1// Copyright 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14// * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30// Google Mock - a framework for writing C++ mock classes.
31//
32// The ACTION* family of macros can be used in a namespace scope to
33// define custom actions easily. The syntax:
34//
35// ACTION(name) { statements; }
36//
37// will define an action with the given name that executes the
38// statements. The value returned by the statements will be used as
39// the return value of the action. Inside the statements, you can
40// refer to the K-th (0-based) argument of the mock function by
41// 'argK', and refer to its type by 'argK_type'. For example:
42//
43// ACTION(IncrementArg1) {
44// arg1_type temp = arg1;
45// return ++(*temp);
46// }
47//
48// allows you to write
49//
50// ...WillOnce(IncrementArg1());
51//
52// You can also refer to the entire argument tuple and its type by
53// 'args' and 'args_type', and refer to the mock function type and its
54// return type by 'function_type' and 'return_type'.
55//
56// Note that you don't need to specify the types of the mock function
57// arguments. However rest assured that your code is still type-safe:
58// you'll get a compiler error if *arg1 doesn't support the ++
59// operator, or if the type of ++(*arg1) isn't compatible with the
60// mock function's return type, for example.
61//
62// Sometimes you'll want to parameterize the action. For that you can use
63// another macro:
64//
65// ACTION_P(name, param_name) { statements; }
66//
67// For example:
68//
69// ACTION_P(Add, n) { return arg0 + n; }
70//
71// will allow you to write:
72//
73// ...WillOnce(Add(5));
74//
75// Note that you don't need to provide the type of the parameter
76// either. If you need to reference the type of a parameter named
77// 'foo', you can write 'foo_type'. For example, in the body of
78// ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
79// of 'n'.
80//
81// We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
82// multi-parameter actions.
83//
84// For the purpose of typing, you can view
85//
86// ACTION_Pk(Foo, p1, ..., pk) { ... }
87//
88// as shorthand for
89//
90// template <typename p1_type, ..., typename pk_type>
91// FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
92//
93// In particular, you can provide the template type arguments
94// explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
95// although usually you can rely on the compiler to infer the types
96// for you automatically. You can assign the result of expression
97// Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
98// pk_type>. This can be useful when composing actions.
99//
100// You can also overload actions with different numbers of parameters:
101//
102// ACTION_P(Plus, a) { ... }
103// ACTION_P2(Plus, a, b) { ... }
104//
105// While it's tempting to always use the ACTION* macros when defining
106// a new action, you should also consider implementing ActionInterface
107// or using MakePolymorphicAction() instead, especially if you need to
108// use the action a lot. While these approaches require more work,
109// they give you more control on the types of the mock function
110// arguments and the action parameters, which in general leads to
111// better compiler error messages that pay off in the long run. They
112// also allow overloading actions based on parameter types (as opposed
113// to just based on the number of parameters).
114//
115// CAVEAT:
116//
117// ACTION*() can only be used in a namespace scope as templates cannot be
118// declared inside of a local class.
119// Users can, however, define any local functors (e.g. a lambda) that
120// can be used as actions.
121//
122// MORE INFORMATION:
123//
124// To learn more about using these macros, please search for 'ACTION' on
125// https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md
126
127// IWYU pragma: private, include "gmock/gmock.h"
128// IWYU pragma: friend gmock/.*
129
130#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
131#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
132
133#ifndef _WIN32_WCE
134#include <errno.h>
135#endif
136
137#include <algorithm>
138#include <functional>
139#include <memory>
140#include <string>
141#include <tuple>
142#include <type_traits>
143#include <utility>
144
145#include "gmock/internal/gmock-internal-utils.h"
146#include "gmock/internal/gmock-port.h"
147#include "gmock/internal/gmock-pp.h"
148
149#ifdef _MSC_VER
150#pragma warning(push)
151#pragma warning(disable : 4100)
152#endif
153
154namespace testing {
155
156// To implement an action Foo, define:
157// 1. a class FooAction that implements the ActionInterface interface, and
158// 2. a factory function that creates an Action object from a
159// const FooAction*.
160//
161// The two-level delegation design follows that of Matcher, providing
162// consistency for extension developers. It also eases ownership
163// management as Action objects can now be copied like plain values.
164
165namespace internal {
166
167// BuiltInDefaultValueGetter<T, true>::Get() returns a
168// default-constructed T value. BuiltInDefaultValueGetter<T,
169// false>::Get() crashes with an error.
170//
171// This primary template is used when kDefaultConstructible is true.
172template <typename T, bool kDefaultConstructible>
173struct BuiltInDefaultValueGetter {
174 static T Get() { return T(); }
175};
176template <typename T>
177struct BuiltInDefaultValueGetter<T, false> {
178 static T Get() {
179 Assert(condition: false, __FILE__, __LINE__,
180 msg: "Default action undefined for the function return type.");
181 return internal::Invalid<T>();
182 // The above statement will never be reached, but is required in
183 // order for this function to compile.
184 }
185};
186
187// BuiltInDefaultValue<T>::Get() returns the "built-in" default value
188// for type T, which is NULL when T is a raw pointer type, 0 when T is
189// a numeric type, false when T is bool, or "" when T is string or
190// std::string. In addition, in C++11 and above, it turns a
191// default-constructed T value if T is default constructible. For any
192// other type T, the built-in default T value is undefined, and the
193// function will abort the process.
194template <typename T>
195class BuiltInDefaultValue {
196 public:
197 // This function returns true if and only if type T has a built-in default
198 // value.
199 static bool Exists() { return ::std::is_default_constructible<T>::value; }
200
201 static T Get() {
202 return BuiltInDefaultValueGetter<
203 T, ::std::is_default_constructible<T>::value>::Get();
204 }
205};
206
207// This partial specialization says that we use the same built-in
208// default value for T and const T.
209template <typename T>
210class BuiltInDefaultValue<const T> {
211 public:
212 static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
213 static T Get() { return BuiltInDefaultValue<T>::Get(); }
214};
215
216// This partial specialization defines the default values for pointer
217// types.
218template <typename T>
219class BuiltInDefaultValue<T*> {
220 public:
221 static bool Exists() { return true; }
222 static T* Get() { return nullptr; }
223};
224
225// The following specializations define the default values for
226// specific types we care about.
227#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
228 template <> \
229 class BuiltInDefaultValue<type> { \
230 public: \
231 static bool Exists() { return true; } \
232 static type Get() { return value; } \
233 }
234
235GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT
236GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
237GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
238GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
239GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
240GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
241
242// There's no need for a default action for signed wchar_t, as that
243// type is the same as wchar_t for gcc, and invalid for MSVC.
244//
245// There's also no need for a default action for unsigned wchar_t, as
246// that type is the same as unsigned int for gcc, and invalid for
247// MSVC.
248#if GMOCK_WCHAR_T_IS_NATIVE_
249GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
250#endif
251
252GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
253GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
254GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
255GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
256GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
257GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
258GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT
259GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT
260GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
261GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
262
263#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
264
265// Partial implementations of metaprogramming types from the standard library
266// not available in C++11.
267
268template <typename P>
269struct negation
270 // NOLINTNEXTLINE
271 : std::integral_constant<bool, bool(!P::value)> {};
272
273// Base case: with zero predicates the answer is always true.
274template <typename...>
275struct conjunction : std::true_type {};
276
277// With a single predicate, the answer is that predicate.
278template <typename P1>
279struct conjunction<P1> : P1 {};
280
281// With multiple predicates the answer is the first predicate if that is false,
282// and we recurse otherwise.
283template <typename P1, typename... Ps>
284struct conjunction<P1, Ps...>
285 : std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {};
286
287template <typename...>
288struct disjunction : std::false_type {};
289
290template <typename P1>
291struct disjunction<P1> : P1 {};
292
293template <typename P1, typename... Ps>
294struct disjunction<P1, Ps...>
295 // NOLINTNEXTLINE
296 : std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {};
297
298template <typename...>
299using void_t = void;
300
301// Detects whether an expression of type `From` can be implicitly converted to
302// `To` according to [conv]. In C++17, [conv]/3 defines this as follows:
303//
304// An expression e can be implicitly converted to a type T if and only if
305// the declaration T t=e; is well-formed, for some invented temporary
306// variable t ([dcl.init]).
307//
308// [conv]/2 implies we can use function argument passing to detect whether this
309// initialization is valid.
310//
311// Note that this is distinct from is_convertible, which requires this be valid:
312//
313// To test() {
314// return declval<From>();
315// }
316//
317// In particular, is_convertible doesn't give the correct answer when `To` and
318// `From` are the same non-moveable type since `declval<From>` will be an rvalue
319// reference, defeating the guaranteed copy elision that would otherwise make
320// this function work.
321//
322// REQUIRES: `From` is not cv void.
323template <typename From, typename To>
324struct is_implicitly_convertible {
325 private:
326 // A function that accepts a parameter of type T. This can be called with type
327 // U successfully only if U is implicitly convertible to T.
328 template <typename T>
329 static void Accept(T);
330
331 // A function that creates a value of type T.
332 template <typename T>
333 static T Make();
334
335 // An overload be selected when implicit conversion from T to To is possible.
336 template <typename T, typename = decltype(Accept<To>(Make<T>()))>
337 static std::true_type TestImplicitConversion(int);
338
339 // A fallback overload selected in all other cases.
