| 1 | /* |
| 2 | * The RSA public-key cryptosystem |
| 3 | * |
| 4 | * Copyright The Mbed TLS Contributors |
| 5 | * SPDX-License-Identifier: Apache-2.0 |
| 6 | * |
| 7 | * Licensed under the Apache License, Version 2.0 (the "License"); you may |
| 8 | * not use this file except in compliance with the License. |
| 9 | * You may obtain a copy of the License at |
| 10 | * |
| 11 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 12 | * |
| 13 | * Unless required by applicable law or agreed to in writing, software |
| 14 | * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| 15 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 16 | * See the License for the specific language governing permissions and |
| 17 | * limitations under the License. |
| 18 | */ |
| 19 | |
| 20 | /* |
| 21 | * The following sources were referenced in the design of this implementation |
| 22 | * of the RSA algorithm: |
| 23 | * |
| 24 | * [1] A method for obtaining digital signatures and public-key cryptosystems |
| 25 | * R Rivest, A Shamir, and L Adleman |
| 26 | * http://people.csail.mit.edu/rivest/pubs.html#RSA78 |
| 27 | * |
| 28 | * [2] Handbook of Applied Cryptography - 1997, Chapter 8 |
| 29 | * Menezes, van Oorschot and Vanstone |
| 30 | * |
| 31 | * [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks |
| 32 | * Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and |
| 33 | * Stefan Mangard |
| 34 | * https://arxiv.org/abs/1702.08719v2 |
| 35 | * |
| 36 | */ |
| 37 | |
| 38 | #include "common.h" |
| 39 | |
| 40 | #if defined(MBEDTLS_RSA_C) |
| 41 | |
| 42 | #include "mbedtls/rsa.h" |
| 43 | #include "rsa_alt_helpers.h" |
| 44 | #include "mbedtls/oid.h" |
| 45 | #include "mbedtls/platform_util.h" |
| 46 | #include "mbedtls/error.h" |
| 47 | #include "constant_time_internal.h" |
| 48 | #include "mbedtls/constant_time.h" |
| 49 | |
| 50 | #include <string.h> |
| 51 | |
| 52 | #if defined(MBEDTLS_PKCS1_V21) |
| 53 | #include "mbedtls/md.h" |
| 54 | #endif |
| 55 | |
| 56 | #if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__) && !defined(__NetBSD__) |
| 57 | #include <stdlib.h> |
| 58 | #endif |
| 59 | |
| 60 | #if defined(MBEDTLS_PLATFORM_C) |
| 61 | #include "mbedtls/platform.h" |
| 62 | #else |
| 63 | #include <stdio.h> |
| 64 | #define mbedtls_printf printf |
| 65 | #define mbedtls_calloc calloc |
| 66 | #define mbedtls_free free |
| 67 | #endif |
| 68 | |
| 69 | #if !defined(MBEDTLS_RSA_ALT) |
| 70 | |
| 71 | /* Parameter validation macros */ |
| 72 | #define RSA_VALIDATE_RET( cond ) \ |
| 73 | MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_RSA_BAD_INPUT_DATA ) |
| 74 | #define RSA_VALIDATE( cond ) \ |
| 75 | MBEDTLS_INTERNAL_VALIDATE( cond ) |
| 76 | |
| 77 | int mbedtls_rsa_import( mbedtls_rsa_context *ctx, |
| 78 | const mbedtls_mpi *N, |
| 79 | const mbedtls_mpi *P, const mbedtls_mpi *Q, |
| 80 | const mbedtls_mpi *D, const mbedtls_mpi *E ) |
| 81 | { |
| 82 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 83 | RSA_VALIDATE_RET( ctx != NULL ); |
| 84 | |
| 85 | if( ( N != NULL && ( ret = mbedtls_mpi_copy( X: &ctx->N, Y: N ) ) != 0 ) || |
| 86 | ( P != NULL && ( ret = mbedtls_mpi_copy( X: &ctx->P, Y: P ) ) != 0 ) || |
| 87 | ( Q != NULL && ( ret = mbedtls_mpi_copy( X: &ctx->Q, Y: Q ) ) != 0 ) || |
| 88 | ( D != NULL && ( ret = mbedtls_mpi_copy( X: &ctx->D, Y: D ) ) != 0 ) || |
| 89 | ( E != NULL && ( ret = mbedtls_mpi_copy( X: &ctx->E, Y: E ) ) != 0 ) ) |
| 90 | { |
| 91 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) ); |
| 92 | } |
| 93 | |
| 94 | if( N != NULL ) |
| 95 | ctx->len = mbedtls_mpi_size( X: &ctx->N ); |
| 96 | |
| 97 | return( 0 ); |
| 98 | } |
| 99 | |
| 100 | int mbedtls_rsa_import_raw( mbedtls_rsa_context *ctx, |
| 101 | unsigned char const *N, size_t N_len, |
| 102 | unsigned char const *P, size_t P_len, |
| 103 | unsigned char const *Q, size_t Q_len, |
| 104 | unsigned char const *D, size_t D_len, |
| 105 | unsigned char const *E, size_t E_len ) |
| 106 | { |
| 107 | int ret = 0; |
| 108 | RSA_VALIDATE_RET( ctx != NULL ); |
| 109 | |
| 110 | if( N != NULL ) |
| 111 | { |
| 112 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->N, N, N_len ) ); |
| 113 | ctx->len = mbedtls_mpi_size( X: &ctx->N ); |
| 114 | } |
| 115 | |
| 116 | if( P != NULL ) |
| 117 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->P, P, P_len ) ); |
| 118 | |
| 119 | if( Q != NULL ) |
| 120 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->Q, Q, Q_len ) ); |
| 121 | |
| 122 | if( D != NULL ) |
| 123 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->D, D, D_len ) ); |
| 124 | |
| 125 | if( E != NULL ) |
| 126 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->E, E, E_len ) ); |
| 127 | |
| 128 | cleanup: |
| 129 | |
| 130 | if( ret != 0 ) |
| 131 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) ); |
| 132 | |
| 133 | return( 0 ); |
| 134 | } |
| 135 | |
| 136 | /* |
| 137 | * Checks whether the context fields are set in such a way |
| 138 | * that the RSA primitives will be able to execute without error. |
| 139 | * It does *not* make guarantees for consistency of the parameters. |
| 140 | */ |
| 141 | static int rsa_check_context( mbedtls_rsa_context const *ctx, int is_priv, |
| 142 | int blinding_needed ) |
| 143 | { |
| 144 | #if !defined(MBEDTLS_RSA_NO_CRT) |
| 145 | /* blinding_needed is only used for NO_CRT to decide whether |
| 146 | * P,Q need to be present or not. */ |
| 147 | ((void) blinding_needed); |
| 148 | #endif |
| 149 | |
| 150 | if( ctx->len != mbedtls_mpi_size( X: &ctx->N ) || |
| 151 | ctx->len > MBEDTLS_MPI_MAX_SIZE ) |
| 152 | { |
| 153 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 154 | } |
| 155 | |
| 156 | /* |
| 157 | * 1. Modular exponentiation needs positive, odd moduli. |
| 158 | */ |
| 159 | |
| 160 | /* Modular exponentiation wrt. N is always used for |
| 161 | * RSA public key operations. */ |
| 162 | if( mbedtls_mpi_cmp_int( X: &ctx->N, z: 0 ) <= 0 || |
| 163 | mbedtls_mpi_get_bit( X: &ctx->N, pos: 0 ) == 0 ) |
| 164 | { |
| 165 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 166 | } |
| 167 | |
| 168 | #if !defined(MBEDTLS_RSA_NO_CRT) |
| 169 | /* Modular exponentiation for P and Q is only |
| 170 | * used for private key operations and if CRT |
| 171 | * is used. */ |
| 172 | if( is_priv && |
| 173 | ( mbedtls_mpi_cmp_int( X: &ctx->P, z: 0 ) <= 0 || |
| 174 | mbedtls_mpi_get_bit( X: &ctx->P, pos: 0 ) == 0 || |
| 175 | mbedtls_mpi_cmp_int( X: &ctx->Q, z: 0 ) <= 0 || |
| 176 | mbedtls_mpi_get_bit( X: &ctx->Q, pos: 0 ) == 0 ) ) |
| 177 | { |
| 178 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 179 | } |
| 180 | #endif /* !MBEDTLS_RSA_NO_CRT */ |
| 181 | |
| 182 | /* |
| 183 | * 2. Exponents must be positive |
| 184 | */ |
| 185 | |
| 186 | /* Always need E for public key operations */ |
| 187 | if( mbedtls_mpi_cmp_int( X: &ctx->E, z: 0 ) <= 0 ) |
| 188 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 189 | |
| 190 | #if defined(MBEDTLS_RSA_NO_CRT) |
| 191 | /* For private key operations, use D or DP & DQ |
| 192 | * as (unblinded) exponents. */ |
| 193 | if( is_priv && mbedtls_mpi_cmp_int( &ctx->D, 0 ) <= 0 ) |
| 194 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 195 | #else |
| 196 | if( is_priv && |
| 197 | ( mbedtls_mpi_cmp_int( X: &ctx->DP, z: 0 ) <= 0 || |
| 198 | mbedtls_mpi_cmp_int( X: &ctx->DQ, z: 0 ) <= 0 ) ) |
| 199 | { |
| 200 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 201 | } |
| 202 | #endif /* MBEDTLS_RSA_NO_CRT */ |
| 203 | |
| 204 | /* Blinding shouldn't make exponents negative either, |
| 205 | * so check that P, Q >= 1 if that hasn't yet been |
| 206 | * done as part of 1. */ |
| 207 | #if defined(MBEDTLS_RSA_NO_CRT) |
| 208 | if( is_priv && blinding_needed && |
| 209 | ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 || |
| 210 | mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ) ) |
| 211 | { |
| 212 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 213 | } |
| 214 | #endif |
| 215 | |
| 216 | /* It wouldn't lead to an error if it wasn't satisfied, |
| 217 | * but check for QP >= 1 nonetheless. */ |
| 218 | #if !defined(MBEDTLS_RSA_NO_CRT) |
| 219 | if( is_priv && |
| 220 | mbedtls_mpi_cmp_int( X: &ctx->QP, z: 0 ) <= 0 ) |
| 221 | { |
| 222 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 223 | } |
| 224 | #endif |
| 225 | |
| 226 | return( 0 ); |
| 227 | } |
| 228 | |
| 229 | int mbedtls_rsa_complete( mbedtls_rsa_context *ctx ) |
| 230 | { |
| 231 | int ret = 0; |
| 232 | int have_N, have_P, have_Q, have_D, have_E; |
| 233 | #if !defined(MBEDTLS_RSA_NO_CRT) |
| 234 | int have_DP, have_DQ, have_QP; |
| 235 | #endif |
| 236 | int n_missing, pq_missing, d_missing, is_pub, is_priv; |
| 237 | |
| 238 | RSA_VALIDATE_RET( ctx != NULL ); |
| 239 | |
| 240 | have_N = ( mbedtls_mpi_cmp_int( X: &ctx->N, z: 0 ) != 0 ); |
| 241 | have_P = ( mbedtls_mpi_cmp_int( X: &ctx->P, z: 0 ) != 0 ); |
| 242 | have_Q = ( mbedtls_mpi_cmp_int( X: &ctx->Q, z: 0 ) != 0 ); |
| 243 | have_D = ( mbedtls_mpi_cmp_int( X: &ctx->D, z: 0 ) != 0 ); |
| 244 | have_E = ( mbedtls_mpi_cmp_int( X: &ctx->E, z: 0 ) != 0 ); |
| 245 | |
| 246 | #if !defined(MBEDTLS_RSA_NO_CRT) |
| 247 | have_DP = ( mbedtls_mpi_cmp_int( X: &ctx->DP, z: 0 ) != 0 ); |
| 248 | have_DQ = ( mbedtls_mpi_cmp_int( X: &ctx->DQ, z: 0 ) != 0 ); |
| 249 | have_QP = ( mbedtls_mpi_cmp_int( X: &ctx->QP, z: 0 ) != 0 ); |
| 250 | #endif |
| 251 | |
| 252 | /* |
| 253 | * Check whether provided parameters are enough |
| 254 | * to deduce all others. The following incomplete |
| 255 | * parameter sets for private keys are supported: |
| 256 | * |
| 257 | * (1) P, Q missing. |
| 258 | * (2) D and potentially N missing. |
| 259 | * |
| 260 | */ |
| 261 | |
| 262 | n_missing = have_P && have_Q && have_D && have_E; |
| 263 | pq_missing = have_N && !have_P && !have_Q && have_D && have_E; |
| 264 | d_missing = have_P && have_Q && !have_D && have_E; |
| 265 | is_pub = have_N && !have_P && !have_Q && !have_D && have_E; |
| 266 | |
| 267 | /* These three alternatives are mutually exclusive */ |
| 268 | is_priv = n_missing || pq_missing || d_missing; |
| 269 | |
| 270 | if( !is_priv && !is_pub ) |
| 271 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 272 | |
| 273 | /* |
| 274 | * Step 1: Deduce N if P, Q are provided. |
| 275 | */ |
| 276 | |
| 277 | if( !have_N && have_P && have_Q ) |
| 278 | { |
| 279 | if( ( ret = mbedtls_mpi_mul_mpi( X: &ctx->N, A: &ctx->P, |
| 280 | B: &ctx->Q ) ) != 0 ) |
| 281 | { |
| 282 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) ); |
| 283 | } |
| 284 | |
| 285 | ctx->len = mbedtls_mpi_size( X: &ctx->N ); |
| 286 | } |
| 287 | |
| 288 | /* |
| 289 | * Step 2: Deduce and verify all remaining core parameters. |
| 290 | */ |
| 291 | |
| 292 | if( pq_missing ) |
| 293 | { |
| 294 | ret = mbedtls_rsa_deduce_primes( N: &ctx->N, E: &ctx->E, D: &ctx->D, |
| 295 | P: &ctx->P, Q: &ctx->Q ); |
| 296 | if( ret != 0 ) |
| 297 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) ); |
| 298 | |
| 299 | } |
| 300 | else if( d_missing ) |
| 301 | { |
| 302 | if( ( ret = mbedtls_rsa_deduce_private_exponent( P: &ctx->P, |
| 303 | Q: &ctx->Q, |
| 304 | E: &ctx->E, |
| 305 | D: &ctx->D ) ) != 0 ) |
| 306 | { |
