1/*
2 * The RSA public-key cryptosystem
3 *
4 * Copyright The Mbed TLS Contributors
5 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 */
19
20/*
21 * The following sources were referenced in the design of this implementation
22 * of the RSA algorithm:
23 *
24 * [1] A method for obtaining digital signatures and public-key cryptosystems
25 * R Rivest, A Shamir, and L Adleman
26 * http://people.csail.mit.edu/rivest/pubs.html#RSA78
27 *
28 * [2] Handbook of Applied Cryptography - 1997, Chapter 8
29 * Menezes, van Oorschot and Vanstone
30 *
31 * [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks
32 * Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and
33 * Stefan Mangard
34 * https://arxiv.org/abs/1702.08719v2
35 *
36 */
37
38#include "common.h"
39
40#if defined(MBEDTLS_RSA_C)
41
42#include "mbedtls/rsa.h"
43#include "rsa_alt_helpers.h"
44#include "mbedtls/oid.h"
45#include "mbedtls/platform_util.h"
46#include "mbedtls/error.h"
47#include "constant_time_internal.h"
48#include "mbedtls/constant_time.h"
49
50#include <string.h>
51
52#if defined(MBEDTLS_PKCS1_V21)
53#include "mbedtls/md.h"
54#endif
55
56#if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__) && !defined(__NetBSD__)
57#include <stdlib.h>
58#endif
59
60#if defined(MBEDTLS_PLATFORM_C)
61#include "mbedtls/platform.h"
62#else
63#include <stdio.h>
64#define mbedtls_printf printf
65#define mbedtls_calloc calloc
66#define mbedtls_free free
67#endif
68
69#if !defined(MBEDTLS_RSA_ALT)
70
71/* Parameter validation macros */
72#define RSA_VALIDATE_RET( cond ) \
73 MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_RSA_BAD_INPUT_DATA )
74#define RSA_VALIDATE( cond ) \
75 MBEDTLS_INTERNAL_VALIDATE( cond )
76
77int mbedtls_rsa_import( mbedtls_rsa_context *ctx,
78 const mbedtls_mpi *N,
79 const mbedtls_mpi *P, const mbedtls_mpi *Q,
80 const mbedtls_mpi *D, const mbedtls_mpi *E )
81{
82 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
83 RSA_VALIDATE_RET( ctx != NULL );
84
85 if( ( N != NULL && ( ret = mbedtls_mpi_copy( X: &ctx->N, Y: N ) ) != 0 ) ||
86 ( P != NULL && ( ret = mbedtls_mpi_copy( X: &ctx->P, Y: P ) ) != 0 ) ||
87 ( Q != NULL && ( ret = mbedtls_mpi_copy( X: &ctx->Q, Y: Q ) ) != 0 ) ||
88 ( D != NULL && ( ret = mbedtls_mpi_copy( X: &ctx->D, Y: D ) ) != 0 ) ||
89 ( E != NULL && ( ret = mbedtls_mpi_copy( X: &ctx->E, Y: E ) ) != 0 ) )
90 {
91 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
92 }
93
94 if( N != NULL )
95 ctx->len = mbedtls_mpi_size( X: &ctx->N );
96
97 return( 0 );
98}
99
100int mbedtls_rsa_import_raw( mbedtls_rsa_context *ctx,
101 unsigned char const *N, size_t N_len,
102 unsigned char const *P, size_t P_len,
103 unsigned char const *Q, size_t Q_len,
104 unsigned char const *D, size_t D_len,
105 unsigned char const *E, size_t E_len )
106{
107 int ret = 0;
108 RSA_VALIDATE_RET( ctx != NULL );
109
110 if( N != NULL )
111 {
112 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->N, N, N_len ) );
113 ctx->len = mbedtls_mpi_size( X: &ctx->N );
114 }
115
116 if( P != NULL )
117 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->P, P, P_len ) );
118
119 if( Q != NULL )
120 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->Q, Q, Q_len ) );
121
122 if( D != NULL )
123 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->D, D, D_len ) );
124
125 if( E != NULL )
126 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->E, E, E_len ) );
127
128cleanup:
129
130 if( ret != 0 )
131 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
132
133 return( 0 );
134}
135
136/*
137 * Checks whether the context fields are set in such a way
138 * that the RSA primitives will be able to execute without error.
139 * It does *not* make guarantees for consistency of the parameters.
140 */
141static int rsa_check_context( mbedtls_rsa_context const *ctx, int is_priv,
142 int blinding_needed )
143{
144#if !defined(MBEDTLS_RSA_NO_CRT)
145 /* blinding_needed is only used for NO_CRT to decide whether
146 * P,Q need to be present or not. */
147 ((void) blinding_needed);
148#endif
149
150 if( ctx->len != mbedtls_mpi_size( X: &ctx->N ) ||
151 ctx->len > MBEDTLS_MPI_MAX_SIZE )
152 {
153 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
154 }
155
156 /*
157 * 1. Modular exponentiation needs positive, odd moduli.
158 */
159
160 /* Modular exponentiation wrt. N is always used for
161 * RSA public key operations. */
162 if( mbedtls_mpi_cmp_int( X: &ctx->N, z: 0 ) <= 0 ||
163 mbedtls_mpi_get_bit( X: &ctx->N, pos: 0 ) == 0 )
164 {
165 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
166 }
167
168#if !defined(MBEDTLS_RSA_NO_CRT)
169 /* Modular exponentiation for P and Q is only
170 * used for private key operations and if CRT
171 * is used. */
172 if( is_priv &&
173 ( mbedtls_mpi_cmp_int( X: &ctx->P, z: 0 ) <= 0 ||
174 mbedtls_mpi_get_bit( X: &ctx->P, pos: 0 ) == 0 ||
175 mbedtls_mpi_cmp_int( X: &ctx->Q, z: 0 ) <= 0 ||
176 mbedtls_mpi_get_bit( X: &ctx->Q, pos: 0 ) == 0 ) )
177 {
178 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
179 }
180#endif /* !MBEDTLS_RSA_NO_CRT */
181
182 /*
183 * 2. Exponents must be positive
184 */
185
186 /* Always need E for public key operations */
187 if( mbedtls_mpi_cmp_int( X: &ctx->E, z: 0 ) <= 0 )
188 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
189
190#if defined(MBEDTLS_RSA_NO_CRT)
191 /* For private key operations, use D or DP & DQ
192 * as (unblinded) exponents. */
193 if( is_priv && mbedtls_mpi_cmp_int( &ctx->D, 0 ) <= 0 )
194 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
195#else
196 if( is_priv &&
197 ( mbedtls_mpi_cmp_int( X: &ctx->DP, z: 0 ) <= 0 ||
198 mbedtls_mpi_cmp_int( X: &ctx->DQ, z: 0 ) <= 0 ) )
199 {
200 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
201 }
202#endif /* MBEDTLS_RSA_NO_CRT */
203
204 /* Blinding shouldn't make exponents negative either,
205 * so check that P, Q >= 1 if that hasn't yet been
206 * done as part of 1. */
207#if defined(MBEDTLS_RSA_NO_CRT)
208 if( is_priv && blinding_needed &&
209 ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 ||
210 mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ) )
211 {
212 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
213 }
214#endif
215
216 /* It wouldn't lead to an error if it wasn't satisfied,
217 * but check for QP >= 1 nonetheless. */
218#if !defined(MBEDTLS_RSA_NO_CRT)
219 if( is_priv &&
220 mbedtls_mpi_cmp_int( X: &ctx->QP, z: 0 ) <= 0 )
221 {
222 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
223 }
224#endif
225
226 return( 0 );
227}
228
229int mbedtls_rsa_complete( mbedtls_rsa_context *ctx )
230{
231 int ret = 0;
232 int have_N, have_P, have_Q, have_D, have_E;
233#if !defined(MBEDTLS_RSA_NO_CRT)
234 int have_DP, have_DQ, have_QP;
235#endif
236 int n_missing, pq_missing, d_missing, is_pub, is_priv;
237
238 RSA_VALIDATE_RET( ctx != NULL );
239
240 have_N = ( mbedtls_mpi_cmp_int( X: &ctx->N, z: 0 ) != 0 );
241 have_P = ( mbedtls_mpi_cmp_int( X: &ctx->P, z: 0 ) != 0 );
242 have_Q = ( mbedtls_mpi_cmp_int( X: &ctx->Q, z: 0 ) != 0 );
243 have_D = ( mbedtls_mpi_cmp_int( X: &ctx->D, z: 0 ) != 0 );
244 have_E = ( mbedtls_mpi_cmp_int( X: &ctx->E, z: 0 ) != 0 );
245
246#if !defined(MBEDTLS_RSA_NO_CRT)
247 have_DP = ( mbedtls_mpi_cmp_int( X: &ctx->DP, z: 0 ) != 0 );
248 have_DQ = ( mbedtls_mpi_cmp_int( X: &ctx->DQ, z: 0 ) != 0 );
249 have_QP = ( mbedtls_mpi_cmp_int( X: &ctx->QP, z: 0 ) != 0 );
250#endif
251
252 /*
253 * Check whether provided parameters are enough
254 * to deduce all others. The following incomplete
255 * parameter sets for private keys are supported:
256 *
257 * (1) P, Q missing.
258 * (2) D and potentially N missing.
259 *
260 */
261
262 n_missing = have_P && have_Q && have_D && have_E;
263 pq_missing = have_N && !have_P && !have_Q && have_D && have_E;
264 d_missing = have_P && have_Q && !have_D && have_E;
265 is_pub = have_N && !have_P && !have_Q && !have_D && have_E;
266
267 /* These three alternatives are mutually exclusive */
268 is_priv = n_missing || pq_missing || d_missing;
269
270 if( !is_priv && !is_pub )
271 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
272
273 /*
274 * Step 1: Deduce N if P, Q are provided.
275 */
276
277 if( !have_N && have_P && have_Q )
278 {
279 if( ( ret = mbedtls_mpi_mul_mpi( X: &ctx->N, A: &ctx->P,
280 B: &ctx->Q ) ) != 0 )
281 {
282 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
283 }
284
285 ctx->len = mbedtls_mpi_size( X: &ctx->N );
286 }
287
288 /*
289 * Step 2: Deduce and verify all remaining core parameters.
290 */
291
292 if( pq_missing )
293 {
294 ret = mbedtls_rsa_deduce_primes( N: &ctx->N, E: &ctx->E, D: &ctx->D,
295 P: &ctx->P, Q: &ctx->Q );
296 if( ret != 0 )
297 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
298
299 }
300 else if( d_missing )
301 {
302 if( ( ret = mbedtls_rsa_deduce_private_exponent( P: &ctx->P,
303 Q: &ctx->Q,
304 E: &ctx->E,
305 D: &ctx->D ) ) != 0 )
306 {
307 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
308 }
309 }
310
311 /*
312 * Step 3: Deduce all additional parameters specific
313 * to our current RSA implementation.
