| 1 | /* |
| 2 | * PCG Random Number Generation for C++ |
| 3 | * |
| 4 | * Copyright 2014-2017 Melissa O'Neill <oneill@pcg-random.org>, |
| 5 | * and the PCG Project contributors. |
| 6 | * |
| 7 | * SPDX-License-Identifier: (Apache-2.0 OR MIT) |
| 8 | * |
| 9 | * Licensed under the Apache License, Version 2.0 (provided in |
| 10 | * LICENSE-APACHE.txt and at http://www.apache.org/licenses/LICENSE-2.0) |
| 11 | * or under the MIT license (provided in LICENSE-MIT.txt and at |
| 12 | * http://opensource.org/licenses/MIT), at your option. This file may not |
| 13 | * be copied, modified, or distributed except according to those terms. |
| 14 | * |
| 15 | * Distributed on an "AS IS" BASIS, WITHOUT WARRANTY OF ANY KIND, either |
| 16 | * express or implied. See your chosen license for details. |
| 17 | * |
| 18 | * For additional information about the PCG random number generation scheme, |
| 19 | * visit http://www.pcg-random.org/. |
| 20 | */ |
| 21 | |
| 22 | /* |
| 23 | * This file provides support code that is useful for random-number generation |
| 24 | * but not specific to the PCG generation scheme, including: |
| 25 | * - 128-bit int support for platforms where it isn't available natively |
| 26 | * - bit twiddling operations |
| 27 | * - I/O of 128-bit and 8-bit integers |
| 28 | * - Handling the evilness of SeedSeq |
| 29 | * - Support for efficiently producing random numbers less than a given |
| 30 | * bound |
| 31 | */ |
| 32 | |
| 33 | #ifndef PCG_EXTRAS_HPP_INCLUDED |
| 34 | #define 1 |
| 35 | |
| 36 | #include <cinttypes> |
| 37 | #include <cstddef> |
| 38 | #include <cstdlib> |
| 39 | #include <cstring> |
| 40 | #include <cassert> |
| 41 | #include <limits> |
| 42 | #include <iostream> |
| 43 | #include <type_traits> |
| 44 | #include <utility> |
| 45 | #include <locale> |
| 46 | #include <iterator> |
| 47 | |
| 48 | #ifdef __GNUC__ |
| 49 | #include <cxxabi.h> |
| 50 | #endif |
| 51 | |
| 52 | /* |
| 53 | * Abstractions for compiler-specific directives |
| 54 | */ |
| 55 | |
| 56 | #ifdef __GNUC__ |
| 57 | #define PCG_NOINLINE __attribute__((noinline)) |
| 58 | #else |
| 59 | #define PCG_NOINLINE |
| 60 | #endif |
| 61 | |
| 62 | /* |
| 63 | * Some members of the PCG library use 128-bit math. When compiling on 64-bit |
| 64 | * platforms, both GCC and Clang provide 128-bit integer types that are ideal |
| 65 | * for the job. |
| 66 | * |
| 67 | * On 32-bit platforms (or with other compilers), we fall back to a C++ |
| 68 | * class that provides 128-bit unsigned integers instead. It may seem |
| 69 | * like we're reinventing the wheel here, because libraries already exist |
| 70 | * that support large integers, but most existing libraries provide a very |
| 71 | * generic multiprecision code, but here we're operating at a fixed size. |
| 72 | * Also, most other libraries are fairly heavyweight. So we use a direct |
| 73 | * implementation. Sadly, it's much slower than hand-coded assembly or |
| 74 | * direct CPU support. |
| 75 | * |
| 76 | */ |
| 77 | #if __SIZEOF_INT128__ |
