1 | // Copyright 2007, Google Inc. |
2 | // All rights reserved. |
3 | // |
4 | // Redistribution and use in source and binary forms, with or without |
5 | // modification, are permitted provided that the following conditions are |
6 | // met: |
7 | // |
8 | // * Redistributions of source code must retain the above copyright |
9 | // notice, this list of conditions and the following disclaimer. |
10 | // * Redistributions in binary form must reproduce the above |
11 | // copyright notice, this list of conditions and the following disclaimer |
12 | // in the documentation and/or other materials provided with the |
13 | // distribution. |
14 | // * Neither the name of Google Inc. nor the names of its |
15 | // contributors may be used to endorse or promote products derived from |
16 | // this software without specific prior written permission. |
17 | // |
18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | |
30 | // Google Mock - a framework for writing C++ mock classes. |
31 | // |
32 | // The ACTION* family of macros can be used in a namespace scope to |
33 | // define custom actions easily. The syntax: |
34 | // |
35 | // ACTION(name) { statements; } |
36 | // |
37 | // will define an action with the given name that executes the |
38 | // statements. The value returned by the statements will be used as |
39 | // the return value of the action. Inside the statements, you can |
40 | // refer to the K-th (0-based) argument of the mock function by |
41 | // 'argK', and refer to its type by 'argK_type'. For example: |
42 | // |
43 | // ACTION(IncrementArg1) { |
44 | // arg1_type temp = arg1; |
45 | // return ++(*temp); |
46 | // } |
47 | // |
48 | // allows you to write |
49 | // |
50 | // ...WillOnce(IncrementArg1()); |
51 | // |
52 | // You can also refer to the entire argument tuple and its type by |
53 | // 'args' and 'args_type', and refer to the mock function type and its |
54 | // return type by 'function_type' and 'return_type'. |
55 | // |
56 | // Note that you don't need to specify the types of the mock function |
57 | // arguments. However rest assured that your code is still type-safe: |
58 | // you'll get a compiler error if *arg1 doesn't support the ++ |
59 | // operator, or if the type of ++(*arg1) isn't compatible with the |
60 | // mock function's return type, for example. |
61 | // |
62 | // Sometimes you'll want to parameterize the action. For that you can use |
63 | // another macro: |
64 | // |
65 | // ACTION_P(name, param_name) { statements; } |
66 | // |
67 | // For example: |
68 | // |
69 | // ACTION_P(Add, n) { return arg0 + n; } |
70 | // |
71 | // will allow you to write: |
72 | // |
73 | // ...WillOnce(Add(5)); |
74 | // |
75 | // Note that you don't need to provide the type of the parameter |
76 | // either. If you need to reference the type of a parameter named |
77 | // 'foo', you can write 'foo_type'. For example, in the body of |
78 | // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type |
79 | // of 'n'. |
80 | // |
81 | // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support |
82 | // multi-parameter actions. |
83 | // |
84 | // For the purpose of typing, you can view |
85 | // |
86 | // ACTION_Pk(Foo, p1, ..., pk) { ... } |
87 | // |
88 | // as shorthand for |
89 | // |
90 | // template <typename p1_type, ..., typename pk_type> |
91 | // FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } |
92 | // |
93 | // In particular, you can provide the template type arguments |
94 | // explicitly when invoking Foo(), as in Foo<long, bool>(5, false); |
95 | // although usually you can rely on the compiler to infer the types |
96 | // for you automatically. You can assign the result of expression |
97 | // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ..., |
98 | // pk_type>. This can be useful when composing actions. |
99 | // |
100 | // You can also overload actions with different numbers of parameters: |
101 | // |
102 | // ACTION_P(Plus, a) { ... } |
103 | // ACTION_P2(Plus, a, b) { ... } |
104 | // |
105 | // While it's tempting to always use the ACTION* macros when defining |
106 | // a new action, you should also consider implementing ActionInterface |
107 | // or using MakePolymorphicAction() instead, especially if you need to |
108 | // use the action a lot. While these approaches require more work, |
109 | // they give you more control on the types of the mock function |
110 | // arguments and the action parameters, which in general leads to |
111 | // better compiler error messages that pay off in the long run. They |
112 | // also allow overloading actions based on parameter types (as opposed |
113 | // to just based on the number of parameters). |
114 | // |
115 | // CAVEAT: |
116 | // |
117 | // ACTION*() can only be used in a namespace scope as templates cannot be |
118 | // declared inside of a local class. |
119 | // Users can, however, define any local functors (e.g. a lambda) that |
120 | // can be used as actions. |
121 | // |
122 | // MORE INFORMATION: |
123 | // |
124 | // To learn more about using these macros, please search for 'ACTION' on |
125 | // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md |
126 | |
127 | // IWYU pragma: private, include "gmock/gmock.h" |
128 | // IWYU pragma: friend gmock/.* |
129 | |
130 | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |
131 | #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |
132 | |
133 | #ifndef _WIN32_WCE |
134 | #include <errno.h> |
135 | #endif |
136 | |
137 | #include <algorithm> |
138 | #include <functional> |
139 | #include <memory> |
140 | #include <string> |
141 | #include <tuple> |
142 | #include <type_traits> |
143 | #include <utility> |
144 | |
145 | #include "gmock/internal/gmock-internal-utils.h" |
146 | #include "gmock/internal/gmock-port.h" |
147 | #include "gmock/internal/gmock-pp.h" |
148 | |
149 | #ifdef _MSC_VER |
150 | #pragma warning(push) |
151 | #pragma warning(disable : 4100) |
152 | #endif |
153 | |
154 | namespace testing { |
155 | |
156 | // To implement an action Foo, define: |
157 | // 1. a class FooAction that implements the ActionInterface interface, and |
158 | // 2. a factory function that creates an Action object from a |
159 | // const FooAction*. |
160 | // |
161 | // The two-level delegation design follows that of Matcher, providing |
162 | // consistency for extension developers. It also eases ownership |
163 | // management as Action objects can now be copied like plain values. |
164 | |
165 | namespace internal { |
166 | |
167 | // BuiltInDefaultValueGetter<T, true>::Get() returns a |
168 | // default-constructed T value. BuiltInDefaultValueGetter<T, |
169 | // false>::Get() crashes with an error. |
170 | // |
171 | // This primary template is used when kDefaultConstructible is true. |
172 | template <typename T, bool kDefaultConstructible> |
173 | struct BuiltInDefaultValueGetter { |
174 | static T Get() { return T(); } |
175 | }; |
176 | template <typename T> |
177 | struct BuiltInDefaultValueGetter<T, false> { |
178 | static T Get() { |
179 | Assert(condition: false, __FILE__, __LINE__, |
180 | msg: "Default action undefined for the function return type." ); |
181 | return internal::Invalid<T>(); |
182 | // The above statement will never be reached, but is required in |
183 | // order for this function to compile. |
184 | } |
185 | }; |
186 | |
187 | // BuiltInDefaultValue<T>::Get() returns the "built-in" default value |
188 | // for type T, which is NULL when T is a raw pointer type, 0 when T is |
189 | // a numeric type, false when T is bool, or "" when T is string or |
190 | // std::string. In addition, in C++11 and above, it turns a |
191 | // default-constructed T value if T is default constructible. For any |
192 | // other type T, the built-in default T value is undefined, and the |
193 | // function will abort the process. |
194 | template <typename T> |
195 | class BuiltInDefaultValue { |
196 | public: |
197 | // This function returns true if and only if type T has a built-in default |
198 | // value. |
199 | static bool Exists() { return ::std::is_default_constructible<T>::value; } |
200 | |
201 | static T Get() { |
202 | return BuiltInDefaultValueGetter< |
203 | T, ::std::is_default_constructible<T>::value>::Get(); |
204 | } |
205 | }; |
206 | |
207 | // This partial specialization says that we use the same built-in |
208 | // default value for T and const T. |
209 | template <typename T> |
210 | class BuiltInDefaultValue<const T> { |
211 | public: |
212 | static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } |
213 | static T Get() { return BuiltInDefaultValue<T>::Get(); } |
214 | }; |
215 | |
216 | // This partial specialization defines the default values for pointer |
217 | // types. |
218 | template <typename T> |
219 | class BuiltInDefaultValue<T*> { |
220 | public: |
221 | static bool Exists() { return true; } |
222 | static T* Get() { return nullptr; } |
223 | }; |
224 | |
225 | // The following specializations define the default values for |
226 | // specific types we care about. |
227 | #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ |
228 | template <> \ |
229 | class BuiltInDefaultValue<type> { \ |
230 | public: \ |
231 | static bool Exists() { return true; } \ |
232 | static type Get() { return value; } \ |
233 | } |
234 | |
235 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT |
236 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "" ); |
237 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); |
238 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); |
239 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); |
240 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); |
241 | |
242 | // There's no need for a default action for signed wchar_t, as that |
243 | // type is the same as wchar_t for gcc, and invalid for MSVC. |
244 | // |
245 | // There's also no need for a default action for unsigned wchar_t, as |
246 | // that type is the same as unsigned int for gcc, and invalid for |
247 | // MSVC. |
248 | #if GMOCK_WCHAR_T_IS_NATIVE_ |
249 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT |
250 | #endif |
251 | |
252 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT |
253 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT |
254 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); |
255 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); |
256 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT |
257 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT |
258 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT |
259 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT |
260 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); |
261 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); |
262 | |
263 | #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ |
264 | |
265 | // Partial implementations of metaprogramming types from the standard library |
266 | // not available in C++11. |
267 | |
268 | template <typename P> |
269 | struct negation |
270 | // NOLINTNEXTLINE |
271 | : std::integral_constant<bool, bool(!P::value)> {}; |
272 | |
273 | // Base case: with zero predicates the answer is always true. |
274 | template <typename...> |
275 | struct conjunction : std::true_type {}; |
276 | |
277 | // With a single predicate, the answer is that predicate. |
278 | template <typename P1> |
279 | struct conjunction<P1> : P1 {}; |
280 | |
281 | // With multiple predicates the answer is the first predicate if that is false, |
282 | // and we recurse otherwise. |
283 | template <typename P1, typename... Ps> |
284 | struct conjunction<P1, Ps...> |
285 | : std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {}; |
286 | |
287 | template <typename...> |
288 | struct disjunction : std::false_type {}; |
289 | |
290 | template <typename P1> |
291 | struct disjunction<P1> : P1 {}; |
292 | |
293 | template <typename P1, typename... Ps> |
294 | struct disjunction<P1, Ps...> |
295 | // NOLINTNEXTLINE |