314 */
315
316#if !defined(MBEDTLS_RSA_NO_CRT)
317 if( is_priv && ! ( have_DP && have_DQ && have_QP ) )
318 {
319 ret = mbedtls_rsa_deduce_crt( P: &ctx->P, Q: &ctx->Q, D: &ctx->D,
320 DP: &ctx->DP, DQ: &ctx->DQ, QP: &ctx->QP );
321 if( ret != 0 )
322 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
323 }
324#endif /* MBEDTLS_RSA_NO_CRT */
325
326 /*
327 * Step 3: Basic sanity checks
328 */
329
330 return( rsa_check_context( ctx, is_priv, blinding_needed: 1 ) );
331}
332
333int mbedtls_rsa_export_raw( const mbedtls_rsa_context *ctx,
334 unsigned char *N, size_t N_len,
335 unsigned char *P, size_t P_len,
336 unsigned char *Q, size_t Q_len,
337 unsigned char *D, size_t D_len,
338 unsigned char *E, size_t E_len )
339{
340 int ret = 0;
341 int is_priv;
342 RSA_VALIDATE_RET( ctx != NULL );
343
344 /* Check if key is private or public */
345 is_priv =
346 mbedtls_mpi_cmp_int( X: &ctx->N, z: 0 ) != 0 &&
347 mbedtls_mpi_cmp_int( X: &ctx->P, z: 0 ) != 0 &&
348 mbedtls_mpi_cmp_int( X: &ctx->Q, z: 0 ) != 0 &&
349 mbedtls_mpi_cmp_int( X: &ctx->D, z: 0 ) != 0 &&
350 mbedtls_mpi_cmp_int( X: &ctx->E, z: 0 ) != 0;
351
352 if( !is_priv )
353 {
354 /* If we're trying to export private parameters for a public key,
355 * something must be wrong. */
356 if( P != NULL || Q != NULL || D != NULL )
357 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
358
359 }
360
361 if( N != NULL )
362 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->N, N, N_len ) );
363
364 if( P != NULL )
365 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->P, P, P_len ) );
366
367 if( Q != NULL )
368 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->Q, Q, Q_len ) );
369
370 if( D != NULL )
371 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->D, D, D_len ) );
372
373 if( E != NULL )
374 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->E, E, E_len ) );
375
376cleanup:
377
378 return( ret );
379}
380
381int mbedtls_rsa_export( const mbedtls_rsa_context *ctx,
382 mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q,
383 mbedtls_mpi *D, mbedtls_mpi *E )
384{
385 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
386 int is_priv;
387 RSA_VALIDATE_RET( ctx != NULL );
388
389 /* Check if key is private or public */
390 is_priv =
391 mbedtls_mpi_cmp_int( X: &ctx->N, z: 0 ) != 0 &&
392 mbedtls_mpi_cmp_int( X: &ctx->P, z: 0 ) != 0 &&
393 mbedtls_mpi_cmp_int( X: &ctx->Q, z: 0 ) != 0 &&
394 mbedtls_mpi_cmp_int( X: &ctx->D, z: 0 ) != 0 &&
395 mbedtls_mpi_cmp_int( X: &ctx->E, z: 0 ) != 0;
396
397 if( !is_priv )
398 {
399 /* If we're trying to export private parameters for a public key,
400 * something must be wrong. */
401 if( P != NULL || Q != NULL || D != NULL )
402 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
403
404 }
405
406 /* Export all requested core parameters. */
407
408 if( ( N != NULL && ( ret = mbedtls_mpi_copy( X: N, Y: &ctx->N ) ) != 0 ) ||
409 ( P != NULL && ( ret = mbedtls_mpi_copy( X: P, Y: &ctx->P ) ) != 0 ) ||
410 ( Q != NULL && ( ret = mbedtls_mpi_copy( X: Q, Y: &ctx->Q ) ) != 0 ) ||
411 ( D != NULL && ( ret = mbedtls_mpi_copy( X: D, Y: &ctx->D ) ) != 0 ) ||
412 ( E != NULL && ( ret = mbedtls_mpi_copy( X: E, Y: &ctx->E ) ) != 0 ) )
413 {
414 return( ret );
415 }
416
417 return( 0 );
418}
419
420/*
421 * Export CRT parameters
422 * This must also be implemented if CRT is not used, for being able to
423 * write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt
424 * can be used in this case.
425 */
426int mbedtls_rsa_export_crt( const mbedtls_rsa_context *ctx,
427 mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP )
428{
429 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
430 int is_priv;
431 RSA_VALIDATE_RET( ctx != NULL );
432
433 /* Check if key is private or public */
434 is_priv =
435 mbedtls_mpi_cmp_int( X: &ctx->N, z: 0 ) != 0 &&
436 mbedtls_mpi_cmp_int( X: &ctx->P, z: 0 ) != 0 &&
437 mbedtls_mpi_cmp_int( X: &ctx->Q, z: 0 ) != 0 &&
438 mbedtls_mpi_cmp_int( X: &ctx->D, z: 0 ) != 0 &&
439 mbedtls_mpi_cmp_int( X: &ctx->E, z: 0 ) != 0;
440
441 if( !is_priv )
442 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
443
444#if !defined(MBEDTLS_RSA_NO_CRT)
445 /* Export all requested blinding parameters. */
446 if( ( DP != NULL && ( ret = mbedtls_mpi_copy( X: DP, Y: &ctx->DP ) ) != 0 ) ||
447 ( DQ != NULL && ( ret = mbedtls_mpi_copy( X: DQ, Y: &ctx->DQ ) ) != 0 ) ||
448 ( QP != NULL && ( ret = mbedtls_mpi_copy( X: QP, Y: &ctx->QP ) ) != 0 ) )
449 {
450 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
451 }
452#else
453 if( ( ret = mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
454 DP, DQ, QP ) ) != 0 )
455 {
456 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
457 }
458#endif
459
460 return( 0 );
461}
462
463/*
464 * Initialize an RSA context
465 */
466void mbedtls_rsa_init( mbedtls_rsa_context *ctx )
467{
468 RSA_VALIDATE( ctx != NULL );
469
470 memset( s: ctx, c: 0, n: sizeof( mbedtls_rsa_context ) );
471
472 ctx->padding = MBEDTLS_RSA_PKCS_V15;
473 ctx->hash_id = MBEDTLS_MD_NONE;
474
475#if defined(MBEDTLS_THREADING_C)
476 /* Set ctx->ver to nonzero to indicate that the mutex has been
477 * initialized and will need to be freed. */
478 ctx->ver = 1;
479 mbedtls_mutex_init( &ctx->mutex );
480#endif
481}
482
483/*
484 * Set padding for an existing RSA context
485 */
486int mbedtls_rsa_set_padding( mbedtls_rsa_context *ctx, int padding,
487 mbedtls_md_type_t hash_id )
488{
489 switch( padding )
490 {
491#if defined(MBEDTLS_PKCS1_V15)
492 case MBEDTLS_RSA_PKCS_V15:
493 break;
494#endif
495
496#if defined(MBEDTLS_PKCS1_V21)
497 case MBEDTLS_RSA_PKCS_V21:
498 break;
499#endif
500 default:
501 return( MBEDTLS_ERR_RSA_INVALID_PADDING );
502 }
503
504 if( ( padding == MBEDTLS_RSA_PKCS_V21 ) &&
505 ( hash_id != MBEDTLS_MD_NONE ) )
506 {
507 const mbedtls_md_info_t *md_info;
508
509 md_info = mbedtls_md_info_from_type( md_type: hash_id );
510 if( md_info == NULL )
511 return( MBEDTLS_ERR_RSA_INVALID_PADDING );
512 }
513
514 ctx->padding = padding;
515 ctx->hash_id = hash_id;
516
517 return( 0 );
518}
519
520/*
521 * Get length in bytes of RSA modulus
522 */
523
524size_t mbedtls_rsa_get_len( const mbedtls_rsa_context *ctx )
525{
526 return( ctx->len );
527}
528
529
530#if defined(MBEDTLS_GENPRIME)
531
532/*
533 * Generate an RSA keypair
534 *
535 * This generation method follows the RSA key pair generation procedure of
536 * FIPS 186-4 if 2^16 < exponent < 2^256 and nbits = 2048 or nbits = 3072.
537 */
538int mbedtls_rsa_gen_key( mbedtls_rsa_context *ctx,
539 int (*f_rng)(void *, unsigned char *, size_t),
540 void *p_rng,
541 unsigned int nbits, int exponent )
542{
543 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
544 mbedtls_mpi H, G, L;
545 int prime_quality = 0;
546 RSA_VALIDATE_RET( ctx != NULL );
547 RSA_VALIDATE_RET( f_rng != NULL );
548
549 /*
550 * If the modulus is 1024 bit long or shorter, then the security strength of
551 * the RSA algorithm is less than or equal to 80 bits and therefore an error
552 * rate of 2^-80 is sufficient.