| 78 | namespace pcg_extras { |
| 79 | typedef __uint128_t ; |
| 80 | } |
| 81 | #define PCG_128BIT_CONSTANT(high,low) \ |
| 82 | ((pcg_extras::pcg128_t(high) << 64) + low) |
| 83 | #else |
| 84 | #include "pcg_uint128.hpp" |
| 85 | namespace pcg_extras { |
| 86 | typedef pcg_extras::uint_x4<uint32_t,uint64_t> pcg128_t; |
| 87 | } |
| 88 | #define PCG_128BIT_CONSTANT(high,low) \ |
| 89 | pcg_extras::pcg128_t(high,low) |
| 90 | #define PCG_EMULATED_128BIT_MATH 1 |
| 91 | #endif |
| 92 | |
| 93 | |
| 94 | namespace pcg_extras { |
| 95 | |
| 96 | /* |
| 97 | * We often need to represent a "number of bits". When used normally, these |
| 98 | * numbers are never greater than 128, so an unsigned char is plenty. |
| 99 | * If you're using a nonstandard generator of a larger size, you can set |
| 100 | * PCG_BITCOUNT_T to have it define it as a larger size. (Some compilers |
| 101 | * might produce faster code if you set it to an unsigned int.) |
| 102 | */ |
| 103 | |
| 104 | #ifndef PCG_BITCOUNT_T |
| 105 | typedef uint8_t ; |
| 106 | #else |
| 107 | typedef PCG_BITCOUNT_T bitcount_t; |
| 108 | #endif |
| 109 | |
| 110 | /* |
| 111 | * C++ requires us to be able to serialize RNG state by printing or reading |
| 112 | * it from a stream. Because we use 128-bit ints, we also need to be able |
| 113 | * ot print them, so here is code to do so. |
| 114 | * |
| 115 | * This code provides enough functionality to print 128-bit ints in decimal |
| 116 | * and zero-padded in hex. It's not a full-featured implementation. |
| 117 | */ |
| 118 | |
| 119 | template <typename CharT, typename Traits> |
| 120 | std::basic_ostream<CharT,Traits>& |
| 121 | (std::basic_ostream<CharT,Traits>& out, pcg128_t value) |
| 122 | { |
| 123 | auto desired_base = out.flags() & out.basefield; |
| 124 | bool want_hex = desired_base == out.hex; |
| 125 | |
| 126 | if (want_hex) { |
| 127 | uint64_t highpart = uint64_t(value >> 64); |
| 128 | uint64_t lowpart = uint64_t(value); |
| 129 | auto desired_width = out.width(); |
| 130 | if (desired_width > 16) { |
| 131 | out.width(desired_width - 16); |
| 132 | } |
| 133 | if (highpart != 0 || desired_width > 16) |
| 134 | out << highpart; |
| 135 | CharT oldfill = '\0'; |
| 136 | if (highpart != 0) { |
| 137 | out.width(16); |
| 138 | oldfill = out.fill('0'); |
| 139 | } |
| 140 | auto oldflags = out.setf(decltype(desired_base){}, out.showbase); |
| 141 | out << lowpart; |
| 142 | out.setf(oldflags); |
| 143 | if (highpart != 0) { |
| 144 | out.fill(oldfill); |
| 145 | } |
| 146 | return out; |
| 147 | } |
| 148 | constexpr size_t MAX_CHARS_128BIT = 40; |
| 149 | |
| 150 | char buffer[MAX_CHARS_128BIT]; |
| 151 | char* pos = buffer+sizeof(buffer); |
| 152 | *(--pos) = '\0'; |
| 153 | constexpr auto BASE = pcg128_t(10ULL); |
| 154 | do { |
| 155 | auto div = value / BASE; |
| 156 | auto mod = uint32_t(value - (div * BASE)); |
| 157 | *(--pos) = '0' + char(mod); |
| 158 | value = div; |
| 159 | } while(value != pcg128_t(0ULL)); |
| 160 | return out << pos; |
| 161 | } |
| 162 | |
| 163 | template <typename CharT, typename Traits> |