| 307 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) ); |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | /* |
| 312 | * Step 3: Deduce all additional parameters specific |
| 313 | * to our current RSA implementation. |
| 314 | */ |
| 315 | |
| 316 | #if !defined(MBEDTLS_RSA_NO_CRT) |
| 317 | if( is_priv && ! ( have_DP && have_DQ && have_QP ) ) |
| 318 | { |
| 319 | ret = mbedtls_rsa_deduce_crt( P: &ctx->P, Q: &ctx->Q, D: &ctx->D, |
| 320 | DP: &ctx->DP, DQ: &ctx->DQ, QP: &ctx->QP ); |
| 321 | if( ret != 0 ) |
| 322 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) ); |
| 323 | } |
| 324 | #endif /* MBEDTLS_RSA_NO_CRT */ |
| 325 | |
| 326 | /* |
| 327 | * Step 3: Basic sanity checks |
| 328 | */ |
| 329 | |
| 330 | return( rsa_check_context( ctx, is_priv, blinding_needed: 1 ) ); |
| 331 | } |
| 332 | |
| 333 | int mbedtls_rsa_export_raw( const mbedtls_rsa_context *ctx, |
| 334 | unsigned char *N, size_t N_len, |
| 335 | unsigned char *P, size_t P_len, |
| 336 | unsigned char *Q, size_t Q_len, |
| 337 | unsigned char *D, size_t D_len, |
| 338 | unsigned char *E, size_t E_len ) |
| 339 | { |
| 340 | int ret = 0; |
| 341 | int is_priv; |
| 342 | RSA_VALIDATE_RET( ctx != NULL ); |
| 343 | |
| 344 | /* Check if key is private or public */ |
| 345 | is_priv = |
| 346 | mbedtls_mpi_cmp_int( X: &ctx->N, z: 0 ) != 0 && |
| 347 | mbedtls_mpi_cmp_int( X: &ctx->P, z: 0 ) != 0 && |
| 348 | mbedtls_mpi_cmp_int( X: &ctx->Q, z: 0 ) != 0 && |
| 349 | mbedtls_mpi_cmp_int( X: &ctx->D, z: 0 ) != 0 && |
| 350 | mbedtls_mpi_cmp_int( X: &ctx->E, z: 0 ) != 0; |
| 351 | |
| 352 | if( !is_priv ) |
| 353 | { |
| 354 | /* If we're trying to export private parameters for a public key, |
| 355 | * something must be wrong. */ |
| 356 | if( P != NULL || Q != NULL || D != NULL ) |
| 357 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 358 | |
| 359 | } |
| 360 | |
| 361 | if( N != NULL ) |
| 362 | MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->N, N, N_len ) ); |
| 363 | |
| 364 | if( P != NULL ) |
| 365 | MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->P, P, P_len ) ); |
| 366 | |
| 367 | if( Q != NULL ) |
| 368 | MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->Q, Q, Q_len ) ); |
| 369 | |
| 370 | if( D != NULL ) |
| 371 | MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->D, D, D_len ) ); |
| 372 | |
| 373 | if( E != NULL ) |
| 374 | MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->E, E, E_len ) ); |
| 375 | |
| 376 | cleanup: |
| 377 | |
| 378 | return( ret ); |
| 379 | } |
| 380 | |
| 381 | int mbedtls_rsa_export( const mbedtls_rsa_context *ctx, |
| 382 | mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q, |
| 383 | mbedtls_mpi *D, mbedtls_mpi *E ) |
| 384 | { |
| 385 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 386 | int is_priv; |
| 387 | RSA_VALIDATE_RET( ctx != NULL ); |
| 388 | |
| 389 | /* Check if key is private or public */ |
| 390 | is_priv = |
| 391 | mbedtls_mpi_cmp_int( X: &ctx->N, z: 0 ) != 0 && |
| 392 | mbedtls_mpi_cmp_int( X: &ctx->P, z: 0 ) != 0 && |
| 393 | mbedtls_mpi_cmp_int( X: &ctx->Q, z: 0 ) != 0 && |
| 394 | mbedtls_mpi_cmp_int( X: &ctx->D, z: 0 ) != 0 && |
| 395 | mbedtls_mpi_cmp_int( X: &ctx->E, z: 0 ) != 0; |
| 396 | |
| 397 | if( !is_priv ) |
| 398 | { |
| 399 | /* If we're trying to export private parameters for a public key, |
| 400 | * something must be wrong. */ |
| 401 | if( P != NULL || Q != NULL || D != NULL ) |
| 402 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 403 | |
| 404 | } |
| 405 | |
| 406 | /* Export all requested core parameters. */ |
| 407 | |
| 408 | if( ( N != NULL && ( ret = mbedtls_mpi_copy( X: N, Y: &ctx->N ) ) != 0 ) || |
| 409 | ( P != NULL && ( ret = mbedtls_mpi_copy( X: P, Y: &ctx->P ) ) != 0 ) || |
| 410 | ( Q != NULL && ( ret = mbedtls_mpi_copy( X: Q, Y: &ctx->Q ) ) != 0 ) || |
| 411 | ( D != NULL && ( ret = mbedtls_mpi_copy( X: D, Y: &ctx->D ) ) != 0 ) || |
| 412 | ( E != NULL && ( ret = mbedtls_mpi_copy( X: E, Y: &ctx->E ) ) != 0 ) ) |
| 413 | { |
| 414 | return( ret ); |
| 415 | } |
| 416 | |
| 417 | return( 0 ); |
| 418 | } |
| 419 | |
| 420 | /* |
| 421 | * Export CRT parameters |
| 422 | * This must also be implemented if CRT is not used, for being able to |
| 423 | * write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt |
| 424 | * can be used in this case. |
| 425 | */ |
| 426 | int mbedtls_rsa_export_crt( const mbedtls_rsa_context *ctx, |
| 427 | mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP ) |
| 428 | { |
| 429 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 430 | int is_priv; |
| 431 | RSA_VALIDATE_RET( ctx != NULL ); |
| 432 | |
| 433 | /* Check if key is private or public */ |
| 434 | is_priv = |
| 435 | mbedtls_mpi_cmp_int( X: &ctx->N, z: 0 ) != 0 && |
| 436 | mbedtls_mpi_cmp_int( X: &ctx->P, z: 0 ) != 0 && |
| 437 | mbedtls_mpi_cmp_int( X: &ctx->Q, z: 0 ) != 0 && |
| 438 | mbedtls_mpi_cmp_int( X: &ctx->D, z: 0 ) != 0 && |
| 439 | mbedtls_mpi_cmp_int( X: &ctx->E, z: 0 ) != 0; |
| 440 | |
| 441 | if( !is_priv ) |
| 442 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 443 | |
| 444 | #if !defined(MBEDTLS_RSA_NO_CRT) |
| 445 | /* Export all requested blinding parameters. */ |
| 446 | if( ( DP != NULL && ( ret = mbedtls_mpi_copy( X: DP, Y: &ctx->DP ) ) != 0 ) || |
| 447 | ( DQ != NULL && ( ret = mbedtls_mpi_copy( X: DQ, Y: &ctx->DQ ) ) != 0 ) || |
| 448 | ( QP != NULL && ( ret = mbedtls_mpi_copy( X: QP, Y: &ctx->QP ) ) != 0 ) ) |
| 449 | { |
| 450 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) ); |
| 451 | } |
| 452 | #else |
| 453 | if( ( ret = mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D, |
| 454 | DP, DQ, QP ) ) != 0 ) |
| 455 | { |
| 456 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) ); |
| 457 | } |
| 458 | #endif |
| 459 | |
| 460 | return( 0 ); |
| 461 | } |
| 462 | |
| 463 | /* |
| 464 | * Initialize an RSA context |
| 465 | */ |
| 466 | void mbedtls_rsa_init( mbedtls_rsa_context *ctx ) |
| 467 | { |
| 468 | RSA_VALIDATE( ctx != NULL ); |
| 469 | |
| 470 | memset( s: ctx, c: 0, n: sizeof( mbedtls_rsa_context ) ); |
| 471 | |
| 472 | ctx->padding = MBEDTLS_RSA_PKCS_V15; |
| 473 | ctx->hash_id = MBEDTLS_MD_NONE; |
| 474 | |
| 475 | #if defined(MBEDTLS_THREADING_C) |
| 476 | /* Set ctx->ver to nonzero to indicate that the mutex has been |
| 477 | * initialized and will need to be freed. */ |
| 478 | ctx->ver = 1; |
| 479 | mbedtls_mutex_init( &ctx->mutex ); |
| 480 | #endif |
| 481 | } |
| 482 | |
| 483 | /* |
| 484 | * Set padding for an existing RSA context |
| 485 | */ |
| 486 | int mbedtls_rsa_set_padding( mbedtls_rsa_context *ctx, int padding, |
| 487 | mbedtls_md_type_t hash_id ) |
| 488 | { |
| 489 | switch( padding ) |
| 490 | { |
| 491 | #if defined(MBEDTLS_PKCS1_V15) |
| 492 | case MBEDTLS_RSA_PKCS_V15: |
| 493 | break; |
| 494 | #endif |
| 495 | |
| 496 | #if defined(MBEDTLS_PKCS1_V21) |
| 497 | case MBEDTLS_RSA_PKCS_V21: |
| 498 | break; |
| 499 | #endif |
| 500 | default: |
| 501 | return( MBEDTLS_ERR_RSA_INVALID_PADDING ); |
| 502 | } |
| 503 | |
| 504 | if( ( padding == MBEDTLS_RSA_PKCS_V21 ) && |
| 505 | ( hash_id != MBEDTLS_MD_NONE ) ) |
| 506 | { |
| 507 | const mbedtls_md_info_t *md_info; |
| 508 | |
| 509 | md_info = mbedtls_md_info_from_type( md_type: hash_id ); |
| 510 | if( md_info == NULL ) |
| 511 | return( MBEDTLS_ERR_RSA_INVALID_PADDING ); |
| 512 | } |
| 513 | |
| 514 | ctx->padding = padding; |
| 515 | ctx->hash_id = hash_id; |
| 516 | |
| 517 | return( 0 ); |
| 518 | } |
| 519 | |
| 520 | /* |
| 521 | * Get length in bytes of RSA modulus |
| 522 | */ |
| 523 | |
| 524 | size_t mbedtls_rsa_get_len( const mbedtls_rsa_context *ctx ) |
| 525 | { |
| 526 | return( ctx->len ); |
| 527 | } |
| 528 | |
| 529 | |
| 530 | #if defined(MBEDTLS_GENPRIME) |
| 531 | |
| 532 | /* |
| 533 | * Generate an RSA keypair |
| 534 | * |
| 535 | * This generation method follows the RSA key pair generation procedure of |
| 536 | * FIPS 186-4 if 2^16 < exponent < 2^256 and nbits = 2048 or nbits = 3072. |
| 537 | */ |
| 538 | int mbedtls_rsa_gen_key( mbedtls_rsa_context *ctx, |
| 539 | int (*f_rng)(void *, unsigned char *, size_t), |
| 540 | void *p_rng, |
| 541 | unsigned int nbits, int exponent ) |
| 542 | { |
| 543 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 544 | mbedtls_mpi H, G, L; |
| 545 | int prime_quality = 0; |
| 546 | RSA_VALIDATE_RET( ctx != NULL ); |
| 547 | RSA_VALIDATE_RET( f_rng != NULL ); |
| 548 | |
| 549 | /* |
| 550 | * If the modulus is 1024 bit long or shorter, then the security strength of |
| 551 | * the RSA algorithm is less than or equal to 80 bits and therefore an error |
| 552 | * rate of 2^-80 is sufficient. |
| 553 | */ |
| 554 | if( nbits > 1024 ) |
| 555 | prime_quality = MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR; |
| 556 | |
| 557 | mbedtls_mpi_init( &H ); |
| 558 | mbedtls_mpi_init( &G ); |
| 559 | mbedtls_mpi_init( &L ); |
| 560 | |
| 561 | if( nbits < 128 || exponent < 3 || nbits % 2 != 0 ) |
| 562 | { |
| 563 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| 564 | goto cleanup; |
| 565 | } |
| 566 | |
| 567 | /* |
| 568 | * find primes P and Q with Q < P so that: |
| 569 | * 1. |P-Q| > 2^( nbits / 2 - 100 ) |
| 570 | * 2. GCD( E, (P-1)*(Q-1) ) == 1 |
| 571 | * 3. E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 ) |
| 572 | */ |
| 573 | MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &ctx->E, exponent ) ); |
| 574 | |
| 575 | do |
| 576 | { |
| 577 | MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->P, nbits >> 1, |
| 578 | prime_quality, f_rng, p_rng ) ); |
| 579 | |
| 580 | MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->Q, nbits >> 1, |
| 581 | prime_quality, f_rng, p_rng ) ); |
| 582 | |
| 583 | /* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */ |
| 584 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &H, &ctx->P, &ctx->Q ) ); |
| 585 | if( mbedtls_mpi_bitlen( &H ) <= ( ( nbits >= 200 ) ? ( ( nbits >> 1 ) - 99 ) : 0 ) ) |
| 586 | continue; |
| 587 | |
| 588 | /* not required by any standards, but some users rely on the fact that P > Q */ |
| 589 | if( H.s < 0 ) |
| 590 | mbedtls_mpi_swap( &ctx->P, &ctx->Q ); |
| 591 | |
| 592 | /* Temporarily replace P,Q by P-1, Q-1 */ |
| 593 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->P, &ctx->P, 1 ) ); |
| 594 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->Q, &ctx->Q, 1 ) ); |
| 595 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &H, &ctx->P, &ctx->Q ) ); |
| 596 | |
| 597 | /* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */ |
| 598 | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->E, &H ) ); |
| 599 | if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 ) |
| 600 | continue; |
| 601 | |
| 602 | /* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */ |
| 603 | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->P, &ctx->Q ) ); |
| 604 | MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &L, NULL, &H, &G ) ); |
| 605 | MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &ctx->D, &ctx->E, &L ) ); |
| 606 | |
| 607 | if( mbedtls_mpi_bitlen( &ctx->D ) <= ( ( nbits + 1 ) / 2 ) ) // (FIPS 186-4 §B.3.1 criterion 3(a)) |
| 608 | continue; |
| 609 | |
