctx; |
1340 | |
1341 | RSA_VALIDATE_RET( ctx != NULL ); |
1342 | RSA_VALIDATE_RET( output_max_len == 0 || output != NULL ); |
1343 | RSA_VALIDATE_RET( label_len == 0 || label != NULL ); |
1344 | RSA_VALIDATE_RET( input != NULL ); |
1345 | RSA_VALIDATE_RET( olen != NULL ); |
1346 | |
1347 | /* |
1348 | * Parameters sanity checks |
1349 | */ |
1350 | if( ctx->padding != MBEDTLS_RSA_PKCS_V21 ) |
1351 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1352 | |
1353 | ilen = ctx->len; |
1354 | |
1355 | if( ilen < 16 || ilen > sizeof( buf ) ) |
1356 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1357 | |
1358 | md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id ); |
1359 | if( md_info == NULL ) |
1360 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1361 | |
1362 | hlen = mbedtls_md_get_size( md_info ); |
1363 | |
1364 | // checking for integer underflow |
1365 | if( 2 * hlen + 2 > ilen ) |
1366 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1367 | |
1368 | /* |
1369 | * RSA operation |
1370 | */ |
1371 | ret = mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf ); |
1372 | |
1373 | if( ret != 0 ) |
1374 | goto cleanup; |
1375 | |
1376 | /* |
1377 | * Unmask data and generate lHash |
1378 | */ |
1379 | mbedtls_md_init( &md_ctx ); |
1380 | if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 ) |
1381 | { |
1382 | mbedtls_md_free( &md_ctx ); |
1383 | goto cleanup; |
1384 | } |
1385 | |
1386 | /* seed: Apply seedMask to maskedSeed */ |
1387 | if( ( ret = mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1, |
1388 | &md_ctx ) ) != 0 || |
1389 | /* DB: Apply dbMask to maskedDB */ |
1390 | ( ret = mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen, |
1391 | &md_ctx ) ) != 0 ) |
1392 | { |
1393 | mbedtls_md_free( &md_ctx ); |
1394 | goto cleanup; |
1395 | } |
1396 | |
1397 | mbedtls_md_free( &md_ctx ); |
1398 | |
1399 | /* Generate lHash */ |
1400 | if( ( ret = mbedtls_md( md_info, label, label_len, lhash ) ) != 0 ) |
1401 | goto cleanup; |
1402 | |
1403 | /* |
1404 | * Check contents, in "constant-time" |
1405 | */ |
1406 | p = buf; |
1407 | bad = 0; |
1408 | |
1409 | bad |= *p++; /* First byte must be 0 */ |
1410 | |
1411 | p += hlen; /* Skip seed */ |
1412 | |
1413 | /* Check lHash */ |
1414 | for( i = 0; i < hlen; i++ ) |
1415 | bad |= lhash[i] ^ *p++; |
1416 | |
1417 | /* Get zero-padding len, but always read till end of buffer |
1418 | * (minus one, for the 01 byte) */ |
1419 | pad_len = 0; |
1420 | pad_done = 0; |
1421 | for( i = 0; i < ilen - 2 * hlen - 2; i++ ) |
1422 | { |
1423 | pad_done |= p[i]; |
1424 | pad_len += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1; |
1425 | } |
1426 | |
1427 | p += pad_len; |
1428 | bad |= *p++ ^ 0x01; |
1429 | |
1430 | /* |
1431 | * The only information "leaked" is whether the padding was correct or not |
1432 | * (eg, no data is copied if it was not correct). This meets the |
1433 | * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between |
1434 | * the different error conditions. |
1435 | */ |
1436 | if( bad != 0 ) |
1437 | { |
1438 | ret = MBEDTLS_ERR_RSA_INVALID_PADDING; |
1439 | goto cleanup; |
1440 | } |
1441 | |
1442 | if( ilen - ( p - buf ) > output_max_len ) |
1443 | { |
1444 | ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE; |
1445 | goto cleanup; |
1446 | } |
1447 | |
1448 | *olen = ilen - (p - buf); |
1449 | if( *olen != 0 ) |
1450 | memcpy( output, p, *olen ); |
1451 | ret = 0; |
1452 | |
1453 | cleanup: |
1454 | mbedtls_platform_zeroize( buf, sizeof( buf ) ); |
1455 | mbedtls_platform_zeroize( lhash, sizeof( lhash ) ); |
1456 | |
1457 | return( ret ); |
1458 | } |
1459 | #endif /* MBEDTLS_PKCS1_V21 */ |
1460 | |
1461 | #if defined(MBEDTLS_PKCS1_V15) |
1462 | /* |
1463 | * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function |
1464 | */ |
1465 | int mbedtls_rsa_rsaes_pkcs1_v15_decrypt( mbedtls_rsa_context *ctx, |
1466 | int (*f_rng)(void *, unsigned char *, size_t), |
1467 | void *p_rng, |
1468 | size_t *olen, |
1469 | const unsigned char *input, |
1470 | unsigned char *output, |
1471 | size_t output_max_len ) |
1472 | { |
1473 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
1474 | size_t ilen; |
1475 | unsigned char buf[MBEDTLS_MPI_MAX_SIZE]; |
1476 | |
1477 | RSA_VALIDATE_RET( ctx != NULL ); |
1478 | RSA_VALIDATE_RET( output_max_len == 0 || output != NULL ); |
1479 | RSA_VALIDATE_RET( input != NULL ); |
1480 | RSA_VALIDATE_RET( olen != NULL ); |
1481 | |
1482 | ilen = ctx->len; |
1483 | |
1484 | if( ctx->padding != MBEDTLS_RSA_PKCS_V15 ) |
1485 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1486 | |
1487 | if( ilen < 16 || ilen > sizeof( buf ) ) |
1488 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1489 | |
1490 | ret = mbedtls_rsa_private( ctx, f_rng, p_rng, input, output: buf ); |
1491 | |
1492 | if( ret != 0 ) |