| 164 | std::basic_istream<CharT,Traits>& |
| 165 | (std::basic_istream<CharT,Traits>& in, pcg128_t& value) |
| 166 | { |
| 167 | typename std::basic_istream<CharT,Traits>::sentry s(in); |
| 168 | |
| 169 | if (!s) |
| 170 | return in; |
| 171 | |
| 172 | constexpr auto BASE = pcg128_t(10ULL); |
| 173 | pcg128_t current(0ULL); |
| 174 | bool did_nothing = true; |
| 175 | bool overflow = false; |
| 176 | for(;;) { |
| 177 | CharT wide_ch = in.get(); |
| 178 | if (!in.good()) |
| 179 | break; |
| 180 | auto ch = in.narrow(wide_ch, '\0'); |
| 181 | if (ch < '0' || ch > '9') { |
| 182 | in.unget(); |
| 183 | break; |
| 184 | } |
| 185 | did_nothing = false; |
| 186 | pcg128_t digit(uint32_t(ch - '0')); |
| 187 | pcg128_t timesbase = current*BASE; |
| 188 | overflow = overflow || timesbase < current; |
| 189 | current = timesbase + digit; |
| 190 | overflow = overflow || current < digit; |
| 191 | } |
| 192 | |
| 193 | if (did_nothing || overflow) { |
| 194 | in.setstate(std::ios::failbit); |
| 195 | if (overflow) |
| 196 | current = ~pcg128_t(0ULL); |
| 197 | } |
| 198 | |
| 199 | value = current; |
| 200 | |
| 201 | return in; |
| 202 | } |
| 203 | |
| 204 | /* |
| 205 | * Likewise, if people use tiny rngs, we'll be serializing uint8_t. |
| 206 | * If we just used the provided IO operators, they'd read/write chars, |
| 207 | * not ints, so we need to define our own. We *can* redefine this operator |
| 208 | * here because we're in our own namespace. |
| 209 | */ |
| 210 | |
| 211 | template <typename CharT, typename Traits> |
| 212 | std::basic_ostream<CharT,Traits>& |
| 213 | (std::basic_ostream<CharT,Traits>&out, uint8_t value) |
| 214 | { |
| 215 | return out << uint32_t(value); |
| 216 | } |
| 217 | |
| 218 | template <typename CharT, typename Traits> |
| 219 | std::basic_istream<CharT,Traits>& |
| 220 | (std::basic_istream<CharT,Traits>& in, uint8_t& target) |
| 221 | { |
| 222 | uint32_t value = 0xdecea5edU; |
| 223 | in >> value; |
| 224 | if (!in && value == 0xdecea5edU) |
| 225 | return in; |
| 226 | if (value > uint8_t(~0)) { |
| 227 | in.setstate(std::ios::failbit); |
| 228 | value = ~0U; |
| 229 | } |
| 230 | target = uint8_t(value); |
| 231 | return in; |
| 232 | } |
| 233 | |
| 234 | /* Unfortunately, the above functions don't get found in preference to the |
| 235 | * built in ones, so we create some more specific overloads that will. |
| 236 | * Ugh. |
| 237 | */ |
| 238 | |
| 239 | inline std::ostream& (std::ostream& out, uint8_t value) |
| 240 | { |
| 241 | return pcg_extras::operator<< <char>(out, value); |
| 242 | } |
| 243 | |
| 244 | inline std::istream& (std::istream& in, uint8_t& value) |
| 245 | { |
| 246 | return pcg_extras::operator>> <char>(in, target&: value); |
| 247 | } |
| 248 | |
| 249 | |
| 250 | |
| 251 | /* |
| 252 | * Useful bitwise operations. |
| 253 | */ |
| 254 | |
| 255 | /* |
| 256 | * XorShifts are invertable, but they are someting of a pain to invert. |
| 257 | * This function backs them out. It's used by the whacky "inside out" |