553 */
554 if( nbits > 1024 )
555 prime_quality = MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR;
556
557 mbedtls_mpi_init( &H );
558 mbedtls_mpi_init( &G );
559 mbedtls_mpi_init( &L );
560
561 if( nbits < 128 || exponent < 3 || nbits % 2 != 0 )
562 {
563 ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
564 goto cleanup;
565 }
566
567 /*
568 * find primes P and Q with Q < P so that:
569 * 1. |P-Q| > 2^( nbits / 2 - 100 )
570 * 2. GCD( E, (P-1)*(Q-1) ) == 1
571 * 3. E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 )
572 */
573 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &ctx->E, exponent ) );
574
575 do
576 {
577 MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->P, nbits >> 1,
578 prime_quality, f_rng, p_rng ) );
579
580 MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->Q, nbits >> 1,
581 prime_quality, f_rng, p_rng ) );
582
583 /* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */
584 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &H, &ctx->P, &ctx->Q ) );
585 if( mbedtls_mpi_bitlen( &H ) <= ( ( nbits >= 200 ) ? ( ( nbits >> 1 ) - 99 ) : 0 ) )
586 continue;
587
588 /* not required by any standards, but some users rely on the fact that P > Q */
589 if( H.s < 0 )
590 mbedtls_mpi_swap( &ctx->P, &ctx->Q );
591
592 /* Temporarily replace P,Q by P-1, Q-1 */
593 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->P, &ctx->P, 1 ) );
594 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->Q, &ctx->Q, 1 ) );
595 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &H, &ctx->P, &ctx->Q ) );
596
597 /* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */
598 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->E, &H ) );
599 if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
600 continue;
601
602 /* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */
603 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->P, &ctx->Q ) );
604 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &L, NULL, &H, &G ) );
605 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &ctx->D, &ctx->E, &L ) );
606
607 if( mbedtls_mpi_bitlen( &ctx->D ) <= ( ( nbits + 1 ) / 2 ) ) // (FIPS 186-4 §B.3.1 criterion 3(a))
608 continue;
609
610 break;
611 }
612 while( 1 );
613
614 /* Restore P,Q */
615 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->P, &ctx->P, 1 ) );
616 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->Q, &ctx->Q, 1 ) );
617
618 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
619
620 ctx->len = mbedtls_mpi_size( &ctx->N );
621
622#if !defined(MBEDTLS_RSA_NO_CRT)
623 /*
624 * DP = D mod (P - 1)
625 * DQ = D mod (Q - 1)
626 * QP = Q^-1 mod P
627 */
628 MBEDTLS_MPI_CHK( mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
629 &ctx->DP, &ctx->DQ, &ctx->QP ) );
630#endif /* MBEDTLS_RSA_NO_CRT */
631
632 /* Double-check */
633 MBEDTLS_MPI_CHK( mbedtls_rsa_check_privkey( ctx ) );
634
635cleanup:
636
637 mbedtls_mpi_free( &H );
638 mbedtls_mpi_free( &G );
639 mbedtls_mpi_free( &L );
640
641 if( ret != 0 )
642 {
643 mbedtls_rsa_free( ctx );
644
645 if( ( -ret & ~0x7f ) == 0 )
646 ret = MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_KEY_GEN_FAILED, ret );
647 return( ret );
648 }
649
650 return( 0 );
651}
652
653#endif /* MBEDTLS_GENPRIME */
654
655/*
656 * Check a public RSA key
657 */
658int mbedtls_rsa_check_pubkey( const mbedtls_rsa_context *ctx )
659{
660 RSA_VALIDATE_RET( ctx != NULL );
661
662 if( rsa_check_context( ctx, is_priv: 0 /* public */, blinding_needed: 0 /* no blinding */ ) != 0 )
663 return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
664
665 if( mbedtls_mpi_bitlen( X: &ctx->N ) < 128 )
666 {
667 return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
668 }
669
670 if( mbedtls_mpi_get_bit( X: &ctx->E, pos: 0 ) == 0 ||
671 mbedtls_mpi_bitlen( X: &ctx->E ) < 2 ||
672 mbedtls_mpi_cmp_mpi( X: &ctx->E, Y: &ctx->N ) >= 0 )
673 {
674 return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
675 }
676
677 return( 0 );
678}
679
680/*
681 * Check for the consistency of all fields in an RSA private key context
682 */
683int mbedtls_rsa_check_privkey( const mbedtls_rsa_context *ctx )
684{
685 RSA_VALIDATE_RET( ctx != NULL );
686
687 if( mbedtls_rsa_check_pubkey( ctx ) != 0 ||
688 rsa_check_context( ctx, is_priv: 1 /* private */, blinding_needed: 1 /* blinding */ ) != 0 )
689 {
690 return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
691 }
692
693 if( mbedtls_rsa_validate_params( N: &ctx->N, P: &ctx->P, Q: &ctx->Q,
694 D: &ctx->D, E: &ctx->E, NULL, NULL ) != 0 )
695 {
696 return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
697 }
698
699#if !defined(MBEDTLS_RSA_NO_CRT)
700 else if( mbedtls_rsa_validate_crt( P: &ctx->P, Q: &ctx->Q, D: &ctx->D,
701 DP: &ctx->DP, DQ: &ctx->DQ, QP: &ctx->QP ) != 0 )
702 {
703 return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
704 }
705#endif
706
707 return( 0 );
708}
709
710/*
711 * Check if contexts holding a public and private key match
712 */
713int mbedtls_rsa_check_pub_priv( const mbedtls_rsa_context *pub,
714 const mbedtls_rsa_context *prv )
715{
716 RSA_VALIDATE_RET( pub != NULL );
717 RSA_VALIDATE_RET( prv != NULL );
718
719 if( mbedtls_rsa_check_pubkey( ctx: pub ) != 0 ||
720 mbedtls_rsa_check_privkey( ctx: prv ) != 0 )
721 {
722 return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
723 }
724
725 if( mbedtls_mpi_cmp_mpi( X: &pub->N, Y: &prv->N ) != 0 ||
726 mbedtls_mpi_cmp_mpi( X: &pub->E, Y: &prv->E ) != 0 )
727 {
728 return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
729 }
730
731 return( 0 );
732}
733
734/*
735 * Do an RSA public key operation
736 */
737int mbedtls_rsa_public( mbedtls_rsa_context *ctx,
738 const unsigned char *input,
739 unsigned char *output )
740{
741 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
742 size_t olen;
743 mbedtls_mpi T;
744 RSA_VALIDATE_RET( ctx != NULL );
745 RSA_VALIDATE_RET( input != NULL );
746 RSA_VALIDATE_RET( output != NULL );
747
748 if( rsa_check_context( ctx, is_priv: 0 /* public */, blinding_needed: 0 /* no blinding */ ) )
749 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
750
751 mbedtls_mpi_init( X: &T );
752
753#if defined(MBEDTLS_THREADING_C)
754 if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
755 return( ret );
756#endif
757
758 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
759
760 if( mbedtls_mpi_cmp_mpi( X: &T, Y: &ctx->N ) >= 0 )
761 {
762 ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
763 goto cleanup;
764 }
765
766 olen = ctx->len;
767 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) );
768 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
769
770cleanup:
771#if defined(MBEDTLS_THREADING_C)
772 if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
773 return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
774#endif
775
776 mbedtls_mpi_free( X: &T );
777
778 if( ret != 0 )
779 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_PUBLIC_FAILED, ret ) );
780
781 return( 0 );
782}
783
784/*
785 * Generate or update blinding values, see section 10 of:
786 * KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
787 * DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer
788 * Berlin Heidelberg, 1996. p. 104-113.
789 */
790static int rsa_prepare_blinding( mbedtls_rsa_context *ctx,
791 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
792{
793 int ret, count = 0;
794 mbedtls_mpi R;
795
796 mbedtls_mpi_init( X: &R );
797
798 if( ctx->Vf.p != NULL )
799 {
800 /* We already have blinding values, just update them by squaring */
801 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &ctx->Vi ) );
802 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
803 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vf, &ctx->Vf, &ctx->Vf ) );
804 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vf, &ctx->Vf, &ctx->N ) );
805
806 goto cleanup;
807 }
808
809 /* Unblinding value: Vf = random number, invertible mod N */
810 do {
811 if( count++ > 10 )
812 {
813 ret = MBEDTLS_ERR_RSA_RNG_FAILED;
814 goto cleanup;
815 }
816
817 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &ctx->Vf, ctx->len - 1, f_rng, p_rng ) );
818
819 /* Compute Vf^-1 as R * (R Vf)^-1 to avoid leaks from inv_mod. */
820 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, ctx->len - 1, f_rng, p_rng ) );
821 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vf, &R ) );
822 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
823
824 /* At this point, Vi is invertible mod N if and only if both Vf and R
825 * are invertible mod N. If one of them isn't, we don't need to know
826 * which one, we just loop and choose new values for both of them.
827 * (Each iteration succeeds with overwhelming probability.) */
828 ret = mbedtls_mpi_inv_mod( X: &ctx->Vi, A: &ctx->Vi, N: &ctx->N );
829 if( ret != 0 && ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
830 goto cleanup;
831
832 } while( ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
833
834 /* Finish the computation of Vf^-1 = R * (R Vf)^-1 */
835 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &R ) );
836 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
837
838 /* Blinding value: Vi = Vf^(-e) mod N
839 * (Vi already contains Vf^-1 at this point) */
840 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN ) );
841
842
843cleanup:
844 mbedtls_mpi_free( X: &R );
845
846 return( ret );
847}
848
849/*
850 * Exponent blinding supposed to prevent side-channel attacks using multiple
851 * traces of measurements to recover the RSA key. The more collisions are there,
852 * the more bits of the key can be recovered. See [3].
853 *
854 * Collecting n collisions with m bit long blinding value requires 2^(m-m/n)
855 * observations on avarage.
856 *
857 * For example with 28 byte blinding to achieve 2 collisions the adversary has
858 * to make 2^112 observations on avarage.
859 *
860 * (With the currently (as of 2017 April) known best algorithms breaking 2048
861 * bit RSA requires approximately as much time as trying out 2^112 random keys.
862 * Thus in this sense with 28 byte blinding the security is not reduced by
863 * side-channel attacks like the one in [3])
864 *
865 * This countermeasure does not help if the key recovery is possible with a
866 * single trace.