| 610 | break; |
| 611 | } |
| 612 | while( 1 ); |
| 613 | |
| 614 | /* Restore P,Q */ |
| 615 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->P, &ctx->P, 1 ) ); |
| 616 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->Q, &ctx->Q, 1 ) ); |
| 617 | |
| 618 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) ); |
| 619 | |
| 620 | ctx->len = mbedtls_mpi_size( &ctx->N ); |
| 621 | |
| 622 | #if !defined(MBEDTLS_RSA_NO_CRT) |
| 623 | /* |
| 624 | * DP = D mod (P - 1) |
| 625 | * DQ = D mod (Q - 1) |
| 626 | * QP = Q^-1 mod P |
| 627 | */ |
| 628 | MBEDTLS_MPI_CHK( mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D, |
| 629 | &ctx->DP, &ctx->DQ, &ctx->QP ) ); |
| 630 | #endif /* MBEDTLS_RSA_NO_CRT */ |
| 631 | |
| 632 | /* Double-check */ |
| 633 | MBEDTLS_MPI_CHK( mbedtls_rsa_check_privkey( ctx ) ); |
| 634 | |
| 635 | cleanup: |
| 636 | |
| 637 | mbedtls_mpi_free( &H ); |
| 638 | mbedtls_mpi_free( &G ); |
| 639 | mbedtls_mpi_free( &L ); |
| 640 | |
| 641 | if( ret != 0 ) |
| 642 | { |
| 643 | mbedtls_rsa_free( ctx ); |
| 644 | |
| 645 | if( ( -ret & ~0x7f ) == 0 ) |
| 646 | ret = MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_KEY_GEN_FAILED, ret ); |
| 647 | return( ret ); |
| 648 | } |
| 649 | |
| 650 | return( 0 ); |
| 651 | } |
| 652 | |
| 653 | #endif /* MBEDTLS_GENPRIME */ |
| 654 | |
| 655 | /* |
| 656 | * Check a public RSA key |
| 657 | */ |
| 658 | int mbedtls_rsa_check_pubkey( const mbedtls_rsa_context *ctx ) |
| 659 | { |
| 660 | RSA_VALIDATE_RET( ctx != NULL ); |
| 661 | |
| 662 | if( rsa_check_context( ctx, is_priv: 0 /* public */, blinding_needed: 0 /* no blinding */ ) != 0 ) |
| 663 | return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); |
| 664 | |
| 665 | if( mbedtls_mpi_bitlen( X: &ctx->N ) < 128 ) |
| 666 | { |
| 667 | return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); |
| 668 | } |
| 669 | |
| 670 | if( mbedtls_mpi_get_bit( X: &ctx->E, pos: 0 ) == 0 || |
| 671 | mbedtls_mpi_bitlen( X: &ctx->E ) < 2 || |
| 672 | mbedtls_mpi_cmp_mpi( X: &ctx->E, Y: &ctx->N ) >= 0 ) |
| 673 | { |
| 674 | return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); |
| 675 | } |
| 676 | |
| 677 | return( 0 ); |
| 678 | } |
| 679 | |
| 680 | /* |
| 681 | * Check for the consistency of all fields in an RSA private key context |
| 682 | */ |
| 683 | int mbedtls_rsa_check_privkey( const mbedtls_rsa_context *ctx ) |
| 684 | { |
| 685 | RSA_VALIDATE_RET( ctx != NULL ); |
| 686 | |
| 687 | if( mbedtls_rsa_check_pubkey( ctx ) != 0 || |
| 688 | rsa_check_context( ctx, is_priv: 1 /* private */, blinding_needed: 1 /* blinding */ ) != 0 ) |
| 689 | { |
| 690 | return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); |
| 691 | } |
| 692 | |
| 693 | if( mbedtls_rsa_validate_params( N: &ctx->N, P: &ctx->P, Q: &ctx->Q, |
| 694 | D: &ctx->D, E: &ctx->E, NULL, NULL ) != 0 ) |
| 695 | { |
| 696 | return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); |
| 697 | } |
| 698 | |
| 699 | #if !defined(MBEDTLS_RSA_NO_CRT) |
| 700 | else if( mbedtls_rsa_validate_crt( P: &ctx->P, Q: &ctx->Q, D: &ctx->D, |
| 701 | DP: &ctx->DP, DQ: &ctx->DQ, QP: &ctx->QP ) != 0 ) |
| 702 | { |
| 703 | return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); |
| 704 | } |
| 705 | #endif |
| 706 | |
| 707 | return( 0 ); |
| 708 | } |
| 709 | |
| 710 | /* |
| 711 | * Check if contexts holding a public and private key match |
| 712 | */ |
| 713 | int mbedtls_rsa_check_pub_priv( const mbedtls_rsa_context *pub, |
| 714 | const mbedtls_rsa_context *prv ) |
| 715 | { |
| 716 | RSA_VALIDATE_RET( pub != NULL ); |
| 717 | RSA_VALIDATE_RET( prv != NULL ); |
| 718 | |
| 719 | if( mbedtls_rsa_check_pubkey( ctx: pub ) != 0 || |
| 720 | mbedtls_rsa_check_privkey( ctx: prv ) != 0 ) |
| 721 | { |
| 722 | return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); |
| 723 | } |
| 724 | |
| 725 | if( mbedtls_mpi_cmp_mpi( X: &pub->N, Y: &prv->N ) != 0 || |
| 726 | mbedtls_mpi_cmp_mpi( X: &pub->E, Y: &prv->E ) != 0 ) |
| 727 | { |
| 728 | return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); |
| 729 | } |
| 730 | |
| 731 | return( 0 ); |
| 732 | } |
| 733 | |
| 734 | /* |
| 735 | * Do an RSA public key operation |
| 736 | */ |
| 737 | int mbedtls_rsa_public( mbedtls_rsa_context *ctx, |
| 738 | const unsigned char *input, |
| 739 | unsigned char *output ) |
| 740 | { |
| 741 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 742 | size_t olen; |
| 743 | mbedtls_mpi T; |
| 744 | RSA_VALIDATE_RET( ctx != NULL ); |
| 745 | RSA_VALIDATE_RET( input != NULL ); |
| 746 | RSA_VALIDATE_RET( output != NULL ); |
| 747 | |
| 748 | if( rsa_check_context( ctx, is_priv: 0 /* public */, blinding_needed: 0 /* no blinding */ ) ) |
| 749 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 750 | |
| 751 | mbedtls_mpi_init( X: &T ); |
| 752 | |
| 753 | #if defined(MBEDTLS_THREADING_C) |
| 754 | if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 ) |
| 755 | return( ret ); |
| 756 | #endif |
| 757 | |
| 758 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) ); |
| 759 | |
| 760 | if( mbedtls_mpi_cmp_mpi( X: &T, Y: &ctx->N ) >= 0 ) |
| 761 | { |
| 762 | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
| 763 | goto cleanup; |
| 764 | } |
| 765 | |
| 766 | olen = ctx->len; |
| 767 | MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) ); |
| 768 | MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) ); |
| 769 | |
| 770 | cleanup: |
| 771 | #if defined(MBEDTLS_THREADING_C) |
| 772 | if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 ) |
| 773 | return( MBEDTLS_ERR_THREADING_MUTEX_ERROR ); |
| 774 | #endif |
| 775 | |
| 776 | mbedtls_mpi_free( X: &T ); |
| 777 | |
| 778 | if( ret != 0 ) |
| 779 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_PUBLIC_FAILED, ret ) ); |
| 780 | |
| 781 | return( 0 ); |
| 782 | } |
| 783 | |
| 784 | /* |
| 785 | * Generate or update blinding values, see section 10 of: |
| 786 | * KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA, |
| 787 | * DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer |
| 788 | * Berlin Heidelberg, 1996. p. 104-113. |
| 789 | */ |
| 790 | static int rsa_prepare_blinding( mbedtls_rsa_context *ctx, |
| 791 | int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) |
| 792 | { |
| 793 | int ret, count = 0; |
| 794 | mbedtls_mpi R; |
| 795 | |
| 796 | mbedtls_mpi_init( X: &R ); |
| 797 | |
| 798 | if( ctx->Vf.p != NULL ) |
| 799 | { |
| 800 | /* We already have blinding values, just update them by squaring */ |
| 801 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &ctx->Vi ) ); |
| 802 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) ); |
| 803 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vf, &ctx->Vf, &ctx->Vf ) ); |
| 804 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vf, &ctx->Vf, &ctx->N ) ); |
| 805 | |
| 806 | goto cleanup; |
| 807 | } |
| 808 | |
| 809 | /* Unblinding value: Vf = random number, invertible mod N */ |
| 810 | do { |
| 811 | if( count++ > 10 ) |
| 812 | { |
| 813 | ret = MBEDTLS_ERR_RSA_RNG_FAILED; |
| 814 | goto cleanup; |
| 815 | } |
| 816 | |
| 817 | MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &ctx->Vf, ctx->len - 1, f_rng, p_rng ) ); |
| 818 | |
| 819 | /* Compute Vf^-1 as R * (R Vf)^-1 to avoid leaks from inv_mod. */ |
| 820 | MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, ctx->len - 1, f_rng, p_rng ) ); |
| 821 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vf, &R ) ); |
| 822 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) ); |
| 823 | |
| 824 | /* At this point, Vi is invertible mod N if and only if both Vf and R |
| 825 | * are invertible mod N. If one of them isn't, we don't need to know |
| 826 | * which one, we just loop and choose new values for both of them. |
| 827 | * (Each iteration succeeds with overwhelming probability.) */ |
| 828 | ret = mbedtls_mpi_inv_mod( X: &ctx->Vi, A: &ctx->Vi, N: &ctx->N ); |
| 829 | if( ret != 0 && ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE ) |
| 830 | goto cleanup; |
| 831 | |
| 832 | } while( ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE ); |
| 833 | |
| 834 | /* Finish the computation of Vf^-1 = R * (R Vf)^-1 */ |
| 835 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &R ) ); |
| 836 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) ); |
| 837 | |
| 838 | /* Blinding value: Vi = Vf^(-e) mod N |
| 839 | * (Vi already contains Vf^-1 at this point) */ |
| 840 | MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN ) ); |
| 841 | |
| 842 | |
| 843 | cleanup: |
| 844 | mbedtls_mpi_free( X: &R ); |
| 845 | |
| 846 | return( ret ); |
| 847 | } |
| 848 | |
| 849 | /* |
| 850 | * Exponent blinding supposed to prevent side-channel attacks using multiple |
| 851 | * traces of measurements to recover the RSA key. The more collisions are there, |
| 852 | * the more bits of the key can be recovered. See [3]. |
| 853 | * |
| 854 | * Collecting n collisions with m bit long blinding value requires 2^(m-m/n) |
| 855 | * observations on avarage. |
| 856 | * |
| 857 | * For example with 28 byte blinding to achieve 2 collisions the adversary has |
| 858 | * to make 2^112 observations on avarage. |
| 859 | * |
| 860 | * (With the currently (as of 2017 April) known best algorithms breaking 2048 |
| 861 | * bit RSA requires approximately as much time as trying out 2^112 random keys. |
| 862 | * Thus in this sense with 28 byte blinding the security is not reduced by |
| 863 | * side-channel attacks like the one in [3]) |
| 864 | * |
| 865 | * This countermeasure does not help if the key recovery is possible with a |
| 866 | * single trace. |
| 867 | */ |
| 868 | #define RSA_EXPONENT_BLINDING 28 |
| 869 | |
| 870 | /* |
| 871 | * Do an RSA private key operation |
| 872 | */ |
| 873 | int mbedtls_rsa_private( mbedtls_rsa_context *ctx, |
| 874 | int (*f_rng)(void *, unsigned char *, size_t), |
| 875 | void *p_rng, |
| 876 | const unsigned char *input, |
| 877 | unsigned char *output ) |
| 878 | { |
| 879 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 880 | size_t olen; |
| 881 | |
| 882 | /* Temporary holding the result */ |
| 883 | mbedtls_mpi T; |
| 884 | |
| 885 | /* Temporaries holding P-1, Q-1 and the |
| 886 | * exponent blinding factor, respectively. */ |
| 887 | mbedtls_mpi P1, Q1, R; |
| 888 | |
| 889 | #if !defined(MBEDTLS_RSA_NO_CRT) |
| 890 | /* Temporaries holding the results mod p resp. mod q. */ |
| 891 | mbedtls_mpi TP, TQ; |
| 892 | |
| 893 | /* Temporaries holding the blinded exponents for |
| 894 | * the mod p resp. mod q computation (if used). */ |
| 895 | mbedtls_mpi DP_blind, DQ_blind; |
| 896 | |
| 897 | /* Pointers to actual exponents to be used - either the unblinded |
| 898 | * or the blinded ones, depending on the presence of a PRNG. */ |
| 899 | mbedtls_mpi *DP = &ctx->DP; |
| 900 | mbedtls_mpi *DQ = &ctx->DQ; |
| 901 | #else |
| 902 | /* Temporary holding the blinded exponent (if used). */ |
| 903 | mbedtls_mpi D_blind; |
| 904 | |
| 905 | /* Pointer to actual exponent to be used - either the unblinded |
| 906 | * or the blinded one, depending on the presence of a PRNG. */ |
| 907 | mbedtls_mpi *D = &ctx->D; |
| 908 | #endif /* MBEDTLS_RSA_NO_CRT */ |
| 909 | |