| 258 | * generator defined later. |
| 259 | */ |
| 260 | |
| 261 | template <typename itype> |
| 262 | inline itype (itype x, bitcount_t bits, bitcount_t shift) |
| 263 | { |
| 264 | if (2*shift >= bits) { |
| 265 | return x ^ (x >> shift); |
| 266 | } |
| 267 | itype lowmask1 = (itype(1U) << (bits - shift*2)) - 1; |
| 268 | itype highmask1 = ~lowmask1; |
| 269 | itype top1 = x; |
| 270 | itype bottom1 = x & lowmask1; |
| 271 | top1 ^= top1 >> shift; |
| 272 | top1 &= highmask1; |
| 273 | x = top1 | bottom1; |
| 274 | itype lowmask2 = (itype(1U) << (bits - shift)) - 1; |
| 275 | itype bottom2 = x & lowmask2; |
| 276 | bottom2 = unxorshift(bottom2, bits - shift, shift); |
| 277 | bottom2 &= lowmask1; |
| 278 | return top1 | bottom2; |
| 279 | } |
| 280 | |
| 281 | /* |
| 282 | * Rotate left and right. |
| 283 | * |
| 284 | * In ideal world, compilers would spot idiomatic rotate code and convert it |
| 285 | * to a rotate instruction. Of course, opinions vary on what the correct |
| 286 | * idiom is and how to spot it. For clang, sometimes it generates better |
| 287 | * (but still crappy) code if you define PCG_USE_ZEROCHECK_ROTATE_IDIOM. |
| 288 | */ |
| 289 | |
| 290 | template <typename itype> |
| 291 | inline itype (itype value, bitcount_t rot) |
| 292 | { |
| 293 | constexpr bitcount_t bits = sizeof(itype) * 8; |
| 294 | constexpr bitcount_t mask = bits - 1; |
| 295 | #if PCG_USE_ZEROCHECK_ROTATE_IDIOM |
| 296 | return rot ? (value << rot) | (value >> (bits - rot)) : value; |
| 297 | #else |
| 298 | return (value << rot) | (value >> ((- rot) & mask)); |
| 299 | #endif |
| 300 | } |
| 301 | |
| 302 | template <typename itype> |
| 303 | inline itype (itype value, bitcount_t rot) |
| 304 | { |
| 305 | constexpr bitcount_t bits = sizeof(itype) * 8; |
| 306 | constexpr bitcount_t mask = bits - 1; |
| 307 | #if PCG_USE_ZEROCHECK_ROTATE_IDIOM |
| 308 | return rot ? (value >> rot) | (value << (bits - rot)) : value; |
| 309 | #else |
| 310 | return (value >> rot) | (value << ((- rot) & mask)); |
| 311 | #endif |
| 312 | } |
| 313 | |
| 314 | /* Unfortunately, both Clang and GCC sometimes perform poorly when it comes |
| 315 | * to properly recognizing idiomatic rotate code, so for we also provide |
| 316 | * assembler directives (enabled with PCG_USE_INLINE_ASM). Boo, hiss. |
| 317 | * (I hope that these compilers get better so that this code can die.) |
| 318 | * |
| 319 | * These overloads will be preferred over the general template code above. |
| 320 | */ |
| 321 | #if PCG_USE_INLINE_ASM && __GNUC__ && (__x86_64__ || __i386__) |
| 322 | |
| 323 | inline uint8_t rotr(uint8_t value, bitcount_t rot) |
| 324 | { |
| 325 | asm ("rorb %%cl, %0" : "=r" (value) : "0" (value), "c" (rot)); |
| 326 | return value; |
| 327 | } |
| 328 | |
| 329 | inline uint16_t rotr(uint16_t value, bitcount_t rot) |
| 330 | { |
| 331 | asm ("rorw %%cl, %0" : "=r" (value) : "0" (value), "c" (rot)); |
| 332 | return value; |
| 333 | } |
| 334 | |
| 335 | inline uint32_t rotr(uint32_t value, bitcount_t rot) |
| 336 | { |