1493 | goto cleanup; |
1494 | |
1495 | ret = mbedtls_ct_rsaes_pkcs1_v15_unpadding( input: buf, ilen, |
1496 | output, output_max_len, olen ); |
1497 | |
1498 | cleanup: |
1499 | mbedtls_platform_zeroize( buf, len: sizeof( buf ) ); |
1500 | |
1501 | return( ret ); |
1502 | } |
1503 | #endif /* MBEDTLS_PKCS1_V15 */ |
1504 | |
1505 | /* |
1506 | * Do an RSA operation, then remove the message padding |
1507 | */ |
1508 | int mbedtls_rsa_pkcs1_decrypt( mbedtls_rsa_context *ctx, |
1509 | int (*f_rng)(void *, unsigned char *, size_t), |
1510 | void *p_rng, |
1511 | size_t *olen, |
1512 | const unsigned char *input, |
1513 | unsigned char *output, |
1514 | size_t output_max_len) |
1515 | { |
1516 | RSA_VALIDATE_RET( ctx != NULL ); |
1517 | RSA_VALIDATE_RET( output_max_len == 0 || output != NULL ); |
1518 | RSA_VALIDATE_RET( input != NULL ); |
1519 | RSA_VALIDATE_RET( olen != NULL ); |
1520 | |
1521 | switch( ctx->padding ) |
1522 | { |
1523 | #if defined(MBEDTLS_PKCS1_V15) |
1524 | case MBEDTLS_RSA_PKCS_V15: |
1525 | return mbedtls_rsa_rsaes_pkcs1_v15_decrypt( ctx, f_rng, p_rng, olen, |
1526 | input, output, output_max_len ); |
1527 | #endif |
1528 | |
1529 | #if defined(MBEDTLS_PKCS1_V21) |
1530 | case MBEDTLS_RSA_PKCS_V21: |
1531 | return mbedtls_rsa_rsaes_oaep_decrypt( ctx, f_rng, p_rng, NULL, 0, |
1532 | olen, input, output, |
1533 | output_max_len ); |
1534 | #endif |
1535 | |
1536 | default: |
1537 | return( MBEDTLS_ERR_RSA_INVALID_PADDING ); |
1538 | } |
1539 | } |
1540 | |
1541 | #if defined(MBEDTLS_PKCS1_V21) |
1542 | static int rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx, |
1543 | int (*f_rng)(void *, unsigned char *, size_t), |
1544 | void *p_rng, |
1545 | mbedtls_md_type_t md_alg, |
1546 | unsigned int hashlen, |
1547 | const unsigned char *hash, |
1548 | int saltlen, |
1549 | unsigned char *sig ) |
1550 | { |
1551 | size_t olen; |
1552 | unsigned char *p = sig; |
1553 | unsigned char *salt = NULL; |
1554 | size_t slen, min_slen, hlen, offset = 0; |
1555 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
1556 | size_t msb; |
1557 | const mbedtls_md_info_t *md_info; |
1558 | mbedtls_md_context_t md_ctx; |
1559 | RSA_VALIDATE_RET( ctx != NULL ); |
1560 | RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE && |
1561 | hashlen == 0 ) || |
1562 | hash != NULL ); |
1563 | RSA_VALIDATE_RET( sig != NULL ); |
1564 | |
1565 | if( ctx->padding != MBEDTLS_RSA_PKCS_V21 ) |
1566 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1567 | |
1568 | if( f_rng == NULL ) |
1569 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1570 | |
1571 | olen = ctx->len; |
1572 | |
1573 | if( md_alg != MBEDTLS_MD_NONE ) |
1574 | { |
1575 | /* Gather length of hash to sign */ |
1576 | md_info = mbedtls_md_info_from_type( md_alg ); |
1577 | if( md_info == NULL ) |
1578 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1579 | |
1580 | if( hashlen != mbedtls_md_get_size( md_info ) ) |
1581 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1582 | } |
1583 | |
1584 | md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id ); |
1585 | if( md_info == NULL ) |
1586 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1587 | |
1588 | hlen = mbedtls_md_get_size( md_info ); |
1589 | |
1590 | if (saltlen == MBEDTLS_RSA_SALT_LEN_ANY) |
1591 | { |
1592 | /* Calculate the largest possible salt length, up to the hash size. |
1593 | * Normally this is the hash length, which is the maximum salt length |
1594 | * according to FIPS 185-4 §5.5 (e) and common practice. If there is not |
1595 | * enough room, use the maximum salt length that fits. The constraint is |
1596 | * that the hash length plus the salt length plus 2 bytes must be at most |
1597 | * the key length. This complies with FIPS 186-4 §5.5 (e) and RFC 8017 |
1598 | * (PKCS#1 v2.2) §9.1.1 step 3. */ |
1599 | min_slen = hlen - 2; |
1600 | if( olen < hlen + min_slen + 2 ) |
1601 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1602 | else if( olen >= hlen + hlen + 2 ) |
1603 | slen = hlen; |
1604 | else |
1605 | slen = olen - hlen - 2; |
1606 | } |
1607 | else if ( (saltlen < 0) || (saltlen + hlen + 2 > olen) ) |
1608 | { |
1609 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1610 | } |
1611 | else |
1612 | { |
1613 | slen = (size_t) saltlen; |
1614 | } |
1615 | |
1616 | memset( sig, 0, olen ); |
1617 | |
1618 | /* Note: EMSA-PSS encoding is over the length of N - 1 bits */ |
1619 | msb = mbedtls_mpi_bitlen( &ctx->N ) - 1; |
1620 | p += olen - hlen - slen - 2; |
1621 | *p++ = 0x01; |
1622 | |
1623 | /* Generate salt of length slen in place in the encoded message */ |
1624 | salt = p; |
1625 | if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 ) |
1626 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) ); |
1627 | |
1628 | p += slen; |
1629 | |
1630 | mbedtls_md_init( &md_ctx ); |