| 910 | /* Temporaries holding the initial input and the double |
| 911 | * checked result; should be the same in the end. */ |
| 912 | mbedtls_mpi I, C; |
| 913 | |
| 914 | RSA_VALIDATE_RET( ctx != NULL ); |
| 915 | RSA_VALIDATE_RET( input != NULL ); |
| 916 | RSA_VALIDATE_RET( output != NULL ); |
| 917 | |
| 918 | if( f_rng == NULL ) |
| 919 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 920 | |
| 921 | if( rsa_check_context( ctx, is_priv: 1 /* private key checks */, |
| 922 | blinding_needed: 1 /* blinding on */ ) != 0 ) |
| 923 | { |
| 924 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 925 | } |
| 926 | |
| 927 | #if defined(MBEDTLS_THREADING_C) |
| 928 | if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 ) |
| 929 | return( ret ); |
| 930 | #endif |
| 931 | |
| 932 | /* MPI Initialization */ |
| 933 | mbedtls_mpi_init( X: &T ); |
| 934 | |
| 935 | mbedtls_mpi_init( X: &P1 ); |
| 936 | mbedtls_mpi_init( X: &Q1 ); |
| 937 | mbedtls_mpi_init( X: &R ); |
| 938 | |
| 939 | #if defined(MBEDTLS_RSA_NO_CRT) |
| 940 | mbedtls_mpi_init( &D_blind ); |
| 941 | #else |
| 942 | mbedtls_mpi_init( X: &DP_blind ); |
| 943 | mbedtls_mpi_init( X: &DQ_blind ); |
| 944 | #endif |
| 945 | |
| 946 | #if !defined(MBEDTLS_RSA_NO_CRT) |
| 947 | mbedtls_mpi_init( X: &TP ); mbedtls_mpi_init( X: &TQ ); |
| 948 | #endif |
| 949 | |
| 950 | mbedtls_mpi_init( X: &I ); |
| 951 | mbedtls_mpi_init( X: &C ); |
| 952 | |
| 953 | /* End of MPI initialization */ |
| 954 | |
| 955 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) ); |
| 956 | if( mbedtls_mpi_cmp_mpi( X: &T, Y: &ctx->N ) >= 0 ) |
| 957 | { |
| 958 | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
| 959 | goto cleanup; |
| 960 | } |
| 961 | |
| 962 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &I, &T ) ); |
| 963 | |
| 964 | /* |
| 965 | * Blinding |
| 966 | * T = T * Vi mod N |
| 967 | */ |
| 968 | MBEDTLS_MPI_CHK( rsa_prepare_blinding( ctx, f_rng, p_rng ) ); |
| 969 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vi ) ); |
| 970 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) ); |
| 971 | |
| 972 | /* |
| 973 | * Exponent blinding |
| 974 | */ |
| 975 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &P1, &ctx->P, 1 ) ); |
| 976 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &Q1, &ctx->Q, 1 ) ); |
| 977 | |
| 978 | #if defined(MBEDTLS_RSA_NO_CRT) |
| 979 | /* |
| 980 | * D_blind = ( P - 1 ) * ( Q - 1 ) * R + D |
| 981 | */ |
| 982 | MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING, |
| 983 | f_rng, p_rng ) ); |
| 984 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &P1, &Q1 ) ); |
| 985 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &D_blind, &R ) ); |
| 986 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &D_blind, &D_blind, &ctx->D ) ); |
| 987 | |
| 988 | D = &D_blind; |
| 989 | #else |
| 990 | /* |
| 991 | * DP_blind = ( P - 1 ) * R + DP |
| 992 | */ |
| 993 | MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING, |
| 994 | f_rng, p_rng ) ); |
| 995 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DP_blind, &P1, &R ) ); |
| 996 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DP_blind, &DP_blind, |
| 997 | &ctx->DP ) ); |
| 998 | |
| 999 | DP = &DP_blind; |
| 1000 | |
| 1001 | /* |
| 1002 | * DQ_blind = ( Q - 1 ) * R + DQ |
| 1003 | */ |
| 1004 | MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING, |
| 1005 | f_rng, p_rng ) ); |
| 1006 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DQ_blind, &Q1, &R ) ); |
| 1007 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DQ_blind, &DQ_blind, |
| 1008 | &ctx->DQ ) ); |
| 1009 | |
| 1010 | DQ = &DQ_blind; |
| 1011 | #endif /* MBEDTLS_RSA_NO_CRT */ |
| 1012 | |
| 1013 | #if defined(MBEDTLS_RSA_NO_CRT) |
| 1014 | MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, D, &ctx->N, &ctx->RN ) ); |
| 1015 | #else |
| 1016 | /* |
| 1017 | * Faster decryption using the CRT |
| 1018 | * |
| 1019 | * TP = input ^ dP mod P |
| 1020 | * TQ = input ^ dQ mod Q |
| 1021 | */ |
| 1022 | |
| 1023 | MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TP, &T, DP, &ctx->P, &ctx->RP ) ); |
| 1024 | MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TQ, &T, DQ, &ctx->Q, &ctx->RQ ) ); |
| 1025 | |
| 1026 | /* |
| 1027 | * T = (TP - TQ) * (Q^-1 mod P) mod P |
| 1028 | */ |
| 1029 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &TP, &TQ ) ); |
| 1030 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->QP ) ); |
| 1031 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &TP, &ctx->P ) ); |
| 1032 | |
| 1033 | /* |
| 1034 | * T = TQ + T * Q |
| 1035 | */ |
| 1036 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->Q ) ); |
| 1037 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T, &TQ, &TP ) ); |
| 1038 | #endif /* MBEDTLS_RSA_NO_CRT */ |
| 1039 | |
| 1040 | /* |
| 1041 | * Unblind |
| 1042 | * T = T * Vf mod N |
| 1043 | */ |
| 1044 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vf ) ); |
| 1045 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) ); |
| 1046 | |
| 1047 | /* Verify the result to prevent glitching attacks. */ |
| 1048 | MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &C, &T, &ctx->E, |
| 1049 | &ctx->N, &ctx->RN ) ); |
| 1050 | if( mbedtls_mpi_cmp_mpi( X: &C, Y: &I ) != 0 ) |
| 1051 | { |
| 1052 | ret = MBEDTLS_ERR_RSA_VERIFY_FAILED; |
| 1053 | goto cleanup; |
| 1054 | } |
| 1055 | |
| 1056 | olen = ctx->len; |
| 1057 | MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) ); |
| 1058 | |
| 1059 | cleanup: |
| 1060 | #if defined(MBEDTLS_THREADING_C) |
| 1061 | if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 ) |
| 1062 | return( MBEDTLS_ERR_THREADING_MUTEX_ERROR ); |
| 1063 | #endif |
| 1064 | |
| 1065 | mbedtls_mpi_free( X: &P1 ); |
| 1066 | mbedtls_mpi_free( X: &Q1 ); |
| 1067 | mbedtls_mpi_free( X: &R ); |
| 1068 | |
| 1069 | #if defined(MBEDTLS_RSA_NO_CRT) |
| 1070 | mbedtls_mpi_free( &D_blind ); |
| 1071 | #else |
| 1072 | mbedtls_mpi_free( X: &DP_blind ); |
| 1073 | mbedtls_mpi_free( X: &DQ_blind ); |
| 1074 | #endif |
| 1075 | |
| 1076 | mbedtls_mpi_free( X: &T ); |
| 1077 | |
| 1078 | #if !defined(MBEDTLS_RSA_NO_CRT) |
| 1079 | mbedtls_mpi_free( X: &TP ); mbedtls_mpi_free( X: &TQ ); |
| 1080 | #endif |
| 1081 | |
| 1082 | mbedtls_mpi_free( X: &C ); |
| 1083 | mbedtls_mpi_free( X: &I ); |
| 1084 | |
| 1085 | if( ret != 0 && ret >= -0x007f ) |
| 1086 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_PRIVATE_FAILED, ret ) ); |
| 1087 | |
| 1088 | return( ret ); |
| 1089 | } |
| 1090 | |
| 1091 | #if defined(MBEDTLS_PKCS1_V21) |
| 1092 | /** |
| 1093 | * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer. |
| 1094 | * |
| 1095 | * \param dst buffer to mask |
| 1096 | * \param dlen length of destination buffer |
| 1097 | * \param src source of the mask generation |
| 1098 | * \param slen length of the source buffer |
| 1099 | * \param md_ctx message digest context to use |
| 1100 | */ |
| 1101 | static int mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src, |
| 1102 | size_t slen, mbedtls_md_context_t *md_ctx ) |
| 1103 | { |
| 1104 | unsigned char mask[MBEDTLS_MD_MAX_SIZE]; |
| 1105 | unsigned char counter[4]; |
| 1106 | unsigned char *p; |
| 1107 | unsigned int hlen; |
| 1108 | size_t i, use_len; |
| 1109 | int ret = 0; |
| 1110 | |
| 1111 | memset( mask, 0, MBEDTLS_MD_MAX_SIZE ); |
| 1112 | memset( counter, 0, 4 ); |
| 1113 | |
| 1114 | hlen = mbedtls_md_get_size( md_ctx->md_info ); |
| 1115 | |
| 1116 | /* Generate and apply dbMask */ |
| 1117 | p = dst; |
| 1118 | |
| 1119 | while( dlen > 0 ) |
| 1120 | { |
| 1121 | use_len = hlen; |
| 1122 | if( dlen < hlen ) |
| 1123 | use_len = dlen; |
| 1124 | |
| 1125 | if( ( ret = mbedtls_md_starts( md_ctx ) ) != 0 ) |
| 1126 | goto exit; |
| 1127 | if( ( ret = mbedtls_md_update( md_ctx, src, slen ) ) != 0 ) |
| 1128 | goto exit; |
| 1129 | if( ( ret = mbedtls_md_update( md_ctx, counter, 4 ) ) != 0 ) |
| 1130 | goto exit; |
| 1131 | if( ( ret = mbedtls_md_finish( md_ctx, mask ) ) != 0 ) |
| 1132 | goto exit; |
| 1133 | |
| 1134 | for( i = 0; i < use_len; ++i ) |
| 1135 | *p++ ^= mask[i]; |
| 1136 | |
| 1137 | counter[3]++; |
| 1138 | |
| 1139 | dlen -= use_len; |
| 1140 | } |
| 1141 | |
| 1142 | exit: |
| 1143 | mbedtls_platform_zeroize( mask, sizeof( mask ) ); |
| 1144 | |
| 1145 | return( ret ); |
| 1146 | } |
| 1147 | #endif /* MBEDTLS_PKCS1_V21 */ |
| 1148 | |
| 1149 | #if defined(MBEDTLS_PKCS1_V21) |
| 1150 | /* |
| 1151 | * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function |
| 1152 | */ |
| 1153 | int mbedtls_rsa_rsaes_oaep_encrypt( mbedtls_rsa_context *ctx, |
| 1154 | int (*f_rng)(void *, unsigned char *, size_t), |
| 1155 | void *p_rng, |
| 1156 | const unsigned char *label, size_t label_len, |
| 1157 | size_t ilen, |
| 1158 | const unsigned char *input, |
| 1159 | unsigned char *output ) |
| 1160 | { |
| 1161 | size_t olen; |
| 1162 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1163 | unsigned char *p = output; |
| 1164 | unsigned int hlen; |
| 1165 | const mbedtls_md_info_t *md_info; |
| 1166 | mbedtls_md_context_t md_ctx; |
| 1167 | |
| 1168 | RSA_VALIDATE_RET( ctx != NULL ); |
| 1169 | RSA_VALIDATE_RET( output != NULL ); |
| 1170 | RSA_VALIDATE_RET( ilen == 0 || input != NULL ); |
| 1171 | RSA_VALIDATE_RET( label_len == 0 || label != NULL ); |
| 1172 | |
| 1173 | if( f_rng == NULL ) |
| 1174 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1175 | |
| 1176 | md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id ); |
| 1177 | if( md_info == NULL ) |
| 1178 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1179 | |
| 1180 | olen = ctx->len; |
| 1181 | hlen = mbedtls_md_get_size( md_info ); |
| 1182 | |
| 1183 | /* first comparison checks for overflow */ |
| 1184 | if( ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2 ) |
| 1185 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1186 | |
| 1187 | memset( output, 0, olen ); |
| 1188 | |
| 1189 | *p++ = 0; |
| 1190 | |
| 1191 | /* Generate a random octet string seed */ |
| 1192 | if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 ) |
| 1193 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) ); |
| 1194 | |
| 1195 | p += hlen; |
| 1196 | |
| 1197 | /* Construct DB */ |
| 1198 | if( ( ret = mbedtls_md( md_info, label, label_len, p ) ) != 0 ) |
| 1199 | return( ret ); |
| 1200 | p += hlen; |
| 1201 | p += olen - 2 * hlen - 2 - ilen; |
| 1202 | *p++ = 1; |
| 1203 | if( ilen != 0 ) |
| 1204 | memcpy( p, input, ilen ); |
| 1205 | |
| 1206 | mbedtls_md_init( &md_ctx ); |
| 1207 | if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 ) |
| 1208 | goto exit; |
| 1209 | |
| 1210 | /* maskedDB: Apply dbMask to DB */ |
| 1211 | if( ( ret = mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen, |
| 1212 | &md_ctx ) ) != 0 ) |
| 1213 | goto exit; |
| 1214 | |
| 1215 | /* maskedSeed: Apply seedMask to seed */ |
| 1216 | if( ( ret = mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1, |
| 1217 | &md_ctx ) ) != 0 ) |
| 1218 | goto exit; |
| 1219 | |
| 1220 | exit: |
| 1221 | mbedtls_md_free( &md_ctx ); |
| 1222 | |
| 1223 | if( ret != 0 ) |
| 1224 | return( ret ); |
| 1225 | |
| 1226 | return( mbedtls_rsa_public( ctx, output, output ) ); |