| 337 | asm ("rorl %%cl, %0" : "=r" (value) : "0" (value), "c" (rot)); |
| 338 | return value; |
| 339 | } |
| 340 | |
| 341 | #if __x86_64__ |
| 342 | inline uint64_t rotr(uint64_t value, bitcount_t rot) |
| 343 | { |
| 344 | asm ("rorq %%cl, %0" : "=r" (value) : "0" (value), "c" (rot)); |
| 345 | return value; |
| 346 | } |
| 347 | #endif // __x86_64__ |
| 348 | |
| 349 | #elif defined(_MSC_VER) |
| 350 | // Use MSVC++ bit rotation intrinsics |
| 351 | |
| 352 | #pragma intrinsic(_rotr, _rotr64, _rotr8, _rotr16) |
| 353 | |
| 354 | inline uint8_t rotr(uint8_t value, bitcount_t rot) |
| 355 | { |
| 356 | return _rotr8(value, rot); |
| 357 | } |
| 358 | |
| 359 | inline uint16_t rotr(uint16_t value, bitcount_t rot) |
| 360 | { |
| 361 | return _rotr16(value, rot); |
| 362 | } |
| 363 | |
| 364 | inline uint32_t rotr(uint32_t value, bitcount_t rot) |
| 365 | { |
| 366 | return _rotr(value, rot); |
| 367 | } |
| 368 | |
| 369 | inline uint64_t rotr(uint64_t value, bitcount_t rot) |
| 370 | { |
| 371 | return _rotr64(value, rot); |
| 372 | } |
| 373 | |
| 374 | #endif // PCG_USE_INLINE_ASM |
| 375 | |
| 376 | |
| 377 | /* |
| 378 | * The C++ SeedSeq concept (modelled by seed_seq) can fill an array of |
| 379 | * 32-bit integers with seed data, but sometimes we want to produce |
| 380 | * larger or smaller integers. |
| 381 | * |
| 382 | * The following code handles this annoyance. |
| 383 | * |
| 384 | * uneven_copy will copy an array of 32-bit ints to an array of larger or |
| 385 | * smaller ints (actually, the code is general it only needing forward |
| 386 | * iterators). The copy is identical to the one that would be performed if |
| 387 | * we just did memcpy on a standard little-endian machine, but works |
| 388 | * regardless of the endian of the machine (or the weirdness of the ints |
| 389 | * involved). |
| 390 | * |
| 391 | * generate_to initializes an array of integers using a SeedSeq |
| 392 | * object. It is given the size as a static constant at compile time and |
| 393 | * tries to avoid memory allocation. If we're filling in 32-bit constants |
| 394 | * we just do it directly. If we need a separate buffer and it's small, |
| 395 | * we allocate it on the stack. Otherwise, we fall back to heap allocation. |
| 396 | * Ugh. |
| 397 | * |
| 398 | * generate_one produces a single value of some integral type using a |
| 399 | * SeedSeq object. |
| 400 | */ |
| 401 | |
| 402 | /* uneven_copy helper, case where destination ints are less than 32 bit. */ |
| 403 | |
| 404 | template<class SrcIter, class DestIter> |
| 405 | SrcIter ( |
| 406 | SrcIter src_first, DestIter dest_first, DestIter dest_last, |
| 407 | std::true_type) |
| 408 | { |
| 409 | typedef typename std::iterator_traits<SrcIter>::value_type src_t; |
| 410 | typedef typename std::iterator_traits<DestIter>::value_type dest_t; |
| 411 | |
| 412 | constexpr bitcount_t SRC_SIZE = sizeof(src_t); |
| 413 | constexpr bitcount_t DEST_SIZE = sizeof(dest_t); |
| 414 | constexpr bitcount_t DEST_BITS = DEST_SIZE * 8; |
| 415 | constexpr bitcount_t SCALE = SRC_SIZE / DEST_SIZE; |