1631 | if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 ) |
1632 | goto exit; |
1633 | |
1634 | /* Generate H = Hash( M' ) */ |
1635 | if( ( ret = mbedtls_md_starts( &md_ctx ) ) != 0 ) |
1636 | goto exit; |
1637 | if( ( ret = mbedtls_md_update( &md_ctx, p, 8 ) ) != 0 ) |
1638 | goto exit; |
1639 | if( ( ret = mbedtls_md_update( &md_ctx, hash, hashlen ) ) != 0 ) |
1640 | goto exit; |
1641 | if( ( ret = mbedtls_md_update( &md_ctx, salt, slen ) ) != 0 ) |
1642 | goto exit; |
1643 | if( ( ret = mbedtls_md_finish( &md_ctx, p ) ) != 0 ) |
1644 | goto exit; |
1645 | |
1646 | /* Compensate for boundary condition when applying mask */ |
1647 | if( msb % 8 == 0 ) |
1648 | offset = 1; |
1649 | |
1650 | /* maskedDB: Apply dbMask to DB */ |
1651 | if( ( ret = mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen, |
1652 | &md_ctx ) ) != 0 ) |
1653 | goto exit; |
1654 | |
1655 | msb = mbedtls_mpi_bitlen( &ctx->N ) - 1; |
1656 | sig[0] &= 0xFF >> ( olen * 8 - msb ); |
1657 | |
1658 | p += hlen; |
1659 | *p++ = 0xBC; |
1660 | |
1661 | exit: |
1662 | mbedtls_md_free( &md_ctx ); |
1663 | |
1664 | if( ret != 0 ) |
1665 | return( ret ); |
1666 | |
1667 | return mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig ); |
1668 | } |
1669 | |
1670 | /* |
1671 | * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function with |
1672 | * the option to pass in the salt length. |
1673 | */ |
1674 | int mbedtls_rsa_rsassa_pss_sign_ext( mbedtls_rsa_context *ctx, |
1675 | int (*f_rng)(void *, unsigned char *, size_t), |
1676 | void *p_rng, |
1677 | mbedtls_md_type_t md_alg, |
1678 | unsigned int hashlen, |
1679 | const unsigned char *hash, |
1680 | int saltlen, |
1681 | unsigned char *sig ) |
1682 | { |
1683 | return rsa_rsassa_pss_sign( ctx, f_rng, p_rng, md_alg, |
1684 | hashlen, hash, saltlen, sig ); |
1685 | } |
1686 | |
1687 | |
1688 | /* |
1689 | * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function |
1690 | */ |
1691 | int mbedtls_rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx, |
1692 | int (*f_rng)(void *, unsigned char *, size_t), |
1693 | void *p_rng, |
1694 | mbedtls_md_type_t md_alg, |
1695 | unsigned int hashlen, |
1696 | const unsigned char *hash, |
1697 | unsigned char *sig ) |
1698 | { |
1699 | return rsa_rsassa_pss_sign( ctx, f_rng, p_rng, md_alg, |
1700 | hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig ); |
1701 | } |
1702 | #endif /* MBEDTLS_PKCS1_V21 */ |
1703 | |
1704 | #if defined(MBEDTLS_PKCS1_V15) |
1705 | /* |
1706 | * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function |
1707 | */ |
1708 | |
1709 | /* Construct a PKCS v1.5 encoding of a hashed message |
1710 | * |
1711 | * This is used both for signature generation and verification. |
1712 | * |
1713 | * Parameters: |
1714 | * - md_alg: Identifies the hash algorithm used to generate the given hash; |
1715 | * MBEDTLS_MD_NONE if raw data is signed. |
1716 | * - hashlen: Length of hash. Must match md_alg if that's not NONE. |
1717 | * - hash: Buffer containing the hashed message or the raw data. |
1718 | * - dst_len: Length of the encoded message. |
1719 | * - dst: Buffer to hold the encoded message. |
1720 | * |
1721 | * Assumptions: |
1722 | * - hash has size hashlen. |
1723 | * - dst points to a buffer of size at least dst_len. |
1724 | * |
1725 | */ |
1726 | static int rsa_rsassa_pkcs1_v15_encode( mbedtls_md_type_t md_alg, |
1727 | unsigned int hashlen, |
1728 | const unsigned char *hash, |
1729 | size_t dst_len, |
1730 | unsigned char *dst ) |
1731 | { |
1732 | size_t oid_size = 0; |
1733 | size_t nb_pad = dst_len; |
1734 | unsigned char *p = dst; |
1735 | const char *oid = NULL; |
1736 | |
1737 | /* Are we signing hashed or raw data? */ |
1738 | if( md_alg != MBEDTLS_MD_NONE ) |
1739 | { |
1740 | const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type( md_type: md_alg ); |
1741 | if( md_info == NULL ) |
1742 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1743 | |
1744 | if( mbedtls_oid_get_oid_by_md( md_alg, oid: &oid, olen: &oid_size ) != 0 ) |
1745 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1746 | |
1747 | if( hashlen != mbedtls_md_get_size( md_info ) ) |
1748 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1749 | |
1750 | /* Double-check that 8 + hashlen + oid_size can be used as a |
1751 | * 1-byte ASN.1 length encoding and that there's no overflow. */ |
1752 | if( 8 + hashlen + oid_size >= 0x80 || |
1753 | 10 + hashlen < hashlen || |
1754 | 10 + hashlen + oid_size < 10 + hashlen ) |
1755 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1756 | |
1757 | /* |
1758 | * Static bounds check: |
1759 | * - Need 10 bytes for five tag-length pairs. |
1760 | * (Insist on 1-byte length encodings to protect against variants of |
1761 | * Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification) |
1762 | * - Need hashlen bytes for hash |