340 template <typename T>
341 static std::false_type TestImplicitConversion(...);
342
343 public:
344 using type = decltype(TestImplicitConversion<From>(0));
345 static constexpr bool value = type::value;
346};
347
348// Like std::invoke_result_t from C++17, but works only for objects with call
349// operators (not e.g. member function pointers, which we don't need specific
350// support for in OnceAction because std::function deals with them).
351template <typename F, typename... Args>
352using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...));
353
354template <typename Void, typename R, typename F, typename... Args>
355struct is_callable_r_impl : std::false_type {};
356
357// Specialize the struct for those template arguments where call_result_t is
358// well-formed. When it's not, the generic template above is chosen, resulting
359// in std::false_type.
360template <typename R, typename F, typename... Args>
361struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...>
362 : std::conditional<
363 std::is_void<R>::value, //
364 std::true_type, //
365 is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {};
366
367// Like std::is_invocable_r from C++17, but works only for objects with call
368// operators. See the note on call_result_t.
369template <typename R, typename F, typename... Args>
370using is_callable_r = is_callable_r_impl<void, R, F, Args...>;
371
372// Like std::as_const from C++17.
373template <typename T>
374typename std::add_const<T>::type& as_const(T& t) {
375 return t;
376}
377
378} // namespace internal
379
380// Specialized for function types below.
381template <typename F>
382class OnceAction;
383
384// An action that can only be used once.
385//
386// This is accepted by WillOnce, which doesn't require the underlying action to
387// be copy-constructible (only move-constructible), and promises to invoke it as
388// an rvalue reference. This allows the action to work with move-only types like
389// std::move_only_function in a type-safe manner.
390//
391// For example:
392//
393// // Assume we have some API that needs to accept a unique pointer to some
394// // non-copyable object Foo.
395// void AcceptUniquePointer(std::unique_ptr<Foo> foo);
396//
397// // We can define an action that provides a Foo to that API. Because It
398// // has to give away its unique pointer, it must not be called more than
399// // once, so its call operator is &&-qualified.
400// struct ProvideFoo {
401// std::unique_ptr<Foo> foo;
402//
403// void operator()() && {
404// AcceptUniquePointer(std::move(Foo));
405// }
406// };
407//
408// // This action can be used with WillOnce.
409// EXPECT_CALL(mock, Call)
410// .WillOnce(ProvideFoo{std::make_unique<Foo>(...)});
411//
412// // But a call to WillRepeatedly will fail to compile. This is correct,
413// // since the action cannot correctly be used repeatedly.
414// EXPECT_CALL(mock, Call)
415// .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)});
416//
417// A less-contrived example would be an action that returns an arbitrary type,
418// whose &&-qualified call operator is capable of dealing with move-only types.
419template <typename Result, typename... Args>
420class OnceAction<Result(Args...)> final {
421 private:
422 // True iff we can use the given callable type (or lvalue reference) directly
423 // via StdFunctionAdaptor.
424 template <typename Callable>
425 using IsDirectlyCompatible = internal::conjunction<
426 // It must be possible to capture the callable in StdFunctionAdaptor.
427 std::is_constructible<typename std::decay<Callable>::type, Callable>,
428 // The callable must be compatible with our signature.
429 internal::is_callable_r<Result, typename std::decay<Callable>::type,
430 Args...>>;
431
432 // True iff we can use the given callable type via StdFunctionAdaptor once we
433 // ignore incoming arguments.
434 template <typename Callable>
435 using IsCompatibleAfterIgnoringArguments = internal::conjunction<
436 // It must be possible to capture the callable in a lambda.
437 std::is_constructible<typename std::decay<Callable>::type, Callable>,
438 // The callable must be invocable with zero arguments, returning something
439 // convertible to Result.
440 internal::is_callable_r<Result, typename std::decay<Callable>::type>>;
441
442 public:
443 // Construct from a callable that is directly compatible with our mocked
444 // signature: it accepts our function type's arguments and returns something
445 // convertible to our result type.
446 template <typename Callable,
447 typename std::enable_if<
448 internal::conjunction<
449 // Teach clang on macOS that we're not talking about a
450 // copy/move constructor here. Otherwise it gets confused
451 // when checking the is_constructible requirement of our
452 // traits above.
453 internal::negation<std::is_same<
454 OnceAction, typename std::decay<Callable>::type>>,
455 IsDirectlyCompatible<Callable>> //
456 ::value,
457 int>::type = 0>
458 OnceAction(Callable&& callable) // NOLINT
459 : function_(StdFunctionAdaptor<typename std::decay<Callable>::type>(
460 {}, std::forward<Callable>(callable))) {}
461
462 // As above, but for a callable that ignores the mocked function's arguments.
463 template <typename Callable,
464 typename std::enable_if<
465 internal::conjunction<
466 // Teach clang on macOS that we're not talking about a
467 // copy/move constructor here. Otherwise it gets confused
468 // when checking the is_constructible requirement of our
469 // traits above.
470 internal::negation<std::is_same<
471 OnceAction, typename std::decay<Callable>::type>>,
472 // Exclude callables for which the overload above works.
473 // We'd rather provide the arguments if possible.
474 internal::negation<IsDirectlyCompatible<Callable>>,
475 IsCompatibleAfterIgnoringArguments<Callable>>::value,
476 int>::type = 0>
477 OnceAction(Callable&& callable) // NOLINT
478 // Call the constructor above with a callable
479 // that ignores the input arguments.
480 : OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{
481 std::forward<Callable>(callable)}) {}
482
483 // We are naturally copyable because we store only an std::function, but
484 // semantically we should not be copyable.
485 OnceAction(const OnceAction&) = delete;
486 OnceAction& operator=(const OnceAction&) = delete;
487 OnceAction(OnceAction&&) = default;
488
489 // Invoke the underlying action callable with which we were constructed,
490 // handing it the supplied arguments.
491 Result Call(Args... args) && {
492 return function_(std::forward<Args>(args)...);
493 }
494
495 private:
496 // An adaptor that wraps a callable that is compatible with our signature and
497 // being invoked as an rvalue reference so that it can be used as an
498 // StdFunctionAdaptor. This throws away type safety, but that's fine because
499 // this is only used by WillOnce, which we know calls at most once.
500 //
501 // Once we have something like std::move_only_function from C++23, we can do
502 // away with this.
503 template <typename Callable>
504 class StdFunctionAdaptor final {
505 public:
506 // A tag indicating that the (otherwise universal) constructor is accepting
507 // the callable itself, instead of e.g. stealing calls for the move
508 // constructor.
509 struct CallableTag final {};
510
511 template <typename F>
512 explicit StdFunctionAdaptor(CallableTag, F&& callable)
513 : callable_(std::make_shared<Callable>(std::forward<F>(callable))) {}
514
515 // Rather than explicitly returning Result, we return whatever the wrapped
516 // callable returns. This allows for compatibility with existing uses like
517 // the following, when the mocked function returns void:
518 //
519 // EXPECT_CALL(mock_fn_, Call)
520 // .WillOnce([&] {
521 // [...]
522 // return 0;
523 // });
524 //
525 // Such a callable can be turned into std::function<void()>. If we use an
526 // explicit return type of Result here then it *doesn't* work with
527 // std::function, because we'll get a "void function should not return a
528 // value" error.
529 //
530 // We need not worry about incompatible result types because the SFINAE on
531 // OnceAction already checks this for us. std::is_invocable_r_v itself makes
532 // the same allowance for void result types.
533 template <typename... ArgRefs>
534 internal::call_result_t<Callable, ArgRefs...> operator()(
535 ArgRefs&&... args) const {
536 return std::move(*callable_)(std::forward<ArgRefs>(args)...);
537 }
538
539 private:
540 // We must put the callable on the heap so that we are copyable, which
541 // std::function needs.
542 std::shared_ptr<Callable> callable_;
543 };
544
545 // An adaptor that makes a callable that accepts zero arguments callable with
546 // our mocked arguments.
547 template <typename Callable>
548 struct IgnoreIncomingArguments {
549 internal::call_result_t<Callable> operator()(Args&&...) {
550 return std::move(callable)();
551 }
552
553 Callable callable;
554 };
555
556 std::function<Result(Args...)> function_;
557};
558
559// When an unexpected function call is encountered, Google Mock will
560// let it return a default value if the user has specified one for its
561// return type, or if the return type has a built-in default value;
562// otherwise Google Mock won't know what value to return and will have
563// to abort the process.
564//
565// The DefaultValue<T> class allows a user to specify the
566// default value for a type T that is both copyable and publicly
567// destructible (i.e. anything that can be used as a function return
568// type). The usage is:
569//
570// // Sets the default value for type T to be foo.
571// DefaultValue<T>::Set(foo);
572template <typename T>
573class DefaultValue {
574 public:
575 // Sets the default value for type T; requires T to be
576 // copy-constructable and have a public destructor.
577 static void Set(T x) {
578 delete producer_;
579 producer_ = new FixedValueProducer(x);
580 }
581
582 // Provides a factory function to be called to generate the default value.
583 // This method can be used even if T is only move-constructible, but it is not
584 // limited to that case.
585 typedef T (*FactoryFunction)();
586 static void SetFactory(FactoryFunction factory) {
587 delete producer_;
588 producer_ = new FactoryValueProducer(factory);
589 }
590
591 // Unsets the default value for type T.
592 static void Clear() {
593 delete producer_;
594 producer_ = nullptr;
595 }
596
597 // Returns true if and only if the user has set the default value for type T.
598 static bool IsSet() { return producer_ != nullptr; }
599
600 // Returns true if T has a default return value set by the user or there
601 // exists a built-in default value.