| 416 | |
| 417 | size_t count = 0; |
| 418 | src_t value = 0; |
| 419 | |
| 420 | while (dest_first != dest_last) { |
| 421 | if ((count++ % SCALE) == 0) |
| 422 | value = *src_first++; // Get more bits |
| 423 | else |
| 424 | value >>= DEST_BITS; // Move down bits |
| 425 | |
| 426 | *dest_first++ = dest_t(value); // Truncates, ignores high bits. |
| 427 | } |
| 428 | return src_first; |
| 429 | } |
| 430 | |
| 431 | /* uneven_copy helper, case where destination ints are more than 32 bit. */ |
| 432 | |
| 433 | template<class SrcIter, class DestIter> |
| 434 | SrcIter ( |
| 435 | SrcIter src_first, DestIter dest_first, DestIter dest_last, |
| 436 | std::false_type) |
| 437 | { |
| 438 | typedef typename std::iterator_traits<SrcIter>::value_type src_t; |
| 439 | typedef typename std::iterator_traits<DestIter>::value_type dest_t; |
| 440 | |
| 441 | constexpr auto SRC_SIZE = sizeof(src_t); |
| 442 | constexpr auto SRC_BITS = SRC_SIZE * 8; |
| 443 | constexpr auto DEST_SIZE = sizeof(dest_t); |
| 444 | constexpr auto SCALE = (DEST_SIZE+SRC_SIZE-1) / SRC_SIZE; |
| 445 | |
| 446 | while (dest_first != dest_last) { |
| 447 | dest_t value(0UL); |
| 448 | unsigned int shift = 0; |
| 449 | |
| 450 | for (size_t i = 0; i < SCALE; ++i) { |
| 451 | value |= dest_t(*src_first++) << shift; |
| 452 | shift += SRC_BITS; |
| 453 | } |
| 454 | |
| 455 | *dest_first++ = value; |
| 456 | } |
| 457 | return src_first; |
| 458 | } |
| 459 | |
| 460 | /* uneven_copy, call the right code for larger vs. smaller */ |
| 461 | |
| 462 | template<class SrcIter, class DestIter> |
| 463 | inline SrcIter (SrcIter src_first, |
| 464 | DestIter dest_first, DestIter dest_last) |
| 465 | { |
| 466 | typedef typename std::iterator_traits<SrcIter>::value_type src_t; |
| 467 | typedef typename std::iterator_traits<DestIter>::value_type dest_t; |
| 468 | |
| 469 | constexpr bool DEST_IS_SMALLER = sizeof(dest_t) < sizeof(src_t); |
| 470 | |
| 471 | return uneven_copy_impl(src_first, dest_first, dest_last, |
| 472 | std::integral_constant<bool, DEST_IS_SMALLER>{}); |
| 473 | } |
| 474 | |
| 475 | /* generate_to, fill in a fixed-size array of integral type using a SeedSeq |
| 476 | * (actually works for any random-access iterator) |
| 477 | */ |
| 478 | |
| 479 | template <size_t size, typename SeedSeq, typename DestIter> |
| 480 | inline void (SeedSeq&& generator, DestIter dest, |
| 481 | std::true_type) |
| 482 | { |
| 483 | generator.generate(dest, dest+size); |
| 484 | } |
| 485 | |
| 486 | template <size_t size, typename SeedSeq, typename DestIter> |
| 487 | void (SeedSeq&& generator, DestIter dest, |
| 488 | std::false_type) |
| 489 | { |
| 490 | typedef typename std::iterator_traits<DestIter>::value_type dest_t; |
| 491 | constexpr auto DEST_SIZE = sizeof(dest_t); |
| 492 | constexpr auto GEN_SIZE = sizeof(uint32_t); |
| 493 | |
| 494 | constexpr bool GEN_IS_SMALLER = GEN_SIZE < DEST_SIZE; |
| 495 | constexpr size_t FROM_ELEMS = |
| 496 | GEN_IS_SMALLER |
| 497 | ? size * ((DEST_SIZE+GEN_SIZE-1) / GEN_SIZE) |