1763 | * - Need oid_size bytes for hash alg OID. |
1764 | */ |
1765 | if( nb_pad < 10 + hashlen + oid_size ) |
1766 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1767 | nb_pad -= 10 + hashlen + oid_size; |
1768 | } |
1769 | else |
1770 | { |
1771 | if( nb_pad < hashlen ) |
1772 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1773 | |
1774 | nb_pad -= hashlen; |
1775 | } |
1776 | |
1777 | /* Need space for signature header and padding delimiter (3 bytes), |
1778 | * and 8 bytes for the minimal padding */ |
1779 | if( nb_pad < 3 + 8 ) |
1780 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1781 | nb_pad -= 3; |
1782 | |
1783 | /* Now nb_pad is the amount of memory to be filled |
1784 | * with padding, and at least 8 bytes long. */ |
1785 | |
1786 | /* Write signature header and padding */ |
1787 | *p++ = 0; |
1788 | *p++ = MBEDTLS_RSA_SIGN; |
1789 | memset( s: p, c: 0xFF, n: nb_pad ); |
1790 | p += nb_pad; |
1791 | *p++ = 0; |
1792 | |
1793 | /* Are we signing raw data? */ |
1794 | if( md_alg == MBEDTLS_MD_NONE ) |
1795 | { |
1796 | memcpy( dest: p, src: hash, n: hashlen ); |
1797 | return( 0 ); |
1798 | } |
1799 | |
1800 | /* Signing hashed data, add corresponding ASN.1 structure |
1801 | * |
1802 | * DigestInfo ::= SEQUENCE { |
1803 | * digestAlgorithm DigestAlgorithmIdentifier, |
1804 | * digest Digest } |
1805 | * DigestAlgorithmIdentifier ::= AlgorithmIdentifier |
1806 | * Digest ::= OCTET STRING |
1807 | * |
1808 | * Schematic: |
1809 | * TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID + LEN [ OID ] |
1810 | * TAG-NULL + LEN [ NULL ] ] |
1811 | * TAG-OCTET + LEN [ HASH ] ] |
1812 | */ |
1813 | *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED; |
1814 | *p++ = (unsigned char)( 0x08 + oid_size + hashlen ); |
1815 | *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED; |
1816 | *p++ = (unsigned char)( 0x04 + oid_size ); |
1817 | *p++ = MBEDTLS_ASN1_OID; |
1818 | *p++ = (unsigned char) oid_size; |
1819 | memcpy( dest: p, src: oid, n: oid_size ); |
1820 | p += oid_size; |
1821 | *p++ = MBEDTLS_ASN1_NULL; |
1822 | *p++ = 0x00; |
1823 | *p++ = MBEDTLS_ASN1_OCTET_STRING; |
1824 | *p++ = (unsigned char) hashlen; |
1825 | memcpy( dest: p, src: hash, n: hashlen ); |
1826 | p += hashlen; |
1827 | |
1828 | /* Just a sanity-check, should be automatic |
1829 | * after the initial bounds check. */ |
1830 | if( p != dst + dst_len ) |
1831 | { |
1832 | mbedtls_platform_zeroize( buf: dst, len: dst_len ); |
1833 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1834 | } |
1835 | |
1836 | return( 0 ); |
1837 | } |
1838 | |
1839 | /* |
1840 | * Do an RSA operation to sign the message digest |
1841 | */ |
1842 | int mbedtls_rsa_rsassa_pkcs1_v15_sign( mbedtls_rsa_context *ctx, |
1843 | int (*f_rng)(void *, unsigned char *, size_t), |
1844 | void *p_rng, |
1845 | mbedtls_md_type_t md_alg, |
1846 | unsigned int hashlen, |
1847 | const unsigned char *hash, |
1848 | unsigned char *sig ) |
1849 | { |
1850 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
1851 | unsigned char *sig_try = NULL, *verif = NULL; |
1852 | |
1853 | RSA_VALIDATE_RET( ctx != NULL ); |
1854 | RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE && |
1855 | hashlen == 0 ) || |
1856 | hash != NULL ); |
1857 | RSA_VALIDATE_RET( sig != NULL ); |
1858 | |
1859 | if( ctx->padding != MBEDTLS_RSA_PKCS_V15 ) |
1860 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1861 | |
1862 | /* |
1863 | * Prepare PKCS1-v1.5 encoding (padding and hash identifier) |
1864 | */ |
1865 | |
1866 | if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash, |
1867 | dst_len: ctx->len, dst: sig ) ) != 0 ) |
1868 | return( ret ); |
1869 | |
1870 | /* Private key operation |
1871 | * |
1872 | * In order to prevent Lenstra's attack, make the signature in a |
1873 | * temporary buffer and check it before returning it. |
1874 | */ |
1875 | |
1876 | sig_try = (unsigned char *) mbedtls_calloc( nmemb: 1, size: ctx->len ); |
1877 | if( sig_try == NULL ) |
1878 | return( MBEDTLS_ERR_MPI_ALLOC_FAILED ); |
1879 | |
1880 | verif = (unsigned char *) mbedtls_calloc( nmemb: 1, size: ctx->len ); |
1881 | if( verif == NULL ) |
1882 | { |
1883 | mbedtls_free( ptr: sig_try ); |
1884 | return( MBEDTLS_ERR_MPI_ALLOC_FAILED ); |
1885 | } |
1886 | |
1887 | MBEDTLS_MPI_CHK( mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig_try ) ); |
1888 | MBEDTLS_MPI_CHK( mbedtls_rsa_public( ctx, sig_try, verif ) ); |
1889 | |
1890 | if( mbedtls_ct_memcmp( a: verif, b: sig, n: ctx->len ) != 0 ) |
1891 | { |
1892 | ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED; |
1893 | goto cleanup; |
1894 | } |
1895 | |
1896 | memcpy( dest: sig, src: sig_try, n: ctx->len ); |
1897 | |
1898 | cleanup: |
1899 | mbedtls_platform_zeroize( buf: sig_try, len: ctx->len ); |
1900 | mbedtls_platform_zeroize( buf: verif, len: ctx->len ); |