602 static bool Exists() {
603 return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
604 }
605
606 // Returns the default value for type T if the user has set one;
607 // otherwise returns the built-in default value. Requires that Exists()
608 // is true, which ensures that the return value is well-defined.
609 static T Get() {
610 return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
611 : producer_->Produce();
612 }
613
614 private:
615 class ValueProducer {
616 public:
617 virtual ~ValueProducer() {}
618 virtual T Produce() = 0;
619 };
620
621 class FixedValueProducer : public ValueProducer {
622 public:
623 explicit FixedValueProducer(T value) : value_(value) {}
624 T Produce() override { return value_; }
625
626 private:
627 const T value_;
628 FixedValueProducer(const FixedValueProducer&) = delete;
629 FixedValueProducer& operator=(const FixedValueProducer&) = delete;
630 };
631
632 class FactoryValueProducer : public ValueProducer {
633 public:
634 explicit FactoryValueProducer(FactoryFunction factory)
635 : factory_(factory) {}
636 T Produce() override { return factory_(); }
637
638 private:
639 const FactoryFunction factory_;
640 FactoryValueProducer(const FactoryValueProducer&) = delete;
641 FactoryValueProducer& operator=(const FactoryValueProducer&) = delete;
642 };
643
644 static ValueProducer* producer_;
645};
646
647// This partial specialization allows a user to set default values for
648// reference types.
649template <typename T>
650class DefaultValue<T&> {
651 public:
652 // Sets the default value for type T&.
653 static void Set(T& x) { // NOLINT
654 address_ = &x;
655 }
656
657 // Unsets the default value for type T&.
658 static void Clear() { address_ = nullptr; }
659
660 // Returns true if and only if the user has set the default value for type T&.
661 static bool IsSet() { return address_ != nullptr; }
662
663 // Returns true if T has a default return value set by the user or there
664 // exists a built-in default value.
665 static bool Exists() {
666 return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
667 }
668
669 // Returns the default value for type T& if the user has set one;
670 // otherwise returns the built-in default value if there is one;
671 // otherwise aborts the process.
672 static T& Get() {
673 return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
674 : *address_;
675 }
676
677 private:
678 static T* address_;
679};
680
681// This specialization allows DefaultValue<void>::Get() to
682// compile.
683template <>
684class DefaultValue<void> {
685 public:
686 static bool Exists() { return true; }
687 static void Get() {}
688};
689
690// Points to the user-set default value for type T.
691template <typename T>
692typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
693
694// Points to the user-set default value for type T&.
695template <typename T>
696T* DefaultValue<T&>::address_ = nullptr;
697
698// Implement this interface to define an action for function type F.
699template <typename F>
700class ActionInterface {
701 public:
702 typedef typename internal::Function<F>::Result Result;
703 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
704
705 ActionInterface() {}
706 virtual ~ActionInterface() {}
707
708 // Performs the action. This method is not const, as in general an
709 // action can have side effects and be stateful. For example, a
710 // get-the-next-element-from-the-collection action will need to
711 // remember the current element.
712 virtual Result Perform(const ArgumentTuple& args) = 0;
713
714 private:
715 ActionInterface(const ActionInterface&) = delete;
716 ActionInterface& operator=(const ActionInterface&) = delete;
717};
718
719template <typename F>
720class Action;
721
722// An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment)
723// object that represents an action to be taken when a mock function of type
724// R(Args...) is called. The implementation of Action<T> is just a
725// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You
726// can view an object implementing ActionInterface<F> as a concrete action
727// (including its current state), and an Action<F> object as a handle to it.
728template <typename R, typename... Args>
729class Action<R(Args...)> {
730 private:
731 using F = R(Args...);
732
733 // Adapter class to allow constructing Action from a legacy ActionInterface.
734 // New code should create Actions from functors instead.
735 struct ActionAdapter {
736 // Adapter must be copyable to satisfy std::function requirements.
737 ::std::shared_ptr<ActionInterface<F>> impl_;
738
739 template <typename... InArgs>
740 typename internal::Function<F>::Result operator()(InArgs&&... args) {
741 return impl_->Perform(
742 ::std::forward_as_tuple(::std::forward<InArgs>(args)...));
743 }
744 };
745
746 template <typename G>
747 using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
748
749 public:
750 typedef typename internal::Function<F>::Result Result;
751 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
752
753 // Constructs a null Action. Needed for storing Action objects in
754 // STL containers.
755 Action() {}
756
757 // Construct an Action from a specified callable.
758 // This cannot take std::function directly, because then Action would not be
759 // directly constructible from lambda (it would require two conversions).
760 template <
761 typename G,
762 typename = typename std::enable_if<internal::disjunction<
763 IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
764 G>>::value>::type>
765 Action(G&& fun) { // NOLINT
766 Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
767 }
768
769 // Constructs an Action from its implementation.
770 explicit Action(ActionInterface<F>* impl)
771 : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
772
773 // This constructor allows us to turn an Action<Func> object into an
774 // Action<F>, as long as F's arguments can be implicitly converted
775 // to Func's and Func's return type can be implicitly converted to F's.
776 template <typename Func>
777 Action(const Action<Func>& action) // NOLINT
778 : fun_(action.fun_) {}
779
780 // Returns true if and only if this is the DoDefault() action.
781 bool IsDoDefault() const { return fun_ == nullptr; }
782
783 // Performs the action. Note that this method is const even though
784 // the corresponding method in ActionInterface is not. The reason
785 // is that a const Action<F> means that it cannot be re-bound to
786 // another concrete action, not that the concrete action it binds to
787 // cannot change state. (Think of the difference between a const
788 // pointer and a pointer to const.)
789 Result Perform(ArgumentTuple args) const {
790 if (IsDoDefault()) {
791 internal::IllegalDoDefault(__FILE__, __LINE__);
792 }
793 return internal::Apply(fun_, ::std::move(args));
794 }
795
796 // An action can be used as a OnceAction, since it's obviously safe to call it
797 // once.
798 operator OnceAction<F>() const { // NOLINT
799 // Return a OnceAction-compatible callable that calls Perform with the
800 // arguments it is provided. We could instead just return fun_, but then
801 // we'd need to handle the IsDoDefault() case separately.
802 struct OA {
803 Action<F> action;
804
805 R operator()(Args... args) && {
806 return action.Perform(
807 std::forward_as_tuple(std::forward<Args>(args)...));
808 }
809 };
810
811 return OA{*this};
812 }
813
814 private:
815 template <typename G>
816 friend class Action;
817
818 template <typename G>
819 void Init(G&& g, ::std::true_type) {
820 fun_ = ::std::forward<G>(g);
821 }
822
823 template <typename G>
824 void Init(G&& g, ::std::false_type) {
825 fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
826 }
827
828 template <typename FunctionImpl>
829 struct IgnoreArgs {
830 template <typename... InArgs>
831 Result operator()(const InArgs&...) const {
832 return function_impl();
833 }
834
835 FunctionImpl function_impl;
836 };
837
838 // fun_ is an empty function if and only if this is the DoDefault() action.
839 ::std::function<F> fun_;
840};
841
842// The PolymorphicAction class template makes it easy to implement a
843// polymorphic action (i.e. an action that can be used in mock
844// functions of than one type, e.g. Return()).
845//
846// To define a polymorphic action, a user first provides a COPYABLE
847// implementation class that has a Perform() method template:
848//
849// class FooAction {
850// public:
851// template <typename Result, typename ArgumentTuple>
852// Result Perform(const ArgumentTuple& args) const {
853// // Processes the arguments and returns a result, using
854// // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
855// }
856// ...
857// };
858//
859// Then the user creates the polymorphic action using
860// MakePolymorphicAction(object) where object has type FooAction. See
861// the definition of Return(void) and SetArgumentPointee<N>(value) for
862// complete examples.
863template <typename Impl>
864class PolymorphicAction {
865 public:
866 explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
867
868 template <typename F>
869 operator Action<F>() const {
870 return Action<F>(new MonomorphicImpl<F>(impl_));
871 }
872
873 private:
874 template <typename F>
875 class MonomorphicImpl : public ActionInterface<F> {
876 public:
877 typedef typename internal::Function<F>::Result Result;
878 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
879
880 explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
881
882 Result Perform(const ArgumentTuple& args) override {
883 return impl_.template Perform<Result>(args);
884 }
885
886 private:
887 Impl impl_;
888 };
889
890 Impl impl_;
891};
892
893// Creates an Action from its implementation and returns it. The
894// created Action object owns the implementation.
895template <typename F>
896Action<F> MakeAction(ActionInterface<F>* impl) {
897 return Action<F>(impl);
898}
899
900// Creates a polymorphic action from its implementation. This is
901// easier to use than the PolymorphicAction<Impl> constructor as it
902// doesn't require you to explicitly write the template argument, e.g.
903//
904// MakePolymorphicAction(foo);
905// vs
906// PolymorphicAction<TypeOfFoo>(foo);
907template <typename Impl>
908inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
909 return PolymorphicAction<Impl>(impl);
910}
911
912namespace internal {
913
914// Helper struct to specialize ReturnAction to execute a move instead of a copy
915// on return. Useful for move-only types, but could be used on any type.
916template <typename T>
917struct ByMoveWrapper {
918 explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
919 T payload;
920};
921
922// The general implementation of Return(R). Specializations follow below.
923template <typename R>
924class ReturnAction final {
925 public:
926 explicit ReturnAction(R value) : value_(std::move(value)) {}
927
928 template <typename U, typename... Args,
929 typename = typename std::enable_if<conjunction<
930 // See the requirements documented on Return.