867 */
868#define RSA_EXPONENT_BLINDING 28
869
870/*
871 * Do an RSA private key operation
872 */
873int mbedtls_rsa_private( mbedtls_rsa_context *ctx,
874 int (*f_rng)(void *, unsigned char *, size_t),
875 void *p_rng,
876 const unsigned char *input,
877 unsigned char *output )
878{
879 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
880 size_t olen;
881
882 /* Temporary holding the result */
883 mbedtls_mpi T;
884
885 /* Temporaries holding P-1, Q-1 and the
886 * exponent blinding factor, respectively. */
887 mbedtls_mpi P1, Q1, R;
888
889#if !defined(MBEDTLS_RSA_NO_CRT)
890 /* Temporaries holding the results mod p resp. mod q. */
891 mbedtls_mpi TP, TQ;
892
893 /* Temporaries holding the blinded exponents for
894 * the mod p resp. mod q computation (if used). */
895 mbedtls_mpi DP_blind, DQ_blind;
896
897 /* Pointers to actual exponents to be used - either the unblinded
898 * or the blinded ones, depending on the presence of a PRNG. */
899 mbedtls_mpi *DP = &ctx->DP;
900 mbedtls_mpi *DQ = &ctx->DQ;
901#else
902 /* Temporary holding the blinded exponent (if used). */
903 mbedtls_mpi D_blind;
904
905 /* Pointer to actual exponent to be used - either the unblinded
906 * or the blinded one, depending on the presence of a PRNG. */
907 mbedtls_mpi *D = &ctx->D;
908#endif /* MBEDTLS_RSA_NO_CRT */
909
910 /* Temporaries holding the initial input and the double
911 * checked result; should be the same in the end. */
912 mbedtls_mpi I, C;
913
914 RSA_VALIDATE_RET( ctx != NULL );
915 RSA_VALIDATE_RET( input != NULL );
916 RSA_VALIDATE_RET( output != NULL );
917
918 if( f_rng == NULL )
919 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
920
921 if( rsa_check_context( ctx, is_priv: 1 /* private key checks */,
922 blinding_needed: 1 /* blinding on */ ) != 0 )
923 {
924 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
925 }
926
927#if defined(MBEDTLS_THREADING_C)
928 if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
929 return( ret );
930#endif
931
932 /* MPI Initialization */
933 mbedtls_mpi_init( X: &T );
934
935 mbedtls_mpi_init( X: &P1 );
936 mbedtls_mpi_init( X: &Q1 );
937 mbedtls_mpi_init( X: &R );
938
939#if defined(MBEDTLS_RSA_NO_CRT)
940 mbedtls_mpi_init( &D_blind );
941#else
942 mbedtls_mpi_init( X: &DP_blind );
943 mbedtls_mpi_init( X: &DQ_blind );
944#endif
945
946#if !defined(MBEDTLS_RSA_NO_CRT)
947 mbedtls_mpi_init( X: &TP ); mbedtls_mpi_init( X: &TQ );
948#endif
949
950 mbedtls_mpi_init( X: &I );
951 mbedtls_mpi_init( X: &C );
952
953 /* End of MPI initialization */
954
955 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
956 if( mbedtls_mpi_cmp_mpi( X: &T, Y: &ctx->N ) >= 0 )
957 {
958 ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
959 goto cleanup;
960 }
961
962 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &I, &T ) );
963
964 /*
965 * Blinding
966 * T = T * Vi mod N
967 */
968 MBEDTLS_MPI_CHK( rsa_prepare_blinding( ctx, f_rng, p_rng ) );
969 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vi ) );
970 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
971
972 /*
973 * Exponent blinding
974 */
975 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &P1, &ctx->P, 1 ) );
976 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &Q1, &ctx->Q, 1 ) );
977
978#if defined(MBEDTLS_RSA_NO_CRT)
979 /*
980 * D_blind = ( P - 1 ) * ( Q - 1 ) * R + D
981 */
982 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
983 f_rng, p_rng ) );
984 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &P1, &Q1 ) );
985 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &D_blind, &R ) );
986 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &D_blind, &D_blind, &ctx->D ) );
987
988 D = &D_blind;
989#else
990 /*
991 * DP_blind = ( P - 1 ) * R + DP
992 */
993 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
994 f_rng, p_rng ) );
995 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DP_blind, &P1, &R ) );
996 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DP_blind, &DP_blind,
997 &ctx->DP ) );
998
999 DP = &DP_blind;
1000
1001 /*
1002 * DQ_blind = ( Q - 1 ) * R + DQ
1003 */
1004 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
1005 f_rng, p_rng ) );
1006 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DQ_blind, &Q1, &R ) );
1007 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DQ_blind, &DQ_blind,
1008 &ctx->DQ ) );
1009
1010 DQ = &DQ_blind;
1011#endif /* MBEDTLS_RSA_NO_CRT */
1012
1013#if defined(MBEDTLS_RSA_NO_CRT)
1014 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, D, &ctx->N, &ctx->RN ) );
1015#else
1016 /*
1017 * Faster decryption using the CRT
1018 *
1019 * TP = input ^ dP mod P
1020 * TQ = input ^ dQ mod Q
1021 */
1022
1023 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TP, &T, DP, &ctx->P, &ctx->RP ) );
1024 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TQ, &T, DQ, &ctx->Q, &ctx->RQ ) );
1025
1026 /*
1027 * T = (TP - TQ) * (Q^-1 mod P) mod P
1028 */
1029 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &TP, &TQ ) );
1030 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->QP ) );
1031 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &TP, &ctx->P ) );
1032
1033 /*
1034 * T = TQ + T * Q
1035 */
1036 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->Q ) );
1037 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T, &TQ, &TP ) );
1038#endif /* MBEDTLS_RSA_NO_CRT */
1039
1040 /*
1041 * Unblind
1042 * T = T * Vf mod N
1043 */
1044 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vf ) );
1045 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
1046
1047 /* Verify the result to prevent glitching attacks. */
1048 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &C, &T, &ctx->E,
1049 &ctx->N, &ctx->RN ) );
1050 if( mbedtls_mpi_cmp_mpi( X: &C, Y: &I ) != 0 )
1051 {
1052 ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
1053 goto cleanup;
1054 }
1055
1056 olen = ctx->len;
1057 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
1058
1059cleanup:
1060#if defined(MBEDTLS_THREADING_C)
1061 if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
1062 return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
1063#endif
1064
1065 mbedtls_mpi_free( X: &P1 );
1066 mbedtls_mpi_free( X: &Q1 );
1067 mbedtls_mpi_free( X: &R );
1068
1069#if defined(MBEDTLS_RSA_NO_CRT)
1070 mbedtls_mpi_free( &D_blind );
1071#else
1072 mbedtls_mpi_free( X: &DP_blind );
1073 mbedtls_mpi_free( X: &DQ_blind );
1074#endif
1075
1076 mbedtls_mpi_free( X: &T );
1077
1078#if !defined(MBEDTLS_RSA_NO_CRT)
1079 mbedtls_mpi_free( X: &TP ); mbedtls_mpi_free( X: &TQ );
1080#endif
1081
1082 mbedtls_mpi_free( X: &C );
1083 mbedtls_mpi_free( X: &I );
1084
1085 if( ret != 0 && ret >= -0x007f )
1086 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_PRIVATE_FAILED, ret ) );
1087
1088 return( ret );
1089}
1090
1091#if defined(MBEDTLS_PKCS1_V21)
1092/**
1093 * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
1094 *
1095 * \param dst buffer to mask
1096 * \param dlen length of destination buffer
1097 * \param src source of the mask generation
1098 * \param slen length of the source buffer
1099 * \param md_ctx message digest context to use
1100 */
1101static int mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src,
1102 size_t slen, mbedtls_md_context_t *md_ctx )
1103{
1104 unsigned char mask[MBEDTLS_MD_MAX_SIZE];
1105 unsigned char counter[4];
1106 unsigned char *p;
1107 unsigned int hlen;
1108 size_t i, use_len;
1109 int ret = 0;
1110
1111 memset( mask, 0, MBEDTLS_MD_MAX_SIZE );
1112 memset( counter, 0, 4 );
1113
1114 hlen = mbedtls_md_get_size( md_ctx->md_info );
1115
1116 /* Generate and apply dbMask */
1117 p = dst;
1118
1119 while( dlen > 0 )
1120 {
1121 use_len = hlen;
1122 if( dlen < hlen )
1123 use_len = dlen;
1124
1125 if( ( ret = mbedtls_md_starts( md_ctx ) ) != 0 )
1126 goto exit;
1127 if( ( ret = mbedtls_md_update( md_ctx, src, slen ) ) != 0 )
1128 goto exit;
1129 if( ( ret = mbedtls_md_update( md_ctx, counter, 4 ) ) != 0 )
1130 goto exit;
1131 if( ( ret = mbedtls_md_finish( md_ctx, mask ) ) != 0 )
1132 goto exit;
1133
1134 for( i = 0; i < use_len; ++i )
1135 *p++ ^= mask[i];
1136
1137 counter[3]++;
1138
1139 dlen -= use_len;
1140 }
1141
1142exit:
1143 mbedtls_platform_zeroize( mask, sizeof( mask ) );
1144
1145 return( ret );
1146}
1147#endif /* MBEDTLS_PKCS1_V21 */
1148
1149#if defined(MBEDTLS_PKCS1_V21)
1150/*
1151 * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
1152 */
1153int mbedtls_rsa_rsaes_oaep_encrypt( mbedtls_rsa_context *ctx,
1154 int (*f_rng)(void *, unsigned char *, size_t),
1155 void *p_rng,
1156 const unsigned char *label, size_t label_len,
1157 size_t ilen,
1158 const unsigned char *input,
1159 unsigned char *output )
1160{
1161 size_t olen;
1162 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1163 unsigned char *p = output;
1164 unsigned int hlen;
1165 const mbedtls_md_info_t *md_info;
1166 mbedtls_md_context_t md_ctx;
1167
1168 RSA_VALIDATE_RET( ctx != NULL );
1169 RSA_VALIDATE_RET( output != NULL );
1170 RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1171 RSA_VALIDATE_RET( label_len == 0 || label != NULL );
1172
1173 if( f_rng == NULL )
1174 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1175
1176 md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1177 if( md_info == NULL )
1178 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1179
1180 olen = ctx->len;
1181 hlen = mbedtls_md_get_size( md_info );
1182
1183 /* first comparison checks for overflow */
1184 if( ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2 )
1185 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1186
1187 memset( output, 0, olen );
1188
1189 *p++ = 0;
1190
1191 /* Generate a random octet string seed */
1192 if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 )
1193 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) );
1194
1195 p += hlen;
1196
1197 /* Construct DB */
1198 if( ( ret = mbedtls_md( md_info, label, label_len, p ) ) != 0 )
1199 return( ret );
1200 p += hlen;
1201 p += olen - 2 * hlen - 2 - ilen;
1202 *p++ = 1;
1203 if( ilen != 0 )
1204 memcpy( p, input, ilen );
1205
1206 mbedtls_md_init( &md_ctx );
1207 if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1208 goto exit;
1209
1210 /* maskedDB: Apply dbMask to DB */
1211 if( ( ret = mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,
1212 &md_ctx ) ) != 0 )
1213 goto exit;
1214
1215 /* maskedSeed: Apply seedMask to seed */
1216 if( ( ret = mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,
1217 &md_ctx ) ) != 0 )
1218 goto exit;
1219
1220exit:
1221 mbedtls_md_free( &md_ctx );