1901 | mbedtls_free( ptr: sig_try ); |
1902 | mbedtls_free( ptr: verif ); |
1903 | |
1904 | if( ret != 0 ) |
1905 | memset( s: sig, c: '!', n: ctx->len ); |
1906 | return( ret ); |
1907 | } |
1908 | #endif /* MBEDTLS_PKCS1_V15 */ |
1909 | |
1910 | /* |
1911 | * Do an RSA operation to sign the message digest |
1912 | */ |
1913 | int mbedtls_rsa_pkcs1_sign( mbedtls_rsa_context *ctx, |
1914 | int (*f_rng)(void *, unsigned char *, size_t), |
1915 | void *p_rng, |
1916 | mbedtls_md_type_t md_alg, |
1917 | unsigned int hashlen, |
1918 | const unsigned char *hash, |
1919 | unsigned char *sig ) |
1920 | { |
1921 | RSA_VALIDATE_RET( ctx != NULL ); |
1922 | RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE && |
1923 | hashlen == 0 ) || |
1924 | hash != NULL ); |
1925 | RSA_VALIDATE_RET( sig != NULL ); |
1926 | |
1927 | switch( ctx->padding ) |
1928 | { |
1929 | #if defined(MBEDTLS_PKCS1_V15) |
1930 | case MBEDTLS_RSA_PKCS_V15: |
1931 | return mbedtls_rsa_rsassa_pkcs1_v15_sign( ctx, f_rng, p_rng, |
1932 | md_alg, hashlen, hash, sig ); |
1933 | #endif |
1934 | |
1935 | #if defined(MBEDTLS_PKCS1_V21) |
1936 | case MBEDTLS_RSA_PKCS_V21: |
1937 | return mbedtls_rsa_rsassa_pss_sign( ctx, f_rng, p_rng, md_alg, |
1938 | hashlen, hash, sig ); |
1939 | #endif |
1940 | |
1941 | default: |
1942 | return( MBEDTLS_ERR_RSA_INVALID_PADDING ); |
1943 | } |
1944 | } |
1945 | |
1946 | #if defined(MBEDTLS_PKCS1_V21) |
1947 | /* |
1948 | * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function |
1949 | */ |
1950 | int mbedtls_rsa_rsassa_pss_verify_ext( mbedtls_rsa_context *ctx, |
1951 | mbedtls_md_type_t md_alg, |
1952 | unsigned int hashlen, |
1953 | const unsigned char *hash, |
1954 | mbedtls_md_type_t mgf1_hash_id, |
1955 | int expected_salt_len, |
1956 | const unsigned char *sig ) |
1957 | { |
1958 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
1959 | size_t siglen; |
1960 | unsigned char *p; |
1961 | unsigned char *hash_start; |
1962 | unsigned char result[MBEDTLS_MD_MAX_SIZE]; |
1963 | unsigned char zeros[8]; |
1964 | unsigned int hlen; |
1965 | size_t observed_salt_len, msb; |
1966 | const mbedtls_md_info_t *md_info; |
1967 | mbedtls_md_context_t md_ctx; |
1968 | unsigned char buf[MBEDTLS_MPI_MAX_SIZE]; |
1969 | |
1970 | RSA_VALIDATE_RET( ctx != NULL ); |
1971 | RSA_VALIDATE_RET( sig != NULL ); |
1972 | RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE && |
1973 | hashlen == 0 ) || |
1974 | hash != NULL ); |
1975 | |
1976 | siglen = ctx->len; |
1977 | |
1978 | if( siglen < 16 || siglen > sizeof( buf ) ) |
1979 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1980 | |
1981 | ret = mbedtls_rsa_public( ctx, sig, buf ); |
1982 | |
1983 | if( ret != 0 ) |
1984 | return( ret ); |
1985 | |
1986 | p = buf; |
1987 | |
1988 | if( buf[siglen - 1] != 0xBC ) |
1989 | return( MBEDTLS_ERR_RSA_INVALID_PADDING ); |
1990 | |
1991 | if( md_alg != MBEDTLS_MD_NONE ) |
1992 | { |
1993 | /* Gather length of hash to sign */ |
1994 | md_info = mbedtls_md_info_from_type( md_alg ); |
1995 | if( md_info == NULL ) |
1996 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
1997 | |
1998 | if( hashlen != mbedtls_md_get_size( md_info ) ) |
1999 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
2000 | } |
2001 | |
2002 | md_info = mbedtls_md_info_from_type( mgf1_hash_id ); |
2003 | if( md_info == NULL ) |
2004 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
2005 | |
2006 | hlen = mbedtls_md_get_size( md_info ); |
2007 | |
2008 | memset( zeros, 0, 8 ); |
2009 | |
2010 | /* |
2011 | * Note: EMSA-PSS verification is over the length of N - 1 bits |
2012 | */ |
2013 | msb = mbedtls_mpi_bitlen( &ctx->N ) - 1; |
2014 | |
2015 | if( buf[0] >> ( 8 - siglen * 8 + msb ) ) |
2016 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
2017 | |
2018 | /* Compensate for boundary condition when applying mask */ |
2019 | if( msb % 8 == 0 ) |
2020 | { |
2021 | p++; |
2022 | siglen -= 1; |
2023 | } |
2024 | |
2025 | if( siglen < hlen + 2 ) |
2026 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
2027 | hash_start = p + siglen - hlen - 1; |
2028 | |
2029 | mbedtls_md_init( &md_ctx ); |
2030 | if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 ) |
2031 | goto exit; |
2032 | |
2033 | ret = mgf_mask( p, siglen - hlen - 1, hash_start, hlen, &md_ctx ); |
2034 | if( ret != 0 ) |
2035 | goto exit; |
2036 | |
2037 | buf[0] &= 0xFF >> ( siglen * 8 - msb ); |
2038 | |
2039 | while( p < hash_start - 1 && *p == 0 ) |
2040 | p++; |
2041 | |
2042 | if( *p++ != 0x01 ) |
2043 | { |
2044 | ret = MBEDTLS_ERR_RSA_INVALID_PADDING; |
2045 | goto exit; |
2046 | } |
2047 | |
2048 | observed_salt_len = hash_start - p; |
2049 | |
2050 | if( expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY && |
2051 | observed_salt_len != (size_t) expected_salt_len ) |
2052 | { |
2053 | ret = MBEDTLS_ERR_RSA_INVALID_PADDING; |