| 1227 | } |
| 1228 | #endif /* MBEDTLS_PKCS1_V21 */ |
| 1229 | |
| 1230 | #if defined(MBEDTLS_PKCS1_V15) |
| 1231 | /* |
| 1232 | * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function |
| 1233 | */ |
| 1234 | int mbedtls_rsa_rsaes_pkcs1_v15_encrypt( mbedtls_rsa_context *ctx, |
| 1235 | int (*f_rng)(void *, unsigned char *, size_t), |
| 1236 | void *p_rng, size_t ilen, |
| 1237 | const unsigned char *input, |
| 1238 | unsigned char *output ) |
| 1239 | { |
| 1240 | size_t nb_pad, olen; |
| 1241 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1242 | unsigned char *p = output; |
| 1243 | |
| 1244 | RSA_VALIDATE_RET( ctx != NULL ); |
| 1245 | RSA_VALIDATE_RET( output != NULL ); |
| 1246 | RSA_VALIDATE_RET( ilen == 0 || input != NULL ); |
| 1247 | |
| 1248 | olen = ctx->len; |
| 1249 | |
| 1250 | /* first comparison checks for overflow */ |
| 1251 | if( ilen + 11 < ilen || olen < ilen + 11 ) |
| 1252 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1253 | |
| 1254 | nb_pad = olen - 3 - ilen; |
| 1255 | |
| 1256 | *p++ = 0; |
| 1257 | |
| 1258 | if( f_rng == NULL ) |
| 1259 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1260 | |
| 1261 | *p++ = MBEDTLS_RSA_CRYPT; |
| 1262 | |
| 1263 | while( nb_pad-- > 0 ) |
| 1264 | { |
| 1265 | int rng_dl = 100; |
| 1266 | |
| 1267 | do { |
| 1268 | ret = f_rng( p_rng, p, 1 ); |
| 1269 | } while( *p == 0 && --rng_dl && ret == 0 ); |
| 1270 | |
| 1271 | /* Check if RNG failed to generate data */ |
| 1272 | if( rng_dl == 0 || ret != 0 ) |
| 1273 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) ); |
| 1274 | |
| 1275 | p++; |
| 1276 | } |
| 1277 | |
| 1278 | *p++ = 0; |
| 1279 | if( ilen != 0 ) |
| 1280 | memcpy( dest: p, src: input, n: ilen ); |
| 1281 | |
| 1282 | return( mbedtls_rsa_public( ctx, input: output, output ) ); |
| 1283 | } |
| 1284 | #endif /* MBEDTLS_PKCS1_V15 */ |
| 1285 | |
| 1286 | /* |
| 1287 | * Add the message padding, then do an RSA operation |
| 1288 | */ |
| 1289 | int mbedtls_rsa_pkcs1_encrypt( mbedtls_rsa_context *ctx, |
| 1290 | int (*f_rng)(void *, unsigned char *, size_t), |
| 1291 | void *p_rng, |
| 1292 | size_t ilen, |
| 1293 | const unsigned char *input, |
| 1294 | unsigned char *output ) |
| 1295 | { |
| 1296 | RSA_VALIDATE_RET( ctx != NULL ); |
| 1297 | RSA_VALIDATE_RET( output != NULL ); |
| 1298 | RSA_VALIDATE_RET( ilen == 0 || input != NULL ); |
| 1299 | |
| 1300 | switch( ctx->padding ) |
| 1301 | { |
| 1302 | #if defined(MBEDTLS_PKCS1_V15) |
| 1303 | case MBEDTLS_RSA_PKCS_V15: |
| 1304 | return mbedtls_rsa_rsaes_pkcs1_v15_encrypt( ctx, f_rng, p_rng, |
| 1305 | ilen, input, output ); |
| 1306 | #endif |
| 1307 | |
| 1308 | #if defined(MBEDTLS_PKCS1_V21) |
| 1309 | case MBEDTLS_RSA_PKCS_V21: |
| 1310 | return mbedtls_rsa_rsaes_oaep_encrypt( ctx, f_rng, p_rng, NULL, 0, |
| 1311 | ilen, input, output ); |
| 1312 | #endif |
| 1313 | |
| 1314 | default: |
| 1315 | return( MBEDTLS_ERR_RSA_INVALID_PADDING ); |
| 1316 | } |
| 1317 | } |
| 1318 | |
| 1319 | #if defined(MBEDTLS_PKCS1_V21) |
| 1320 | /* |
| 1321 | * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function |
| 1322 | */ |
| 1323 | int mbedtls_rsa_rsaes_oaep_decrypt( mbedtls_rsa_context *ctx, |
| 1324 | int (*f_rng)(void *, unsigned char *, size_t), |
| 1325 | void *p_rng, |
| 1326 | const unsigned char *label, size_t label_len, |
| 1327 | size_t *olen, |
| 1328 | const unsigned char *input, |
| 1329 | unsigned char *output, |
| 1330 | size_t output_max_len ) |
| 1331 | { |
| 1332 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1333 | size_t ilen, i, pad_len; |
| 1334 | unsigned char *p, bad, pad_done; |
| 1335 | unsigned char buf[MBEDTLS_MPI_MAX_SIZE]; |
| 1336 | unsigned char lhash[MBEDTLS_MD_MAX_SIZE]; |
| 1337 | unsigned int hlen; |
| 1338 | const mbedtls_md_info_t *md_info; |
| 1339 | mbedtls_md_context_t md_ctx; |
| 1340 | |
| 1341 | RSA_VALIDATE_RET( ctx != NULL ); |
| 1342 | RSA_VALIDATE_RET( output_max_len == 0 || output != NULL ); |
| 1343 | RSA_VALIDATE_RET( label_len == 0 || label != NULL ); |
| 1344 | RSA_VALIDATE_RET( input != NULL ); |
| 1345 | RSA_VALIDATE_RET( olen != NULL ); |
| 1346 | |
| 1347 | /* |
| 1348 | * Parameters sanity checks |
| 1349 | */ |
| 1350 | if( ctx->padding != MBEDTLS_RSA_PKCS_V21 ) |
| 1351 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1352 | |
| 1353 | ilen = ctx->len; |
| 1354 | |
| 1355 | if( ilen < 16 || ilen > sizeof( buf ) ) |
| 1356 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1357 | |
| 1358 | md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id ); |
| 1359 | if( md_info == NULL ) |
| 1360 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1361 | |
| 1362 | hlen = mbedtls_md_get_size( md_info ); |
| 1363 | |
| 1364 | // checking for integer underflow |
| 1365 | if( 2 * hlen + 2 > ilen ) |
| 1366 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1367 | |
| 1368 | /* |
| 1369 | * RSA operation |
| 1370 | */ |
| 1371 | ret = mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf ); |
| 1372 | |
| 1373 | if( ret != 0 ) |
| 1374 | goto cleanup; |
| 1375 | |
| 1376 | /* |
| 1377 | * Unmask data and generate lHash |
| 1378 | */ |
| 1379 | mbedtls_md_init( &md_ctx ); |
| 1380 | if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 ) |
| 1381 | { |
| 1382 | mbedtls_md_free( &md_ctx ); |
| 1383 | goto cleanup; |
| 1384 | } |
| 1385 | |
| 1386 | /* seed: Apply seedMask to maskedSeed */ |
| 1387 | if( ( ret = mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1, |
| 1388 | &md_ctx ) ) != 0 || |
| 1389 | /* DB: Apply dbMask to maskedDB */ |
| 1390 | ( ret = mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen, |
| 1391 | &md_ctx ) ) != 0 ) |
| 1392 | { |
| 1393 | mbedtls_md_free( &md_ctx ); |
| 1394 | goto cleanup; |
| 1395 | } |
| 1396 | |
| 1397 | mbedtls_md_free( &md_ctx ); |
| 1398 | |
| 1399 | /* Generate lHash */ |
| 1400 | if( ( ret = mbedtls_md( md_info, label, label_len, lhash ) ) != 0 ) |
| 1401 | goto cleanup; |
| 1402 | |
| 1403 | /* |
| 1404 | * Check contents, in "constant-time" |
| 1405 | */ |
| 1406 | p = buf; |
| 1407 | bad = 0; |
| 1408 | |
| 1409 | bad |= *p++; /* First byte must be 0 */ |
| 1410 | |
| 1411 | p += hlen; /* Skip seed */ |
| 1412 | |
| 1413 | /* Check lHash */ |
| 1414 | for( i = 0; i < hlen; i++ ) |
| 1415 | bad |= lhash[i] ^ *p++; |
| 1416 | |
| 1417 | /* Get zero-padding len, but always read till end of buffer |
| 1418 | * (minus one, for the 01 byte) */ |
| 1419 | pad_len = 0; |
| 1420 | pad_done = 0; |
| 1421 | for( i = 0; i < ilen - 2 * hlen - 2; i++ ) |
| 1422 | { |
| 1423 | pad_done |= p[i]; |
| 1424 | pad_len += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1; |
| 1425 | } |
| 1426 | |
| 1427 | p += pad_len; |
| 1428 | bad |= *p++ ^ 0x01; |
| 1429 | |
| 1430 | /* |
| 1431 | * The only information "leaked" is whether the padding was correct or not |
| 1432 | * (eg, no data is copied if it was not correct). This meets the |
| 1433 | * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between |
| 1434 | * the different error conditions. |
| 1435 | */ |
| 1436 | if( bad != 0 ) |
| 1437 | { |
| 1438 | ret = MBEDTLS_ERR_RSA_INVALID_PADDING; |
| 1439 | goto cleanup; |
| 1440 | } |
| 1441 | |
| 1442 | if( ilen - ( p - buf ) > output_max_len ) |
| 1443 | { |
| 1444 | ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE; |
| 1445 | goto cleanup; |
| 1446 | } |
| 1447 | |
| 1448 | *olen = ilen - (p - buf); |
| 1449 | if( *olen != 0 ) |
| 1450 | memcpy( output, p, *olen ); |
| 1451 | ret = 0; |
| 1452 | |
| 1453 | cleanup: |
| 1454 | mbedtls_platform_zeroize( buf, sizeof( buf ) ); |
| 1455 | mbedtls_platform_zeroize( lhash, sizeof( lhash ) ); |
| 1456 | |
| 1457 | return( ret ); |
| 1458 | } |
| 1459 | #endif /* MBEDTLS_PKCS1_V21 */ |
| 1460 | |
| 1461 | #if defined(MBEDTLS_PKCS1_V15) |
| 1462 | /* |
| 1463 | * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function |
| 1464 | */ |
| 1465 | int mbedtls_rsa_rsaes_pkcs1_v15_decrypt( mbedtls_rsa_context *ctx, |
| 1466 | int (*f_rng)(void *, unsigned char *, size_t), |
| 1467 | void *p_rng, |
| 1468 | size_t *olen, |
| 1469 | const unsigned char *input, |
| 1470 | unsigned char *output, |
| 1471 | size_t output_max_len ) |
| 1472 | { |
| 1473 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1474 | size_t ilen; |
| 1475 | unsigned char buf[MBEDTLS_MPI_MAX_SIZE]; |
| 1476 | |
| 1477 | RSA_VALIDATE_RET( ctx != NULL ); |
| 1478 | RSA_VALIDATE_RET( output_max_len == 0 || output != NULL ); |
| 1479 | RSA_VALIDATE_RET( input != NULL ); |
| 1480 | RSA_VALIDATE_RET( olen != NULL ); |
| 1481 | |
| 1482 | ilen = ctx->len; |
| 1483 | |
| 1484 | if( ctx->padding != MBEDTLS_RSA_PKCS_V15 ) |
| 1485 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1486 | |
| 1487 | if( ilen < 16 || ilen > sizeof( buf ) ) |
| 1488 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1489 | |
| 1490 | ret = mbedtls_rsa_private( ctx, f_rng, p_rng, input, output: buf ); |
| 1491 | |
| 1492 | if( ret != 0 ) |
| 1493 | goto cleanup; |
| 1494 | |
| 1495 | ret = mbedtls_ct_rsaes_pkcs1_v15_unpadding( input: buf, ilen, |
| 1496 | output, output_max_len, olen ); |
| 1497 | |
| 1498 | cleanup: |
| 1499 | mbedtls_platform_zeroize( buf, len: sizeof( buf ) ); |
| 1500 | |
| 1501 | return( ret ); |
| 1502 | } |
| 1503 | #endif /* MBEDTLS_PKCS1_V15 */ |
| 1504 | |
| 1505 | /* |
| 1506 | * Do an RSA operation, then remove the message padding |
| 1507 | */ |
| 1508 | int mbedtls_rsa_pkcs1_decrypt( mbedtls_rsa_context *ctx, |
| 1509 | int (*f_rng)(void *, unsigned char *, size_t), |
| 1510 | void *p_rng, |
| 1511 | size_t *olen, |
| 1512 | const unsigned char *input, |
| 1513 | unsigned char *output, |
| 1514 | size_t output_max_len) |
| 1515 | { |
| 1516 | RSA_VALIDATE_RET( ctx != NULL ); |
| 1517 | RSA_VALIDATE_RET( output_max_len == 0 || output != NULL ); |
| 1518 | RSA_VALIDATE_RET( input != NULL ); |
| 1519 | RSA_VALIDATE_RET( olen != NULL ); |
| 1520 | |
| 1521 | switch( ctx->padding ) |
| 1522 | { |
| 1523 | #if defined(MBEDTLS_PKCS1_V15) |
| 1524 | case MBEDTLS_RSA_PKCS_V15: |
| 1525 | return mbedtls_rsa_rsaes_pkcs1_v15_decrypt( ctx, f_rng, p_rng, olen, |
| 1526 | input, output, output_max_len ); |
| 1527 | #endif |
| 1528 | |
| 1529 | #if defined(MBEDTLS_PKCS1_V21) |
| 1530 | case MBEDTLS_RSA_PKCS_V21: |
| 1531 | return mbedtls_rsa_rsaes_oaep_decrypt( ctx, f_rng, p_rng, NULL, 0, |
| 1532 | olen, input, output, |
| 1533 | output_max_len ); |
| 1534 | #endif |
| 1535 | |
| 1536 | default: |
| 1537 | return( MBEDTLS_ERR_RSA_INVALID_PADDING ); |
| 1538 | } |
| 1539 | } |
| 1540 | |
| 1541 | #if defined(MBEDTLS_PKCS1_V21) |
| 1542 | static int rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx, |
| 1543 | int (*f_rng)(void *, unsigned char *, size_t), |
| 1544 | void *p_rng, |
| 1545 | mbedtls_md_type_t md_alg, |
| 1546 | unsigned int hashlen, |
| 1547 | const unsigned char *hash, |
| 1548 | int saltlen, |
| 1549 | unsigned char *sig ) |
| 1550 | { |
| 1551 | size_t olen; |
| 1552 | unsigned char *p = sig; |
| 1553 | unsigned char *salt = NULL; |
| 1554 | size_t slen, min_slen, hlen, offset = 0; |
| 1555 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1556 | size_t msb; |
| 1557 | const mbedtls_md_info_t *md_info; |