1222
1223 if( ret != 0 )
1224 return( ret );
1225
1226 return( mbedtls_rsa_public( ctx, output, output ) );
1227}
1228#endif /* MBEDTLS_PKCS1_V21 */
1229
1230#if defined(MBEDTLS_PKCS1_V15)
1231/*
1232 * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
1233 */
1234int mbedtls_rsa_rsaes_pkcs1_v15_encrypt( mbedtls_rsa_context *ctx,
1235 int (*f_rng)(void *, unsigned char *, size_t),
1236 void *p_rng, size_t ilen,
1237 const unsigned char *input,
1238 unsigned char *output )
1239{
1240 size_t nb_pad, olen;
1241 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1242 unsigned char *p = output;
1243
1244 RSA_VALIDATE_RET( ctx != NULL );
1245 RSA_VALIDATE_RET( output != NULL );
1246 RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1247
1248 olen = ctx->len;
1249
1250 /* first comparison checks for overflow */
1251 if( ilen + 11 < ilen || olen < ilen + 11 )
1252 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1253
1254 nb_pad = olen - 3 - ilen;
1255
1256 *p++ = 0;
1257
1258 if( f_rng == NULL )
1259 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1260
1261 *p++ = MBEDTLS_RSA_CRYPT;
1262
1263 while( nb_pad-- > 0 )
1264 {
1265 int rng_dl = 100;
1266
1267 do {
1268 ret = f_rng( p_rng, p, 1 );
1269 } while( *p == 0 && --rng_dl && ret == 0 );
1270
1271 /* Check if RNG failed to generate data */
1272 if( rng_dl == 0 || ret != 0 )
1273 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) );
1274
1275 p++;
1276 }
1277
1278 *p++ = 0;
1279 if( ilen != 0 )
1280 memcpy( dest: p, src: input, n: ilen );
1281
1282 return( mbedtls_rsa_public( ctx, input: output, output ) );
1283}
1284#endif /* MBEDTLS_PKCS1_V15 */
1285
1286/*
1287 * Add the message padding, then do an RSA operation
1288 */
1289int mbedtls_rsa_pkcs1_encrypt( mbedtls_rsa_context *ctx,
1290 int (*f_rng)(void *, unsigned char *, size_t),
1291 void *p_rng,
1292 size_t ilen,
1293 const unsigned char *input,
1294 unsigned char *output )
1295{
1296 RSA_VALIDATE_RET( ctx != NULL );
1297 RSA_VALIDATE_RET( output != NULL );
1298 RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1299
1300 switch( ctx->padding )
1301 {
1302#if defined(MBEDTLS_PKCS1_V15)
1303 case MBEDTLS_RSA_PKCS_V15:
1304 return mbedtls_rsa_rsaes_pkcs1_v15_encrypt( ctx, f_rng, p_rng,
1305 ilen, input, output );
1306#endif
1307
1308#if defined(MBEDTLS_PKCS1_V21)
1309 case MBEDTLS_RSA_PKCS_V21:
1310 return mbedtls_rsa_rsaes_oaep_encrypt( ctx, f_rng, p_rng, NULL, 0,
1311 ilen, input, output );
1312#endif
1313
1314 default:
1315 return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1316 }
1317}
1318
1319#if defined(MBEDTLS_PKCS1_V21)
1320/*
1321 * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
1322 */
1323int mbedtls_rsa_rsaes_oaep_decrypt( mbedtls_rsa_context *ctx,
1324 int (*f_rng)(void *, unsigned char *, size_t),
1325 void *p_rng,
1326 const unsigned char *label, size_t label_len,
1327 size_t *olen,
1328 const unsigned char *input,
1329 unsigned char *output,
1330 size_t output_max_len )
1331{
1332 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1333 size_t ilen, i, pad_len;
1334 unsigned char *p, bad, pad_done;
1335 unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1336 unsigned char lhash[MBEDTLS_MD_MAX_SIZE];
1337 unsigned int hlen;
1338 const mbedtls_md_info_t *md_info;
1339 mbedtls_md_context_t md_ctx;
1340
1341 RSA_VALIDATE_RET( ctx != NULL );
1342 RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1343 RSA_VALIDATE_RET( label_len == 0 || label != NULL );
1344 RSA_VALIDATE_RET( input != NULL );
1345 RSA_VALIDATE_RET( olen != NULL );
1346
1347 /*
1348 * Parameters sanity checks
1349 */
1350 if( ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1351 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1352
1353 ilen = ctx->len;
1354
1355 if( ilen < 16 || ilen > sizeof( buf ) )
1356 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1357
1358 md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1359 if( md_info == NULL )
1360 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1361
1362 hlen = mbedtls_md_get_size( md_info );
1363
1364 // checking for integer underflow
1365 if( 2 * hlen + 2 > ilen )
1366 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1367
1368 /*
1369 * RSA operation
1370 */
1371 ret = mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
1372
1373 if( ret != 0 )
1374 goto cleanup;
1375
1376 /*
1377 * Unmask data and generate lHash
1378 */
1379 mbedtls_md_init( &md_ctx );
1380 if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1381 {
1382 mbedtls_md_free( &md_ctx );
1383 goto cleanup;
1384 }
1385
1386 /* seed: Apply seedMask to maskedSeed */
1387 if( ( ret = mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
1388 &md_ctx ) ) != 0 ||
1389 /* DB: Apply dbMask to maskedDB */
1390 ( ret = mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
1391 &md_ctx ) ) != 0 )
1392 {
1393 mbedtls_md_free( &md_ctx );
1394 goto cleanup;
1395 }
1396
1397 mbedtls_md_free( &md_ctx );
1398
1399 /* Generate lHash */
1400 if( ( ret = mbedtls_md( md_info, label, label_len, lhash ) ) != 0 )
1401 goto cleanup;
1402
1403 /*
1404 * Check contents, in "constant-time"
1405 */
1406 p = buf;
1407 bad = 0;
1408
1409 bad |= *p++; /* First byte must be 0 */
1410
1411 p += hlen; /* Skip seed */
1412
1413 /* Check lHash */
1414 for( i = 0; i < hlen; i++ )
1415 bad |= lhash[i] ^ *p++;
1416
1417 /* Get zero-padding len, but always read till end of buffer
1418 * (minus one, for the 01 byte) */
1419 pad_len = 0;
1420 pad_done = 0;
1421 for( i = 0; i < ilen - 2 * hlen - 2; i++ )
1422 {
1423 pad_done |= p[i];
1424 pad_len += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
1425 }
1426
1427 p += pad_len;
1428 bad |= *p++ ^ 0x01;
1429
1430 /*
1431 * The only information "leaked" is whether the padding was correct or not
1432 * (eg, no data is copied if it was not correct). This meets the
1433 * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
1434 * the different error conditions.
1435 */
1436 if( bad != 0 )
1437 {
1438 ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
1439 goto cleanup;
1440 }
1441
1442 if( ilen - ( p - buf ) > output_max_len )
1443 {
1444 ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
1445 goto cleanup;
1446 }
1447
1448 *olen = ilen - (p - buf);
1449 if( *olen != 0 )
1450 memcpy( output, p, *olen );
1451 ret = 0;
1452
1453cleanup:
1454 mbedtls_platform_zeroize( buf, sizeof( buf ) );
1455 mbedtls_platform_zeroize( lhash, sizeof( lhash ) );
1456
1457 return( ret );
1458}
1459#endif /* MBEDTLS_PKCS1_V21 */
1460
1461#if defined(MBEDTLS_PKCS1_V15)
1462/*
1463 * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
1464 */
1465int mbedtls_rsa_rsaes_pkcs1_v15_decrypt( mbedtls_rsa_context *ctx,
1466 int (*f_rng)(void *, unsigned char *, size_t),
1467 void *p_rng,
1468 size_t *olen,
1469 const unsigned char *input,
1470 unsigned char *output,
1471 size_t output_max_len )
1472{
1473 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1474 size_t ilen;
1475 unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1476
1477 RSA_VALIDATE_RET( ctx != NULL );
1478 RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1479 RSA_VALIDATE_RET( input != NULL );
1480 RSA_VALIDATE_RET( olen != NULL );
1481
1482 ilen = ctx->len;
1483
1484 if( ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1485 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1486
1487 if( ilen < 16 || ilen > sizeof( buf ) )
1488 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1489
1490 ret = mbedtls_rsa_private( ctx, f_rng, p_rng, input, output: buf );
1491
1492 if( ret != 0 )
1493 goto cleanup;
1494
1495 ret = mbedtls_ct_rsaes_pkcs1_v15_unpadding( input: buf, ilen,
1496 output, output_max_len, olen );
1497
1498cleanup:
1499 mbedtls_platform_zeroize( buf, len: sizeof( buf ) );
1500
1501 return( ret );
1502}
1503#endif /* MBEDTLS_PKCS1_V15 */
1504
1505/*
1506 * Do an RSA operation, then remove the message padding
1507 */
1508int mbedtls_rsa_pkcs1_decrypt( mbedtls_rsa_context *ctx,
1509 int (*f_rng)(void *, unsigned char *, size_t),
1510 void *p_rng,
1511 size_t *olen,
1512 const unsigned char *input,
1513 unsigned char *output,
1514 size_t output_max_len)
1515{
1516 RSA_VALIDATE_RET( ctx != NULL );
1517 RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1518 RSA_VALIDATE_RET( input != NULL );
1519 RSA_VALIDATE_RET( olen != NULL );
1520
1521 switch( ctx->padding )
1522 {
1523#if defined(MBEDTLS_PKCS1_V15)
1524 case MBEDTLS_RSA_PKCS_V15:
1525 return mbedtls_rsa_rsaes_pkcs1_v15_decrypt( ctx, f_rng, p_rng, olen,
1526 input, output, output_max_len );
1527#endif
1528
1529#if defined(MBEDTLS_PKCS1_V21)
1530 case MBEDTLS_RSA_PKCS_V21:
1531 return mbedtls_rsa_rsaes_oaep_decrypt( ctx, f_rng, p_rng, NULL, 0,
1532 olen, input, output,
1533 output_max_len );
1534#endif
1535
1536 default:
1537 return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1538 }
1539}
1540
1541#if defined(MBEDTLS_PKCS1_V21)
1542static int rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx,
1543 int (*f_rng)(void *, unsigned char *, size_t),
1544 void *p_rng,
1545 mbedtls_md_type_t md_alg,
1546 unsigned int hashlen,
1547 const unsigned char *hash,
1548 int saltlen,
1549 unsigned char *sig )
1550{
1551 size_t olen;
1552 unsigned char *p = sig;
1553 unsigned char *salt = NULL;
1554 size_t slen, min_slen, hlen, offset = 0;
1555 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1556 size_t msb;
1557 const mbedtls_md_info_t *md_info;
1558 mbedtls_md_context_t md_ctx;
1559 RSA_VALIDATE_RET( ctx != NULL );
1560 RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE &&
1561 hashlen == 0 ) ||
1562 hash != NULL );
1563 RSA_VALIDATE_RET( sig != NULL );
1564
1565 if( ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1566 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1567
1568 if( f_rng == NULL )
1569 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1570
1571 olen = ctx->len;
1572
1573 if( md_alg != MBEDTLS_MD_NONE )
1574 {
1575 /* Gather length of hash to sign */
1576 md_info = mbedtls_md_info_from_type( md_alg );
1577 if( md_info == NULL )
1578 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1579
1580 if( hashlen != mbedtls_md_get_size( md_info ) )
1581 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1582 }
1583
1584 md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1585 if( md_info == NULL )
1586 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1587
1588 hlen = mbedtls_md_get_size( md_info );
1589
1590 if (saltlen == MBEDTLS_RSA_SALT_LEN_ANY)
1591 {
1592 /* Calculate the largest possible salt length, up to the hash size.