931 negation<std::is_same<void, U>>, //
932 negation<std::is_reference<U>>, //
933 std::is_convertible<R, U>, //
934 std::is_move_constructible<U>>::value>::type>
935 operator OnceAction<U(Args...)>() && { // NOLINT
936 return Impl<U>(std::move(value_));
937 }
938
939 template <typename U, typename... Args,
940 typename = typename std::enable_if<conjunction<
941 // See the requirements documented on Return.
942 negation<std::is_same<void, U>>, //
943 negation<std::is_reference<U>>, //
944 std::is_convertible<const R&, U>, //
945 std::is_copy_constructible<U>>::value>::type>
946 operator Action<U(Args...)>() const { // NOLINT
947 return Impl<U>(value_);
948 }
949
950 private:
951 // Implements the Return(x) action for a mock function that returns type U.
952 template <typename U>
953 class Impl final {
954 public:
955 // The constructor used when the return value is allowed to move from the
956 // input value (i.e. we are converting to OnceAction).
957 explicit Impl(R&& input_value)
958 : state_(new State(std::move(input_value))) {}
959
960 // The constructor used when the return value is not allowed to move from
961 // the input value (i.e. we are converting to Action).
962 explicit Impl(const R& input_value) : state_(new State(input_value)) {}
963
964 U operator()() && { return std::move(state_->value); }
965 U operator()() const& { return state_->value; }
966
967 private:
968 // We put our state on the heap so that the compiler-generated copy/move
969 // constructors work correctly even when U is a reference-like type. This is
970 // necessary only because we eagerly create State::value (see the note on
971 // that symbol for details). If we instead had only the input value as a
972 // member then the default constructors would work fine.
973 //
974 // For example, when R is std::string and U is std::string_view, value is a
975 // reference to the string backed by input_value. The copy constructor would
976 // copy both, so that we wind up with a new input_value object (with the
977 // same contents) and a reference to the *old* input_value object rather
978 // than the new one.
979 struct State {
980 explicit State(const R& input_value_in)
981 : input_value(input_value_in),
982 // Make an implicit conversion to Result before initializing the U
983 // object we store, avoiding calling any explicit constructor of U
984 // from R.
985 //
986 // This simulates the language rules: a function with return type U
987 // that does `return R()` requires R to be implicitly convertible to
988 // U, and uses that path for the conversion, even U Result has an
989 // explicit constructor from R.
990 value(ImplicitCast_<U>(internal::as_const(input_value))) {}
991
992 // As above, but for the case where we're moving from the ReturnAction
993 // object because it's being used as a OnceAction.
994 explicit State(R&& input_value_in)
995 : input_value(std::move(input_value_in)),
996 // For the same reason as above we make an implicit conversion to U
997 // before initializing the value.
998 //
999 // Unlike above we provide the input value as an rvalue to the
1000 // implicit conversion because this is a OnceAction: it's fine if it
1001 // wants to consume the input value.
1002 value(ImplicitCast_<U>(std::move(input_value))) {}
1003
1004 // A copy of the value originally provided by the user. We retain this in
1005 // addition to the value of the mock function's result type below in case
1006 // the latter is a reference-like type. See the std::string_view example
1007 // in the documentation on Return.
1008 R input_value;
1009
1010 // The value we actually return, as the type returned by the mock function
1011 // itself.
1012 //
1013 // We eagerly initialize this here, rather than lazily doing the implicit
1014 // conversion automatically each time Perform is called, for historical
1015 // reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126)
1016 // made the Action<U()> conversion operator eagerly convert the R value to
1017 // U, but without keeping the R alive. This broke the use case discussed
1018 // in the documentation for Return, making reference-like types such as
1019 // std::string_view not safe to use as U where the input type R is a
1020 // value-like type such as std::string.
1021 //
1022 // The example the commit gave was not very clear, nor was the issue
1023 // thread (https://github.com/google/googlemock/issues/86), but it seems
1024 // the worry was about reference-like input types R that flatten to a
1025 // value-like type U when being implicitly converted. An example of this
1026 // is std::vector<bool>::reference, which is often a proxy type with an
1027 // reference to the underlying vector:
1028 //
1029 // // Helper method: have the mock function return bools according
1030 // // to the supplied script.
1031 // void SetActions(MockFunction<bool(size_t)>& mock,
1032 // const std::vector<bool>& script) {
1033 // for (size_t i = 0; i < script.size(); ++i) {
1034 // EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i]));
1035 // }
1036 // }
1037 //
1038 // TEST(Foo, Bar) {
1039 // // Set actions using a temporary vector, whose operator[]
1040 // // returns proxy objects that references that will be
1041 // // dangling once the call to SetActions finishes and the
1042 // // vector is destroyed.
1043 // MockFunction<bool(size_t)> mock;
1044 // SetActions(mock, {false, true});
1045 //
1046 // EXPECT_FALSE(mock.AsStdFunction()(0));
1047 // EXPECT_TRUE(mock.AsStdFunction()(1));
1048 // }
1049 //
1050 // This eager conversion helps with a simple case like this, but doesn't
1051 // fully make these types work in general. For example the following still
1052 // uses a dangling reference:
1053 //
1054 // TEST(Foo, Baz) {
1055 // MockFunction<std::vector<std::string>()> mock;
1056 //
1057 // // Return the same vector twice, and then the empty vector
1058 // // thereafter.
1059 // auto action = Return(std::initializer_list<std::string>{
1060 // "taco", "burrito",
1061 // });
1062 //
1063 // EXPECT_CALL(mock, Call)
1064 // .WillOnce(action)
1065 // .WillOnce(action)
1066 // .WillRepeatedly(Return(std::vector<std::string>{}));
1067 //
1068 // EXPECT_THAT(mock.AsStdFunction()(),
1069 // ElementsAre("taco", "burrito"));
1070 // EXPECT_THAT(mock.AsStdFunction()(),
1071 // ElementsAre("taco", "burrito"));
1072 // EXPECT_THAT(mock.AsStdFunction()(), IsEmpty());
1073 // }
1074 //
1075 U value;
1076 };
1077
1078 const std::shared_ptr<State> state_;
1079 };
1080
1081 R value_;
1082};
1083
1084// A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T.
1085//
1086// This version applies the type system-defeating hack of moving from T even in
1087// the const call operator, checking at runtime that it isn't called more than
1088// once, since the user has declared their intent to do so by using ByMove.
1089template <typename T>
1090class ReturnAction<ByMoveWrapper<T>> final {
1091 public:
1092 explicit ReturnAction(ByMoveWrapper<T> wrapper)
1093 : state_(new State(std::move(wrapper.payload))) {}
1094
1095 T operator()() const {
1096 GTEST_CHECK_(!state_->called)
1097 << "A ByMove() action must be performed at most once.";
1098
1099 state_->called = true;
1100 return std::move(state_->value);
1101 }
1102
1103 private:
1104 // We store our state on the heap so that we are copyable as required by
1105 // Action, despite the fact that we are stateful and T may not be copyable.
1106 struct State {
1107 explicit State(T&& value_in) : value(std::move(value_in)) {}
1108
1109 T value;
1110 bool called = false;
1111 };
1112
1113 const std::shared_ptr<State> state_;
1114};
1115
1116// Implements the ReturnNull() action.
1117class ReturnNullAction {
1118 public:
1119 // Allows ReturnNull() to be used in any pointer-returning function. In C++11
1120 // this is enforced by returning nullptr, and in non-C++11 by asserting a
1121 // pointer type on compile time.
1122 template <typename Result, typename ArgumentTuple>
1123 static Result Perform(const ArgumentTuple&) {
1124 return nullptr;
1125 }
1126};
1127
1128// Implements the Return() action.
1129class ReturnVoidAction {
1130 public:
1131 // Allows Return() to be used in any void-returning function.
1132 template <typename Result, typename ArgumentTuple>
1133 static void Perform(const ArgumentTuple&) {
1134 static_assert(std::is_void<Result>::value, "Result should be void.");
1135 }
1136};
1137
1138// Implements the polymorphic ReturnRef(x) action, which can be used
1139// in any function that returns a reference to the type of x,
1140// regardless of the argument types.
1141template <typename T>
1142class ReturnRefAction {
1143 public:
1144 // Constructs a ReturnRefAction object from the reference to be returned.
1145 explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT
1146
1147 // This template type conversion operator allows ReturnRef(x) to be
1148 // used in ANY function that returns a reference to x's type.
1149 template <typename F>
1150 operator Action<F>() const {
1151 typedef typename Function<F>::Result Result;
1152 // Asserts that the function return type is a reference. This
1153 // catches the user error of using ReturnRef(x) when Return(x)
1154 // should be used, and generates some helpful error message.
1155 static_assert(std::is_reference<Result>::value,
1156 "use Return instead of ReturnRef to return a value");
1157 return Action<F>(new Impl<F>(ref_));
1158 }
1159
1160 private:
1161 // Implements the ReturnRef(x) action for a particular function type F.
1162 template <typename F>
1163 class Impl : public ActionInterface<F> {
1164 public:
1165 typedef typename Function<F>::Result Result;
1166 typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1167
1168 explicit Impl(T& ref) : ref_(ref) {} // NOLINT
1169
1170 Result Perform(const ArgumentTuple&) override { return ref_; }
1171
1172 private:
1173 T& ref_;
1174 };
1175
1176 T& ref_;
1177};
1178
1179// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
1180// used in any function that returns a reference to the type of x,
1181// regardless of the argument types.