296 | : std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {}; |
297 | |
298 | template <typename...> |
299 | using void_t = void; |
300 | |
301 | // Detects whether an expression of type `From` can be implicitly converted to |
302 | // `To` according to [conv]. In C++17, [conv]/3 defines this as follows: |
303 | // |
304 | // An expression e can be implicitly converted to a type T if and only if |
305 | // the declaration T t=e; is well-formed, for some invented temporary |
306 | // variable t ([dcl.init]). |
307 | // |
308 | // [conv]/2 implies we can use function argument passing to detect whether this |
309 | // initialization is valid. |
310 | // |
311 | // Note that this is distinct from is_convertible, which requires this be valid: |
312 | // |
313 | // To test() { |
314 | // return declval<From>(); |
315 | // } |
316 | // |
317 | // In particular, is_convertible doesn't give the correct answer when `To` and |
318 | // `From` are the same non-moveable type since `declval<From>` will be an rvalue |
319 | // reference, defeating the guaranteed copy elision that would otherwise make |
320 | // this function work. |
321 | // |
322 | // REQUIRES: `From` is not cv void. |
323 | template <typename From, typename To> |
324 | struct is_implicitly_convertible { |
325 | private: |
326 | // A function that accepts a parameter of type T. This can be called with type |
327 | // U successfully only if U is implicitly convertible to T. |
328 | template <typename T> |
329 | static void Accept(T); |
330 | |
331 | // A function that creates a value of type T. |
332 | template <typename T> |
333 | static T Make(); |
334 | |
335 | // An overload be selected when implicit conversion from T to To is possible. |
336 | template <typename T, typename = decltype(Accept<To>(Make<T>()))> |
337 | static std::true_type TestImplicitConversion(int); |
338 | |
339 | // A fallback overload selected in all other cases. |
340 | template <typename T> |
341 | static std::false_type TestImplicitConversion(...); |
342 | |
343 | public: |
344 | using type = decltype(TestImplicitConversion<From>(0)); |
345 | static constexpr bool value = type::value; |
346 | }; |
347 | |
348 | // Like std::invoke_result_t from C++17, but works only for objects with call |
349 | // operators (not e.g. member function pointers, which we don't need specific |
350 | // support for in OnceAction because std::function deals with them). |
351 | template <typename F, typename... Args> |
352 | using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...)); |
353 | |
354 | template <typename Void, typename R, typename F, typename... Args> |
355 | struct is_callable_r_impl : std::false_type {}; |
356 | |
357 | // Specialize the struct for those template arguments where call_result_t is |
358 | // well-formed. When it's not, the generic template above is chosen, resulting |
359 | // in std::false_type. |
360 | template <typename R, typename F, typename... Args> |
361 | struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...> |
362 | : std::conditional< |
363 | std::is_void<R>::value, // |
364 | std::true_type, // |
365 | is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {}; |
366 | |
367 | // Like std::is_invocable_r from C++17, but works only for objects with call |
368 | // operators. See the note on call_result_t. |
369 | template <typename R, typename F, typename... Args> |
370 | using is_callable_r = is_callable_r_impl<void, R, F, Args...>; |
371 | |
372 | // Like std::as_const from C++17. |
373 | template <typename T> |
374 | typename std::add_const<T>::type& as_const(T& t) { |
375 | return t; |
376 | } |
377 | |
378 | } // namespace internal |
379 | |
380 | // Specialized for function types below. |
381 | template <typename F> |
382 | class OnceAction; |
383 | |
384 | // An action that can only be used once. |
385 | // |
386 | // This is accepted by WillOnce, which doesn't require the underlying action to |
387 | // be copy-constructible (only move-constructible), and promises to invoke it as |
388 | // an rvalue reference. This allows the action to work with move-only types like |
389 | // std::move_only_function in a type-safe manner. |
390 | // |
391 | // For example: |
392 | // |
393 | // // Assume we have some API that needs to accept a unique pointer to some |
394 | // // non-copyable object Foo. |
395 | // void AcceptUniquePointer(std::unique_ptr<Foo> foo); |
396 | // |
397 | // // We can define an action that provides a Foo to that API. Because It |
398 | // // has to give away its unique pointer, it must not be called more than |
399 | // // once, so its call operator is &&-qualified. |
400 | // struct ProvideFoo { |
401 | // std::unique_ptr<Foo> foo; |
402 | // |
403 | // void operator()() && { |
404 | // AcceptUniquePointer(std::move(Foo)); |
405 | // } |
406 | // }; |
407 | // |
408 | // // This action can be used with WillOnce. |
409 | // EXPECT_CALL(mock, Call) |
410 | // .WillOnce(ProvideFoo{std::make_unique<Foo>(...)}); |
411 | // |
412 | // // But a call to WillRepeatedly will fail to compile. This is correct, |
413 | // // since the action cannot correctly be used repeatedly. |
414 | // EXPECT_CALL(mock, Call) |
415 | // .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)}); |
416 | // |
417 | // A less-contrived example would be an action that returns an arbitrary type, |
418 | // whose &&-qualified call operator is capable of dealing with move-only types. |
419 | template <typename Result, typename... Args> |
420 | class OnceAction<Result(Args...)> final { |
421 | private: |
422 | // True iff we can use the given callable type (or lvalue reference) directly |
423 | // via StdFunctionAdaptor. |
424 | template <typename Callable> |
425 | using IsDirectlyCompatible = internal::conjunction< |
426 | // It must be possible to capture the callable in StdFunctionAdaptor. |
427 | std::is_constructible<typename std::decay<Callable>::type, Callable>, |
428 | // The callable must be compatible with our signature. |
429 | internal::is_callable_r<Result, typename std::decay<Callable>::type, |
430 | Args...>>; |
431 | |
432 | // True iff we can use the given callable type via StdFunctionAdaptor once we |
433 | // ignore incoming arguments. |
434 | template <typename Callable> |
435 | using IsCompatibleAfterIgnoringArguments = internal::conjunction< |
436 | // It must be possible to capture the callable in a lambda. |
437 | std::is_constructible<typename std::decay<Callable>::type, Callable>, |
438 | // The callable must be invocable with zero arguments, returning something |
439 | // convertible to Result. |
440 | internal::is_callable_r<Result, typename std::decay<Callable>::type>>; |
441 | |
442 | public: |
443 | // Construct from a callable that is directly compatible with our mocked |
444 | // signature: it accepts our function type's arguments and returns something |
445 | // convertible to our result type. |
446 | template <typename Callable, |
447 | typename std::enable_if< |
448 | internal::conjunction< |
449 | // Teach clang on macOS that we're not talking about a |
450 | // copy/move constructor here. Otherwise it gets confused |
451 | // when checking the is_constructible requirement of our |
452 | // traits above. |
453 | internal::negation<std::is_same< |
454 | OnceAction, typename std::decay<Callable>::type>>, |
455 | IsDirectlyCompatible<Callable>> // |
456 | ::value, |
457 | int>::type = 0> |
458 | OnceAction(Callable&& callable) // NOLINT |
459 | : function_(StdFunctionAdaptor<typename std::decay<Callable>::type>( |
460 | {}, std::forward<Callable>(callable))) {} |
461 | |
462 | // As above, but for a callable that ignores the mocked function's arguments. |
463 | template <typename Callable, |
464 | typename std::enable_if< |
465 | internal::conjunction< |
466 | // Teach clang on macOS that we're not talking about a |
467 | // copy/move constructor here. Otherwise it gets confused |
468 | // when checking the is_constructible requirement of our |
469 | // traits above. |
470 | internal::negation<std::is_same< |
471 | OnceAction, typename std::decay<Callable>::type>>, |
472 | // Exclude callables for which the overload above works. |
473 | // We'd rather provide the arguments if possible. |
474 | internal::negation<IsDirectlyCompatible<Callable>>, |
475 | IsCompatibleAfterIgnoringArguments<Callable>>::value, |
476 | int>::type = 0> |
477 | OnceAction(Callable&& callable) // NOLINT |
478 | // Call the constructor above with a callable |
479 | // that ignores the input arguments. |
480 | : OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{ |
481 | std::forward<Callable>(callable)}) {} |
482 | |
483 | // We are naturally copyable because we store only an std::function, but |
484 | // semantically we should not be copyable. |
485 | OnceAction(const OnceAction&) = delete; |
486 | OnceAction& operator=(const OnceAction&) = delete; |
487 | OnceAction(OnceAction&&) = default; |
488 | |
489 | // Invoke the underlying action callable with which we were constructed, |
490 | // handing it the supplied arguments. |
491 | Result Call(Args... args) && { |
492 | return function_(std::forward<Args>(args)...); |
493 | } |
494 | |
495 | private: |
496 | // An adaptor that wraps a callable that is compatible with our signature and |
497 | // being invoked as an rvalue reference so that it can be used as an |
498 | // StdFunctionAdaptor. This throws away type safety, but that's fine because |
499 | // this is only used by WillOnce, which we know calls at most once. |
500 | // |
501 | // Once we have something like std::move_only_function from C++23, we can do |
502 | // away with this. |
503 | template <typename Callable> |
504 | class StdFunctionAdaptor final { |
505 | public: |
506 | // A tag indicating that the (otherwise universal) constructor is accepting |
507 | // the callable itself, instead of e.g. stealing calls for the move |
508 | // constructor. |
509 | struct CallableTag final {}; |
510 | |
511 | template <typename F> |
512 | explicit StdFunctionAdaptor(CallableTag, F&& callable) |
513 | : callable_(std::make_shared<Callable>(std::forward<F>(callable))) {} |
514 | |
515 | // Rather than explicitly returning Result, we return whatever the wrapped |
516 | // callable returns. This allows for compatibility with existing uses like |
517 | // the following, when the mocked function returns void: |
518 | // |
519 | // EXPECT_CALL(mock_fn_, Call) |
520 | // .WillOnce([&] { |
521 | // [...] |
522 | // return 0; |
523 | // }); |
524 | // |
525 | // Such a callable can be turned into std::function<void()>. If we use an |
526 | // explicit return type of Result here then it *doesn't* work with |
527 | // std::function, because we'll get a "void function should not return a |
528 | // value" error. |
529 | // |
530 | // We need not worry about incompatible result types because the SFINAE on |
531 | // OnceAction already checks this for us. std::is_invocable_r_v itself makes |
532 | // the same allowance for void result types. |
533 | template <typename... ArgRefs> |
534 | internal::call_result_t<Callable, ArgRefs...> operator()( |
535 | ArgRefs&&... args) const { |
536 | return std::move(*callable_)(std::forward<ArgRefs>(args)...); |
537 | } |
538 | |
539 | private: |
540 | // We must put the callable on the heap so that we are copyable, which |
541 | // std::function needs. |
542 | std::shared_ptr<Callable> callable_; |
543 | }; |
544 | |
545 | // An adaptor that makes a callable that accepts zero arguments callable with |
546 | // our mocked arguments. |
547 | template <typename Callable> |
548 | struct IgnoreIncomingArguments { |
549 | internal::call_result_t<Callable> operator()(Args&&...) { |
550 | return std::move(callable)(); |
551 | } |
552 | |
553 | Callable callable; |
554 | }; |
555 | |
556 | std::function<Result(Args...)> function_; |
557 | }; |
558 | |
559 | // When an unexpected function call is encountered, Google Mock will |
560 | // let it return a default value if the user has specified one for its |