| 498 | : (size + (GEN_SIZE / DEST_SIZE) - 1) |
| 499 | / ((GEN_SIZE / DEST_SIZE) + GEN_IS_SMALLER); |
| 500 | // this odd code ^^^^^^^^^^^^^^^^^ is work-around for |
| 501 | // a bug: http://llvm.org/bugs/show_bug.cgi?id=21287 |
| 502 | |
| 503 | if (FROM_ELEMS <= 1024) { |
| 504 | uint32_t buffer[FROM_ELEMS]; |
| 505 | generator.generate(buffer, buffer+FROM_ELEMS); |
| 506 | uneven_copy(buffer, dest, dest+size); |
| 507 | } else { |
| 508 | uint32_t* buffer = static_cast<uint32_t*>(malloc(size: GEN_SIZE * FROM_ELEMS)); |
| 509 | generator.generate(buffer, buffer+FROM_ELEMS); |
| 510 | uneven_copy(buffer, dest, dest+size); |
| 511 | free(ptr: static_cast<void*>(buffer)); |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | template <size_t size, typename SeedSeq, typename DestIter> |
| 516 | inline void (SeedSeq&& generator, DestIter dest) |
| 517 | { |
| 518 | typedef typename std::iterator_traits<DestIter>::value_type dest_t; |
| 519 | constexpr bool IS_32BIT = sizeof(dest_t) == sizeof(uint32_t); |
| 520 | |
| 521 | generate_to_impl<size>(std::forward<SeedSeq>(generator), dest, |
| 522 | std::integral_constant<bool, IS_32BIT>{}); |
| 523 | } |
| 524 | |
| 525 | /* generate_one, produce a value of integral type using a SeedSeq |
| 526 | * (optionally, we can have it produce more than one and pick which one |
| 527 | * we want) |
| 528 | */ |
| 529 | |
| 530 | template <typename UInt, size_t i = 0UL, size_t N = i+1UL, typename SeedSeq> |
| 531 | inline UInt (SeedSeq&& generator) |
| 532 | { |
| 533 | UInt result[N]; |
| 534 | generate_to<N>(std::forward<SeedSeq>(generator), result); |
| 535 | return result[i]; |
| 536 | } |
| 537 | |
| 538 | template <typename RngType> |
| 539 | auto bounded_rand(RngType& rng, typename RngType::result_type upper_bound) |
| 540 | -> typename RngType::result_type |
| 541 | { |
| 542 | typedef typename RngType::result_type rtype; |
| 543 | rtype threshold = (RngType::max() - RngType::min() + rtype(1) - upper_bound) |
| 544 | % upper_bound; |
| 545 | for (;;) { |
| 546 | rtype r = rng() - RngType::min(); |
| 547 | if (r >= threshold) |
| 548 | return r % upper_bound; |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | template <typename Iter, typename RandType> |
| 553 | void (Iter from, Iter to, RandType&& rng) |
| 554 | { |
| 555 | typedef typename std::iterator_traits<Iter>::difference_type delta_t; |
| 556 | typedef typename std::remove_reference<RandType>::type::result_type result_t; |
| 557 | auto count = to - from; |
| 558 | while (count > 1) { |
| 559 | delta_t chosen = delta_t(bounded_rand(rng, result_t(count))); |
| 560 | --count; |
| 561 | --to; |
| 562 | using std::swap; |
| 563 | swap(*(from + chosen), *to); |
| 564 | } |
| 565 | } |
| 566 | |
| 567 | /* |
| 568 | * Although std::seed_seq is useful, it isn't everything. Often we want to |
| 569 | * initialize a random-number generator some other way, such as from a random |
| 570 | * device. |
| 571 | * |
| 572 | * Technically, it does not meet the requirements of a SeedSequence because |