1182template <typename T>
1183class ReturnRefOfCopyAction {
1184 public:
1185 // Constructs a ReturnRefOfCopyAction object from the reference to
1186 // be returned.
1187 explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT
1188
1189 // This template type conversion operator allows ReturnRefOfCopy(x) to be
1190 // used in ANY function that returns a reference to x's type.
1191 template <typename F>
1192 operator Action<F>() const {
1193 typedef typename Function<F>::Result Result;
1194 // Asserts that the function return type is a reference. This
1195 // catches the user error of using ReturnRefOfCopy(x) when Return(x)
1196 // should be used, and generates some helpful error message.
1197 static_assert(std::is_reference<Result>::value,
1198 "use Return instead of ReturnRefOfCopy to return a value");
1199 return Action<F>(new Impl<F>(value_));
1200 }
1201
1202 private:
1203 // Implements the ReturnRefOfCopy(x) action for a particular function type F.
1204 template <typename F>
1205 class Impl : public ActionInterface<F> {
1206 public:
1207 typedef typename Function<F>::Result Result;
1208 typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1209
1210 explicit Impl(const T& value) : value_(value) {} // NOLINT
1211
1212 Result Perform(const ArgumentTuple&) override { return value_; }
1213
1214 private:
1215 T value_;
1216 };
1217
1218 const T value_;
1219};
1220
1221// Implements the polymorphic ReturnRoundRobin(v) action, which can be
1222// used in any function that returns the element_type of v.
1223template <typename T>
1224class ReturnRoundRobinAction {
1225 public:
1226 explicit ReturnRoundRobinAction(std::vector<T> values) {
1227 GTEST_CHECK_(!values.empty())
1228 << "ReturnRoundRobin requires at least one element.";
1229 state_->values = std::move(values);
1230 }
1231
1232 template <typename... Args>
1233 T operator()(Args&&...) const {
1234 return state_->Next();
1235 }
1236
1237 private:
1238 struct State {
1239 T Next() {
1240 T ret_val = values[i++];
1241 if (i == values.size()) i = 0;
1242 return ret_val;
1243 }
1244
1245 std::vector<T> values;
1246 size_t i = 0;
1247 };
1248 std::shared_ptr<State> state_ = std::make_shared<State>();
1249};
1250
1251// Implements the polymorphic DoDefault() action.
1252class DoDefaultAction {
1253 public:
1254 // This template type conversion operator allows DoDefault() to be
1255 // used in any function.
1256 template <typename F>
1257 operator Action<F>() const {
1258 return Action<F>();
1259 } // NOLINT
1260};
1261
1262// Implements the Assign action to set a given pointer referent to a
1263// particular value.
1264template <typename T1, typename T2>
1265class AssignAction {
1266 public:
1267 AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
1268
1269 template <typename Result, typename ArgumentTuple>
1270 void Perform(const ArgumentTuple& /* args */) const {
1271 *ptr_ = value_;
1272 }
1273
1274 private:
1275 T1* const ptr_;
1276 const T2 value_;
1277};
1278
1279#if !GTEST_OS_WINDOWS_MOBILE
1280
1281// Implements the SetErrnoAndReturn action to simulate return from
1282// various system calls and libc functions.
1283template <typename T>
1284class SetErrnoAndReturnAction {
1285 public:
1286 SetErrnoAndReturnAction(int errno_value, T result)
1287 : errno_(errno_value), result_(result) {}
1288 template <typename Result, typename ArgumentTuple>
1289 Result Perform(const ArgumentTuple& /* args */) const {
1290 errno = errno_;
1291 return result_;
1292 }
1293
1294 private:
1295 const int errno_;
1296 const T result_;
1297};
1298
1299#endif // !GTEST_OS_WINDOWS_MOBILE
1300
1301// Implements the SetArgumentPointee<N>(x) action for any function
1302// whose N-th argument (0-based) is a pointer to x's type.
1303template <size_t N, typename A, typename = void>
1304struct SetArgumentPointeeAction {
1305 A value;
1306
1307 template <typename... Args>
1308 void operator()(const Args&... args) const {
1309 *::std::get<N>(std::tie(args...)) = value;
1310 }
1311};
1312
1313// Implements the Invoke(object_ptr, &Class::Method) action.
1314template <class Class, typename MethodPtr>
1315struct InvokeMethodAction {
1316 Class* const obj_ptr;
1317 const MethodPtr method_ptr;
1318
1319 template <typename... Args>
1320 auto operator()(Args&&... args) const
1321 -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
1322 return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
1323 }
1324};
1325
1326// Implements the InvokeWithoutArgs(f) action. The template argument
1327// FunctionImpl is the implementation type of f, which can be either a
1328// function pointer or a functor. InvokeWithoutArgs(f) can be used as an
1329// Action<F> as long as f's type is compatible with F.
1330template <typename FunctionImpl>
1331struct InvokeWithoutArgsAction {
1332 FunctionImpl function_impl;
1333
1334 // Allows InvokeWithoutArgs(f) to be used as any action whose type is
1335 // compatible with f.
1336 template <typename... Args>
1337 auto operator()(const Args&...) -> decltype(function_impl()) {
1338 return function_impl();
1339 }
1340};
1341
1342// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
1343template <class Class, typename MethodPtr>
1344struct InvokeMethodWithoutArgsAction {
1345 Class* const obj_ptr;
1346 const MethodPtr method_ptr;
1347
1348 using ReturnType =
1349 decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
1350
1351 template <typename... Args>
1352 ReturnType operator()(const Args&...) const {
1353 return (obj_ptr->*method_ptr)();
1354 }
1355};
1356
1357// Implements the IgnoreResult(action) action.
1358template <typename A>
1359class IgnoreResultAction {
1360 public:
1361 explicit IgnoreResultAction(const A& action) : action_(action) {}
1362
1363 template <typename F>
1364 operator Action<F>() const {
1365 // Assert statement belongs here because this is the best place to verify
1366 // conditions on F. It produces the clearest error messages
1367 // in most compilers.
1368 // Impl really belongs in this scope as a local class but can't
1369 // because MSVC produces duplicate symbols in different translation units
1370 // in this case. Until MS fixes that bug we put Impl into the class scope
1371 // and put the typedef both here (for use in assert statement) and
1372 // in the Impl class. But both definitions must be the same.
1373 typedef typename internal::Function<F>::Result Result;
1374
1375 // Asserts at compile time that F returns void.
1376 static_assert(std::is_void<Result>::value, "Result type should be void.");
1377
1378 return Action<F>(new Impl<F>(action_));
1379 }
1380
1381 private:
1382 template <typename F>
1383 class Impl : public ActionInterface<F> {
1384 public:
1385 typedef typename internal::Function<F>::Result Result;
1386 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
1387
1388 explicit Impl(const A& action) : action_(action) {}
1389
1390 void Perform(const ArgumentTuple& args) override {
1391 // Performs the action and ignores its result.
1392 action_.Perform(args);
1393 }
1394
1395 private:
1396 // Type OriginalFunction is the same as F except that its return
1397 // type is IgnoredValue.
1398 typedef
1399 typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction;
1400
1401 const Action<OriginalFunction> action_;
1402 };
1403
1404 const A action_;
1405};
1406
1407template <typename InnerAction, size_t... I>
1408struct WithArgsAction {
1409 InnerAction inner_action;
1410
1411 // The signature of the function as seen by the inner action, given an out
1412 // action with the given result and argument types.
1413 template <typename R, typename... Args>
1414 using InnerSignature =
1415 R(typename std::tuple_element<I, std::tuple<Args...>>::type...);
1416
1417 // Rather than a call operator, we must define conversion operators to
1418 // particular action types. This is necessary for embedded actions like
1419 // DoDefault(), which rely on an action conversion operators rather than
1420 // providing a call operator because even with a particular set of arguments
1421 // they don't have a fixed return type.
1422
1423 template <typename R, typename... Args,
1424 typename std::enable_if<
1425 std::is_convertible<
1426 InnerAction,
1427 // Unfortunately we can't use the InnerSignature alias here;
1428 // MSVC complains about the I parameter pack not being
1429 // expanded (error C3520) despite it being expanded in the
1430 // type alias.
1431 // TupleElement is also an MSVC workaround.
1432 // See its definition for details.
1433 OnceAction<R(internal::TupleElement<
1434 I, std::tuple<Args...>>...)>>::value,
1435 int>::type = 0>
1436 operator OnceAction<R(Args...)>() && { // NOLINT
1437 struct OA {
1438 OnceAction<InnerSignature<R, Args...>> inner_action;
1439
1440 R operator()(Args&&... args) && {
1441 return std::move(inner_action)
1442 .Call(std::get<I>(
1443 std::forward_as_tuple(std::forward<Args>(args)...))...);
1444 }
1445 };
1446
1447 return OA{std::move(inner_action)};
1448 }
1449
1450 template <typename R, typename... Args,
1451 typename std::enable_if<
1452 std::is_convertible<
1453 const InnerAction&,
1454 // Unfortunately we can't use the InnerSignature alias here;
1455 // MSVC complains about the I parameter pack not being
1456 // expanded (error C3520) despite it being expanded in the
1457 // type alias.
1458 // TupleElement is also an MSVC workaround.
1459 // See its definition for details.