561 | // return type, or if the return type has a built-in default value; |
562 | // otherwise Google Mock won't know what value to return and will have |
563 | // to abort the process. |
564 | // |
565 | // The DefaultValue<T> class allows a user to specify the |
566 | // default value for a type T that is both copyable and publicly |
567 | // destructible (i.e. anything that can be used as a function return |
568 | // type). The usage is: |
569 | // |
570 | // // Sets the default value for type T to be foo. |
571 | // DefaultValue<T>::Set(foo); |
572 | template <typename T> |
573 | class DefaultValue { |
574 | public: |
575 | // Sets the default value for type T; requires T to be |
576 | // copy-constructable and have a public destructor. |
577 | static void Set(T x) { |
578 | delete producer_; |
579 | producer_ = new FixedValueProducer(x); |
580 | } |
581 | |
582 | // Provides a factory function to be called to generate the default value. |
583 | // This method can be used even if T is only move-constructible, but it is not |
584 | // limited to that case. |
585 | typedef T (*FactoryFunction)(); |
586 | static void SetFactory(FactoryFunction factory) { |
587 | delete producer_; |
588 | producer_ = new FactoryValueProducer(factory); |
589 | } |
590 | |
591 | // Unsets the default value for type T. |
592 | static void Clear() { |
593 | delete producer_; |
594 | producer_ = nullptr; |
595 | } |
596 | |
597 | // Returns true if and only if the user has set the default value for type T. |
598 | static bool IsSet() { return producer_ != nullptr; } |
599 | |
600 | // Returns true if T has a default return value set by the user or there |
601 | // exists a built-in default value. |
602 | static bool Exists() { |
603 | return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); |
604 | } |
605 | |
606 | // Returns the default value for type T if the user has set one; |
607 | // otherwise returns the built-in default value. Requires that Exists() |
608 | // is true, which ensures that the return value is well-defined. |
609 | static T Get() { |
610 | return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get() |
611 | : producer_->Produce(); |
612 | } |
613 | |
614 | private: |
615 | class ValueProducer { |
616 | public: |
617 | virtual ~ValueProducer() {} |
618 | virtual T Produce() = 0; |
619 | }; |
620 | |
621 | class FixedValueProducer : public ValueProducer { |
622 | public: |
623 | explicit FixedValueProducer(T value) : value_(value) {} |
624 | T Produce() override { return value_; } |
625 | |
626 | private: |
627 | const T value_; |
628 | FixedValueProducer(const FixedValueProducer&) = delete; |
629 | FixedValueProducer& operator=(const FixedValueProducer&) = delete; |
630 | }; |
631 | |
632 | class FactoryValueProducer : public ValueProducer { |
633 | public: |
634 | explicit FactoryValueProducer(FactoryFunction factory) |
635 | : factory_(factory) {} |
636 | T Produce() override { return factory_(); } |
637 | |
638 | private: |
639 | const FactoryFunction factory_; |
640 | FactoryValueProducer(const FactoryValueProducer&) = delete; |
641 | FactoryValueProducer& operator=(const FactoryValueProducer&) = delete; |
642 | }; |
643 | |
644 | static ValueProducer* producer_; |
645 | }; |
646 | |
647 | // This partial specialization allows a user to set default values for |
648 | // reference types. |
649 | template <typename T> |
650 | class DefaultValue<T&> { |
651 | public: |
652 | // Sets the default value for type T&. |
653 | static void Set(T& x) { // NOLINT |
654 | address_ = &x; |
655 | } |
656 | |
657 | // Unsets the default value for type T&. |
658 | static void Clear() { address_ = nullptr; } |
659 | |
660 | // Returns true if and only if the user has set the default value for type T&. |
661 | static bool IsSet() { return address_ != nullptr; } |
662 | |
663 | // Returns true if T has a default return value set by the user or there |
664 | // exists a built-in default value. |
665 | static bool Exists() { |
666 | return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); |
667 | } |
668 | |
669 | // Returns the default value for type T& if the user has set one; |
670 | // otherwise returns the built-in default value if there is one; |
671 | // otherwise aborts the process. |
672 | static T& Get() { |
673 | return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get() |
674 | : *address_; |
675 | } |
676 | |
677 | private: |
678 | static T* address_; |
679 | }; |
680 | |
681 | // This specialization allows DefaultValue<void>::Get() to |
682 | // compile. |
683 | template <> |
684 | class DefaultValue<void> { |
685 | public: |
686 | static bool Exists() { return true; } |
687 | static void Get() {} |
688 | }; |
689 | |
690 | // Points to the user-set default value for type T. |
691 | template <typename T> |
692 | typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr; |
693 | |
694 | // Points to the user-set default value for type T&. |
695 | template <typename T> |
696 | T* DefaultValue<T&>::address_ = nullptr; |
697 | |
698 | // Implement this interface to define an action for function type F. |
699 | template <typename F> |
700 | class ActionInterface { |
701 | public: |
702 | typedef typename internal::Function<F>::Result Result; |
703 | typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
704 | |
705 | ActionInterface() {} |
706 | virtual ~ActionInterface() {} |
707 | |
708 | // Performs the action. This method is not const, as in general an |
709 | // action can have side effects and be stateful. For example, a |
710 | // get-the-next-element-from-the-collection action will need to |
711 | // remember the current element. |
712 | virtual Result Perform(const ArgumentTuple& args) = 0; |
713 | |
714 | private: |
715 | ActionInterface(const ActionInterface&) = delete; |
716 | ActionInterface& operator=(const ActionInterface&) = delete; |
717 | }; |
718 | |
719 | template <typename F> |
720 | class Action; |
721 | |
722 | // An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment) |
723 | // object that represents an action to be taken when a mock function of type |
724 | // R(Args...) is called. The implementation of Action<T> is just a |
725 | // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You |
726 | // can view an object implementing ActionInterface<F> as a concrete action |
727 | // (including its current state), and an Action<F> object as a handle to it. |
728 | template <typename R, typename... Args> |
729 | class Action<R(Args...)> { |
730 | private: |
731 | using F = R(Args...); |
732 | |
733 | // Adapter class to allow constructing Action from a legacy ActionInterface. |
734 | // New code should create Actions from functors instead. |
735 | struct ActionAdapter { |
736 | // Adapter must be copyable to satisfy std::function requirements. |
737 | ::std::shared_ptr<ActionInterface<F>> impl_; |
738 | |
739 | template <typename... InArgs> |
740 | typename internal::Function<F>::Result operator()(InArgs&&... args) { |
741 | return impl_->Perform( |
742 | ::std::forward_as_tuple(::std::forward<InArgs>(args)...)); |
743 | } |
744 | }; |
745 | |
746 | template <typename G> |
747 | using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>; |
748 | |
749 | public: |
750 | typedef typename internal::Function<F>::Result Result; |
751 | typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
752 | |
753 | // Constructs a null Action. Needed for storing Action objects in |
754 | // STL containers. |
755 | Action() {} |
756 | |
757 | // Construct an Action from a specified callable. |
758 | // This cannot take std::function directly, because then Action would not be |
759 | // directly constructible from lambda (it would require two conversions). |
760 | template < |
761 | typename G, |
762 | typename = typename std::enable_if<internal::disjunction< |
763 | IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>, |
764 | G>>::value>::type> |
765 | Action(G&& fun) { // NOLINT |
766 | Init(::std::forward<G>(fun), IsCompatibleFunctor<G>()); |
767 | } |
768 | |
769 | // Constructs an Action from its implementation. |
770 | explicit Action(ActionInterface<F>* impl) |
771 | : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} |
772 | |
773 | // This constructor allows us to turn an Action<Func> object into an |
774 | // Action<F>, as long as F's arguments can be implicitly converted |
775 | // to Func's and Func's return type can be implicitly converted to F's. |
776 | template <typename Func> |
777 | Action(const Action<Func>& action) // NOLINT |
778 | : fun_(action.fun_) {} |
779 | |
780 | // Returns true if and only if this is the DoDefault() action. |
781 | bool IsDoDefault() const { return fun_ == nullptr; } |
782 | |
783 | // Performs the action. Note that this method is const even though |
784 | // the corresponding method in ActionInterface is not. The reason |
785 | // is that a const Action<F> means that it cannot be re-bound to |
786 | // another concrete action, not that the concrete action it binds to |
787 | // cannot change state. (Think of the difference between a const |
788 | // pointer and a pointer to const.) |
789 | Result Perform(ArgumentTuple args) const { |
790 | if (IsDoDefault()) { |
791 | internal::IllegalDoDefault(__FILE__, __LINE__); |
792 | } |
793 | return internal::Apply(fun_, ::std::move(args)); |
794 | } |
795 | |
796 | // An action can be used as a OnceAction, since it's obviously safe to call it |
797 | // once. |
798 | operator OnceAction<F>() const { // NOLINT |
799 | // Return a OnceAction-compatible callable that calls Perform with the |
800 | // arguments it is provided. We could instead just return fun_, but then |
801 | // we'd need to handle the IsDoDefault() case separately. |
802 | struct OA { |
803 | Action<F> action; |
804 | |
805 | R operator()(Args... args) && { |
806 | return action.Perform( |
807 | std::forward_as_tuple(std::forward<Args>(args)...)); |
808 | } |
809 | }; |
810 | |
811 | return OA{*this}; |
812 | } |
813 | |
814 | private: |
815 | template <typename G> |
816 | friend class Action; |
817 | |
818 | template <typename G> |
819 | void Init(G&& g, ::std::true_type) { |
820 | fun_ = ::std::forward<G>(g); |
821 | } |
822 | |
823 | template <typename G> |
824 | void Init(G&& g, ::std::false_type) { |
825 | fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)}; |
826 | } |
827 | |
828 | template <typename FunctionImpl> |
829 | struct IgnoreArgs { |
830 | template <typename... InArgs> |
831 | Result operator()(const InArgs&...) const { |
832 | return function_impl(); |
833 | } |
834 | |
835 | FunctionImpl function_impl; |
836 | }; |
837 | |
838 | // fun_ is an empty function if and only if this is the DoDefault() action. |
839 | ::std::function<F> fun_; |
840 | }; |
841 | |
842 | // The PolymorphicAction class template makes it easy to implement a |
843 | // polymorphic action (i.e. an action that can be used in mock |
844 | // functions of than one type, e.g. Return()). |
845 | // |
846 | // To define a polymorphic action, a user first provides a COPYABLE |
847 | // implementation class that has a Perform() method template: |
848 | // |
849 | // class FooAction { |
850 | // public: |
851 | // template <typename Result, typename ArgumentTuple> |
852 | // Result Perform(const ArgumentTuple& args) const { |
853 | // // Processes the arguments and returns a result, using |
854 | // // std::get<N>(args) to get the N-th (0-based) argument in the tuple. |
855 | // } |
856 | // ... |
857 | // }; |
858 | // |
859 | // Then the user creates the polymorphic action using |
860 | // MakePolymorphicAction(object) where object has type FooAction. See |
861 | // the definition of Return(void) and SetArgumentPointee<N>(value) for |
862 | // complete examples. |
863 | template <typename Impl> |
864 | class PolymorphicAction { |
865 | public: |
866 | explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} |
867 | |
868 | template <typename F> |