1593 * Normally this is the hash length, which is the maximum salt length
1594 * according to FIPS 185-4 §5.5 (e) and common practice. If there is not
1595 * enough room, use the maximum salt length that fits. The constraint is
1596 * that the hash length plus the salt length plus 2 bytes must be at most
1597 * the key length. This complies with FIPS 186-4 §5.5 (e) and RFC 8017
1598 * (PKCS#1 v2.2) §9.1.1 step 3. */
1599 min_slen = hlen - 2;
1600 if( olen < hlen + min_slen + 2 )
1601 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1602 else if( olen >= hlen + hlen + 2 )
1603 slen = hlen;
1604 else
1605 slen = olen - hlen - 2;
1606 }
1607 else if ( (saltlen < 0) || (saltlen + hlen + 2 > olen) )
1608 {
1609 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1610 }
1611 else
1612 {
1613 slen = (size_t) saltlen;
1614 }
1615
1616 memset( sig, 0, olen );
1617
1618 /* Note: EMSA-PSS encoding is over the length of N - 1 bits */
1619 msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
1620 p += olen - hlen - slen - 2;
1621 *p++ = 0x01;
1622
1623 /* Generate salt of length slen in place in the encoded message */
1624 salt = p;
1625 if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 )
1626 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) );
1627
1628 p += slen;
1629
1630 mbedtls_md_init( &md_ctx );
1631 if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1632 goto exit;
1633
1634 /* Generate H = Hash( M' ) */
1635 if( ( ret = mbedtls_md_starts( &md_ctx ) ) != 0 )
1636 goto exit;
1637 if( ( ret = mbedtls_md_update( &md_ctx, p, 8 ) ) != 0 )
1638 goto exit;
1639 if( ( ret = mbedtls_md_update( &md_ctx, hash, hashlen ) ) != 0 )
1640 goto exit;
1641 if( ( ret = mbedtls_md_update( &md_ctx, salt, slen ) ) != 0 )
1642 goto exit;
1643 if( ( ret = mbedtls_md_finish( &md_ctx, p ) ) != 0 )
1644 goto exit;
1645
1646 /* Compensate for boundary condition when applying mask */
1647 if( msb % 8 == 0 )
1648 offset = 1;
1649
1650 /* maskedDB: Apply dbMask to DB */
1651 if( ( ret = mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen,
1652 &md_ctx ) ) != 0 )
1653 goto exit;
1654
1655 msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
1656 sig[0] &= 0xFF >> ( olen * 8 - msb );
1657
1658 p += hlen;
1659 *p++ = 0xBC;
1660
1661exit:
1662 mbedtls_md_free( &md_ctx );
1663
1664 if( ret != 0 )
1665 return( ret );
1666
1667 return mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig );
1668}
1669
1670/*
1671 * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function with
1672 * the option to pass in the salt length.
1673 */
1674int mbedtls_rsa_rsassa_pss_sign_ext( mbedtls_rsa_context *ctx,
1675 int (*f_rng)(void *, unsigned char *, size_t),
1676 void *p_rng,
1677 mbedtls_md_type_t md_alg,
1678 unsigned int hashlen,
1679 const unsigned char *hash,
1680 int saltlen,
1681 unsigned char *sig )
1682{
1683 return rsa_rsassa_pss_sign( ctx, f_rng, p_rng, md_alg,
1684 hashlen, hash, saltlen, sig );
1685}
1686
1687
1688/*
1689 * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
1690 */
1691int mbedtls_rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx,
1692 int (*f_rng)(void *, unsigned char *, size_t),
1693 void *p_rng,
1694 mbedtls_md_type_t md_alg,
1695 unsigned int hashlen,
1696 const unsigned char *hash,
1697 unsigned char *sig )
1698{
1699 return rsa_rsassa_pss_sign( ctx, f_rng, p_rng, md_alg,
1700 hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig );
1701}
1702#endif /* MBEDTLS_PKCS1_V21 */
1703
1704#if defined(MBEDTLS_PKCS1_V15)
1705/*
1706 * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
1707 */
1708
1709/* Construct a PKCS v1.5 encoding of a hashed message
1710 *
1711 * This is used both for signature generation and verification.
1712 *
1713 * Parameters:
1714 * - md_alg: Identifies the hash algorithm used to generate the given hash;
1715 * MBEDTLS_MD_NONE if raw data is signed.
1716 * - hashlen: Length of hash. Must match md_alg if that's not NONE.
1717 * - hash: Buffer containing the hashed message or the raw data.
1718 * - dst_len: Length of the encoded message.
1719 * - dst: Buffer to hold the encoded message.
1720 *
1721 * Assumptions:
1722 * - hash has size hashlen.
1723 * - dst points to a buffer of size at least dst_len.
1724 *
1725 */
1726static int rsa_rsassa_pkcs1_v15_encode( mbedtls_md_type_t md_alg,
1727 unsigned int hashlen,
1728 const unsigned char *hash,
1729 size_t dst_len,
1730 unsigned char *dst )
1731{
1732 size_t oid_size = 0;
1733 size_t nb_pad = dst_len;
1734 unsigned char *p = dst;
1735 const char *oid = NULL;
1736
1737 /* Are we signing hashed or raw data? */
1738 if( md_alg != MBEDTLS_MD_NONE )
1739 {
1740 const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type( md_type: md_alg );
1741 if( md_info == NULL )
1742 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1743
1744 if( mbedtls_oid_get_oid_by_md( md_alg, oid: &oid, olen: &oid_size ) != 0 )
1745 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1746
1747 if( hashlen != mbedtls_md_get_size( md_info ) )
1748 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1749
1750 /* Double-check that 8 + hashlen + oid_size can be used as a
1751 * 1-byte ASN.1 length encoding and that there's no overflow. */
1752 if( 8 + hashlen + oid_size >= 0x80 ||
1753 10 + hashlen < hashlen ||
1754 10 + hashlen + oid_size < 10 + hashlen )
1755 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1756
1757 /*
1758 * Static bounds check:
1759 * - Need 10 bytes for five tag-length pairs.
1760 * (Insist on 1-byte length encodings to protect against variants of
1761 * Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification)
1762 * - Need hashlen bytes for hash
1763 * - Need oid_size bytes for hash alg OID.
1764 */
1765 if( nb_pad < 10 + hashlen + oid_size )
1766 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1767 nb_pad -= 10 + hashlen + oid_size;
1768 }
1769 else
1770 {
1771 if( nb_pad < hashlen )
1772 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1773
1774 nb_pad -= hashlen;
1775 }
1776
1777 /* Need space for signature header and padding delimiter (3 bytes),
1778 * and 8 bytes for the minimal padding */
1779 if( nb_pad < 3 + 8 )
1780 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1781 nb_pad -= 3;
1782
1783 /* Now nb_pad is the amount of memory to be filled
1784 * with padding, and at least 8 bytes long. */
1785
1786 /* Write signature header and padding */
1787 *p++ = 0;
1788 *p++ = MBEDTLS_RSA_SIGN;
1789 memset( s: p, c: 0xFF, n: nb_pad );
1790 p += nb_pad;
1791 *p++ = 0;
1792
1793 /* Are we signing raw data? */
1794 if( md_alg == MBEDTLS_MD_NONE )
1795 {
1796 memcpy( dest: p, src: hash, n: hashlen );
1797 return( 0 );
1798 }
1799
1800 /* Signing hashed data, add corresponding ASN.1 structure
1801 *
1802 * DigestInfo ::= SEQUENCE {
1803 * digestAlgorithm DigestAlgorithmIdentifier,
1804 * digest Digest }
1805 * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
1806 * Digest ::= OCTET STRING
1807 *
1808 * Schematic:
1809 * TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID + LEN [ OID ]
1810 * TAG-NULL + LEN [ NULL ] ]
1811 * TAG-OCTET + LEN [ HASH ] ]
1812 */
1813 *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
1814 *p++ = (unsigned char)( 0x08 + oid_size + hashlen );
1815 *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
1816 *p++ = (unsigned char)( 0x04 + oid_size );
1817 *p++ = MBEDTLS_ASN1_OID;
1818 *p++ = (unsigned char) oid_size;
1819 memcpy( dest: p, src: oid, n: oid_size );
1820 p += oid_size;
1821 *p++ = MBEDTLS_ASN1_NULL;
1822 *p++ = 0x00;
1823 *p++ = MBEDTLS_ASN1_OCTET_STRING;
1824 *p++ = (unsigned char) hashlen;
1825 memcpy( dest: p, src: hash, n: hashlen );
1826 p += hashlen;
1827
1828 /* Just a sanity-check, should be automatic
1829 * after the initial bounds check. */
1830 if( p != dst + dst_len )
1831 {
1832 mbedtls_platform_zeroize( buf: dst, len: dst_len );
1833 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1834 }
1835
1836 return( 0 );
1837}
1838
1839/*
1840 * Do an RSA operation to sign the message digest
1841 */
1842int mbedtls_rsa_rsassa_pkcs1_v15_sign( mbedtls_rsa_context *ctx,
1843 int (*f_rng)(void *, unsigned char *, size_t),
1844 void *p_rng,
1845 mbedtls_md_type_t md_alg,
1846 unsigned int hashlen,
1847 const unsigned char *hash,
1848 unsigned char *sig )
1849{
1850 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1851 unsigned char *sig_try = NULL, *verif = NULL;
1852
1853 RSA_VALIDATE_RET( ctx != NULL );
1854 RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE &&
1855 hashlen == 0 ) ||
1856 hash != NULL );
1857 RSA_VALIDATE_RET( sig != NULL );
1858
1859 if( ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1860 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1861
1862 /*
1863 * Prepare PKCS1-v1.5 encoding (padding and hash identifier)
1864 */
1865
1866 if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash,
1867 dst_len: ctx->len, dst: sig ) ) != 0 )
1868 return( ret );
1869
1870 /* Private key operation
1871 *
1872 * In order to prevent Lenstra's attack, make the signature in a
1873 * temporary buffer and check it before returning it.