1460 Action<R(internal::TupleElement<
1461 I, std::tuple<Args...>>...)>>::value,
1462 int>::type = 0>
1463 operator Action<R(Args...)>() const { // NOLINT
1464 Action<InnerSignature<R, Args...>> converted(inner_action);
1465
1466 return [converted](Args&&... args) -> R {
1467 return converted.Perform(std::forward_as_tuple(
1468 std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
1469 };
1470 }
1471};
1472
1473template <typename... Actions>
1474class DoAllAction;
1475
1476// Base case: only a single action.
1477template <typename FinalAction>
1478class DoAllAction<FinalAction> {
1479 public:
1480 struct UserConstructorTag {};
1481
1482 template <typename T>
1483 explicit DoAllAction(UserConstructorTag, T&& action)
1484 : final_action_(std::forward<T>(action)) {}
1485
1486 // Rather than a call operator, we must define conversion operators to
1487 // particular action types. This is necessary for embedded actions like
1488 // DoDefault(), which rely on an action conversion operators rather than
1489 // providing a call operator because even with a particular set of arguments
1490 // they don't have a fixed return type.
1491
1492 template <typename R, typename... Args,
1493 typename std::enable_if<
1494 std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value,
1495 int>::type = 0>
1496 operator OnceAction<R(Args...)>() && { // NOLINT
1497 return std::move(final_action_);
1498 }
1499
1500 template <
1501 typename R, typename... Args,
1502 typename std::enable_if<
1503 std::is_convertible<const FinalAction&, Action<R(Args...)>>::value,
1504 int>::type = 0>
1505 operator Action<R(Args...)>() const { // NOLINT
1506 return final_action_;
1507 }
1508
1509 private:
1510 FinalAction final_action_;
1511};
1512
1513// Recursive case: support N actions by calling the initial action and then
1514// calling through to the base class containing N-1 actions.
1515template <typename InitialAction, typename... OtherActions>
1516class DoAllAction<InitialAction, OtherActions...>
1517 : private DoAllAction<OtherActions...> {
1518 private:
1519 using Base = DoAllAction<OtherActions...>;
1520
1521 // The type of reference that should be provided to an initial action for a
1522 // mocked function parameter of type T.
1523 //
1524 // There are two quirks here:
1525 //
1526 // * Unlike most forwarding functions, we pass scalars through by value.
1527 // This isn't strictly necessary because an lvalue reference would work
1528 // fine too and be consistent with other non-reference types, but it's
1529 // perhaps less surprising.
1530 //
1531 // For example if the mocked function has signature void(int), then it
1532 // might seem surprising for the user's initial action to need to be
1533 // convertible to Action<void(const int&)>. This is perhaps less
1534 // surprising for a non-scalar type where there may be a performance
1535 // impact, or it might even be impossible, to pass by value.
1536 //
1537 // * More surprisingly, `const T&` is often not a const reference type.
1538 // By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to
1539 // U& or U&& for some non-scalar type U, then InitialActionArgType<T> is
1540 // U&. In other words, we may hand over a non-const reference.
1541 //
1542 // So for example, given some non-scalar type Obj we have the following
1543 // mappings:
1544 //
1545 // T InitialActionArgType<T>
1546 // ------- -----------------------
1547 // Obj const Obj&
1548 // Obj& Obj&
1549 // Obj&& Obj&
1550 // const Obj const Obj&
1551 // const Obj& const Obj&
1552 // const Obj&& const Obj&
1553 //
1554 // In other words, the initial actions get a mutable view of an non-scalar
1555 // argument if and only if the mock function itself accepts a non-const
1556 // reference type. They are never given an rvalue reference to an
1557 // non-scalar type.
1558 //
1559 // This situation makes sense if you imagine use with a matcher that is
1560 // designed to write through a reference. For example, if the caller wants
1561 // to fill in a reference argument and then return a canned value:
1562 //
1563 // EXPECT_CALL(mock, Call)
1564 // .WillOnce(DoAll(SetArgReferee<0>(17), Return(19)));
1565 //
1566 template <typename T>
1567 using InitialActionArgType =
1568 typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
1569
1570 public:
1571 struct UserConstructorTag {};
1572
1573 template <typename T, typename... U>
1574 explicit DoAllAction(UserConstructorTag, T&& initial_action,
1575 U&&... other_actions)
1576 : Base({}, std::forward<U>(other_actions)...),
1577 initial_action_(std::forward<T>(initial_action)) {}
1578
1579 template <typename R, typename... Args,
1580 typename std::enable_if<
1581 conjunction<
1582 // Both the initial action and the rest must support
1583 // conversion to OnceAction.
1584 std::is_convertible<
1585 InitialAction,
1586 OnceAction<void(InitialActionArgType<Args>...)>>,
1587 std::is_convertible<Base, OnceAction<R(Args...)>>>::value,
1588 int>::type = 0>
1589 operator OnceAction<R(Args...)>() && { // NOLINT
1590 // Return an action that first calls the initial action with arguments
1591 // filtered through InitialActionArgType, then forwards arguments directly
1592 // to the base class to deal with the remaining actions.
1593 struct OA {
1594 OnceAction<void(InitialActionArgType<Args>...)> initial_action;
1595 OnceAction<R(Args...)> remaining_actions;
1596
1597 R operator()(Args... args) && {
1598 std::move(initial_action)
1599 .Call(static_cast<InitialActionArgType<Args>>(args)...);
1600
1601 return std::move(remaining_actions).Call(std::forward<Args>(args)...);
1602 }
1603 };
1604
1605 return OA{
1606 std::move(initial_action_),
1607 std::move(static_cast<Base&>(*this)),
1608 };
1609 }
1610
1611 template <
1612 typename R, typename... Args,
1613 typename std::enable_if<
1614 conjunction<
1615 // Both the initial action and the rest must support conversion to
1616 // Action.
1617 std::is_convertible<const InitialAction&,
1618 Action<void(InitialActionArgType<Args>...)>>,
1619 std::is_convertible<const Base&, Action<R(Args...)>>>::value,
1620 int>::type = 0>
1621 operator Action<R(Args...)>() const { // NOLINT
1622 // Return an action that first calls the initial action with arguments
1623 // filtered through InitialActionArgType, then forwards arguments directly
1624 // to the base class to deal with the remaining actions.
1625 struct OA {
1626 Action<void(InitialActionArgType<Args>...)> initial_action;
1627 Action<R(Args...)> remaining_actions;
1628
1629 R operator()(Args... args) const {
1630 initial_action.Perform(std::forward_as_tuple(
1631 static_cast<InitialActionArgType<Args>>(args)...));
1632
1633 return remaining_actions.Perform(
1634 std::forward_as_tuple(std::forward<Args>(args)...));
1635 }
1636 };
1637
1638 return OA{
1639 initial_action_,
1640 static_cast<const Base&>(*this),
1641 };
1642 }
1643
1644 private:
1645 InitialAction initial_action_;
1646};
1647
1648template <typename T, typename... Params>
1649struct ReturnNewAction {
1650 T* operator()() const {
1651 return internal::Apply(
1652 [](const Params&... unpacked_params) {
1653 return new T(unpacked_params...);
1654 },
1655 params);
1656 }
1657 std::tuple<Params...> params;
1658};
1659
1660template <size_t k>
1661struct ReturnArgAction {
1662 template <typename... Args,
1663 typename = typename std::enable_if<(k < sizeof...(Args))>::type>
1664 auto operator()(Args&&... args) const -> decltype(std::get<k>(
1665 std::forward_as_tuple(std::forward<Args>(args)...))) {
1666 return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...));
1667 }
1668};
1669
1670template <size_t k, typename Ptr>
1671struct SaveArgAction {
1672 Ptr pointer;
1673
1674 template <typename... Args>
1675 void operator()(const Args&... args) const {
1676 *pointer = std::get<k>(std::tie(args...));
1677 }
1678};
1679
1680template <size_t k, typename Ptr>
1681struct SaveArgPointeeAction {
1682 Ptr pointer;
1683
1684 template <typename... Args>
1685 void operator()(const Args&... args) const {
1686 *pointer = *std::get<k>(std::tie(args...));
1687 }
1688};
1689
1690template <size_t k, typename T>
1691struct SetArgRefereeAction {
1692 T value;
1693
1694 template <typename... Args>
1695 void operator()(Args&&... args) const {
1696 using argk_type =
1697 typename ::std::tuple_element<k, std::tuple<Args...>>::type;
1698 static_assert(std::is_lvalue_reference<argk_type>::value,
1699 "Argument must be a reference type.");
1700 std::get<k>(std::tie(args...)) = value;
1701 }
1702};
1703
1704template <size_t k, typename I1, typename I2>
1705struct SetArrayArgumentAction {
1706 I1 first;
1707 I2 last;
1708
1709 template <typename... Args>
1710 void operator()(const Args&... args) const {
1711 auto value = std::get<k>(std::tie(args...));
1712 for (auto it = first; it != last; ++it, (void)++value) {
1713 *value = *it;
1714 }
1715 }
1716};
1717
1718template <size_t k>
1719struct DeleteArgAction {
1720 template <typename... Args>
1721 void operator()(const Args&... args) const {
1722 delete std::get<k>(std::tie(args...));
1723 }
1724};
1725
1726template <typename Ptr>
1727struct ReturnPointeeAction {
1728 Ptr pointer;
1729 template <typename... Args>
1730 auto operator()(const Args&...) const -> decltype(*pointer) {
1731 return *pointer;
1732 }
1733};
1734
1735#if GTEST_HAS_EXCEPTIONS
1736template <typename T>
1737struct ThrowAction {
1738 T exception;
1739 // We use a conversion operator to adapt to any return type.