869 | operator Action<F>() const { |
870 | return Action<F>(new MonomorphicImpl<F>(impl_)); |
871 | } |
872 | |
873 | private: |
874 | template <typename F> |
875 | class MonomorphicImpl : public ActionInterface<F> { |
876 | public: |
877 | typedef typename internal::Function<F>::Result Result; |
878 | typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
879 | |
880 | explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} |
881 | |
882 | Result Perform(const ArgumentTuple& args) override { |
883 | return impl_.template Perform<Result>(args); |
884 | } |
885 | |
886 | private: |
887 | Impl impl_; |
888 | }; |
889 | |
890 | Impl impl_; |
891 | }; |
892 | |
893 | // Creates an Action from its implementation and returns it. The |
894 | // created Action object owns the implementation. |
895 | template <typename F> |
896 | Action<F> MakeAction(ActionInterface<F>* impl) { |
897 | return Action<F>(impl); |
898 | } |
899 | |
900 | // Creates a polymorphic action from its implementation. This is |
901 | // easier to use than the PolymorphicAction<Impl> constructor as it |
902 | // doesn't require you to explicitly write the template argument, e.g. |
903 | // |
904 | // MakePolymorphicAction(foo); |
905 | // vs |
906 | // PolymorphicAction<TypeOfFoo>(foo); |
907 | template <typename Impl> |
908 | inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { |
909 | return PolymorphicAction<Impl>(impl); |
910 | } |
911 | |
912 | namespace internal { |
913 | |
914 | // Helper struct to specialize ReturnAction to execute a move instead of a copy |
915 | // on return. Useful for move-only types, but could be used on any type. |
916 | template <typename T> |
917 | struct ByMoveWrapper { |
918 | explicit ByMoveWrapper(T value) : payload(std::move(value)) {} |
919 | T payload; |
920 | }; |
921 | |
922 | // The general implementation of Return(R). Specializations follow below. |
923 | template <typename R> |
924 | class ReturnAction final { |
925 | public: |
926 | explicit ReturnAction(R value) : value_(std::move(value)) {} |
927 | |
928 | template <typename U, typename... Args, |
929 | typename = typename std::enable_if<conjunction< |
930 | // See the requirements documented on Return. |
931 | negation<std::is_same<void, U>>, // |
932 | negation<std::is_reference<U>>, // |
933 | std::is_convertible<R, U>, // |
934 | std::is_move_constructible<U>>::value>::type> |
935 | operator OnceAction<U(Args...)>() && { // NOLINT |
936 | return Impl<U>(std::move(value_)); |
937 | } |
938 | |
939 | template <typename U, typename... Args, |
940 | typename = typename std::enable_if<conjunction< |
941 | // See the requirements documented on Return. |
942 | negation<std::is_same<void, U>>, // |
943 | negation<std::is_reference<U>>, // |
944 | std::is_convertible<const R&, U>, // |
945 | std::is_copy_constructible<U>>::value>::type> |
946 | operator Action<U(Args...)>() const { // NOLINT |
947 | return Impl<U>(value_); |
948 | } |
949 | |
950 | private: |
951 | // Implements the Return(x) action for a mock function that returns type U. |
952 | template <typename U> |
953 | class Impl final { |
954 | public: |
955 | // The constructor used when the return value is allowed to move from the |
956 | // input value (i.e. we are converting to OnceAction). |
957 | explicit Impl(R&& input_value) |
958 | : state_(new State(std::move(input_value))) {} |
959 | |
960 | // The constructor used when the return value is not allowed to move from |
961 | // the input value (i.e. we are converting to Action). |
962 | explicit Impl(const R& input_value) : state_(new State(input_value)) {} |
963 | |
964 | U operator()() && { return std::move(state_->value); } |
965 | U operator()() const& { return state_->value; } |
966 | |
967 | private: |
968 | // We put our state on the heap so that the compiler-generated copy/move |
969 | // constructors work correctly even when U is a reference-like type. This is |
970 | // necessary only because we eagerly create State::value (see the note on |
971 | // that symbol for details). If we instead had only the input value as a |
972 | // member then the default constructors would work fine. |
973 | // |
974 | // For example, when R is std::string and U is std::string_view, value is a |
975 | // reference to the string backed by input_value. The copy constructor would |
976 | // copy both, so that we wind up with a new input_value object (with the |
977 | // same contents) and a reference to the *old* input_value object rather |
978 | // than the new one. |
979 | struct State { |
980 | explicit State(const R& input_value_in) |
981 | : input_value(input_value_in), |
982 | // Make an implicit conversion to Result before initializing the U |
983 | // object we store, avoiding calling any explicit constructor of U |
984 | // from R. |
985 | // |
986 | // This simulates the language rules: a function with return type U |
987 | // that does `return R()` requires R to be implicitly convertible to |
988 | // U, and uses that path for the conversion, even U Result has an |
989 | // explicit constructor from R. |
990 | value(ImplicitCast_<U>(internal::as_const(input_value))) {} |
991 | |
992 | // As above, but for the case where we're moving from the ReturnAction |
993 | // object because it's being used as a OnceAction. |
994 | explicit State(R&& input_value_in) |
995 | : input_value(std::move(input_value_in)), |
996 | // For the same reason as above we make an implicit conversion to U |
997 | // before initializing the value. |
998 | // |
999 | // Unlike above we provide the input value as an rvalue to the |
1000 | // implicit conversion because this is a OnceAction: it's fine if it |
1001 | // wants to consume the input value. |
1002 | value(ImplicitCast_<U>(std::move(input_value))) {} |
1003 | |
1004 | // A copy of the value originally provided by the user. We retain this in |
1005 | // addition to the value of the mock function's result type below in case |
1006 | // the latter is a reference-like type. See the std::string_view example |
1007 | // in the documentation on Return. |
1008 | R input_value; |
1009 | |
1010 | // The value we actually return, as the type returned by the mock function |
1011 | // itself. |
1012 | // |
1013 | // We eagerly initialize this here, rather than lazily doing the implicit |
1014 | // conversion automatically each time Perform is called, for historical |
1015 | // reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126) |
1016 | // made the Action<U()> conversion operator eagerly convert the R value to |
1017 | // U, but without keeping the R alive. This broke the use case discussed |
1018 | // in the documentation for Return, making reference-like types such as |
1019 | // std::string_view not safe to use as U where the input type R is a |
1020 | // value-like type such as std::string. |
1021 | // |
1022 | // The example the commit gave was not very clear, nor was the issue |
1023 | // thread (https://github.com/google/googlemock/issues/86), but it seems |
1024 | // the worry was about reference-like input types R that flatten to a |
1025 | // value-like type U when being implicitly converted. An example of this |
1026 | // is std::vector<bool>::reference, which is often a proxy type with an |
1027 | // reference to the underlying vector: |
1028 | // |
1029 | // // Helper method: have the mock function return bools according |
1030 | // // to the supplied script. |
1031 | // void SetActions(MockFunction<bool(size_t)>& mock, |
1032 | // const std::vector<bool>& script) { |
1033 | // for (size_t i = 0; i < script.size(); ++i) { |
1034 | // EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i])); |
1035 | // } |
1036 | // } |
1037 | // |
1038 | // TEST(Foo, Bar) { |
1039 | // // Set actions using a temporary vector, whose operator[] |
1040 | // // returns proxy objects that references that will be |
1041 | // // dangling once the call to SetActions finishes and the |
1042 | // // vector is destroyed. |
1043 | // MockFunction<bool(size_t)> mock; |
1044 | // SetActions(mock, {false, true}); |
1045 | // |
1046 | // EXPECT_FALSE(mock.AsStdFunction()(0)); |
1047 | // EXPECT_TRUE(mock.AsStdFunction()(1)); |
1048 | // } |
1049 | // |
1050 | // This eager conversion helps with a simple case like this, but doesn't |
1051 | // fully make these types work in general. For example the following still |
1052 | // uses a dangling reference: |
1053 | // |
1054 | // TEST(Foo, Baz) { |
1055 | // MockFunction<std::vector<std::string>()> mock; |
1056 | // |
1057 | // // Return the same vector twice, and then the empty vector |
1058 | // // thereafter. |
1059 | // auto action = Return(std::initializer_list<std::string>{ |
1060 | // "taco", "burrito", |
1061 | // }); |
1062 | // |
1063 | // EXPECT_CALL(mock, Call) |
1064 | // .WillOnce(action) |
1065 | // .WillOnce(action) |
1066 | // .WillRepeatedly(Return(std::vector<std::string>{})); |
1067 | // |
1068 | // EXPECT_THAT(mock.AsStdFunction()(), |
1069 | // ElementsAre("taco", "burrito")); |
1070 | // EXPECT_THAT(mock.AsStdFunction()(), |
1071 | // ElementsAre("taco", "burrito")); |
1072 | // EXPECT_THAT(mock.AsStdFunction()(), IsEmpty()); |
1073 | // } |
1074 | // |
1075 | U value; |
1076 | }; |
1077 | |
1078 | const std::shared_ptr<State> state_; |
1079 | }; |
1080 | |
1081 | R value_; |
1082 | }; |
1083 | |
1084 | // A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T. |
1085 | // |
1086 | // This version applies the type system-defeating hack of moving from T even in |
1087 | // the const call operator, checking at runtime that it isn't called more than |
1088 | // once, since the user has declared their intent to do so by using ByMove. |
1089 | template <typename T> |
1090 | class ReturnAction<ByMoveWrapper<T>> final { |
1091 | public: |
1092 | explicit ReturnAction(ByMoveWrapper<T> wrapper) |
1093 | : state_(new State(std::move(wrapper.payload))) {} |
1094 | |
1095 | T operator()() const { |
1096 | GTEST_CHECK_(!state_->called) |
1097 | << "A ByMove() action must be performed at most once." ; |
1098 | |
1099 | state_->called = true; |
1100 | return std::move(state_->value); |
1101 | } |
1102 | |
1103 | private: |
1104 | // We store our state on the heap so that we are copyable as required by |
1105 | // Action, despite the fact that we are stateful and T may not be copyable. |
1106 | struct State { |
1107 | explicit State(T&& value_in) : value(std::move(value_in)) {} |
1108 | |
1109 | T value; |
1110 | bool called = false; |
1111 | }; |
1112 | |
1113 | const std::shared_ptr<State> state_; |
1114 | }; |
1115 | |
1116 | // Implements the ReturnNull() action. |
1117 | class ReturnNullAction { |
1118 | public: |
1119 | // Allows ReturnNull() to be used in any pointer-returning function. In C++11 |
1120 | // this is enforced by returning nullptr, and in non-C++11 by asserting a |
1121 | // pointer type on compile time. |
1122 | template <typename Result, typename ArgumentTuple> |
1123 | static Result Perform(const ArgumentTuple&) { |
1124 | return nullptr; |
1125 | } |
1126 | }; |
1127 | |
1128 | // Implements the Return() action. |
1129 | class ReturnVoidAction { |
1130 | public: |
1131 | // Allows Return() to be used in any void-returning function. |
1132 | template <typename Result, typename ArgumentTuple> |
1133 | static void Perform(const ArgumentTuple&) { |
1134 | static_assert(std::is_void<Result>::value, "Result should be void." ); |
1135 | } |
1136 | }; |
1137 | |
1138 | // Implements the polymorphic ReturnRef(x) action, which can be used |
1139 | // in any function that returns a reference to the type of x, |
1140 | // regardless of the argument types. |
1141 | template <typename T> |
1142 | class ReturnRefAction { |
1143 | public: |
1144 | // Constructs a ReturnRefAction object from the reference to be returned. |
1145 | explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT |
1146 | |
1147 | // This template type conversion operator allows ReturnRef(x) to be |
1148 | // used in ANY function that returns a reference to x's type. |