| 573 | * it lacks some of the rarely-used member functions (some of which would |
| 574 | * be impossible to provide). However the C++ standard is quite specific |
| 575 | * that actual engines only called the generate method, so it ought not to be |
| 576 | * a problem in practice. |
| 577 | */ |
| 578 | |
| 579 | template <typename RngType> |
| 580 | class { |
| 581 | private: |
| 582 | RngType ; |
| 583 | |
| 584 | typedef uint_least32_t ; |
| 585 | |
| 586 | public: |
| 587 | template<typename... Args> |
| 588 | (Args&&... args) : |
| 589 | rng_(std::forward<Args>(args)...) |
| 590 | { |
| 591 | // Nothing (else) to do... |
| 592 | } |
| 593 | |
| 594 | template<typename Iter> |
| 595 | void (Iter start, Iter finish) |
| 596 | { |
| 597 | for (auto i = start; i != finish; ++i) |
| 598 | *i = result_type(rng_()); |
| 599 | } |
| 600 | |
| 601 | constexpr size_t () const |
| 602 | { |
| 603 | return (sizeof(typename RngType::result_type) > sizeof(result_type) |
| 604 | && RngType::max() > ~size_t(0UL)) |
| 605 | ? ~size_t(0UL) |
| 606 | : size_t(RngType::max()); |
| 607 | } |
| 608 | }; |
| 609 | |
| 610 | /* |
| 611 | * Sometimes you might want a distinct seed based on when the program |
| 612 | * was compiled. That way, a particular instance of the program will |
| 613 | * behave the same way, but when recompiled it'll produce a different |
| 614 | * value. |
| 615 | */ |
| 616 | |
| 617 | template <typename IntType> |
| 618 | struct { |
| 619 | private: |
| 620 | static constexpr IntType (IntType hash, const char* pos) { |
| 621 | return *pos == '\0' |
| 622 | ? hash |
| 623 | : fnv(hash: (hash * IntType(16777619U)) ^ *pos, pos: (pos+1)); |
| 624 | } |
| 625 | |
| 626 | public: |
| 627 | static constexpr IntType = fnv(hash: IntType(2166136261U ^ sizeof(IntType)), |
| 628 | __DATE__ __TIME__ __FILE__); |
| 629 | }; |
| 630 | |
| 631 | // Sometimes, when debugging or testing, it's handy to be able print the name |
| 632 | // of a (in human-readable form). This code allows the idiom: |
| 633 | // |
| 634 | // cout << printable_typename<my_foo_type_t>() |
| 635 | // |
| 636 | // to print out my_foo_type_t (or its concrete type if it is a synonym) |
| 637 | |
| 638 | #if __cpp_rtti || __GXX_RTTI |
| 639 | |
| 640 | template <typename T> |
| 641 | struct {}; |
| 642 | |
| 643 | template <typename T> |
| 644 | std::ostream& (std::ostream& out, printable_typename<T>) { |
| 645 | const char *implementation_typename = typeid(T).name(); |
| 646 | #ifdef __GNUC__ |
| 647 | int status; |
| 648 | char* pretty_name = |
| 649 | abi::__cxa_demangle(mangled_name: implementation_typename, output_buffer: nullptr, length: nullptr, status: &status); |
| 650 | if (status == 0) |
| 651 | out << pretty_name; |
| 652 | free(ptr: static_cast<void*>(pretty_name)); |
| 653 | if (status == 0) |
| 654 | return out; |
| 655 | #endif |
| 656 | out << implementation_typename; |
| 657 | return out; |
| 658 | } |
| 659 | |
| 660 | #endif // __cpp_rtti || __GXX_RTTI |
| 661 | |
| 662 | } // namespace pcg_extras |
| 663 | |
| 664 | #endif // PCG_EXTRAS_HPP_INCLUDED |