1874 */
1875
1876 sig_try = (unsigned char *) mbedtls_calloc( nmemb: 1, size: ctx->len );
1877 if( sig_try == NULL )
1878 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
1879
1880 verif = (unsigned char *) mbedtls_calloc( nmemb: 1, size: ctx->len );
1881 if( verif == NULL )
1882 {
1883 mbedtls_free( ptr: sig_try );
1884 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
1885 }
1886
1887 MBEDTLS_MPI_CHK( mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig_try ) );
1888 MBEDTLS_MPI_CHK( mbedtls_rsa_public( ctx, sig_try, verif ) );
1889
1890 if( mbedtls_ct_memcmp( a: verif, b: sig, n: ctx->len ) != 0 )
1891 {
1892 ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED;
1893 goto cleanup;
1894 }
1895
1896 memcpy( dest: sig, src: sig_try, n: ctx->len );
1897
1898cleanup:
1899 mbedtls_platform_zeroize( buf: sig_try, len: ctx->len );
1900 mbedtls_platform_zeroize( buf: verif, len: ctx->len );
1901 mbedtls_free( ptr: sig_try );
1902 mbedtls_free( ptr: verif );
1903
1904 if( ret != 0 )
1905 memset( s: sig, c: '!', n: ctx->len );
1906 return( ret );
1907}
1908#endif /* MBEDTLS_PKCS1_V15 */
1909
1910/*
1911 * Do an RSA operation to sign the message digest
1912 */
1913int mbedtls_rsa_pkcs1_sign( mbedtls_rsa_context *ctx,
1914 int (*f_rng)(void *, unsigned char *, size_t),
1915 void *p_rng,
1916 mbedtls_md_type_t md_alg,
1917 unsigned int hashlen,
1918 const unsigned char *hash,
1919 unsigned char *sig )
1920{
1921 RSA_VALIDATE_RET( ctx != NULL );
1922 RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE &&
1923 hashlen == 0 ) ||
1924 hash != NULL );
1925 RSA_VALIDATE_RET( sig != NULL );
1926
1927 switch( ctx->padding )
1928 {
1929#if defined(MBEDTLS_PKCS1_V15)
1930 case MBEDTLS_RSA_PKCS_V15:
1931 return mbedtls_rsa_rsassa_pkcs1_v15_sign( ctx, f_rng, p_rng,
1932 md_alg, hashlen, hash, sig );
1933#endif
1934
1935#if defined(MBEDTLS_PKCS1_V21)
1936 case MBEDTLS_RSA_PKCS_V21:
1937 return mbedtls_rsa_rsassa_pss_sign( ctx, f_rng, p_rng, md_alg,
1938 hashlen, hash, sig );
1939#endif
1940
1941 default:
1942 return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1943 }
1944}
1945
1946#if defined(MBEDTLS_PKCS1_V21)
1947/*
1948 * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
1949 */
1950int mbedtls_rsa_rsassa_pss_verify_ext( mbedtls_rsa_context *ctx,
1951 mbedtls_md_type_t md_alg,
1952 unsigned int hashlen,
1953 const unsigned char *hash,
1954 mbedtls_md_type_t mgf1_hash_id,
1955 int expected_salt_len,
1956 const unsigned char *sig )
1957{
1958 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1959 size_t siglen;
1960 unsigned char *p;
1961 unsigned char *hash_start;
1962 unsigned char result[MBEDTLS_MD_MAX_SIZE];
1963 unsigned char zeros[8];
1964 unsigned int hlen;
1965 size_t observed_salt_len, msb;
1966 const mbedtls_md_info_t *md_info;
1967 mbedtls_md_context_t md_ctx;
1968 unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1969
1970 RSA_VALIDATE_RET( ctx != NULL );
1971 RSA_VALIDATE_RET( sig != NULL );
1972 RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE &&
1973 hashlen == 0 ) ||
1974 hash != NULL );
1975
1976 siglen = ctx->len;
1977
1978 if( siglen < 16 || siglen > sizeof( buf ) )
1979 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1980
1981 ret = mbedtls_rsa_public( ctx, sig, buf );
1982
1983 if( ret != 0 )
1984 return( ret );
1985
1986 p = buf;
1987
1988 if( buf[siglen - 1] != 0xBC )
1989 return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1990
1991 if( md_alg != MBEDTLS_MD_NONE )
1992 {
1993 /* Gather length of hash to sign */
1994 md_info = mbedtls_md_info_from_type( md_alg );
1995 if( md_info == NULL )
1996 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1997
1998 if( hashlen != mbedtls_md_get_size( md_info ) )
1999 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2000 }
2001
2002 md_info = mbedtls_md_info_from_type( mgf1_hash_id );
2003 if( md_info == NULL )
2004 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2005
2006 hlen = mbedtls_md_get_size( md_info );
2007
2008 memset( zeros, 0, 8 );
2009
2010 /*
2011 * Note: EMSA-PSS verification is over the length of N - 1 bits
2012 */
2013 msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
2014
2015 if( buf[0] >> ( 8 - siglen * 8 + msb ) )
2016 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2017
2018 /* Compensate for boundary condition when applying mask */
2019 if( msb % 8 == 0 )
2020 {
2021 p++;
2022 siglen -= 1;
2023 }
2024
2025 if( siglen < hlen + 2 )
2026 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2027 hash_start = p + siglen - hlen - 1;
2028
2029 mbedtls_md_init( &md_ctx );
2030 if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
2031 goto exit;
2032
2033 ret = mgf_mask( p, siglen - hlen - 1, hash_start, hlen, &md_ctx );
2034 if( ret != 0 )
2035 goto exit;
2036
2037 buf[0] &= 0xFF >> ( siglen * 8 - msb );
2038
2039 while( p < hash_start - 1 && *p == 0 )
2040 p++;
2041
2042 if( *p++ != 0x01 )
2043 {
2044 ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2045 goto exit;
2046 }
2047
2048 observed_salt_len = hash_start - p;
2049
2050 if( expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY &&
2051 observed_salt_len != (size_t) expected_salt_len )
2052 {
2053 ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2054 goto exit;
2055 }
2056
2057 /*
2058 * Generate H = Hash( M' )
2059 */
2060 ret = mbedtls_md_starts( &md_ctx );
2061 if ( ret != 0 )
2062 goto exit;
2063 ret = mbedtls_md_update( &md_ctx, zeros, 8 );
2064 if ( ret != 0 )
2065 goto exit;
2066 ret = mbedtls_md_update( &md_ctx, hash, hashlen );
2067 if ( ret != 0 )
2068 goto exit;
2069 ret = mbedtls_md_update( &md_ctx, p, observed_salt_len );
2070 if ( ret != 0 )
2071 goto exit;
2072 ret = mbedtls_md_finish( &md_ctx, result );
2073 if ( ret != 0 )
2074 goto exit;
2075
2076 if( memcmp( hash_start, result, hlen ) != 0 )
2077 {
2078 ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2079 goto exit;
2080 }
2081
2082exit:
2083 mbedtls_md_free( &md_ctx );
2084
2085 return( ret );
2086}
2087
2088/*
2089 * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function
2090 */
2091int mbedtls_rsa_rsassa_pss_verify( mbedtls_rsa_context *ctx,
2092 mbedtls_md_type_t md_alg,
2093 unsigned int hashlen,
2094 const unsigned char *hash,
2095 const unsigned char *sig )
2096{
2097 mbedtls_md_type_t mgf1_hash_id;
2098 RSA_VALIDATE_RET( ctx != NULL );
2099 RSA_VALIDATE_RET( sig != NULL );
2100 RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE &&
2101 hashlen == 0 ) ||
2102 hash != NULL );
2103
2104 mgf1_hash_id = ( ctx->hash_id != MBEDTLS_MD_NONE )
2105 ? (mbedtls_md_type_t) ctx->hash_id
2106 : md_alg;
2107
2108 return( mbedtls_rsa_rsassa_pss_verify_ext( ctx,
2109 md_alg, hashlen, hash,
2110 mgf1_hash_id,
2111 MBEDTLS_RSA_SALT_LEN_ANY,
2112 sig ) );
2113
2114}
2115#endif /* MBEDTLS_PKCS1_V21 */
2116
2117#if defined(MBEDTLS_PKCS1_V15)
2118/*
2119 * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
2120 */
2121int mbedtls_rsa_rsassa_pkcs1_v15_verify( mbedtls_rsa_context *ctx,
2122 mbedtls_md_type_t md_alg,
2123 unsigned int hashlen,
2124 const unsigned char *hash,
2125 const unsigned char *sig )
2126{
2127 int ret = 0;
2128 size_t sig_len;
2129 unsigned char *encoded = NULL, *encoded_expected = NULL;
2130
2131 RSA_VALIDATE_RET( ctx != NULL );
2132 RSA_VALIDATE_RET( sig != NULL );
2133 RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE &&
2134 hashlen == 0 ) ||
2135 hash != NULL );
2136
2137 sig_len = ctx->len;
2138
2139 /*
2140 * Prepare expected PKCS1 v1.5 encoding of hash.
2141 */
2142
2143 if( ( encoded = (unsigned char *) mbedtls_calloc( nmemb: 1, size: sig_len ) ) == NULL ||
2144 ( encoded_expected = (unsigned char *) mbedtls_calloc( nmemb: 1, size: sig_len ) ) == NULL )
2145 {
2146 ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
2147 goto cleanup;
2148 }
2149
2150 if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash, dst_len: sig_len,
2151 dst: encoded_expected ) ) != 0 )
2152 goto cleanup;
2153
2154 /*
2155 * Apply RSA primitive to get what should be PKCS1 encoded hash.