1149 | template <typename F> |
1150 | operator Action<F>() const { |
1151 | typedef typename Function<F>::Result Result; |
1152 | // Asserts that the function return type is a reference. This |
1153 | // catches the user error of using ReturnRef(x) when Return(x) |
1154 | // should be used, and generates some helpful error message. |
1155 | static_assert(std::is_reference<Result>::value, |
1156 | "use Return instead of ReturnRef to return a value" ); |
1157 | return Action<F>(new Impl<F>(ref_)); |
1158 | } |
1159 | |
1160 | private: |
1161 | // Implements the ReturnRef(x) action for a particular function type F. |
1162 | template <typename F> |
1163 | class Impl : public ActionInterface<F> { |
1164 | public: |
1165 | typedef typename Function<F>::Result Result; |
1166 | typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
1167 | |
1168 | explicit Impl(T& ref) : ref_(ref) {} // NOLINT |
1169 | |
1170 | Result Perform(const ArgumentTuple&) override { return ref_; } |
1171 | |
1172 | private: |
1173 | T& ref_; |
1174 | }; |
1175 | |
1176 | T& ref_; |
1177 | }; |
1178 | |
1179 | // Implements the polymorphic ReturnRefOfCopy(x) action, which can be |
1180 | // used in any function that returns a reference to the type of x, |
1181 | // regardless of the argument types. |
1182 | template <typename T> |
1183 | class ReturnRefOfCopyAction { |
1184 | public: |
1185 | // Constructs a ReturnRefOfCopyAction object from the reference to |
1186 | // be returned. |
1187 | explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT |
1188 | |
1189 | // This template type conversion operator allows ReturnRefOfCopy(x) to be |
1190 | // used in ANY function that returns a reference to x's type. |
1191 | template <typename F> |
1192 | operator Action<F>() const { |
1193 | typedef typename Function<F>::Result Result; |
1194 | // Asserts that the function return type is a reference. This |
1195 | // catches the user error of using ReturnRefOfCopy(x) when Return(x) |
1196 | // should be used, and generates some helpful error message. |
1197 | static_assert(std::is_reference<Result>::value, |
1198 | "use Return instead of ReturnRefOfCopy to return a value" ); |
1199 | return Action<F>(new Impl<F>(value_)); |
1200 | } |
1201 | |
1202 | private: |
1203 | // Implements the ReturnRefOfCopy(x) action for a particular function type F. |
1204 | template <typename F> |
1205 | class Impl : public ActionInterface<F> { |
1206 | public: |
1207 | typedef typename Function<F>::Result Result; |
1208 | typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
1209 | |
1210 | explicit Impl(const T& value) : value_(value) {} // NOLINT |
1211 | |
1212 | Result Perform(const ArgumentTuple&) override { return value_; } |
1213 | |
1214 | private: |
1215 | T value_; |
1216 | }; |
1217 | |
1218 | const T value_; |
1219 | }; |
1220 | |
1221 | // Implements the polymorphic ReturnRoundRobin(v) action, which can be |
1222 | // used in any function that returns the element_type of v. |
1223 | template <typename T> |
1224 | class ReturnRoundRobinAction { |
1225 | public: |
1226 | explicit ReturnRoundRobinAction(std::vector<T> values) { |
1227 | GTEST_CHECK_(!values.empty()) |
1228 | << "ReturnRoundRobin requires at least one element." ; |
1229 | state_->values = std::move(values); |
1230 | } |
1231 | |
1232 | template <typename... Args> |
1233 | T operator()(Args&&...) const { |
1234 | return state_->Next(); |
1235 | } |
1236 | |
1237 | private: |
1238 | struct State { |
1239 | T Next() { |
1240 | T ret_val = values[i++]; |
1241 | if (i == values.size()) i = 0; |
1242 | return ret_val; |
1243 | } |
1244 | |
1245 | std::vector<T> values; |
1246 | size_t i = 0; |
1247 | }; |
1248 | std::shared_ptr<State> state_ = std::make_shared<State>(); |
1249 | }; |
1250 | |
1251 | // Implements the polymorphic DoDefault() action. |
1252 | class DoDefaultAction { |
1253 | public: |
1254 | // This template type conversion operator allows DoDefault() to be |
1255 | // used in any function. |
1256 | template <typename F> |
1257 | operator Action<F>() const { |
1258 | return Action<F>(); |
1259 | } // NOLINT |
1260 | }; |
1261 | |
1262 | // Implements the Assign action to set a given pointer referent to a |
1263 | // particular value. |
1264 | template <typename T1, typename T2> |
1265 | class AssignAction { |
1266 | public: |
1267 | AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} |
1268 | |
1269 | template <typename Result, typename ArgumentTuple> |
1270 | void Perform(const ArgumentTuple& /* args */) const { |
1271 | *ptr_ = value_; |
1272 | } |
1273 | |
1274 | private: |
1275 | T1* const ptr_; |
1276 | const T2 value_; |
1277 | }; |
1278 | |
1279 | #if !GTEST_OS_WINDOWS_MOBILE |
1280 | |
1281 | // Implements the SetErrnoAndReturn action to simulate return from |
1282 | // various system calls and libc functions. |
1283 | template <typename T> |
1284 | class SetErrnoAndReturnAction { |
1285 | public: |
1286 | SetErrnoAndReturnAction(int errno_value, T result) |
1287 | : errno_(errno_value), result_(result) {} |
1288 | template <typename Result, typename ArgumentTuple> |
1289 | Result Perform(const ArgumentTuple& /* args */) const { |
1290 | errno = errno_; |
1291 | return result_; |
1292 | } |
1293 | |
1294 | private: |
1295 | const int errno_; |
1296 | const T result_; |
1297 | }; |
1298 | |
1299 | #endif // !GTEST_OS_WINDOWS_MOBILE |
1300 | |
1301 | // Implements the SetArgumentPointee<N>(x) action for any function |
1302 | // whose N-th argument (0-based) is a pointer to x's type. |
1303 | template <size_t N, typename A, typename = void> |
1304 | struct SetArgumentPointeeAction { |
1305 | A value; |
1306 | |
1307 | template <typename... Args> |
1308 | void operator()(const Args&... args) const { |
1309 | *::std::get<N>(std::tie(args...)) = value; |
1310 | } |
1311 | }; |
1312 | |
1313 | // Implements the Invoke(object_ptr, &Class::Method) action. |
1314 | template <class Class, typename MethodPtr> |
1315 | struct InvokeMethodAction { |
1316 | Class* const obj_ptr; |
1317 | const MethodPtr method_ptr; |
1318 | |
1319 | template <typename... Args> |
1320 | auto operator()(Args&&... args) const |
1321 | -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) { |
1322 | return (obj_ptr->*method_ptr)(std::forward<Args>(args)...); |
1323 | } |
1324 | }; |
1325 | |
1326 | // Implements the InvokeWithoutArgs(f) action. The template argument |
1327 | // FunctionImpl is the implementation type of f, which can be either a |
1328 | // function pointer or a functor. InvokeWithoutArgs(f) can be used as an |
1329 | // Action<F> as long as f's type is compatible with F. |
1330 | template <typename FunctionImpl> |
1331 | struct InvokeWithoutArgsAction { |
1332 | FunctionImpl function_impl; |
1333 | |
1334 | // Allows InvokeWithoutArgs(f) to be used as any action whose type is |
1335 | // compatible with f. |
1336 | template <typename... Args> |
1337 | auto operator()(const Args&...) -> decltype(function_impl()) { |
1338 | return function_impl(); |
1339 | } |
1340 | }; |
1341 | |
1342 | // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. |
1343 | template <class Class, typename MethodPtr> |
1344 | struct InvokeMethodWithoutArgsAction { |
1345 | Class* const obj_ptr; |
1346 | const MethodPtr method_ptr; |
1347 | |
1348 | using ReturnType = |
1349 | decltype((std::declval<Class*>()->*std::declval<MethodPtr>())()); |
1350 | |
1351 | template <typename... Args> |
1352 | ReturnType operator()(const Args&...) const { |
1353 | return (obj_ptr->*method_ptr)(); |
1354 | } |
1355 | }; |
1356 | |
1357 | // Implements the IgnoreResult(action) action. |
1358 | template <typename A> |
1359 | class IgnoreResultAction { |
1360 | public: |
1361 | explicit IgnoreResultAction(const A& action) : action_(action) {} |
1362 | |
1363 | template <typename F> |
1364 | operator Action<F>() const { |
1365 | // Assert statement belongs here because this is the best place to verify |
1366 | // conditions on F. It produces the clearest error messages |
1367 | // in most compilers. |
1368 | // Impl really belongs in this scope as a local class but can't |
1369 | // because MSVC produces duplicate symbols in different translation units |
1370 | // in this case. Until MS fixes that bug we put Impl into the class scope |
1371 | // and put the typedef both here (for use in assert statement) and |
1372 | // in the Impl class. But both definitions must be the same. |
1373 | typedef typename internal::Function<F>::Result Result; |
1374 | |
1375 | // Asserts at compile time that F returns void. |
1376 | static_assert(std::is_void<Result>::value, "Result type should be void." ); |
1377 | |
1378 | return Action<F>(new Impl<F>(action_)); |
1379 | } |
1380 | |
1381 | private: |
1382 | template <typename F> |
1383 | class Impl : public ActionInterface<F> { |
1384 | public: |
1385 | typedef typename internal::Function<F>::Result Result; |
1386 | typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
1387 | |
1388 | explicit Impl(const A& action) : action_(action) {} |
1389 | |
1390 | void Perform(const ArgumentTuple& args) override { |
1391 | // Performs the action and ignores its result. |
1392 | action_.Perform(args); |
1393 | } |
1394 | |
1395 | private: |
1396 | // Type OriginalFunction is the same as F except that its return |
1397 | // type is IgnoredValue. |
1398 | typedef |
1399 | typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction; |
1400 | |
1401 | const Action<OriginalFunction> action_; |
1402 | }; |
1403 | |
1404 | const A action_; |
1405 | }; |
1406 | |
1407 | template <typename InnerAction, size_t... I> |
1408 | struct WithArgsAction { |
1409 | InnerAction inner_action; |
1410 | |
1411 | // The signature of the function as seen by the inner action, given an out |
1412 | // action with the given result and argument types. |
1413 | template <typename R, typename... Args> |
1414 | using InnerSignature = |
1415 | R(typename std::tuple_element<I, std::tuple<Args...>>::type...); |
1416 | |
1417 | // Rather than a call operator, we must define conversion operators to |
1418 | // particular action types. This is necessary for embedded actions like |
1419 | // DoDefault(), which rely on an action conversion operators rather than |
1420 | // providing a call operator because even with a particular set of arguments |
1421 | // they don't have a fixed return type. |
1422 | |
1423 | template <typename R, typename... Args, |
1424 | typename std::enable_if< |
1425 | std::is_convertible< |
1426 | InnerAction, |
1427 | // Unfortunately we can't use the InnerSignature alias here; |
1428 | // MSVC complains about the I parameter pack not being |
1429 | // expanded (error C3520) despite it being expanded in the |
1430 | // type alias. |
1431 | // TupleElement is also an MSVC workaround. |
1432 | // See its definition for details. |
1433 | OnceAction<R(internal::TupleElement< |
1434 | I, std::tuple<Args...>>...)>>::value, |
1435 | int>::type = 0> |
1436 | operator OnceAction<R(Args...)>() && { // NOLINT |
1437 | struct OA { |
1438 | OnceAction<InnerSignature<R, Args...>> inner_action; |
1439 | |
1440 | R operator()(Args&&... args) && { |
1441 | return std::move(inner_action) |
1442 | .Call(std::get<I>( |
1443 | std::forward_as_tuple(std::forward<Args>(args)...))...); |
1444 | } |
1445 | }; |
1446 | |
1447 | return OA{std::move(inner_action)}; |
1448 | } |
1449 | |
1450 | template <typename R, typename... Args, |
1451 | typename std::enable_if< |
1452 | std::is_convertible< |
1453 | const InnerAction&, |
1454 | // Unfortunately we can't use the InnerSignature alias here; |
1455 | // MSVC complains about the I parameter pack not being |
1456 | // expanded (error C3520) despite it being expanded in the |
1457 | // type alias. |
1458 | // TupleElement is also an MSVC workaround. |
1459 | // See its definition for details. |
1460 | Action<R(internal::TupleElement< |
1461 | I, std::tuple<Args...>>...)>>::value, |
1462 | int>::type = 0> |