2054 | goto exit; |
2055 | } |
2056 | |
2057 | /* |
2058 | * Generate H = Hash( M' ) |
2059 | */ |
2060 | ret = mbedtls_md_starts( &md_ctx ); |
2061 | if ( ret != 0 ) |
2062 | goto exit; |
2063 | ret = mbedtls_md_update( &md_ctx, zeros, 8 ); |
2064 | if ( ret != 0 ) |
2065 | goto exit; |
2066 | ret = mbedtls_md_update( &md_ctx, hash, hashlen ); |
2067 | if ( ret != 0 ) |
2068 | goto exit; |
2069 | ret = mbedtls_md_update( &md_ctx, p, observed_salt_len ); |
2070 | if ( ret != 0 ) |
2071 | goto exit; |
2072 | ret = mbedtls_md_finish( &md_ctx, result ); |
2073 | if ( ret != 0 ) |
2074 | goto exit; |
2075 | |
2076 | if( memcmp( hash_start, result, hlen ) != 0 ) |
2077 | { |
2078 | ret = MBEDTLS_ERR_RSA_VERIFY_FAILED; |
2079 | goto exit; |
2080 | } |
2081 | |
2082 | exit: |
2083 | mbedtls_md_free( &md_ctx ); |
2084 | |
2085 | return( ret ); |
2086 | } |
2087 | |
2088 | /* |
2089 | * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function |
2090 | */ |
2091 | int mbedtls_rsa_rsassa_pss_verify( mbedtls_rsa_context *ctx, |
2092 | mbedtls_md_type_t md_alg, |
2093 | unsigned int hashlen, |
2094 | const unsigned char *hash, |
2095 | const unsigned char *sig ) |
2096 | { |
2097 | mbedtls_md_type_t mgf1_hash_id; |
2098 | RSA_VALIDATE_RET( ctx != NULL ); |
2099 | RSA_VALIDATE_RET( sig != NULL ); |
2100 | RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE && |
2101 | hashlen == 0 ) || |
2102 | hash != NULL ); |
2103 | |
2104 | mgf1_hash_id = ( ctx->hash_id != MBEDTLS_MD_NONE ) |
2105 | ? (mbedtls_md_type_t) ctx->hash_id |
2106 | : md_alg; |
2107 | |
2108 | return( mbedtls_rsa_rsassa_pss_verify_ext( ctx, |
2109 | md_alg, hashlen, hash, |
2110 | mgf1_hash_id, |
2111 | MBEDTLS_RSA_SALT_LEN_ANY, |
2112 | sig ) ); |
2113 | |
2114 | } |
2115 | #endif /* MBEDTLS_PKCS1_V21 */ |
2116 | |
2117 | #if defined(MBEDTLS_PKCS1_V15) |
2118 | /* |
2119 | * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function |
2120 | */ |
2121 | int mbedtls_rsa_rsassa_pkcs1_v15_verify( mbedtls_rsa_context *ctx, |
2122 | mbedtls_md_type_t md_alg, |
2123 | unsigned int hashlen, |
2124 | const unsigned char *hash, |
2125 | const unsigned char *sig ) |
2126 | { |
2127 | int ret = 0; |
2128 | size_t sig_len; |
2129 | unsigned char *encoded = NULL, *encoded_expected = NULL; |
2130 | |
2131 | RSA_VALIDATE_RET( ctx != NULL ); |
2132 | RSA_VALIDATE_RET( sig != NULL ); |
2133 | RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE && |
2134 | hashlen == 0 ) || |
2135 | hash != NULL ); |
2136 | |
2137 | sig_len = ctx->len; |
2138 | |
2139 | /* |
2140 | * Prepare expected PKCS1 v1.5 encoding of hash. |
2141 | */ |
2142 | |
2143 | if( ( encoded = (unsigned char *) mbedtls_calloc( nmemb: 1, size: sig_len ) ) == NULL || |
2144 | ( encoded_expected = (unsigned char *) mbedtls_calloc( nmemb: 1, size: sig_len ) ) == NULL ) |
2145 | { |
2146 | ret = MBEDTLS_ERR_MPI_ALLOC_FAILED; |
2147 | goto cleanup; |
2148 | } |
2149 | |
2150 | if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash, dst_len: sig_len, |
2151 | dst: encoded_expected ) ) != 0 ) |
2152 | goto cleanup; |
2153 | |
2154 | /* |
2155 | * Apply RSA primitive to get what should be PKCS1 encoded hash. |
2156 | */ |
2157 | |
2158 | ret = mbedtls_rsa_public( ctx, input: sig, output: encoded ); |
2159 | if( ret != 0 ) |
2160 | goto cleanup; |
2161 | |
2162 | /* |
2163 | * Compare |
2164 | */ |
2165 | |
2166 | if( ( ret = mbedtls_ct_memcmp( a: encoded, b: encoded_expected, |
2167 | n: sig_len ) ) != 0 ) |
2168 | { |
2169 | ret = MBEDTLS_ERR_RSA_VERIFY_FAILED; |
2170 | goto cleanup; |
2171 | } |
2172 | |
2173 | cleanup: |
2174 | |
2175 | if( encoded != NULL ) |
2176 | { |
2177 | mbedtls_platform_zeroize( buf: encoded, len: sig_len ); |
2178 | mbedtls_free( ptr: encoded ); |
2179 | } |
2180 | |
2181 | if( encoded_expected != NULL ) |
2182 | { |
2183 | mbedtls_platform_zeroize( buf: encoded_expected, len: sig_len ); |
2184 | mbedtls_free( ptr: encoded_expected ); |
2185 | } |
2186 | |
2187 | return( ret ); |
2188 | } |
2189 | #endif /* MBEDTLS_PKCS1_V15 */ |
2190 | |
2191 | /* |
2192 | * Do an RSA operation and check the message digest |
2193 | */ |
2194 | int mbedtls_rsa_pkcs1_verify( mbedtls_rsa_context *ctx, |
2195 | mbedtls_md_type_t md_alg, |
2196 | unsigned int hashlen, |
2197 | const unsigned char *hash, |
2198 | const unsigned char *sig ) |
2199 | { |
2200 | RSA_VALIDATE_RET( ctx != NULL ); |
2201 | RSA_VALIDATE_RET( sig != NULL ); |
2202 | RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE && |
2203 | hashlen == 0 ) || |
2204 | hash != NULL ); |
2205 | |
2206 | switch( ctx->padding ) |
2207 | { |
2208 | #if defined(MBEDTLS_PKCS1_V15) |
2209 | case MBEDTLS_RSA_PKCS_V15: |
2210 | return mbedtls_rsa_rsassa_pkcs1_v15_verify( ctx, md_alg, |
2211 | hashlen, hash, sig ); |
2212 | #endif |
2213 | |
2214 | #if defined(MBEDTLS_PKCS1_V21) |