1740 template <typename R, typename... Args>
1741 operator Action<R(Args...)>() const { // NOLINT
1742 T copy = exception;
1743 return [copy](Args...) -> R { throw copy; };
1744 }
1745};
1746#endif // GTEST_HAS_EXCEPTIONS
1747
1748} // namespace internal
1749
1750// An Unused object can be implicitly constructed from ANY value.
1751// This is handy when defining actions that ignore some or all of the
1752// mock function arguments. For example, given
1753//
1754// MOCK_METHOD3(Foo, double(const string& label, double x, double y));
1755// MOCK_METHOD3(Bar, double(int index, double x, double y));
1756//
1757// instead of
1758//
1759// double DistanceToOriginWithLabel(const string& label, double x, double y) {
1760// return sqrt(x*x + y*y);
1761// }
1762// double DistanceToOriginWithIndex(int index, double x, double y) {
1763// return sqrt(x*x + y*y);
1764// }
1765// ...
1766// EXPECT_CALL(mock, Foo("abc", _, _))
1767// .WillOnce(Invoke(DistanceToOriginWithLabel));
1768// EXPECT_CALL(mock, Bar(5, _, _))
1769// .WillOnce(Invoke(DistanceToOriginWithIndex));
1770//
1771// you could write
1772//
1773// // We can declare any uninteresting argument as Unused.
1774// double DistanceToOrigin(Unused, double x, double y) {
1775// return sqrt(x*x + y*y);
1776// }
1777// ...
1778// EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
1779// EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
1780typedef internal::IgnoredValue Unused;
1781
1782// Creates an action that does actions a1, a2, ..., sequentially in
1783// each invocation. All but the last action will have a readonly view of the
1784// arguments.
1785template <typename... Action>
1786internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
1787 Action&&... action) {
1788 return internal::DoAllAction<typename std::decay<Action>::type...>(
1789 {}, std::forward<Action>(action)...);
1790}
1791
1792// WithArg<k>(an_action) creates an action that passes the k-th
1793// (0-based) argument of the mock function to an_action and performs
1794// it. It adapts an action accepting one argument to one that accepts
1795// multiple arguments. For convenience, we also provide
1796// WithArgs<k>(an_action) (defined below) as a synonym.
1797template <size_t k, typename InnerAction>
1798internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg(
1799 InnerAction&& action) {
1800 return {std::forward<InnerAction>(action)};
1801}
1802
1803// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
1804// the selected arguments of the mock function to an_action and
1805// performs it. It serves as an adaptor between actions with
1806// different argument lists.
1807template <size_t k, size_t... ks, typename InnerAction>
1808internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
1809WithArgs(InnerAction&& action) {
1810 return {std::forward<InnerAction>(action)};
1811}
1812
1813// WithoutArgs(inner_action) can be used in a mock function with a
1814// non-empty argument list to perform inner_action, which takes no
1815// argument. In other words, it adapts an action accepting no
1816// argument to one that accepts (and ignores) arguments.
1817template <typename InnerAction>
1818internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs(
1819 InnerAction&& action) {
1820 return {std::forward<InnerAction>(action)};
1821}
1822
1823// Creates an action that returns a value.
1824//
1825// The returned type can be used with a mock function returning a non-void,
1826// non-reference type U as follows:
1827//
1828// * If R is convertible to U and U is move-constructible, then the action can
1829// be used with WillOnce.
1830//
1831// * If const R& is convertible to U and U is copy-constructible, then the
1832// action can be used with both WillOnce and WillRepeatedly.
1833//
1834// The mock expectation contains the R value from which the U return value is
1835// constructed (a move/copy of the argument to Return). This means that the R
1836// value will survive at least until the mock object's expectations are cleared
1837// or the mock object is destroyed, meaning that U can safely be a
1838// reference-like type such as std::string_view:
1839//
1840// // The mock function returns a view of a copy of the string fed to
1841// // Return. The view is valid even after the action is performed.
1842// MockFunction<std::string_view()> mock;
1843// EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco")));
1844// const std::string_view result = mock.AsStdFunction()();
1845// EXPECT_EQ("taco", result);
1846//
1847template <typename R>
1848internal::ReturnAction<R> Return(R value) {
1849 return internal::ReturnAction<R>(std::move(value));
1850}
1851
1852// Creates an action that returns NULL.
1853inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
1854 return MakePolymorphicAction(impl: internal::ReturnNullAction());
1855}
1856
1857// Creates an action that returns from a void function.
1858inline PolymorphicAction<internal::ReturnVoidAction> Return() {
1859 return MakePolymorphicAction(impl: internal::ReturnVoidAction());
1860}
1861
1862// Creates an action that returns the reference to a variable.
1863template <typename R>
1864inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT
1865 return internal::ReturnRefAction<R>(x);
1866}
1867
1868// Prevent using ReturnRef on reference to temporary.
1869template <typename R, R* = nullptr>
1870internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
1871
1872// Creates an action that returns the reference to a copy of the
1873// argument. The copy is created when the action is constructed and
1874// lives as long as the action.
1875template <typename R>
1876inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
1877 return internal::ReturnRefOfCopyAction<R>(x);
1878}
1879
1880// DEPRECATED: use Return(x) directly with WillOnce.
1881//
1882// Modifies the parent action (a Return() action) to perform a move of the
1883// argument instead of a copy.
1884// Return(ByMove()) actions can only be executed once and will assert this
1885// invariant.
1886template <typename R>
1887internal::ByMoveWrapper<R> ByMove(R x) {
1888 return internal::ByMoveWrapper<R>(std::move(x));
1889}
1890
1891// Creates an action that returns an element of `vals`. Calling this action will
1892// repeatedly return the next value from `vals` until it reaches the end and
1893// will restart from the beginning.
1894template <typename T>
1895internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) {
1896 return internal::ReturnRoundRobinAction<T>(std::move(vals));
1897}
1898
1899// Creates an action that returns an element of `vals`. Calling this action will
1900// repeatedly return the next value from `vals` until it reaches the end and
1901// will restart from the beginning.
1902template <typename T>
1903internal::ReturnRoundRobinAction<T> ReturnRoundRobin(
1904 std::initializer_list<T> vals) {
1905 return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
1906}
1907
1908// Creates an action that does the default action for the give mock function.
1909inline internal::DoDefaultAction DoDefault() {
1910 return internal::DoDefaultAction();
1911}
1912
1913// Creates an action that sets the variable pointed by the N-th
1914// (0-based) function argument to 'value'.
1915template <size_t N, typename T>
1916internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) {
1917 return {std::move(value)};
1918}
1919
1920// The following version is DEPRECATED.
1921template <size_t N, typename T>
1922internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
1923 return {std::move(value)};
1924}
1925
1926// Creates an action that sets a pointer referent to a given value.
1927template <typename T1, typename T2>
1928PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) {
1929 return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
1930}
1931
1932#if !GTEST_OS_WINDOWS_MOBILE
1933
1934// Creates an action that sets errno and returns the appropriate error.
1935template <typename T>
1936PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn(
1937 int errval, T result) {
1938 return MakePolymorphicAction(
1939 internal::SetErrnoAndReturnAction<T>(errval, result));
1940}
1941
1942#endif // !GTEST_OS_WINDOWS_MOBILE
1943
1944// Various overloads for Invoke().
1945
1946// Legacy function.
1947// Actions can now be implicitly constructed from callables. No need to create
1948// wrapper objects.
1949// This function exists for backwards compatibility.
1950template <typename FunctionImpl>
1951typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
1952 return std::forward<FunctionImpl>(function_impl);
1953}
1954
1955// Creates an action that invokes the given method on the given object
1956// with the mock function's arguments.
1957template <class Class, typename MethodPtr>
1958internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
1959 MethodPtr method_ptr) {
1960 return {obj_ptr, method_ptr};
1961}
1962
1963// Creates an action that invokes 'function_impl' with no argument.
1964template <typename FunctionImpl>
1965internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
1966InvokeWithoutArgs(FunctionImpl function_impl) {
1967 return {std::move(function_impl)};
1968}
1969
1970// Creates an action that invokes the given method on the given object
1971// with no argument.
1972template <class Class, typename MethodPtr>
1973internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
1974 Class* obj_ptr, MethodPtr method_ptr) {
1975 return {obj_ptr, method_ptr};
1976}
1977
1978// Creates an action that performs an_action and throws away its
1979// result. In other words, it changes the return type of an_action to
1980// void. an_action MUST NOT return void, or the code won't compile.
1981template <typename A>
1982inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
1983 return internal::IgnoreResultAction<A>(an_action);
1984}
1985
1986// Creates a reference wrapper for the given L-value. If necessary,
1987// you can explicitly specify the type of the reference. For example,
1988// suppose 'derived' is an object of type Derived, ByRef(derived)
1989// would wrap a Derived&. If you want to wrap a const Base& instead,
1990// where Base is a base class of Derived, just write:
1991//
1992// ByRef<const Base>(derived)
1993//
1994// N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
1995// However, it may still be used for consistency with ByMove().
1996template <typename T>
1997inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT
1998 return ::std::reference_wrapper<T>(l_value);
1999}
2000
2001// The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
2002// instance of type T, constructed on the heap with constructor arguments
2003// a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
2004template <typename T, typename... Params>
2005internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew(
2006 Params&&... params) {
2007 return {std::forward_as_tuple(std::forward<Params>(params)...)};
2008}
2009
2010// Action ReturnArg<k>() returns the k-th argument of the mock function.