1463 | operator Action<R(Args...)>() const { // NOLINT |
1464 | Action<InnerSignature<R, Args...>> converted(inner_action); |
1465 | |
1466 | return [converted](Args&&... args) -> R { |
1467 | return converted.Perform(std::forward_as_tuple( |
1468 | std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); |
1469 | }; |
1470 | } |
1471 | }; |
1472 | |
1473 | template <typename... Actions> |
1474 | class DoAllAction; |
1475 | |
1476 | // Base case: only a single action. |
1477 | template <typename FinalAction> |
1478 | class DoAllAction<FinalAction> { |
1479 | public: |
1480 | struct UserConstructorTag {}; |
1481 | |
1482 | template <typename T> |
1483 | explicit DoAllAction(UserConstructorTag, T&& action) |
1484 | : final_action_(std::forward<T>(action)) {} |
1485 | |
1486 | // Rather than a call operator, we must define conversion operators to |
1487 | // particular action types. This is necessary for embedded actions like |
1488 | // DoDefault(), which rely on an action conversion operators rather than |
1489 | // providing a call operator because even with a particular set of arguments |
1490 | // they don't have a fixed return type. |
1491 | |
1492 | template <typename R, typename... Args, |
1493 | typename std::enable_if< |
1494 | std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value, |
1495 | int>::type = 0> |
1496 | operator OnceAction<R(Args...)>() && { // NOLINT |
1497 | return std::move(final_action_); |
1498 | } |
1499 | |
1500 | template < |
1501 | typename R, typename... Args, |
1502 | typename std::enable_if< |
1503 | std::is_convertible<const FinalAction&, Action<R(Args...)>>::value, |
1504 | int>::type = 0> |
1505 | operator Action<R(Args...)>() const { // NOLINT |
1506 | return final_action_; |
1507 | } |
1508 | |
1509 | private: |
1510 | FinalAction final_action_; |
1511 | }; |
1512 | |
1513 | // Recursive case: support N actions by calling the initial action and then |
1514 | // calling through to the base class containing N-1 actions. |
1515 | template <typename InitialAction, typename... OtherActions> |
1516 | class DoAllAction<InitialAction, OtherActions...> |
1517 | : private DoAllAction<OtherActions...> { |
1518 | private: |
1519 | using Base = DoAllAction<OtherActions...>; |
1520 | |
1521 | // The type of reference that should be provided to an initial action for a |
1522 | // mocked function parameter of type T. |
1523 | // |
1524 | // There are two quirks here: |
1525 | // |
1526 | // * Unlike most forwarding functions, we pass scalars through by value. |
1527 | // This isn't strictly necessary because an lvalue reference would work |
1528 | // fine too and be consistent with other non-reference types, but it's |
1529 | // perhaps less surprising. |
1530 | // |
1531 | // For example if the mocked function has signature void(int), then it |
1532 | // might seem surprising for the user's initial action to need to be |
1533 | // convertible to Action<void(const int&)>. This is perhaps less |
1534 | // surprising for a non-scalar type where there may be a performance |
1535 | // impact, or it might even be impossible, to pass by value. |
1536 | // |
1537 | // * More surprisingly, `const T&` is often not a const reference type. |
1538 | // By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to |
1539 | // U& or U&& for some non-scalar type U, then InitialActionArgType<T> is |
1540 | // U&. In other words, we may hand over a non-const reference. |
1541 | // |
1542 | // So for example, given some non-scalar type Obj we have the following |
1543 | // mappings: |
1544 | // |
1545 | // T InitialActionArgType<T> |
1546 | // ------- ----------------------- |
1547 | // Obj const Obj& |
1548 | // Obj& Obj& |
1549 | // Obj&& Obj& |
1550 | // const Obj const Obj& |
1551 | // const Obj& const Obj& |
1552 | // const Obj&& const Obj& |
1553 | // |
1554 | // In other words, the initial actions get a mutable view of an non-scalar |
1555 | // argument if and only if the mock function itself accepts a non-const |
1556 | // reference type. They are never given an rvalue reference to an |
1557 | // non-scalar type. |
1558 | // |
1559 | // This situation makes sense if you imagine use with a matcher that is |
1560 | // designed to write through a reference. For example, if the caller wants |
1561 | // to fill in a reference argument and then return a canned value: |
1562 | // |
1563 | // EXPECT_CALL(mock, Call) |
1564 | // .WillOnce(DoAll(SetArgReferee<0>(17), Return(19))); |
1565 | // |
1566 | template <typename T> |
1567 | using InitialActionArgType = |
1568 | typename std::conditional<std::is_scalar<T>::value, T, const T&>::type; |
1569 | |
1570 | public: |
1571 | struct UserConstructorTag {}; |
1572 | |
1573 | template <typename T, typename... U> |
1574 | explicit DoAllAction(UserConstructorTag, T&& initial_action, |
1575 | U&&... other_actions) |
1576 | : Base({}, std::forward<U>(other_actions)...), |
1577 | initial_action_(std::forward<T>(initial_action)) {} |
1578 | |
1579 | template <typename R, typename... Args, |
1580 | typename std::enable_if< |
1581 | conjunction< |
1582 | // Both the initial action and the rest must support |
1583 | // conversion to OnceAction. |
1584 | std::is_convertible< |
1585 | InitialAction, |
1586 | OnceAction<void(InitialActionArgType<Args>...)>>, |
1587 | std::is_convertible<Base, OnceAction<R(Args...)>>>::value, |
1588 | int>::type = 0> |
1589 | operator OnceAction<R(Args...)>() && { // NOLINT |
1590 | // Return an action that first calls the initial action with arguments |
1591 | // filtered through InitialActionArgType, then forwards arguments directly |
1592 | // to the base class to deal with the remaining actions. |
1593 | struct OA { |
1594 | OnceAction<void(InitialActionArgType<Args>...)> initial_action; |
1595 | OnceAction<R(Args...)> remaining_actions; |
1596 | |
1597 | R operator()(Args... args) && { |
1598 | std::move(initial_action) |
1599 | .Call(static_cast<InitialActionArgType<Args>>(args)...); |
1600 | |
1601 | return std::move(remaining_actions).Call(std::forward<Args>(args)...); |
1602 | } |
1603 | }; |
1604 | |
1605 | return OA{ |
1606 | std::move(initial_action_), |
1607 | std::move(static_cast<Base&>(*this)), |
1608 | }; |
1609 | } |
1610 | |
1611 | template < |
1612 | typename R, typename... Args, |
1613 | typename std::enable_if< |
1614 | conjunction< |
1615 | // Both the initial action and the rest must support conversion to |
1616 | // Action. |
1617 | std::is_convertible<const InitialAction&, |
1618 | Action<void(InitialActionArgType<Args>...)>>, |
1619 | std::is_convertible<const Base&, Action<R(Args...)>>>::value, |
1620 | int>::type = 0> |
1621 | operator Action<R(Args...)>() const { // NOLINT |
1622 | // Return an action that first calls the initial action with arguments |
1623 | // filtered through InitialActionArgType, then forwards arguments directly |
1624 | // to the base class to deal with the remaining actions. |
1625 | struct OA { |
1626 | Action<void(InitialActionArgType<Args>...)> initial_action; |
1627 | Action<R(Args...)> remaining_actions; |
1628 | |
1629 | R operator()(Args... args) const { |
1630 | initial_action.Perform(std::forward_as_tuple( |
1631 | static_cast<InitialActionArgType<Args>>(args)...)); |
1632 | |
1633 | return remaining_actions.Perform( |
1634 | std::forward_as_tuple(std::forward<Args>(args)...)); |
1635 | } |
1636 | }; |
1637 | |
1638 | return OA{ |
1639 | initial_action_, |
1640 | static_cast<const Base&>(*this), |
1641 | }; |
1642 | } |
1643 | |
1644 | private: |
1645 | InitialAction initial_action_; |
1646 | }; |
1647 | |
1648 | template <typename T, typename... Params> |
1649 | struct ReturnNewAction { |
1650 | T* operator()() const { |
1651 | return internal::Apply( |
1652 | [](const Params&... unpacked_params) { |
1653 | return new T(unpacked_params...); |
1654 | }, |
1655 | params); |
1656 | } |
1657 | std::tuple<Params...> params; |
1658 | }; |
1659 | |
1660 | template <size_t k> |
1661 | struct ReturnArgAction { |
1662 | template <typename... Args, |
1663 | typename = typename std::enable_if<(k < sizeof...(Args))>::type> |
1664 | auto operator()(Args&&... args) const -> decltype(std::get<k>( |
1665 | std::forward_as_tuple(std::forward<Args>(args)...))) { |
1666 | return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...)); |
1667 | } |
1668 | }; |
1669 | |
1670 | template <size_t k, typename Ptr> |
1671 | struct SaveArgAction { |
1672 | Ptr pointer; |
1673 | |
1674 | template <typename... Args> |
1675 | void operator()(const Args&... args) const { |
1676 | *pointer = std::get<k>(std::tie(args...)); |
1677 | } |
1678 | }; |
1679 | |
1680 | template <size_t k, typename Ptr> |
1681 | struct SaveArgPointeeAction { |
1682 | Ptr pointer; |
1683 | |
1684 | template <typename... Args> |
1685 | void operator()(const Args&... args) const { |
1686 | *pointer = *std::get<k>(std::tie(args...)); |
1687 | } |
1688 | }; |
1689 | |
1690 | template <size_t k, typename T> |
1691 | struct SetArgRefereeAction { |
1692 | T value; |
1693 | |
1694 | template <typename... Args> |
1695 | void operator()(Args&&... args) const { |
1696 | using argk_type = |
1697 | typename ::std::tuple_element<k, std::tuple<Args...>>::type; |
1698 | static_assert(std::is_lvalue_reference<argk_type>::value, |
1699 | "Argument must be a reference type." ); |
1700 | std::get<k>(std::tie(args...)) = value; |
1701 | } |
1702 | }; |
1703 | |
1704 | template <size_t k, typename I1, typename I2> |
1705 | struct SetArrayArgumentAction { |
1706 | I1 first; |
1707 | I2 last; |
1708 | |
1709 | template <typename... Args> |
1710 | void operator()(const Args&... args) const { |
1711 | auto value = std::get<k>(std::tie(args...)); |
1712 | for (auto it = first; it != last; ++it, (void)++value) { |
1713 | *value = *it; |
1714 | } |
1715 | } |
1716 | }; |
1717 | |
1718 | template <size_t k> |
1719 | struct DeleteArgAction { |
1720 | template <typename... Args> |
1721 | void operator()(const Args&... args) const { |
1722 | delete std::get<k>(std::tie(args...)); |
1723 | } |
1724 | }; |
1725 | |
1726 | template <typename Ptr> |
1727 | struct ReturnPointeeAction { |
1728 | Ptr pointer; |
1729 | template <typename... Args> |
1730 | auto operator()(const Args&...) const -> decltype(*pointer) { |
1731 | return *pointer; |
1732 | } |
1733 | }; |
1734 | |
1735 | #if GTEST_HAS_EXCEPTIONS |
1736 | template <typename T> |
1737 | struct ThrowAction { |
1738 | T exception; |
1739 | // We use a conversion operator to adapt to any return type. |
1740 | template <typename R, typename... Args> |
1741 | operator Action<R(Args...)>() const { // NOLINT |
1742 | T copy = exception; |
1743 | return [copy](Args...) -> R { throw copy; }; |
1744 | } |
1745 | }; |
1746 | #endif // GTEST_HAS_EXCEPTIONS |
1747 | |
1748 | } // namespace internal |
1749 | |
1750 | // An Unused object can be implicitly constructed from ANY value. |
1751 | // This is handy when defining actions that ignore some or all of the |
1752 | // mock function arguments. For example, given |
1753 | // |
1754 | // MOCK_METHOD3(Foo, double(const string& label, double x, double y)); |
1755 | // MOCK_METHOD3(Bar, double(int index, double x, double y)); |
1756 | // |
1757 | // instead of |
1758 | // |
1759 | // double DistanceToOriginWithLabel(const string& label, double x, double y) { |
1760 | // return sqrt(x*x + y*y); |
1761 | // } |
1762 | // double DistanceToOriginWithIndex(int index, double x, double y) { |
1763 | // return sqrt(x*x + y*y); |
1764 | // } |
1765 | // ... |
1766 | // EXPECT_CALL(mock, Foo("abc", _, _)) |
1767 | // .WillOnce(Invoke(DistanceToOriginWithLabel)); |
1768 | // EXPECT_CALL(mock, Bar(5, _, _)) |
1769 | // .WillOnce(Invoke(DistanceToOriginWithIndex)); |
1770 | // |
1771 | // you could write |
1772 | // |
1773 | // // We can declare any uninteresting argument as Unused. |
1774 | // double DistanceToOrigin(Unused, double x, double y) { |
1775 | // return sqrt(x*x + y*y); |
1776 | // } |
1777 | // ... |
1778 | // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); |