| 1558 | mbedtls_md_context_t md_ctx; |
| 1559 | RSA_VALIDATE_RET( ctx != NULL ); |
| 1560 | RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE && |
| 1561 | hashlen == 0 ) || |
| 1562 | hash != NULL ); |
| 1563 | RSA_VALIDATE_RET( sig != NULL ); |
| 1564 | |
| 1565 | if( ctx->padding != MBEDTLS_RSA_PKCS_V21 ) |
| 1566 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1567 | |
| 1568 | if( f_rng == NULL ) |
| 1569 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1570 | |
| 1571 | olen = ctx->len; |
| 1572 | |
| 1573 | if( md_alg != MBEDTLS_MD_NONE ) |
| 1574 | { |
| 1575 | /* Gather length of hash to sign */ |
| 1576 | md_info = mbedtls_md_info_from_type( md_alg ); |
| 1577 | if( md_info == NULL ) |
| 1578 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1579 | |
| 1580 | if( hashlen != mbedtls_md_get_size( md_info ) ) |
| 1581 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1582 | } |
| 1583 | |
| 1584 | md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id ); |
| 1585 | if( md_info == NULL ) |
| 1586 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1587 | |
| 1588 | hlen = mbedtls_md_get_size( md_info ); |
| 1589 | |
| 1590 | if (saltlen == MBEDTLS_RSA_SALT_LEN_ANY) |
| 1591 | { |
| 1592 | /* Calculate the largest possible salt length, up to the hash size. |
| 1593 | * Normally this is the hash length, which is the maximum salt length |
| 1594 | * according to FIPS 185-4 §5.5 (e) and common practice. If there is not |
| 1595 | * enough room, use the maximum salt length that fits. The constraint is |
| 1596 | * that the hash length plus the salt length plus 2 bytes must be at most |
| 1597 | * the key length. This complies with FIPS 186-4 §5.5 (e) and RFC 8017 |
| 1598 | * (PKCS#1 v2.2) §9.1.1 step 3. */ |
| 1599 | min_slen = hlen - 2; |
| 1600 | if( olen < hlen + min_slen + 2 ) |
| 1601 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1602 | else if( olen >= hlen + hlen + 2 ) |
| 1603 | slen = hlen; |
| 1604 | else |
| 1605 | slen = olen - hlen - 2; |
| 1606 | } |
| 1607 | else if ( (saltlen < 0) || (saltlen + hlen + 2 > olen) ) |
| 1608 | { |
| 1609 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1610 | } |
| 1611 | else |
| 1612 | { |
| 1613 | slen = (size_t) saltlen; |
| 1614 | } |
| 1615 | |
| 1616 | memset( sig, 0, olen ); |
| 1617 | |
| 1618 | /* Note: EMSA-PSS encoding is over the length of N - 1 bits */ |
| 1619 | msb = mbedtls_mpi_bitlen( &ctx->N ) - 1; |
| 1620 | p += olen - hlen - slen - 2; |
| 1621 | *p++ = 0x01; |
| 1622 | |
| 1623 | /* Generate salt of length slen in place in the encoded message */ |
| 1624 | salt = p; |
| 1625 | if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 ) |
| 1626 | return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) ); |
| 1627 | |
| 1628 | p += slen; |
| 1629 | |
| 1630 | mbedtls_md_init( &md_ctx ); |
| 1631 | if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 ) |
| 1632 | goto exit; |
| 1633 | |
| 1634 | /* Generate H = Hash( M' ) */ |
| 1635 | if( ( ret = mbedtls_md_starts( &md_ctx ) ) != 0 ) |
| 1636 | goto exit; |
| 1637 | if( ( ret = mbedtls_md_update( &md_ctx, p, 8 ) ) != 0 ) |
| 1638 | goto exit; |
| 1639 | if( ( ret = mbedtls_md_update( &md_ctx, hash, hashlen ) ) != 0 ) |
| 1640 | goto exit; |
| 1641 | if( ( ret = mbedtls_md_update( &md_ctx, salt, slen ) ) != 0 ) |
| 1642 | goto exit; |
| 1643 | if( ( ret = mbedtls_md_finish( &md_ctx, p ) ) != 0 ) |
| 1644 | goto exit; |
| 1645 | |
| 1646 | /* Compensate for boundary condition when applying mask */ |
| 1647 | if( msb % 8 == 0 ) |
| 1648 | offset = 1; |
| 1649 | |
| 1650 | /* maskedDB: Apply dbMask to DB */ |
| 1651 | if( ( ret = mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen, |
| 1652 | &md_ctx ) ) != 0 ) |
| 1653 | goto exit; |
| 1654 | |
| 1655 | msb = mbedtls_mpi_bitlen( &ctx->N ) - 1; |
| 1656 | sig[0] &= 0xFF >> ( olen * 8 - msb ); |
| 1657 | |
| 1658 | p += hlen; |
| 1659 | *p++ = 0xBC; |
| 1660 | |
| 1661 | exit: |
| 1662 | mbedtls_md_free( &md_ctx ); |
| 1663 | |
| 1664 | if( ret != 0 ) |
| 1665 | return( ret ); |
| 1666 | |
| 1667 | return mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig ); |
| 1668 | } |
| 1669 | |
| 1670 | /* |
| 1671 | * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function with |
| 1672 | * the option to pass in the salt length. |
| 1673 | */ |
| 1674 | int mbedtls_rsa_rsassa_pss_sign_ext( mbedtls_rsa_context *ctx, |
| 1675 | int (*f_rng)(void *, unsigned char *, size_t), |
| 1676 | void *p_rng, |
| 1677 | mbedtls_md_type_t md_alg, |
| 1678 | unsigned int hashlen, |
| 1679 | const unsigned char *hash, |
| 1680 | int saltlen, |
| 1681 | unsigned char *sig ) |
| 1682 | { |
| 1683 | return rsa_rsassa_pss_sign( ctx, f_rng, p_rng, md_alg, |
| 1684 | hashlen, hash, saltlen, sig ); |
| 1685 | } |
| 1686 | |
| 1687 | |
| 1688 | /* |
| 1689 | * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function |
| 1690 | */ |
| 1691 | int mbedtls_rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx, |
| 1692 | int (*f_rng)(void *, unsigned char *, size_t), |
| 1693 | void *p_rng, |
| 1694 | mbedtls_md_type_t md_alg, |
| 1695 | unsigned int hashlen, |
| 1696 | const unsigned char *hash, |
| 1697 | unsigned char *sig ) |
| 1698 | { |
| 1699 | return rsa_rsassa_pss_sign( ctx, f_rng, p_rng, md_alg, |
| 1700 | hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig ); |
| 1701 | } |
| 1702 | #endif /* MBEDTLS_PKCS1_V21 */ |
| 1703 | |
| 1704 | #if defined(MBEDTLS_PKCS1_V15) |
| 1705 | /* |
| 1706 | * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function |
| 1707 | */ |
| 1708 | |
| 1709 | /* Construct a PKCS v1.5 encoding of a hashed message |
| 1710 | * |
| 1711 | * This is used both for signature generation and verification. |
| 1712 | * |
| 1713 | * Parameters: |
| 1714 | * - md_alg: Identifies the hash algorithm used to generate the given hash; |
| 1715 | * MBEDTLS_MD_NONE if raw data is signed. |
| 1716 | * - hashlen: Length of hash. Must match md_alg if that's not NONE. |
| 1717 | * - hash: Buffer containing the hashed message or the raw data. |
| 1718 | * - dst_len: Length of the encoded message. |
| 1719 | * - dst: Buffer to hold the encoded message. |
| 1720 | * |
| 1721 | * Assumptions: |
| 1722 | * - hash has size hashlen. |
| 1723 | * - dst points to a buffer of size at least dst_len. |
| 1724 | * |
| 1725 | */ |
| 1726 | static int rsa_rsassa_pkcs1_v15_encode( mbedtls_md_type_t md_alg, |
| 1727 | unsigned int hashlen, |
| 1728 | const unsigned char *hash, |
| 1729 | size_t dst_len, |
| 1730 | unsigned char *dst ) |
| 1731 | { |
| 1732 | size_t oid_size = 0; |
| 1733 | size_t nb_pad = dst_len; |
| 1734 | unsigned char *p = dst; |
| 1735 | const char *oid = NULL; |
| 1736 | |
| 1737 | /* Are we signing hashed or raw data? */ |
| 1738 | if( md_alg != MBEDTLS_MD_NONE ) |
| 1739 | { |
| 1740 | const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type( md_type: md_alg ); |
| 1741 | if( md_info == NULL ) |
| 1742 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1743 | |
| 1744 | if( mbedtls_oid_get_oid_by_md( md_alg, oid: &oid, olen: &oid_size ) != 0 ) |
| 1745 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1746 | |
| 1747 | if( hashlen != mbedtls_md_get_size( md_info ) ) |
| 1748 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1749 | |
| 1750 | /* Double-check that 8 + hashlen + oid_size can be used as a |
| 1751 | * 1-byte ASN.1 length encoding and that there's no overflow. */ |
| 1752 | if( 8 + hashlen + oid_size >= 0x80 || |
| 1753 | 10 + hashlen < hashlen || |
| 1754 | 10 + hashlen + oid_size < 10 + hashlen ) |
| 1755 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1756 | |
| 1757 | /* |
| 1758 | * Static bounds check: |
| 1759 | * - Need 10 bytes for five tag-length pairs. |
| 1760 | * (Insist on 1-byte length encodings to protect against variants of |
| 1761 | * Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification) |
| 1762 | * - Need hashlen bytes for hash |
| 1763 | * - Need oid_size bytes for hash alg OID. |
| 1764 | */ |
| 1765 | if( nb_pad < 10 + hashlen + oid_size ) |
| 1766 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1767 | nb_pad -= 10 + hashlen + oid_size; |
| 1768 | } |
| 1769 | else |
| 1770 | { |
| 1771 | if( nb_pad < hashlen ) |
| 1772 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1773 | |
| 1774 | nb_pad -= hashlen; |
| 1775 | } |
| 1776 | |
| 1777 | /* Need space for signature header and padding delimiter (3 bytes), |
| 1778 | * and 8 bytes for the minimal padding */ |
| 1779 | if( nb_pad < 3 + 8 ) |
| 1780 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1781 | nb_pad -= 3; |
| 1782 | |
| 1783 | /* Now nb_pad is the amount of memory to be filled |
| 1784 | * with padding, and at least 8 bytes long. */ |
| 1785 | |
| 1786 | /* Write signature header and padding */ |
| 1787 | *p++ = 0; |
| 1788 | *p++ = MBEDTLS_RSA_SIGN; |
| 1789 | memset( s: p, c: 0xFF, n: nb_pad ); |
| 1790 | p += nb_pad; |
| 1791 | *p++ = 0; |
| 1792 | |
| 1793 | /* Are we signing raw data? */ |
| 1794 | if( md_alg == MBEDTLS_MD_NONE ) |
| 1795 | { |
| 1796 | memcpy( dest: p, src: hash, n: hashlen ); |
| 1797 | return( 0 ); |
| 1798 | } |
| 1799 | |
| 1800 | /* Signing hashed data, add corresponding ASN.1 structure |
| 1801 | * |
| 1802 | * DigestInfo ::= SEQUENCE { |
| 1803 | * digestAlgorithm DigestAlgorithmIdentifier, |
| 1804 | * digest Digest } |
| 1805 | * DigestAlgorithmIdentifier ::= AlgorithmIdentifier |
| 1806 | * Digest ::= OCTET STRING |
| 1807 | * |
| 1808 | * Schematic: |
| 1809 | * TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID + LEN [ OID ] |
| 1810 | * TAG-NULL + LEN [ NULL ] ] |
| 1811 | * TAG-OCTET + LEN [ HASH ] ] |
| 1812 | */ |
| 1813 | *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED; |
| 1814 | *p++ = (unsigned char)( 0x08 + oid_size + hashlen ); |
| 1815 | *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED; |
| 1816 | *p++ = (unsigned char)( 0x04 + oid_size ); |
| 1817 | *p++ = MBEDTLS_ASN1_OID; |
| 1818 | *p++ = (unsigned char) oid_size; |
| 1819 | memcpy( dest: p, src: oid, n: oid_size ); |
| 1820 | p += oid_size; |
| 1821 | *p++ = MBEDTLS_ASN1_NULL; |
| 1822 | *p++ = 0x00; |
| 1823 | *p++ = MBEDTLS_ASN1_OCTET_STRING; |
| 1824 | *p++ = (unsigned char) hashlen; |
| 1825 | memcpy( dest: p, src: hash, n: hashlen ); |
| 1826 | p += hashlen; |
| 1827 | |
| 1828 | /* Just a sanity-check, should be automatic |
| 1829 | * after the initial bounds check. */ |
| 1830 | if( p != dst + dst_len ) |
| 1831 | { |
| 1832 | mbedtls_platform_zeroize( buf: dst, len: dst_len ); |
| 1833 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1834 | } |
| 1835 | |
| 1836 | return( 0 ); |
| 1837 | } |
| 1838 | |
| 1839 | /* |
| 1840 | * Do an RSA operation to sign the message digest |
| 1841 | */ |
| 1842 | int mbedtls_rsa_rsassa_pkcs1_v15_sign( mbedtls_rsa_context *ctx, |
| 1843 | int (*f_rng)(void *, unsigned char *, size_t), |
| 1844 | void *p_rng, |
| 1845 | mbedtls_md_type_t md_alg, |
| 1846 | unsigned int hashlen, |
| 1847 | const unsigned char *hash, |
| 1848 | unsigned char *sig ) |
| 1849 | { |
| 1850 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1851 | unsigned char *sig_try = NULL, *verif = NULL; |
| 1852 | |