2011template <size_t k>
2012internal::ReturnArgAction<k> ReturnArg() {
2013 return {};
2014}
2015
2016// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
2017// mock function to *pointer.
2018template <size_t k, typename Ptr>
2019internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) {
2020 return {pointer};
2021}
2022
2023// Action SaveArgPointee<k>(pointer) saves the value pointed to
2024// by the k-th (0-based) argument of the mock function to *pointer.
2025template <size_t k, typename Ptr>
2026internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) {
2027 return {pointer};
2028}
2029
2030// Action SetArgReferee<k>(value) assigns 'value' to the variable
2031// referenced by the k-th (0-based) argument of the mock function.
2032template <size_t k, typename T>
2033internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee(
2034 T&& value) {
2035 return {std::forward<T>(value)};
2036}
2037
2038// Action SetArrayArgument<k>(first, last) copies the elements in
2039// source range [first, last) to the array pointed to by the k-th
2040// (0-based) argument, which can be either a pointer or an
2041// iterator. The action does not take ownership of the elements in the
2042// source range.
2043template <size_t k, typename I1, typename I2>
2044internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first,
2045 I2 last) {
2046 return {first, last};
2047}
2048
2049// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
2050// function.
2051template <size_t k>
2052internal::DeleteArgAction<k> DeleteArg() {
2053 return {};
2054}
2055
2056// This action returns the value pointed to by 'pointer'.
2057template <typename Ptr>
2058internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) {
2059 return {pointer};
2060}
2061
2062// Action Throw(exception) can be used in a mock function of any type
2063// to throw the given exception. Any copyable value can be thrown.
2064#if GTEST_HAS_EXCEPTIONS
2065template <typename T>
2066internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) {
2067 return {std::forward<T>(exception)};
2068}
2069#endif // GTEST_HAS_EXCEPTIONS
2070
2071namespace internal {
2072
2073// A macro from the ACTION* family (defined later in gmock-generated-actions.h)
2074// defines an action that can be used in a mock function. Typically,
2075// these actions only care about a subset of the arguments of the mock
2076// function. For example, if such an action only uses the second
2077// argument, it can be used in any mock function that takes >= 2
2078// arguments where the type of the second argument is compatible.
2079//
2080// Therefore, the action implementation must be prepared to take more
2081// arguments than it needs. The ExcessiveArg type is used to
2082// represent those excessive arguments. In order to keep the compiler
2083// error messages tractable, we define it in the testing namespace
2084// instead of testing::internal. However, this is an INTERNAL TYPE
2085// and subject to change without notice, so a user MUST NOT USE THIS
2086// TYPE DIRECTLY.
2087struct ExcessiveArg {};
2088
2089// Builds an implementation of an Action<> for some particular signature, using
2090// a class defined by an ACTION* macro.
2091template <typename F, typename Impl>
2092struct ActionImpl;
2093
2094template <typename Impl>
2095struct ImplBase {
2096 struct Holder {
2097 // Allows each copy of the Action<> to get to the Impl.
2098 explicit operator const Impl&() const { return *ptr; }
2099 std::shared_ptr<Impl> ptr;
2100 };
2101 using type = typename std::conditional<std::is_constructible<Impl>::value,
2102 Impl, Holder>::type;
2103};
2104
2105template <typename R, typename... Args, typename Impl>
2106struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
2107 using Base = typename ImplBase<Impl>::type;
2108 using function_type = R(Args...);
2109 using args_type = std::tuple<Args...>;
2110
2111 ActionImpl() = default; // Only defined if appropriate for Base.
2112 explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {}
2113
2114 R operator()(Args&&... arg) const {
2115 static constexpr size_t kMaxArgs =
2116 sizeof...(Args) <= 10 ? sizeof...(Args) : 10;
2117 return Apply(MakeIndexSequence<kMaxArgs>{},
2118 MakeIndexSequence<10 - kMaxArgs>{},
2119 args_type{std::forward<Args>(arg)...});
2120 }
2121
2122 template <std::size_t... arg_id, std::size_t... excess_id>
2123 R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>,
2124 const args_type& args) const {
2125 // Impl need not be specific to the signature of action being implemented;
2126 // only the implementing function body needs to have all of the specific
2127 // types instantiated. Up to 10 of the args that are provided by the
2128 // args_type get passed, followed by a dummy of unspecified type for the
2129 // remainder up to 10 explicit args.
2130 static constexpr ExcessiveArg kExcessArg{};
2131 return static_cast<const Impl&>(*this)
2132 .template gmock_PerformImpl<
2133 /*function_type=*/function_type, /*return_type=*/R,
2134 /*args_type=*/args_type,
2135 /*argN_type=*/
2136 typename std::tuple_element<arg_id, args_type>::type...>(
2137 /*args=*/args, std::get<arg_id>(args)...,
2138 ((void)excess_id, kExcessArg)...);
2139 }
2140};
2141
2142// Stores a default-constructed Impl as part of the Action<>'s
2143// std::function<>. The Impl should be trivial to copy.
2144template <typename F, typename Impl>
2145::testing::Action<F> MakeAction() {
2146 return ::testing::Action<F>(ActionImpl<F, Impl>());
2147}
2148
2149// Stores just the one given instance of Impl.
2150template <typename F, typename Impl>
2151::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) {
2152 return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl)));
2153}
2154
2155#define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
2156 , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
2157#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \
2158 const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
2159 GMOCK_INTERNAL_ARG_UNUSED, , 10)
2160
2161#define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
2162#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
2163 const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
2164
2165#define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
2166#define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
2167 GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
2168
2169#define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
2170#define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
2171 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
2172
2173#define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
2174#define GMOCK_ACTION_TYPE_PARAMS_(params) \
2175 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
2176
2177#define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
2178 , param##_type gmock_p##i
2179#define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
2180 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
2181
2182#define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
2183 , std::forward<param##_type>(gmock_p##i)
2184#define GMOCK_ACTION_GVALUE_PARAMS_(params) \
2185 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
2186
2187#define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
2188 , param(::std::forward<param##_type>(gmock_p##i))
2189#define GMOCK_ACTION_INIT_PARAMS_(params) \
2190 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
2191
2192#define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
2193#define GMOCK_ACTION_FIELD_PARAMS_(params) \
2194 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
2195
2196#define GMOCK_INTERNAL_ACTION(name, full_name, params) \
2197 template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
2198 class full_name { \
2199 public: \
2200 explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
2201 : impl_(std::make_shared<gmock_Impl>( \
2202 GMOCK_ACTION_GVALUE_PARAMS_(params))) {} \
2203 full_name(const full_name&) = default; \
2204 full_name(full_name&&) noexcept = default; \
2205 template <typename F> \
2206 operator ::testing::Action<F>() const { \
2207 return ::testing::internal::MakeAction<F>(impl_); \
2208 } \
2209 \
2210 private: \
2211 class gmock_Impl { \
2212 public: \
2213 explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
2214 : GMOCK_ACTION_INIT_PARAMS_(params) {} \
2215 template <typename function_type, typename return_type, \
2216 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
2217 return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
2218 GMOCK_ACTION_FIELD_PARAMS_(params) \
2219 }; \
2220 std::shared_ptr<const gmock_Impl> impl_; \
2221 }; \
2222 template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
2223 inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
2224 GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_; \
2225 template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
2226 inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
2227 GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \
2228 return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \
2229 GMOCK_ACTION_GVALUE_PARAMS_(params)); \
2230 } \
2231 template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
2232 template <typename function_type, typename return_type, typename args_type, \
2233 GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
2234 return_type \
2235 full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \
2236 GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
2237
2238} // namespace internal
2239
2240// Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
2241#define ACTION(name) \
2242 class name##Action { \
2243 public: \
2244 explicit name##Action() noexcept {} \
2245 name##Action(const name##Action&) noexcept {} \
2246 template <typename F> \
2247 operator ::testing::Action<F>() const { \
2248 return ::testing::internal::MakeAction<F, gmock_Impl>(); \
2249 } \
2250 \
2251 private: \
2252 class gmock_Impl { \
2253 public: \
2254 template <typename function_type, typename return_type, \
2255 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
2256 return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
2257 }; \
2258 }; \
2259 inline name##Action name() GTEST_MUST_USE_RESULT_; \
2260 inline name##Action name() { return name##Action(); } \
2261 template <typename function_type, typename return_type, typename args_type, \
2262 GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
2263 return_type name##Action::gmock_Impl::gmock_PerformImpl( \
2264 GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
2265
2266#define ACTION_P(name, ...) \
2267 GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
2268
2269#define ACTION_P2(name, ...) \
2270 GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
2271
2272#define ACTION_P3(name, ...) \
2273 GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
2274
2275#define ACTION_P4(name, ...) \
2276 GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
2277
2278#define ACTION_P5(name, ...) \
2279 GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
2280
2281#define ACTION_P6(name, ...) \
2282 GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
2283
2284#define ACTION_P7(name, ...) \
2285 GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
2286
2287#define ACTION_P8(name, ...) \
2288 GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
2289
2290#define ACTION_P9(name, ...) \
2291 GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
2292
2293#define ACTION_P10(name, ...) \
2294 GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
2295
2296} // namespace testing
2297
2298#ifdef _MSC_VER
2299#pragma warning(pop)
2300#endif
2301
2302#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
2303