2215 | case MBEDTLS_RSA_PKCS_V21: |
2216 | return mbedtls_rsa_rsassa_pss_verify( ctx, md_alg, |
2217 | hashlen, hash, sig ); |
2218 | #endif |
2219 | |
2220 | default: |
2221 | return( MBEDTLS_ERR_RSA_INVALID_PADDING ); |
2222 | } |
2223 | } |
2224 | |
2225 | /* |
2226 | * Copy the components of an RSA key |
2227 | */ |
2228 | int mbedtls_rsa_copy( mbedtls_rsa_context *dst, const mbedtls_rsa_context *src ) |
2229 | { |
2230 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
2231 | RSA_VALIDATE_RET( dst != NULL ); |
2232 | RSA_VALIDATE_RET( src != NULL ); |
2233 | |
2234 | dst->len = src->len; |
2235 | |
2236 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->N, &src->N ) ); |
2237 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->E, &src->E ) ); |
2238 | |
2239 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->D, &src->D ) ); |
2240 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->P, &src->P ) ); |
2241 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Q, &src->Q ) ); |
2242 | |
2243 | #if !defined(MBEDTLS_RSA_NO_CRT) |
2244 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DP, &src->DP ) ); |
2245 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DQ, &src->DQ ) ); |
2246 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->QP, &src->QP ) ); |
2247 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RP, &src->RP ) ); |
2248 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RQ, &src->RQ ) ); |
2249 | #endif |
2250 | |
2251 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RN, &src->RN ) ); |
2252 | |
2253 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vi, &src->Vi ) ); |
2254 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vf, &src->Vf ) ); |
2255 | |
2256 | dst->padding = src->padding; |
2257 | dst->hash_id = src->hash_id; |
2258 | |
2259 | cleanup: |
2260 | if( ret != 0 ) |
2261 | mbedtls_rsa_free( ctx: dst ); |
2262 | |
2263 | return( ret ); |
2264 | } |
2265 | |
2266 | /* |
2267 | * Free the components of an RSA key |
2268 | */ |
2269 | void mbedtls_rsa_free( mbedtls_rsa_context *ctx ) |
2270 | { |
2271 | if( ctx == NULL ) |
2272 | return; |
2273 | |
2274 | mbedtls_mpi_free( X: &ctx->Vi ); |
2275 | mbedtls_mpi_free( X: &ctx->Vf ); |
2276 | mbedtls_mpi_free( X: &ctx->RN ); |
2277 | mbedtls_mpi_free( X: &ctx->D ); |
2278 | mbedtls_mpi_free( X: &ctx->Q ); |
2279 | mbedtls_mpi_free( X: &ctx->P ); |
2280 | mbedtls_mpi_free( X: &ctx->E ); |
2281 | mbedtls_mpi_free( X: &ctx->N ); |
2282 | |
2283 | #if !defined(MBEDTLS_RSA_NO_CRT) |
2284 | mbedtls_mpi_free( X: &ctx->RQ ); |
2285 | mbedtls_mpi_free( X: &ctx->RP ); |
2286 | mbedtls_mpi_free( X: &ctx->QP ); |
2287 | mbedtls_mpi_free( X: &ctx->DQ ); |
2288 | mbedtls_mpi_free( X: &ctx->DP ); |
2289 | #endif /* MBEDTLS_RSA_NO_CRT */ |
2290 | |
2291 | #if defined(MBEDTLS_THREADING_C) |
2292 | /* Free the mutex, but only if it hasn't been freed already. */ |
2293 | if( ctx->ver != 0 ) |
2294 | { |
2295 | mbedtls_mutex_free( &ctx->mutex ); |
2296 | ctx->ver = 0; |
2297 | } |
2298 | #endif |
2299 | } |
2300 | |
2301 | #endif /* !MBEDTLS_RSA_ALT */ |
2302 | |
2303 | #if defined(MBEDTLS_SELF_TEST) |
2304 | |
2305 | #include "mbedtls/sha1.h" |
2306 | |
2307 | /* |
2308 | * Example RSA-1024 keypair, for test purposes |
2309 | */ |
2310 | #define KEY_LEN 128 |
2311 | |
2312 | #define RSA_N "9292758453063D803DD603D5E777D788" \ |
2313 | "8ED1D5BF35786190FA2F23EBC0848AEA" \ |
2314 | "DDA92CA6C3D80B32C4D109BE0F36D6AE" \ |
2315 | "7130B9CED7ACDF54CFC7555AC14EEBAB" \ |
2316 | "93A89813FBF3C4F8066D2D800F7C38A8" \ |
2317 | "1AE31942917403FF4946B0A83D3D3E05" \ |
2318 | "EE57C6F5F5606FB5D4BC6CD34EE0801A" \ |
2319 | "5E94BB77B07507233A0BC7BAC8F90F79" |
2320 | |
2321 | #define RSA_E "10001" |
2322 | |
2323 | #define RSA_D "24BF6185468786FDD303083D25E64EFC" \ |
2324 | "66CA472BC44D253102F8B4A9D3BFA750" \ |
2325 | "91386C0077937FE33FA3252D28855837" \ |
2326 | "AE1B484A8A9A45F7EE8C0C634F99E8CD" \ |
2327 | "DF79C5CE07EE72C7F123142198164234" \ |
2328 | "CABB724CF78B8173B9F880FC86322407" \ |
2329 | "AF1FEDFDDE2BEB674CA15F3E81A1521E" \ |
2330 | "071513A1E85B5DFA031F21ECAE91A34D" |
2331 | |
2332 | #define RSA_P "C36D0EB7FCD285223CFB5AABA5BDA3D8" \ |
2333 | "2C01CAD19EA484A87EA4377637E75500" \ |
2334 | "FCB2005C5C7DD6EC4AC023CDA285D796" \ |
2335 | "C3D9E75E1EFC42488BB4F1D13AC30A57" |
2336 | |
2337 | #define RSA_Q "C000DF51A7C77AE8D7C7370C1FF55B69" \ |
2338 | "E211C2B9E5DB1ED0BF61D0D9899620F4" \ |
2339 | "910E4168387E3C30AA1E00C339A79508" \ |
2340 | "8452DD96A9A5EA5D9DCA68DA636032AF" |
2341 | |
2342 | #define PT_LEN 24 |
2343 | #define RSA_PT "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \ |
2344 | "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD" |
2345 | |
2346 | #if defined(MBEDTLS_PKCS1_V15) |
2347 | static int myrand( void *rng_state, unsigned char *output, size_t len ) |