1779 | // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); |
1780 | typedef internal::IgnoredValue Unused; |
1781 | |
1782 | // Creates an action that does actions a1, a2, ..., sequentially in |
1783 | // each invocation. All but the last action will have a readonly view of the |
1784 | // arguments. |
1785 | template <typename... Action> |
1786 | internal::DoAllAction<typename std::decay<Action>::type...> DoAll( |
1787 | Action&&... action) { |
1788 | return internal::DoAllAction<typename std::decay<Action>::type...>( |
1789 | {}, std::forward<Action>(action)...); |
1790 | } |
1791 | |
1792 | // WithArg<k>(an_action) creates an action that passes the k-th |
1793 | // (0-based) argument of the mock function to an_action and performs |
1794 | // it. It adapts an action accepting one argument to one that accepts |
1795 | // multiple arguments. For convenience, we also provide |
1796 | // WithArgs<k>(an_action) (defined below) as a synonym. |
1797 | template <size_t k, typename InnerAction> |
1798 | internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg( |
1799 | InnerAction&& action) { |
1800 | return {std::forward<InnerAction>(action)}; |
1801 | } |
1802 | |
1803 | // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes |
1804 | // the selected arguments of the mock function to an_action and |
1805 | // performs it. It serves as an adaptor between actions with |
1806 | // different argument lists. |
1807 | template <size_t k, size_t... ks, typename InnerAction> |
1808 | internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> |
1809 | WithArgs(InnerAction&& action) { |
1810 | return {std::forward<InnerAction>(action)}; |
1811 | } |
1812 | |
1813 | // WithoutArgs(inner_action) can be used in a mock function with a |
1814 | // non-empty argument list to perform inner_action, which takes no |
1815 | // argument. In other words, it adapts an action accepting no |
1816 | // argument to one that accepts (and ignores) arguments. |
1817 | template <typename InnerAction> |
1818 | internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs( |
1819 | InnerAction&& action) { |
1820 | return {std::forward<InnerAction>(action)}; |
1821 | } |
1822 | |
1823 | // Creates an action that returns a value. |
1824 | // |
1825 | // The returned type can be used with a mock function returning a non-void, |
1826 | // non-reference type U as follows: |
1827 | // |
1828 | // * If R is convertible to U and U is move-constructible, then the action can |
1829 | // be used with WillOnce. |
1830 | // |
1831 | // * If const R& is convertible to U and U is copy-constructible, then the |
1832 | // action can be used with both WillOnce and WillRepeatedly. |
1833 | // |
1834 | // The mock expectation contains the R value from which the U return value is |
1835 | // constructed (a move/copy of the argument to Return). This means that the R |
1836 | // value will survive at least until the mock object's expectations are cleared |
1837 | // or the mock object is destroyed, meaning that U can safely be a |
1838 | // reference-like type such as std::string_view: |
1839 | // |
1840 | // // The mock function returns a view of a copy of the string fed to |
1841 | // // Return. The view is valid even after the action is performed. |
1842 | // MockFunction<std::string_view()> mock; |
1843 | // EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco"))); |
1844 | // const std::string_view result = mock.AsStdFunction()(); |
1845 | // EXPECT_EQ("taco", result); |
1846 | // |
1847 | template <typename R> |
1848 | internal::ReturnAction<R> Return(R value) { |
1849 | return internal::ReturnAction<R>(std::move(value)); |
1850 | } |
1851 | |
1852 | // Creates an action that returns NULL. |
1853 | inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { |
1854 | return MakePolymorphicAction(impl: internal::ReturnNullAction()); |
1855 | } |
1856 | |
1857 | // Creates an action that returns from a void function. |
1858 | inline PolymorphicAction<internal::ReturnVoidAction> Return() { |
1859 | return MakePolymorphicAction(impl: internal::ReturnVoidAction()); |
1860 | } |
1861 | |
1862 | // Creates an action that returns the reference to a variable. |
1863 | template <typename R> |
1864 | inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT |
1865 | return internal::ReturnRefAction<R>(x); |
1866 | } |
1867 | |
1868 | // Prevent using ReturnRef on reference to temporary. |
1869 | template <typename R, R* = nullptr> |
1870 | internal::ReturnRefAction<R> ReturnRef(R&&) = delete; |
1871 | |
1872 | // Creates an action that returns the reference to a copy of the |
1873 | // argument. The copy is created when the action is constructed and |
1874 | // lives as long as the action. |
1875 | template <typename R> |
1876 | inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { |
1877 | return internal::ReturnRefOfCopyAction<R>(x); |
1878 | } |
1879 | |
1880 | // DEPRECATED: use Return(x) directly with WillOnce. |
1881 | // |
1882 | // Modifies the parent action (a Return() action) to perform a move of the |
1883 | // argument instead of a copy. |
1884 | // Return(ByMove()) actions can only be executed once and will assert this |
1885 | // invariant. |
1886 | template <typename R> |
1887 | internal::ByMoveWrapper<R> ByMove(R x) { |
1888 | return internal::ByMoveWrapper<R>(std::move(x)); |
1889 | } |
1890 | |
1891 | // Creates an action that returns an element of `vals`. Calling this action will |
1892 | // repeatedly return the next value from `vals` until it reaches the end and |
1893 | // will restart from the beginning. |
1894 | template <typename T> |
1895 | internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) { |
1896 | return internal::ReturnRoundRobinAction<T>(std::move(vals)); |
1897 | } |
1898 | |
1899 | // Creates an action that returns an element of `vals`. Calling this action will |
1900 | // repeatedly return the next value from `vals` until it reaches the end and |
1901 | // will restart from the beginning. |
1902 | template <typename T> |
1903 | internal::ReturnRoundRobinAction<T> ReturnRoundRobin( |
1904 | std::initializer_list<T> vals) { |
1905 | return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals)); |
1906 | } |
1907 | |
1908 | // Creates an action that does the default action for the give mock function. |
1909 | inline internal::DoDefaultAction DoDefault() { |
1910 | return internal::DoDefaultAction(); |
1911 | } |
1912 | |
1913 | // Creates an action that sets the variable pointed by the N-th |
1914 | // (0-based) function argument to 'value'. |
1915 | template <size_t N, typename T> |
1916 | internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) { |
1917 | return {std::move(value)}; |
1918 | } |
1919 | |
1920 | // The following version is DEPRECATED. |
1921 | template <size_t N, typename T> |
1922 | internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) { |
1923 | return {std::move(value)}; |
1924 | } |
1925 | |
1926 | // Creates an action that sets a pointer referent to a given value. |
1927 | template <typename T1, typename T2> |
1928 | PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) { |
1929 | return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); |
1930 | } |
1931 | |
1932 | #if !GTEST_OS_WINDOWS_MOBILE |
1933 | |
1934 | // Creates an action that sets errno and returns the appropriate error. |
1935 | template <typename T> |
1936 | PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn( |
1937 | int errval, T result) { |
1938 | return MakePolymorphicAction( |
1939 | internal::SetErrnoAndReturnAction<T>(errval, result)); |
1940 | } |
1941 | |
1942 | #endif // !GTEST_OS_WINDOWS_MOBILE |
1943 | |
1944 | // Various overloads for Invoke(). |
1945 | |
1946 | // Legacy function. |
1947 | // Actions can now be implicitly constructed from callables. No need to create |
1948 | // wrapper objects. |
1949 | // This function exists for backwards compatibility. |
1950 | template <typename FunctionImpl> |
1951 | typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) { |
1952 | return std::forward<FunctionImpl>(function_impl); |
1953 | } |
1954 | |
1955 | // Creates an action that invokes the given method on the given object |
1956 | // with the mock function's arguments. |
1957 | template <class Class, typename MethodPtr> |
1958 | internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr, |
1959 | MethodPtr method_ptr) { |
1960 | return {obj_ptr, method_ptr}; |
1961 | } |
1962 | |
1963 | // Creates an action that invokes 'function_impl' with no argument. |
1964 | template <typename FunctionImpl> |
1965 | internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type> |
1966 | InvokeWithoutArgs(FunctionImpl function_impl) { |
1967 | return {std::move(function_impl)}; |
1968 | } |
1969 | |
1970 | // Creates an action that invokes the given method on the given object |
1971 | // with no argument. |
1972 | template <class Class, typename MethodPtr> |
1973 | internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs( |
1974 | Class* obj_ptr, MethodPtr method_ptr) { |
1975 | return {obj_ptr, method_ptr}; |
1976 | } |
1977 | |
1978 | // Creates an action that performs an_action and throws away its |
1979 | // result. In other words, it changes the return type of an_action to |
1980 | // void. an_action MUST NOT return void, or the code won't compile. |
1981 | template <typename A> |
1982 | inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { |
1983 | return internal::IgnoreResultAction<A>(an_action); |
1984 | } |
1985 | |
1986 | // Creates a reference wrapper for the given L-value. If necessary, |
1987 | // you can explicitly specify the type of the reference. For example, |
1988 | // suppose 'derived' is an object of type Derived, ByRef(derived) |
1989 | // would wrap a Derived&. If you want to wrap a const Base& instead, |
1990 | // where Base is a base class of Derived, just write: |
1991 | // |
1992 | // ByRef<const Base>(derived) |
1993 | // |
1994 | // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper. |
1995 | // However, it may still be used for consistency with ByMove(). |
1996 | template <typename T> |
1997 | inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT |
1998 | return ::std::reference_wrapper<T>(l_value); |
1999 | } |
2000 | |
2001 | // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new |
2002 | // instance of type T, constructed on the heap with constructor arguments |
2003 | // a1, a2, ..., and a_k. The caller assumes ownership of the returned value. |
2004 | template <typename T, typename... Params> |
2005 | internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew( |
2006 | Params&&... params) { |
2007 | return {std::forward_as_tuple(std::forward<Params>(params)...)}; |
2008 | } |
2009 | |
2010 | // Action ReturnArg<k>() returns the k-th argument of the mock function. |
2011 | template <size_t k> |
2012 | internal::ReturnArgAction<k> ReturnArg() { |
2013 | return {}; |
2014 | } |
2015 | |
2016 | // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the |
2017 | // mock function to *pointer. |
2018 | template <size_t k, typename Ptr> |
2019 | internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) { |
2020 | return {pointer}; |
2021 | } |
2022 | |
2023 | // Action SaveArgPointee<k>(pointer) saves the value pointed to |
2024 | // by the k-th (0-based) argument of the mock function to *pointer. |
2025 | template <size_t k, typename Ptr> |
2026 | internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) { |
2027 | return {pointer}; |
2028 | } |
2029 | |
2030 | // Action SetArgReferee<k>(value) assigns 'value' to the variable |
2031 | // referenced by the k-th (0-based) argument of the mock function. |
2032 | template <size_t k, typename T> |
2033 | internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee( |
2034 | T&& value) { |
2035 | return {std::forward<T>(value)}; |
2036 | } |
2037 | |
2038 | // Action SetArrayArgument<k>(first, last) copies the elements in |