| 1853 | RSA_VALIDATE_RET( ctx != NULL ); |
| 1854 | RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE && |
| 1855 | hashlen == 0 ) || |
| 1856 | hash != NULL ); |
| 1857 | RSA_VALIDATE_RET( sig != NULL ); |
| 1858 | |
| 1859 | if( ctx->padding != MBEDTLS_RSA_PKCS_V15 ) |
| 1860 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1861 | |
| 1862 | /* |
| 1863 | * Prepare PKCS1-v1.5 encoding (padding and hash identifier) |
| 1864 | */ |
| 1865 | |
| 1866 | if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash, |
| 1867 | dst_len: ctx->len, dst: sig ) ) != 0 ) |
| 1868 | return( ret ); |
| 1869 | |
| 1870 | /* Private key operation |
| 1871 | * |
| 1872 | * In order to prevent Lenstra's attack, make the signature in a |
| 1873 | * temporary buffer and check it before returning it. |
| 1874 | */ |
| 1875 | |
| 1876 | sig_try = (unsigned char *) mbedtls_calloc( nmemb: 1, size: ctx->len ); |
| 1877 | if( sig_try == NULL ) |
| 1878 | return( MBEDTLS_ERR_MPI_ALLOC_FAILED ); |
| 1879 | |
| 1880 | verif = (unsigned char *) mbedtls_calloc( nmemb: 1, size: ctx->len ); |
| 1881 | if( verif == NULL ) |
| 1882 | { |
| 1883 | mbedtls_free( ptr: sig_try ); |
| 1884 | return( MBEDTLS_ERR_MPI_ALLOC_FAILED ); |
| 1885 | } |
| 1886 | |
| 1887 | MBEDTLS_MPI_CHK( mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig_try ) ); |
| 1888 | MBEDTLS_MPI_CHK( mbedtls_rsa_public( ctx, sig_try, verif ) ); |
| 1889 | |
| 1890 | if( mbedtls_ct_memcmp( a: verif, b: sig, n: ctx->len ) != 0 ) |
| 1891 | { |
| 1892 | ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED; |
| 1893 | goto cleanup; |
| 1894 | } |
| 1895 | |
| 1896 | memcpy( dest: sig, src: sig_try, n: ctx->len ); |
| 1897 | |
| 1898 | cleanup: |
| 1899 | mbedtls_platform_zeroize( buf: sig_try, len: ctx->len ); |
| 1900 | mbedtls_platform_zeroize( buf: verif, len: ctx->len ); |
| 1901 | mbedtls_free( ptr: sig_try ); |
| 1902 | mbedtls_free( ptr: verif ); |
| 1903 | |
| 1904 | if( ret != 0 ) |
| 1905 | memset( s: sig, c: '!', n: ctx->len ); |
| 1906 | return( ret ); |
| 1907 | } |
| 1908 | #endif /* MBEDTLS_PKCS1_V15 */ |
| 1909 | |
| 1910 | /* |
| 1911 | * Do an RSA operation to sign the message digest |
| 1912 | */ |
| 1913 | int mbedtls_rsa_pkcs1_sign( mbedtls_rsa_context *ctx, |
| 1914 | int (*f_rng)(void *, unsigned char *, size_t), |
| 1915 | void *p_rng, |
| 1916 | mbedtls_md_type_t md_alg, |
| 1917 | unsigned int hashlen, |
| 1918 | const unsigned char *hash, |
| 1919 | unsigned char *sig ) |
| 1920 | { |
| 1921 | RSA_VALIDATE_RET( ctx != NULL ); |
| 1922 | RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE && |
| 1923 | hashlen == 0 ) || |
| 1924 | hash != NULL ); |
| 1925 | RSA_VALIDATE_RET( sig != NULL ); |
| 1926 | |
| 1927 | switch( ctx->padding ) |
| 1928 | { |
| 1929 | #if defined(MBEDTLS_PKCS1_V15) |
| 1930 | case MBEDTLS_RSA_PKCS_V15: |
| 1931 | return mbedtls_rsa_rsassa_pkcs1_v15_sign( ctx, f_rng, p_rng, |
| 1932 | md_alg, hashlen, hash, sig ); |
| 1933 | #endif |
| 1934 | |
| 1935 | #if defined(MBEDTLS_PKCS1_V21) |
| 1936 | case MBEDTLS_RSA_PKCS_V21: |
| 1937 | return mbedtls_rsa_rsassa_pss_sign( ctx, f_rng, p_rng, md_alg, |
| 1938 | hashlen, hash, sig ); |
| 1939 | #endif |
| 1940 | |
| 1941 | default: |
| 1942 | return( MBEDTLS_ERR_RSA_INVALID_PADDING ); |
| 1943 | } |
| 1944 | } |
| 1945 | |
| 1946 | #if defined(MBEDTLS_PKCS1_V21) |
| 1947 | /* |
| 1948 | * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function |
| 1949 | */ |
| 1950 | int mbedtls_rsa_rsassa_pss_verify_ext( mbedtls_rsa_context *ctx, |
| 1951 | mbedtls_md_type_t md_alg, |
| 1952 | unsigned int hashlen, |
| 1953 | const unsigned char *hash, |
| 1954 | mbedtls_md_type_t mgf1_hash_id, |
| 1955 | int expected_salt_len, |
| 1956 | const unsigned char *sig ) |
| 1957 | { |
| 1958 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1959 | size_t siglen; |
| 1960 | unsigned char *p; |
| 1961 | unsigned char *hash_start; |
| 1962 | unsigned char result[MBEDTLS_MD_MAX_SIZE]; |
| 1963 | unsigned char zeros[8]; |
| 1964 | unsigned int hlen; |
| 1965 | size_t observed_salt_len, msb; |
| 1966 | const mbedtls_md_info_t *md_info; |
| 1967 | mbedtls_md_context_t md_ctx; |
| 1968 | unsigned char buf[MBEDTLS_MPI_MAX_SIZE]; |
| 1969 | |
| 1970 | RSA_VALIDATE_RET( ctx != NULL ); |
| 1971 | RSA_VALIDATE_RET( sig != NULL ); |
| 1972 | RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE && |
| 1973 | hashlen == 0 ) || |
| 1974 | hash != NULL ); |
| 1975 | |
| 1976 | siglen = ctx->len; |
| 1977 | |
| 1978 | if( siglen < 16 || siglen > sizeof( buf ) ) |
| 1979 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1980 | |
| 1981 | ret = mbedtls_rsa_public( ctx, sig, buf ); |
| 1982 | |
| 1983 | if( ret != 0 ) |
| 1984 | return( ret ); |
| 1985 | |
| 1986 | p = buf; |
| 1987 | |
| 1988 | if( buf[siglen - 1] != 0xBC ) |
| 1989 | return( MBEDTLS_ERR_RSA_INVALID_PADDING ); |
| 1990 | |
| 1991 | if( md_alg != MBEDTLS_MD_NONE ) |
| 1992 | { |
| 1993 | /* Gather length of hash to sign */ |
| 1994 | md_info = mbedtls_md_info_from_type( md_alg ); |
| 1995 | if( md_info == NULL ) |
| 1996 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 1997 | |
| 1998 | if( hashlen != mbedtls_md_get_size( md_info ) ) |
| 1999 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 2000 | } |
| 2001 | |
| 2002 | md_info = mbedtls_md_info_from_type( mgf1_hash_id ); |
| 2003 | if( md_info == NULL ) |
| 2004 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 2005 | |
| 2006 | hlen = mbedtls_md_get_size( md_info ); |
| 2007 | |
| 2008 | memset( zeros, 0, 8 ); |
| 2009 | |
| 2010 | /* |
| 2011 | * Note: EMSA-PSS verification is over the length of N - 1 bits |
| 2012 | */ |
| 2013 | msb = mbedtls_mpi_bitlen( &ctx->N ) - 1; |
| 2014 | |
| 2015 | if( buf[0] >> ( 8 - siglen * 8 + msb ) ) |
| 2016 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 2017 | |
| 2018 | /* Compensate for boundary condition when applying mask */ |
| 2019 | if( msb % 8 == 0 ) |
| 2020 | { |
| 2021 | p++; |
| 2022 | siglen -= 1; |
| 2023 | } |
| 2024 | |
| 2025 | if( siglen < hlen + 2 ) |
| 2026 | return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); |
| 2027 | hash_start = p + siglen - hlen - 1; |
| 2028 | |
| 2029 | mbedtls_md_init( &md_ctx ); |
| 2030 | if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 ) |
| 2031 | goto exit; |
| 2032 | |
| 2033 | ret = mgf_mask( p, siglen - hlen - 1, hash_start, hlen, &md_ctx ); |
| 2034 | if( ret != 0 ) |
| 2035 | goto exit; |
| 2036 | |
| 2037 | buf[0] &= 0xFF >> ( siglen * 8 - msb ); |
| 2038 | |
| 2039 | while( p < hash_start - 1 && *p == 0 ) |
| 2040 | p++; |
| 2041 | |
| 2042 | if( *p++ != 0x01 ) |
| 2043 | { |
| 2044 | ret = MBEDTLS_ERR_RSA_INVALID_PADDING; |
| 2045 | goto exit; |
| 2046 | } |
| 2047 | |
| 2048 | observed_salt_len = hash_start - p; |
| 2049 | |
| 2050 | if( expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY && |
| 2051 | observed_salt_len != (size_t) expected_salt_len ) |
| 2052 | { |
| 2053 | ret = MBEDTLS_ERR_RSA_INVALID_PADDING; |
| 2054 | goto exit; |
| 2055 | } |
| 2056 | |
| 2057 | /* |
| 2058 | * Generate H = Hash( M' ) |
| 2059 | */ |
| 2060 | ret = mbedtls_md_starts( &md_ctx ); |
| 2061 | if ( ret != 0 ) |
| 2062 | goto exit; |
| 2063 | ret = mbedtls_md_update( &md_ctx, zeros, 8 ); |
| 2064 | if ( ret != 0 ) |
| 2065 | goto exit; |
| 2066 | ret = mbedtls_md_update( &md_ctx, hash, hashlen ); |
| 2067 | if ( ret != 0 ) |
| 2068 | goto exit; |
| 2069 | ret = mbedtls_md_update( &md_ctx, p, observed_salt_len ); |
| 2070 | if ( ret != 0 ) |
| 2071 | goto exit; |
| 2072 | ret = mbedtls_md_finish( &md_ctx, result ); |
| 2073 | if ( ret != 0 ) |
| 2074 | goto exit; |
| 2075 | |
| 2076 | if( memcmp( hash_start, result, hlen ) != 0 ) |
| 2077 | { |
| 2078 | ret = MBEDTLS_ERR_RSA_VERIFY_FAILED; |
| 2079 | goto exit; |
| 2080 | } |
| 2081 | |
| 2082 | exit: |
| 2083 | mbedtls_md_free( &md_ctx ); |
| 2084 | |
| 2085 | return( ret ); |
| 2086 | } |
| 2087 | |
| 2088 | /* |
| 2089 | * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function |
| 2090 | */ |
| 2091 | int mbedtls_rsa_rsassa_pss_verify( mbedtls_rsa_context *ctx, |
| 2092 | mbedtls_md_type_t md_alg, |
| 2093 | unsigned int hashlen, |
| 2094 | const unsigned char *hash, |
| 2095 | const unsigned char *sig ) |
| 2096 | { |
| 2097 | mbedtls_md_type_t mgf1_hash_id; |
| 2098 | RSA_VALIDATE_RET( ctx != NULL ); |
| 2099 | RSA_VALIDATE_RET( sig != NULL ); |
| 2100 | RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE && |
| 2101 | hashlen == 0 ) || |
| 2102 | hash != NULL ); |
| 2103 | |
| 2104 | mgf1_hash_id = ( ctx->hash_id != MBEDTLS_MD_NONE ) |
| 2105 | ? (mbedtls_md_type_t) ctx->hash_id |
| 2106 | : md_alg; |
| 2107 | |
| 2108 | return( mbedtls_rsa_rsassa_pss_verify_ext( ctx, |
| 2109 | md_alg, hashlen, hash, |
| 2110 | mgf1_hash_id, |
| 2111 | MBEDTLS_RSA_SALT_LEN_ANY, |
| 2112 | sig ) ); |
| 2113 | |
| 2114 | } |
| 2115 | #endif /* MBEDTLS_PKCS1_V21 */ |
| 2116 | |
| 2117 | #if defined(MBEDTLS_PKCS1_V15) |
| 2118 | /* |
| 2119 | * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function |
| 2120 | */ |
| 2121 | int mbedtls_rsa_rsassa_pkcs1_v15_verify( mbedtls_rsa_context *ctx, |
| 2122 | mbedtls_md_type_t md_alg, |
| 2123 | unsigned int hashlen, |
| 2124 | const unsigned char *hash, |
| 2125 | const unsigned char *sig ) |
| 2126 | { |
| 2127 | int ret = 0; |
| 2128 | size_t sig_len; |
| 2129 | unsigned char *encoded = NULL, *encoded_expected = NULL; |
| 2130 | |
| 2131 | RSA_VALIDATE_RET( ctx != NULL ); |
| 2132 | RSA_VALIDATE_RET( sig != NULL ); |
| 2133 | RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE && |
| 2134 | hashlen == 0 ) || |
| 2135 | hash != NULL ); |
| 2136 | |
| 2137 | sig_len = ctx->len; |
| 2138 | |
| 2139 | /* |
| 2140 | * Prepare expected PKCS1 v1.5 encoding of hash. |
| 2141 | */ |
| 2142 | |
| 2143 | if( ( encoded = (unsigned char *) mbedtls_calloc( nmemb: 1, size: sig_len ) ) == NULL || |
| 2144 | ( encoded_expected = (unsigned char *) mbedtls_calloc( nmemb: 1, size: sig_len ) ) == NULL ) |
| 2145 | { |
| 2146 | ret = MBEDTLS_ERR_MPI_ALLOC_FAILED; |
| 2147 | goto cleanup; |
| 2148 | } |
| 2149 | |
| 2150 | if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash, dst_len: sig_len, |
| 2151 | dst: encoded_expected ) ) != 0 ) |
| 2152 | goto cleanup; |
| 2153 | |
| 2154 | /* |
| 2155 | * Apply RSA primitive to get what should be PKCS1 encoded hash. |
| 2156 | */ |
| 2157 | |
| 2158 | ret = mbedtls_rsa_public( ctx, input: sig, output: encoded ); |
| 2159 | if( ret != 0 ) |
| 2160 | goto cleanup; |
| 2161 | |
| 2162 | /* |
| 2163 | * Compare |
| 2164 | */ |
| 2165 | |
| 2166 | if( ( ret = mbedtls_ct_memcmp( a: encoded, b: encoded_expected, |
| 2167 | n: sig_len ) ) != 0 ) |
| 2168 | { |
| 2169 | ret = MBEDTLS_ERR_RSA_VERIFY_FAILED; |
| 2170 | goto cleanup; |
| 2171 | } |
| 2172 | |
| 2173 | cleanup: |
| 2174 | |
| 2175 | if( encoded != NULL ) |
| 2176 | { |
| 2177 | mbedtls_platform_zeroize( buf: encoded, len: sig_len ); |
| 2178 | mbedtls_free( ptr: encoded ); |
| 2179 | } |
| 2180 | |
| 2181 | if( encoded_expected != NULL ) |
| 2182 | { |
| 2183 | mbedtls_platform_zeroize( buf: encoded_expected, len: sig_len ); |
| 2184 | mbedtls_free( ptr: encoded_expected ); |