2348 | { |
2349 | #if !defined(__OpenBSD__) && !defined(__NetBSD__) |
2350 | size_t i; |
2351 | |
2352 | if( rng_state != NULL ) |
2353 | rng_state = NULL; |
2354 | |
2355 | for( i = 0; i < len; ++i ) |
2356 | output[i] = rand(); |
2357 | #else |
2358 | if( rng_state != NULL ) |
2359 | rng_state = NULL; |
2360 | |
2361 | arc4random_buf( output, len ); |
2362 | #endif /* !OpenBSD && !NetBSD */ |
2363 | |
2364 | return( 0 ); |
2365 | } |
2366 | #endif /* MBEDTLS_PKCS1_V15 */ |
2367 | |
2368 | /* |
2369 | * Checkup routine |
2370 | */ |
2371 | int mbedtls_rsa_self_test( int verbose ) |
2372 | { |
2373 | int ret = 0; |
2374 | #if defined(MBEDTLS_PKCS1_V15) |
2375 | size_t len; |
2376 | mbedtls_rsa_context rsa; |
2377 | unsigned char rsa_plaintext[PT_LEN]; |
2378 | unsigned char rsa_decrypted[PT_LEN]; |
2379 | unsigned char rsa_ciphertext[KEY_LEN]; |
2380 | #if defined(MBEDTLS_SHA1_C) |
2381 | unsigned char sha1sum[20]; |
2382 | #endif |
2383 | |
2384 | mbedtls_mpi K; |
2385 | |
2386 | mbedtls_mpi_init( &K ); |
2387 | mbedtls_rsa_init( &rsa ); |
2388 | |
2389 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_N ) ); |
2390 | MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, &K, NULL, NULL, NULL, NULL ) ); |
2391 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_P ) ); |
2392 | MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, &K, NULL, NULL, NULL ) ); |
2393 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_Q ) ); |
2394 | MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, &K, NULL, NULL ) ); |
2395 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_D ) ); |
2396 | MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, &K, NULL ) ); |
2397 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_E ) ); |
2398 | MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, NULL, &K ) ); |
2399 | |
2400 | MBEDTLS_MPI_CHK( mbedtls_rsa_complete( &rsa ) ); |
2401 | |
2402 | if( verbose != 0 ) |
2403 | mbedtls_printf( " RSA key validation: " ); |
2404 | |
2405 | if( mbedtls_rsa_check_pubkey( &rsa ) != 0 || |
2406 | mbedtls_rsa_check_privkey( &rsa ) != 0 ) |
2407 | { |
2408 | if( verbose != 0 ) |
2409 | mbedtls_printf( "failed\n" ); |
2410 | |
2411 | ret = 1; |
2412 | goto cleanup; |
2413 | } |
2414 | |
2415 | if( verbose != 0 ) |
2416 | mbedtls_printf( "passed\n PKCS#1 encryption : " ); |
2417 | |
2418 | memcpy( rsa_plaintext, RSA_PT, PT_LEN ); |
2419 | |
2420 | if( mbedtls_rsa_pkcs1_encrypt( &rsa, myrand, NULL, |
2421 | PT_LEN, rsa_plaintext, |
2422 | rsa_ciphertext ) != 0 ) |
2423 | { |
2424 | if( verbose != 0 ) |
2425 | mbedtls_printf( "failed\n" ); |
2426 | |
2427 | ret = 1; |
2428 | goto cleanup; |
2429 | } |
2430 | |
2431 | if( verbose != 0 ) |
2432 | mbedtls_printf( "passed\n PKCS#1 decryption : " ); |
2433 | |
2434 | if( mbedtls_rsa_pkcs1_decrypt( &rsa, myrand, NULL, |
2435 | &len, rsa_ciphertext, rsa_decrypted, |
2436 | sizeof(rsa_decrypted) ) != 0 ) |
2437 | { |
2438 | if( verbose != 0 ) |
2439 | mbedtls_printf( "failed\n" ); |
2440 | |
2441 | ret = 1; |
2442 | goto cleanup; |
2443 | } |
2444 | |
2445 | if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 ) |
2446 | { |
2447 | if( verbose != 0 ) |
2448 | mbedtls_printf( "failed\n" ); |
2449 | |
2450 | ret = 1; |
2451 | goto cleanup; |
2452 | } |
2453 | |
2454 | if( verbose != 0 ) |
2455 | mbedtls_printf( "passed\n" ); |
2456 | |
2457 | #if defined(MBEDTLS_SHA1_C) |
2458 | if( verbose != 0 ) |
2459 | mbedtls_printf( " PKCS#1 data sign : " ); |
2460 | |
2461 | if( mbedtls_sha1( rsa_plaintext, PT_LEN, sha1sum ) != 0 ) |
2462 | { |
2463 | if( verbose != 0 ) |
2464 | mbedtls_printf( "failed\n" ); |
2465 | |
2466 | return( 1 ); |
2467 | } |
2468 | |
2469 | if( mbedtls_rsa_pkcs1_sign( &rsa, myrand, NULL, |
2470 | MBEDTLS_MD_SHA1, 20, |
2471 | sha1sum, rsa_ciphertext ) != 0 ) |
2472 | { |
2473 | if( verbose != 0 ) |
2474 | mbedtls_printf( "failed\n" ); |
2475 | |
2476 | ret = 1; |
2477 | goto cleanup; |
2478 | } |
2479 | |
2480 | if( verbose != 0 ) |
2481 | mbedtls_printf( "passed\n PKCS#1 sig. verify: " ); |
2482 | |
2483 | if( mbedtls_rsa_pkcs1_verify( &rsa, MBEDTLS_MD_SHA1, 20, |
2484 | sha1sum, rsa_ciphertext ) != 0 ) |
2485 | { |
2486 | if( verbose != 0 ) |
2487 | mbedtls_printf( "failed\n" ); |
2488 | |
2489 | ret = 1; |
2490 | goto cleanup; |
2491 | } |
2492 | |
2493 | if( verbose != 0 ) |
2494 | mbedtls_printf( "passed\n" ); |
2495 | #endif /* MBEDTLS_SHA1_C */ |
2496 | |
2497 | if( verbose != 0 ) |
2498 | mbedtls_printf( "\n" ); |
2499 | |
2500 | cleanup: |
2501 | mbedtls_mpi_free( &K ); |
2502 | mbedtls_rsa_free( &rsa ); |
2503 | #else /* MBEDTLS_PKCS1_V15 */ |
2504 | ((void) verbose); |
2505 | #endif /* MBEDTLS_PKCS1_V15 */ |
2506 | return( ret ); |
2507 | } |
2508 | |
2509 | #endif /* MBEDTLS_SELF_TEST */ |
2510 | |
2511 | #endif /* MBEDTLS_RSA_C */ |
2512 | |