2039 | // source range [first, last) to the array pointed to by the k-th |
2040 | // (0-based) argument, which can be either a pointer or an |
2041 | // iterator. The action does not take ownership of the elements in the |
2042 | // source range. |
2043 | template <size_t k, typename I1, typename I2> |
2044 | internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first, |
2045 | I2 last) { |
2046 | return {first, last}; |
2047 | } |
2048 | |
2049 | // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock |
2050 | // function. |
2051 | template <size_t k> |
2052 | internal::DeleteArgAction<k> DeleteArg() { |
2053 | return {}; |
2054 | } |
2055 | |
2056 | // This action returns the value pointed to by 'pointer'. |
2057 | template <typename Ptr> |
2058 | internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) { |
2059 | return {pointer}; |
2060 | } |
2061 | |
2062 | // Action Throw(exception) can be used in a mock function of any type |
2063 | // to throw the given exception. Any copyable value can be thrown. |
2064 | #if GTEST_HAS_EXCEPTIONS |
2065 | template <typename T> |
2066 | internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) { |
2067 | return {std::forward<T>(exception)}; |
2068 | } |
2069 | #endif // GTEST_HAS_EXCEPTIONS |
2070 | |
2071 | namespace internal { |
2072 | |
2073 | // A macro from the ACTION* family (defined later in gmock-generated-actions.h) |
2074 | // defines an action that can be used in a mock function. Typically, |
2075 | // these actions only care about a subset of the arguments of the mock |
2076 | // function. For example, if such an action only uses the second |
2077 | // argument, it can be used in any mock function that takes >= 2 |
2078 | // arguments where the type of the second argument is compatible. |
2079 | // |
2080 | // Therefore, the action implementation must be prepared to take more |
2081 | // arguments than it needs. The ExcessiveArg type is used to |
2082 | // represent those excessive arguments. In order to keep the compiler |
2083 | // error messages tractable, we define it in the testing namespace |
2084 | // instead of testing::internal. However, this is an INTERNAL TYPE |
2085 | // and subject to change without notice, so a user MUST NOT USE THIS |
2086 | // TYPE DIRECTLY. |
2087 | struct ExcessiveArg {}; |
2088 | |
2089 | // Builds an implementation of an Action<> for some particular signature, using |
2090 | // a class defined by an ACTION* macro. |
2091 | template <typename F, typename Impl> |
2092 | struct ActionImpl; |
2093 | |
2094 | template <typename Impl> |
2095 | struct ImplBase { |
2096 | struct Holder { |
2097 | // Allows each copy of the Action<> to get to the Impl. |
2098 | explicit operator const Impl&() const { return *ptr; } |
2099 | std::shared_ptr<Impl> ptr; |
2100 | }; |
2101 | using type = typename std::conditional<std::is_constructible<Impl>::value, |
2102 | Impl, Holder>::type; |
2103 | }; |
2104 | |
2105 | template <typename R, typename... Args, typename Impl> |
2106 | struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type { |
2107 | using Base = typename ImplBase<Impl>::type; |
2108 | using function_type = R(Args...); |
2109 | using args_type = std::tuple<Args...>; |
2110 | |
2111 | ActionImpl() = default; // Only defined if appropriate for Base. |
2112 | explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {} |
2113 | |
2114 | R operator()(Args&&... arg) const { |
2115 | static constexpr size_t kMaxArgs = |
2116 | sizeof...(Args) <= 10 ? sizeof...(Args) : 10; |
2117 | return Apply(MakeIndexSequence<kMaxArgs>{}, |
2118 | MakeIndexSequence<10 - kMaxArgs>{}, |
2119 | args_type{std::forward<Args>(arg)...}); |
2120 | } |
2121 | |
2122 | template <std::size_t... arg_id, std::size_t... excess_id> |
2123 | R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>, |
2124 | const args_type& args) const { |
2125 | // Impl need not be specific to the signature of action being implemented; |
2126 | // only the implementing function body needs to have all of the specific |
2127 | // types instantiated. Up to 10 of the args that are provided by the |
2128 | // args_type get passed, followed by a dummy of unspecified type for the |
2129 | // remainder up to 10 explicit args. |
2130 | static constexpr ExcessiveArg kExcessArg{}; |
2131 | return static_cast<const Impl&>(*this) |
2132 | .template gmock_PerformImpl< |
2133 | /*function_type=*/function_type, /*return_type=*/R, |
2134 | /*args_type=*/args_type, |
2135 | /*argN_type=*/ |
2136 | typename std::tuple_element<arg_id, args_type>::type...>( |
2137 | /*args=*/args, std::get<arg_id>(args)..., |
2138 | ((void)excess_id, kExcessArg)...); |
2139 | } |
2140 | }; |
2141 | |
2142 | // Stores a default-constructed Impl as part of the Action<>'s |
2143 | // std::function<>. The Impl should be trivial to copy. |
2144 | template <typename F, typename Impl> |
2145 | ::testing::Action<F> MakeAction() { |
2146 | return ::testing::Action<F>(ActionImpl<F, Impl>()); |
2147 | } |
2148 | |
2149 | // Stores just the one given instance of Impl. |
2150 | template <typename F, typename Impl> |
2151 | ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) { |
2152 | return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl))); |
2153 | } |
2154 | |
2155 | #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \ |
2156 | , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_ |
2157 | #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \ |
2158 | const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \ |
2159 | GMOCK_INTERNAL_ARG_UNUSED, , 10) |
2160 | |
2161 | #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i |
2162 | #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \ |
2163 | const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10) |
2164 | |
2165 | #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type |
2166 | #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \ |
2167 | GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10)) |
2168 | |
2169 | #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type |
2170 | #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \ |
2171 | GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params)) |
2172 | |
2173 | #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type |
2174 | #define GMOCK_ACTION_TYPE_PARAMS_(params) \ |
2175 | GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params)) |
2176 | |
2177 | #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \ |
2178 | , param##_type gmock_p##i |
2179 | #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \ |
2180 | GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params)) |
2181 | |
2182 | #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \ |
2183 | , std::forward<param##_type>(gmock_p##i) |
2184 | #define GMOCK_ACTION_GVALUE_PARAMS_(params) \ |
2185 | GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params)) |
2186 | |
2187 | #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \ |
2188 | , param(::std::forward<param##_type>(gmock_p##i)) |
2189 | #define GMOCK_ACTION_INIT_PARAMS_(params) \ |
2190 | GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params)) |
2191 | |
2192 | #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param; |
2193 | #define GMOCK_ACTION_FIELD_PARAMS_(params) \ |
2194 | GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params) |
2195 | |
2196 | #define GMOCK_INTERNAL_ACTION(name, full_name, params) \ |
2197 | template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ |
2198 | class full_name { \ |
2199 | public: \ |
2200 | explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ |
2201 | : impl_(std::make_shared<gmock_Impl>( \ |
2202 | GMOCK_ACTION_GVALUE_PARAMS_(params))) {} \ |
2203 | full_name(const full_name&) = default; \ |
2204 | full_name(full_name&&) noexcept = default; \ |
2205 | template <typename F> \ |
2206 | operator ::testing::Action<F>() const { \ |
2207 | return ::testing::internal::MakeAction<F>(impl_); \ |
2208 | } \ |
2209 | \ |
2210 | private: \ |
2211 | class gmock_Impl { \ |
2212 | public: \ |
2213 | explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ |
2214 | : GMOCK_ACTION_INIT_PARAMS_(params) {} \ |
2215 | template <typename function_type, typename return_type, \ |
2216 | typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ |
2217 | return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ |
2218 | GMOCK_ACTION_FIELD_PARAMS_(params) \ |
2219 | }; \ |
2220 | std::shared_ptr<const gmock_Impl> impl_; \ |
2221 | }; \ |
2222 | template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ |
2223 | inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ |
2224 | GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_; \ |
2225 | template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ |
2226 | inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ |
2227 | GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \ |
2228 | return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \ |
2229 | GMOCK_ACTION_GVALUE_PARAMS_(params)); \ |
2230 | } \ |
2231 | template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ |
2232 | template <typename function_type, typename return_type, typename args_type, \ |
2233 | GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ |
2234 | return_type \ |
2235 | full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \ |
2236 | GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
2237 | |
2238 | } // namespace internal |
2239 | |
2240 | // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored. |
2241 | #define ACTION(name) \ |
2242 | class name##Action { \ |
2243 | public: \ |
2244 | explicit name##Action() noexcept {} \ |
2245 | name##Action(const name##Action&) noexcept {} \ |
2246 | template <typename F> \ |
2247 | operator ::testing::Action<F>() const { \ |
2248 | return ::testing::internal::MakeAction<F, gmock_Impl>(); \ |
2249 | } \ |
2250 | \ |
2251 | private: \ |
2252 | class gmock_Impl { \ |
2253 | public: \ |
2254 | template <typename function_type, typename return_type, \ |
2255 | typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ |
2256 | return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ |
2257 | }; \ |
2258 | }; \ |
2259 | inline name##Action name() GTEST_MUST_USE_RESULT_; \ |
2260 | inline name##Action name() { return name##Action(); } \ |
2261 | template <typename function_type, typename return_type, typename args_type, \ |
2262 | GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ |
2263 | return_type name##Action::gmock_Impl::gmock_PerformImpl( \ |
2264 | GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
2265 | |
2266 | #define ACTION_P(name, ...) \ |
2267 | GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__)) |
2268 | |
2269 | #define ACTION_P2(name, ...) \ |
2270 | GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__)) |
2271 | |
2272 | #define ACTION_P3(name, ...) \ |
2273 | GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__)) |
2274 | |
2275 | #define ACTION_P4(name, ...) \ |
2276 | GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__)) |
2277 | |
2278 | #define ACTION_P5(name, ...) \ |
2279 | GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__)) |
2280 | |
2281 | #define ACTION_P6(name, ...) \ |
2282 | GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__)) |
2283 | |
2284 | #define ACTION_P7(name, ...) \ |
2285 | GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__)) |
2286 | |
2287 | #define ACTION_P8(name, ...) \ |
2288 | GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__)) |
2289 | |
2290 | #define ACTION_P9(name, ...) \ |
2291 | GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__)) |
2292 | |
2293 | #define ACTION_P10(name, ...) \ |
2294 | GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__)) |
2295 | |
2296 | } // namespace testing |
2297 | |
2298 | #ifdef _MSC_VER |
2299 | #pragma warning(pop) |
2300 | #endif |
2301 | |
2302 | #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |
2303 | |