| 2185 | } |
| 2186 | |
| 2187 | return( ret ); |
| 2188 | } |
| 2189 | #endif /* MBEDTLS_PKCS1_V15 */ |
| 2190 | |
| 2191 | /* |
| 2192 | * Do an RSA operation and check the message digest |
| 2193 | */ |
| 2194 | int mbedtls_rsa_pkcs1_verify( mbedtls_rsa_context *ctx, |
| 2195 | mbedtls_md_type_t md_alg, |
| 2196 | unsigned int hashlen, |
| 2197 | const unsigned char *hash, |
| 2198 | const unsigned char *sig ) |
| 2199 | { |
| 2200 | RSA_VALIDATE_RET( ctx != NULL ); |
| 2201 | RSA_VALIDATE_RET( sig != NULL ); |
| 2202 | RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE && |
| 2203 | hashlen == 0 ) || |
| 2204 | hash != NULL ); |
| 2205 | |
| 2206 | switch( ctx->padding ) |
| 2207 | { |
| 2208 | #if defined(MBEDTLS_PKCS1_V15) |
| 2209 | case MBEDTLS_RSA_PKCS_V15: |
| 2210 | return mbedtls_rsa_rsassa_pkcs1_v15_verify( ctx, md_alg, |
| 2211 | hashlen, hash, sig ); |
| 2212 | #endif |
| 2213 | |
| 2214 | #if defined(MBEDTLS_PKCS1_V21) |
| 2215 | case MBEDTLS_RSA_PKCS_V21: |
| 2216 | return mbedtls_rsa_rsassa_pss_verify( ctx, md_alg, |
| 2217 | hashlen, hash, sig ); |
| 2218 | #endif |
| 2219 | |
| 2220 | default: |
| 2221 | return( MBEDTLS_ERR_RSA_INVALID_PADDING ); |
| 2222 | } |
| 2223 | } |
| 2224 | |
| 2225 | /* |
| 2226 | * Copy the components of an RSA key |
| 2227 | */ |
| 2228 | int mbedtls_rsa_copy( mbedtls_rsa_context *dst, const mbedtls_rsa_context *src ) |
| 2229 | { |
| 2230 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 2231 | RSA_VALIDATE_RET( dst != NULL ); |
| 2232 | RSA_VALIDATE_RET( src != NULL ); |
| 2233 | |
| 2234 | dst->len = src->len; |
| 2235 | |
| 2236 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->N, &src->N ) ); |
| 2237 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->E, &src->E ) ); |
| 2238 | |
| 2239 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->D, &src->D ) ); |
| 2240 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->P, &src->P ) ); |
| 2241 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Q, &src->Q ) ); |
| 2242 | |
| 2243 | #if !defined(MBEDTLS_RSA_NO_CRT) |
| 2244 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DP, &src->DP ) ); |
| 2245 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DQ, &src->DQ ) ); |
| 2246 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->QP, &src->QP ) ); |
| 2247 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RP, &src->RP ) ); |
| 2248 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RQ, &src->RQ ) ); |
| 2249 | #endif |
| 2250 | |
| 2251 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RN, &src->RN ) ); |
| 2252 | |
| 2253 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vi, &src->Vi ) ); |
| 2254 | MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vf, &src->Vf ) ); |
| 2255 | |
| 2256 | dst->padding = src->padding; |
| 2257 | dst->hash_id = src->hash_id; |
| 2258 | |
| 2259 | cleanup: |
| 2260 | if( ret != 0 ) |
| 2261 | mbedtls_rsa_free( ctx: dst ); |
| 2262 | |
| 2263 | return( ret ); |
| 2264 | } |
| 2265 | |
| 2266 | /* |
| 2267 | * Free the components of an RSA key |
| 2268 | */ |
| 2269 | void mbedtls_rsa_free( mbedtls_rsa_context *ctx ) |
| 2270 | { |
| 2271 | if( ctx == NULL ) |
| 2272 | return; |
| 2273 | |
| 2274 | mbedtls_mpi_free( X: &ctx->Vi ); |
| 2275 | mbedtls_mpi_free( X: &ctx->Vf ); |
| 2276 | mbedtls_mpi_free( X: &ctx->RN ); |
| 2277 | mbedtls_mpi_free( X: &ctx->D ); |
| 2278 | mbedtls_mpi_free( X: &ctx->Q ); |
| 2279 | mbedtls_mpi_free( X: &ctx->P ); |
| 2280 | mbedtls_mpi_free( X: &ctx->E ); |
| 2281 | mbedtls_mpi_free( X: &ctx->N ); |
| 2282 | |
| 2283 | #if !defined(MBEDTLS_RSA_NO_CRT) |
| 2284 | mbedtls_mpi_free( X: &ctx->RQ ); |
| 2285 | mbedtls_mpi_free( X: &ctx->RP ); |
| 2286 | mbedtls_mpi_free( X: &ctx->QP ); |
| 2287 | mbedtls_mpi_free( X: &ctx->DQ ); |
| 2288 | mbedtls_mpi_free( X: &ctx->DP ); |
| 2289 | #endif /* MBEDTLS_RSA_NO_CRT */ |
| 2290 | |
| 2291 | #if defined(MBEDTLS_THREADING_C) |
| 2292 | /* Free the mutex, but only if it hasn't been freed already. */ |
| 2293 | if( ctx->ver != 0 ) |
| 2294 | { |
| 2295 | mbedtls_mutex_free( &ctx->mutex ); |
| 2296 | ctx->ver = 0; |
| 2297 | } |
| 2298 | #endif |
| 2299 | } |
| 2300 | |
| 2301 | #endif /* !MBEDTLS_RSA_ALT */ |
| 2302 | |
| 2303 | #if defined(MBEDTLS_SELF_TEST) |
| 2304 | |
| 2305 | #include "mbedtls/sha1.h" |
| 2306 | |
| 2307 | /* |
| 2308 | * Example RSA-1024 keypair, for test purposes |
| 2309 | */ |
| 2310 | #define KEY_LEN 128 |
| 2311 | |
| 2312 | #define RSA_N "9292758453063D803DD603D5E777D788" \ |
| 2313 | "8ED1D5BF35786190FA2F23EBC0848AEA" \ |
| 2314 | "DDA92CA6C3D80B32C4D109BE0F36D6AE" \ |
| 2315 | "7130B9CED7ACDF54CFC7555AC14EEBAB" \ |
| 2316 | "93A89813FBF3C4F8066D2D800F7C38A8" \ |
| 2317 | "1AE31942917403FF4946B0A83D3D3E05" \ |
| 2318 | "EE57C6F5F5606FB5D4BC6CD34EE0801A" \ |
| 2319 | "5E94BB77B07507233A0BC7BAC8F90F79" |
| 2320 | |
| 2321 | #define RSA_E "10001" |
| 2322 | |
| 2323 | #define RSA_D "24BF6185468786FDD303083D25E64EFC" \ |
| 2324 | "66CA472BC44D253102F8B4A9D3BFA750" \ |
| 2325 | "91386C0077937FE33FA3252D28855837" \ |
| 2326 | "AE1B484A8A9A45F7EE8C0C634F99E8CD" \ |
| 2327 | "DF79C5CE07EE72C7F123142198164234" \ |
| 2328 | "CABB724CF78B8173B9F880FC86322407" \ |
| 2329 | "AF1FEDFDDE2BEB674CA15F3E81A1521E" \ |
| 2330 | "071513A1E85B5DFA031F21ECAE91A34D" |
| 2331 | |
| 2332 | #define RSA_P "C36D0EB7FCD285223CFB5AABA5BDA3D8" \ |
| 2333 | "2C01CAD19EA484A87EA4377637E75500" \ |
| 2334 | "FCB2005C5C7DD6EC4AC023CDA285D796" \ |
| 2335 | "C3D9E75E1EFC42488BB4F1D13AC30A57" |
| 2336 | |
| 2337 | #define RSA_Q "C000DF51A7C77AE8D7C7370C1FF55B69" \ |
| 2338 | "E211C2B9E5DB1ED0BF61D0D9899620F4" \ |
| 2339 | "910E4168387E3C30AA1E00C339A79508" \ |
| 2340 | "8452DD96A9A5EA5D9DCA68DA636032AF" |
| 2341 | |
| 2342 | #define PT_LEN 24 |
| 2343 | #define RSA_PT "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \ |
| 2344 | "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD" |
| 2345 | |
| 2346 | #if defined(MBEDTLS_PKCS1_V15) |
| 2347 | static int myrand( void *rng_state, unsigned char *output, size_t len ) |
| 2348 | { |
| 2349 | #if !defined(__OpenBSD__) && !defined(__NetBSD__) |
| 2350 | size_t i; |
| 2351 | |
| 2352 | if( rng_state != NULL ) |
| 2353 | rng_state = NULL; |
| 2354 | |
| 2355 | for( i = 0; i < len; ++i ) |
| 2356 | output[i] = rand(); |
| 2357 | #else |
| 2358 | if( rng_state != NULL ) |
| 2359 | rng_state = NULL; |
| 2360 | |
| 2361 | arc4random_buf( output, len ); |
| 2362 | #endif /* !OpenBSD && !NetBSD */ |
| 2363 | |
| 2364 | return( 0 ); |
| 2365 | } |
| 2366 | #endif /* MBEDTLS_PKCS1_V15 */ |
| 2367 | |
| 2368 | /* |
| 2369 | * Checkup routine |
| 2370 | */ |
| 2371 | int mbedtls_rsa_self_test( int verbose ) |
| 2372 | { |
| 2373 | int ret = 0; |
| 2374 | #if defined(MBEDTLS_PKCS1_V15) |
| 2375 | size_t len; |
| 2376 | mbedtls_rsa_context rsa; |
| 2377 | unsigned char rsa_plaintext[PT_LEN]; |
| 2378 | unsigned char rsa_decrypted[PT_LEN]; |
| 2379 | unsigned char rsa_ciphertext[KEY_LEN]; |
| 2380 | #if defined(MBEDTLS_SHA1_C) |
| 2381 | unsigned char sha1sum[20]; |
| 2382 | #endif |
| 2383 | |
| 2384 | mbedtls_mpi K; |
| 2385 | |
| 2386 | mbedtls_mpi_init( &K ); |
| 2387 | mbedtls_rsa_init( &rsa ); |
| 2388 | |
| 2389 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_N ) ); |
| 2390 | MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, &K, NULL, NULL, NULL, NULL ) ); |
| 2391 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_P ) ); |
| 2392 | MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, &K, NULL, NULL, NULL ) ); |
| 2393 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_Q ) ); |
| 2394 | MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, &K, NULL, NULL ) ); |
| 2395 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_D ) ); |
| 2396 | MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, &K, NULL ) ); |
| 2397 | MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_E ) ); |
| 2398 | MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, NULL, &K ) ); |
| 2399 | |
| 2400 | MBEDTLS_MPI_CHK( mbedtls_rsa_complete( &rsa ) ); |
| 2401 | |
| 2402 | if( verbose != 0 ) |
| 2403 | mbedtls_printf( " RSA key validation: " ); |
| 2404 | |
| 2405 | if( mbedtls_rsa_check_pubkey( &rsa ) != 0 || |
| 2406 | mbedtls_rsa_check_privkey( &rsa ) != 0 ) |
| 2407 | { |
| 2408 | if( verbose != 0 ) |
| 2409 | mbedtls_printf( "failed\n" ); |
| 2410 | |
| 2411 | ret = 1; |
| 2412 | goto cleanup; |
| 2413 | } |
| 2414 | |
| 2415 | if( verbose != 0 ) |
| 2416 | mbedtls_printf( "passed\n PKCS#1 encryption : " ); |
| 2417 | |
| 2418 | memcpy( rsa_plaintext, RSA_PT, PT_LEN ); |
| 2419 | |
| 2420 | if( mbedtls_rsa_pkcs1_encrypt( &rsa, myrand, NULL, |
| 2421 | PT_LEN, rsa_plaintext, |
| 2422 | rsa_ciphertext ) != 0 ) |
| 2423 | { |
| 2424 | if( verbose != 0 ) |
| 2425 | mbedtls_printf( "failed\n" ); |
| 2426 | |
| 2427 | ret = 1; |
| 2428 | goto cleanup; |
| 2429 | } |
| 2430 | |
| 2431 | if( verbose != 0 ) |
| 2432 | mbedtls_printf( "passed\n PKCS#1 decryption : " ); |
| 2433 | |
| 2434 | if( mbedtls_rsa_pkcs1_decrypt( &rsa, myrand, NULL, |
| 2435 | &len, rsa_ciphertext, rsa_decrypted, |
| 2436 | sizeof(rsa_decrypted) ) != 0 ) |
| 2437 | { |
| 2438 | if( verbose != 0 ) |
| 2439 | mbedtls_printf( "failed\n" ); |
| 2440 | |
| 2441 | ret = 1; |
| 2442 | goto cleanup; |
| 2443 | } |
| 2444 | |
| 2445 | if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 ) |
| 2446 | { |
| 2447 | if( verbose != 0 ) |
| 2448 | mbedtls_printf( "failed\n" ); |
| 2449 | |
| 2450 | ret = 1; |
| 2451 | goto cleanup; |
| 2452 | } |
| 2453 | |
| 2454 | if( verbose != 0 ) |
| 2455 | mbedtls_printf( "passed\n" ); |
| 2456 | |
| 2457 | #if defined(MBEDTLS_SHA1_C) |
| 2458 | if( verbose != 0 ) |
| 2459 | mbedtls_printf( " PKCS#1 data sign : " ); |
| 2460 | |
| 2461 | if( mbedtls_sha1( rsa_plaintext, PT_LEN, sha1sum ) != 0 ) |
| 2462 | { |
| 2463 | if( verbose != 0 ) |
| 2464 | mbedtls_printf( "failed\n" ); |
| 2465 | |
| 2466 | return( 1 ); |
| 2467 | } |
| 2468 | |
| 2469 | if( mbedtls_rsa_pkcs1_sign( &rsa, myrand, NULL, |
| 2470 | MBEDTLS_MD_SHA1, 20, |
| 2471 | sha1sum, rsa_ciphertext ) != 0 ) |
| 2472 | { |
| 2473 | if( verbose != 0 ) |
| 2474 | mbedtls_printf( "failed\n" ); |
| 2475 | |
| 2476 | ret = 1; |
| 2477 | goto cleanup; |
| 2478 | } |
| 2479 | |
| 2480 | if( verbose != 0 ) |
| 2481 | mbedtls_printf( "passed\n PKCS#1 sig. verify: " ); |
| 2482 | |
| 2483 | if( mbedtls_rsa_pkcs1_verify( &rsa, MBEDTLS_MD_SHA1, 20, |
| 2484 | sha1sum, rsa_ciphertext ) != 0 ) |
| 2485 | { |
| 2486 | if( verbose != 0 ) |
| 2487 | mbedtls_printf( "failed\n" ); |
| 2488 | |
| 2489 | ret = 1; |
| 2490 | goto cleanup; |
| 2491 | } |
| 2492 | |
| 2493 | if( verbose != 0 ) |
| 2494 | mbedtls_printf( "passed\n" ); |
| 2495 | #endif /* MBEDTLS_SHA1_C */ |
| 2496 | |
| 2497 | if( verbose != 0 ) |
| 2498 | mbedtls_printf( "\n" ); |
| 2499 | |
| 2500 | cleanup: |
| 2501 | mbedtls_mpi_free( &K ); |
| 2502 | mbedtls_rsa_free( &rsa ); |
| 2503 | #else /* MBEDTLS_PKCS1_V15 */ |
| 2504 | ((void) verbose); |
| 2505 | #endif /* MBEDTLS_PKCS1_V15 */ |
| 2506 | return( ret ); |
| 2507 | } |
| 2508 | |
| 2509 | #endif /* MBEDTLS_SELF_TEST */ |
| 2510 | |
| 2511 | #endif /* MBEDTLS_RSA_C */ |
| 2512 | |