2156 */
2157
2158 ret = mbedtls_rsa_public( ctx, input: sig, output: encoded );
2159 if( ret != 0 )
2160 goto cleanup;
2161
2162 /*
2163 * Compare
2164 */
2165
2166 if( ( ret = mbedtls_ct_memcmp( a: encoded, b: encoded_expected,
2167 n: sig_len ) ) != 0 )
2168 {
2169 ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2170 goto cleanup;
2171 }
2172
2173cleanup:
2174
2175 if( encoded != NULL )
2176 {
2177 mbedtls_platform_zeroize( buf: encoded, len: sig_len );
2178 mbedtls_free( ptr: encoded );
2179 }
2180
2181 if( encoded_expected != NULL )
2182 {
2183 mbedtls_platform_zeroize( buf: encoded_expected, len: sig_len );
2184 mbedtls_free( ptr: encoded_expected );
2185 }
2186
2187 return( ret );
2188}
2189#endif /* MBEDTLS_PKCS1_V15 */
2190
2191/*
2192 * Do an RSA operation and check the message digest
2193 */
2194int mbedtls_rsa_pkcs1_verify( mbedtls_rsa_context *ctx,
2195 mbedtls_md_type_t md_alg,
2196 unsigned int hashlen,
2197 const unsigned char *hash,
2198 const unsigned char *sig )
2199{
2200 RSA_VALIDATE_RET( ctx != NULL );
2201 RSA_VALIDATE_RET( sig != NULL );
2202 RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE &&
2203 hashlen == 0 ) ||
2204 hash != NULL );
2205
2206 switch( ctx->padding )
2207 {
2208#if defined(MBEDTLS_PKCS1_V15)
2209 case MBEDTLS_RSA_PKCS_V15:
2210 return mbedtls_rsa_rsassa_pkcs1_v15_verify( ctx, md_alg,
2211 hashlen, hash, sig );
2212#endif
2213
2214#if defined(MBEDTLS_PKCS1_V21)
2215 case MBEDTLS_RSA_PKCS_V21:
2216 return mbedtls_rsa_rsassa_pss_verify( ctx, md_alg,
2217 hashlen, hash, sig );
2218#endif
2219
2220 default:
2221 return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2222 }
2223}
2224
2225/*
2226 * Copy the components of an RSA key
2227 */
2228int mbedtls_rsa_copy( mbedtls_rsa_context *dst, const mbedtls_rsa_context *src )
2229{
2230 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2231 RSA_VALIDATE_RET( dst != NULL );
2232 RSA_VALIDATE_RET( src != NULL );
2233
2234 dst->len = src->len;
2235
2236 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->N, &src->N ) );
2237 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->E, &src->E ) );
2238
2239 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->D, &src->D ) );
2240 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->P, &src->P ) );
2241 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Q, &src->Q ) );
2242
2243#if !defined(MBEDTLS_RSA_NO_CRT)
2244 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DP, &src->DP ) );
2245 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DQ, &src->DQ ) );
2246 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->QP, &src->QP ) );
2247 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RP, &src->RP ) );
2248 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RQ, &src->RQ ) );
2249#endif
2250
2251 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RN, &src->RN ) );
2252
2253 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vi, &src->Vi ) );
2254 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vf, &src->Vf ) );
2255
2256 dst->padding = src->padding;
2257 dst->hash_id = src->hash_id;
2258
2259cleanup:
2260 if( ret != 0 )
2261 mbedtls_rsa_free( ctx: dst );
2262
2263 return( ret );
2264}
2265
2266/*
2267 * Free the components of an RSA key
2268 */
2269void mbedtls_rsa_free( mbedtls_rsa_context *ctx )
2270{
2271 if( ctx == NULL )
2272 return;
2273
2274 mbedtls_mpi_free( X: &ctx->Vi );
2275 mbedtls_mpi_free( X: &ctx->Vf );
2276 mbedtls_mpi_free( X: &ctx->RN );
2277 mbedtls_mpi_free( X: &ctx->D );
2278 mbedtls_mpi_free( X: &ctx->Q );
2279 mbedtls_mpi_free( X: &ctx->P );
2280 mbedtls_mpi_free( X: &ctx->E );
2281 mbedtls_mpi_free( X: &ctx->N );
2282
2283#if !defined(MBEDTLS_RSA_NO_CRT)
2284 mbedtls_mpi_free( X: &ctx->RQ );
2285 mbedtls_mpi_free( X: &ctx->RP );
2286 mbedtls_mpi_free( X: &ctx->QP );
2287 mbedtls_mpi_free( X: &ctx->DQ );
2288 mbedtls_mpi_free( X: &ctx->DP );
2289#endif /* MBEDTLS_RSA_NO_CRT */
2290
2291#if defined(MBEDTLS_THREADING_C)
2292 /* Free the mutex, but only if it hasn't been freed already. */
2293 if( ctx->ver != 0 )
2294 {
2295 mbedtls_mutex_free( &ctx->mutex );
2296 ctx->ver = 0;
2297 }
2298#endif
2299}
2300
2301#endif /* !MBEDTLS_RSA_ALT */
2302
2303#if defined(MBEDTLS_SELF_TEST)
2304
2305#include "mbedtls/sha1.h"
2306
2307/*
2308 * Example RSA-1024 keypair, for test purposes
2309 */
2310#define KEY_LEN 128
2311
2312#define RSA_N "9292758453063D803DD603D5E777D788" \
2313 "8ED1D5BF35786190FA2F23EBC0848AEA" \
2314 "DDA92CA6C3D80B32C4D109BE0F36D6AE" \
2315 "7130B9CED7ACDF54CFC7555AC14EEBAB" \
2316 "93A89813FBF3C4F8066D2D800F7C38A8" \
2317 "1AE31942917403FF4946B0A83D3D3E05" \
2318 "EE57C6F5F5606FB5D4BC6CD34EE0801A" \
2319 "5E94BB77B07507233A0BC7BAC8F90F79"
2320
2321#define RSA_E "10001"
2322
2323#define RSA_D "24BF6185468786FDD303083D25E64EFC" \
2324 "66CA472BC44D253102F8B4A9D3BFA750" \
2325 "91386C0077937FE33FA3252D28855837" \
2326 "AE1B484A8A9A45F7EE8C0C634F99E8CD" \
2327 "DF79C5CE07EE72C7F123142198164234" \
2328 "CABB724CF78B8173B9F880FC86322407" \
2329 "AF1FEDFDDE2BEB674CA15F3E81A1521E" \
2330 "071513A1E85B5DFA031F21ECAE91A34D"
2331
2332#define RSA_P "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
2333 "2C01CAD19EA484A87EA4377637E75500" \
2334 "FCB2005C5C7DD6EC4AC023CDA285D796" \
2335 "C3D9E75E1EFC42488BB4F1D13AC30A57"
2336
2337#define RSA_Q "C000DF51A7C77AE8D7C7370C1FF55B69" \
2338 "E211C2B9E5DB1ED0BF61D0D9899620F4" \
2339 "910E4168387E3C30AA1E00C339A79508" \
2340 "8452DD96A9A5EA5D9DCA68DA636032AF"
2341
2342#define PT_LEN 24
2343#define RSA_PT "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
2344 "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
2345
2346#if defined(MBEDTLS_PKCS1_V15)
2347static int myrand( void *rng_state, unsigned char *output, size_t len )
2348{
2349#if !defined(__OpenBSD__) && !defined(__NetBSD__)
2350 size_t i;
2351
2352 if( rng_state != NULL )
2353 rng_state = NULL;
2354
2355 for( i = 0; i < len; ++i )
2356 output[i] = rand();
2357#else
2358 if( rng_state != NULL )
2359 rng_state = NULL;
2360
2361 arc4random_buf( output, len );
2362#endif /* !OpenBSD && !NetBSD */
2363
2364 return( 0 );
2365}
2366#endif /* MBEDTLS_PKCS1_V15 */
2367
2368/*
2369 * Checkup routine
2370 */
2371int mbedtls_rsa_self_test( int verbose )
2372{
2373 int ret = 0;
2374#if defined(MBEDTLS_PKCS1_V15)
2375 size_t len;
2376 mbedtls_rsa_context rsa;
2377 unsigned char rsa_plaintext[PT_LEN];
2378 unsigned char rsa_decrypted[PT_LEN];
2379 unsigned char rsa_ciphertext[KEY_LEN];
2380#if defined(MBEDTLS_SHA1_C)
2381 unsigned char sha1sum[20];
2382#endif
2383
2384 mbedtls_mpi K;
2385
2386 mbedtls_mpi_init( &K );
2387 mbedtls_rsa_init( &rsa );
2388
2389 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_N ) );
2390 MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, &K, NULL, NULL, NULL, NULL ) );
2391 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_P ) );
2392 MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, &K, NULL, NULL, NULL ) );
2393 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_Q ) );
2394 MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, &K, NULL, NULL ) );
2395 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_D ) );
2396 MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, &K, NULL ) );
2397 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_E ) );
2398 MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, NULL, &K ) );
2399
2400 MBEDTLS_MPI_CHK( mbedtls_rsa_complete( &rsa ) );
2401
2402 if( verbose != 0 )
2403 mbedtls_printf( " RSA key validation: " );
2404
2405 if( mbedtls_rsa_check_pubkey( &rsa ) != 0 ||
2406 mbedtls_rsa_check_privkey( &rsa ) != 0 )
2407 {
2408 if( verbose != 0 )
2409 mbedtls_printf( "failed\n" );
2410
2411 ret = 1;
2412 goto cleanup;
2413 }
2414
2415 if( verbose != 0 )
2416 mbedtls_printf( "passed\n PKCS#1 encryption : " );
2417
2418 memcpy( rsa_plaintext, RSA_PT, PT_LEN );
2419
2420 if( mbedtls_rsa_pkcs1_encrypt( &rsa, myrand, NULL,
2421 PT_LEN, rsa_plaintext,
2422 rsa_ciphertext ) != 0 )
2423 {
2424 if( verbose != 0 )
2425 mbedtls_printf( "failed\n" );
2426
2427 ret = 1;
2428 goto cleanup;
2429 }
2430
2431 if( verbose != 0 )
2432 mbedtls_printf( "passed\n PKCS#1 decryption : " );
2433
2434 if( mbedtls_rsa_pkcs1_decrypt( &rsa, myrand, NULL,
2435 &len, rsa_ciphertext, rsa_decrypted,
2436 sizeof(rsa_decrypted) ) != 0 )
2437 {
2438 if( verbose != 0 )
2439 mbedtls_printf( "failed\n" );
2440
2441 ret = 1;
2442 goto cleanup;
2443 }
2444
2445 if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 )
2446 {
2447 if( verbose != 0 )
2448 mbedtls_printf( "failed\n" );
2449
2450 ret = 1;
2451 goto cleanup;
2452 }
2453
2454 if( verbose != 0 )
2455 mbedtls_printf( "passed\n" );
2456
2457#if defined(MBEDTLS_SHA1_C)
2458 if( verbose != 0 )
2459 mbedtls_printf( " PKCS#1 data sign : " );
2460
2461 if( mbedtls_sha1( rsa_plaintext, PT_LEN, sha1sum ) != 0 )
2462 {
2463 if( verbose != 0 )
2464 mbedtls_printf( "failed\n" );
2465
2466 return( 1 );
2467 }
2468
2469 if( mbedtls_rsa_pkcs1_sign( &rsa, myrand, NULL,
2470 MBEDTLS_MD_SHA1, 20,
2471 sha1sum, rsa_ciphertext ) != 0 )
2472 {
2473 if( verbose != 0 )
2474 mbedtls_printf( "failed\n" );
2475
2476 ret = 1;
2477 goto cleanup;
2478 }
2479
2480 if( verbose != 0 )
2481 mbedtls_printf( "passed\n PKCS#1 sig. verify: " );
2482
2483 if( mbedtls_rsa_pkcs1_verify( &rsa, MBEDTLS_MD_SHA1, 20,
2484 sha1sum, rsa_ciphertext ) != 0 )
2485 {
2486 if( verbose != 0 )
2487 mbedtls_printf( "failed\n" );
2488
2489 ret = 1;
2490 goto cleanup;
2491 }
2492
2493 if( verbose != 0 )
2494 mbedtls_printf( "passed\n" );
2495#endif /* MBEDTLS_SHA1_C */
2496
2497 if( verbose != 0 )
2498 mbedtls_printf( "\n" );
2499
2500cleanup:
2501 mbedtls_mpi_free( &K );
2502 mbedtls_rsa_free( &rsa );
2503#else /* MBEDTLS_PKCS1_V15 */
2504 ((void) verbose);
2505#endif /* MBEDTLS_PKCS1_V15 */
2506 return( ret );
2507}
2508
2509#endif /* MBEDTLS_SELF_TEST */
2510
2511#endif /* MBEDTLS_RSA_C */
2512