| 1 | // Copyright 2007, Google Inc. |
| 2 | // All rights reserved. |
| 3 | // |
| 4 | // Redistribution and use in source and binary forms, with or without |
| 5 | // modification, are permitted provided that the following conditions are |
| 6 | // met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright |
| 9 | // notice, this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above |
| 11 | // copyright notice, this list of conditions and the following disclaimer |
| 12 | // in the documentation and/or other materials provided with the |
| 13 | // distribution. |
| 14 | // * Neither the name of Google Inc. nor the names of its |
| 15 | // contributors may be used to endorse or promote products derived from |
| 16 | // this software without specific prior written permission. |
| 17 | // |
| 18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 | |
| 30 | // Google Test - The Google C++ Testing and Mocking Framework |
| 31 | // |
| 32 | // This file implements a universal value printer that can print a |
| 33 | // value of any type T: |
| 34 | // |
| 35 | // void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr); |
| 36 | // |
| 37 | // A user can teach this function how to print a class type T by |
| 38 | // defining either operator<<() or PrintTo() in the namespace that |
| 39 | // defines T. More specifically, the FIRST defined function in the |
| 40 | // following list will be used (assuming T is defined in namespace |
| 41 | // foo): |
| 42 | // |
| 43 | // 1. foo::PrintTo(const T&, ostream*) |
| 44 | // 2. operator<<(ostream&, const T&) defined in either foo or the |
| 45 | // global namespace. |
| 46 | // |
| 47 | // However if T is an STL-style container then it is printed element-wise |
| 48 | // unless foo::PrintTo(const T&, ostream*) is defined. Note that |
| 49 | // operator<<() is ignored for container types. |
| 50 | // |
| 51 | // If none of the above is defined, it will print the debug string of |
| 52 | // the value if it is a protocol buffer, or print the raw bytes in the |
| 53 | // value otherwise. |
| 54 | // |
| 55 | // To aid debugging: when T is a reference type, the address of the |
| 56 | // value is also printed; when T is a (const) char pointer, both the |
| 57 | // pointer value and the NUL-terminated string it points to are |
| 58 | // printed. |
| 59 | // |
| 60 | // We also provide some convenient wrappers: |
| 61 | // |
| 62 | // // Prints a value to a string. For a (const or not) char |
| 63 | // // pointer, the NUL-terminated string (but not the pointer) is |
| 64 | // // printed. |
| 65 | // std::string ::testing::PrintToString(const T& value); |
| 66 | // |
| 67 | // // Prints a value tersely: for a reference type, the referenced |
| 68 | // // value (but not the address) is printed; for a (const or not) char |
| 69 | // // pointer, the NUL-terminated string (but not the pointer) is |
| 70 | // // printed. |
| 71 | // void ::testing::internal::UniversalTersePrint(const T& value, ostream*); |
| 72 | // |
| 73 | // // Prints value using the type inferred by the compiler. The difference |
| 74 | // // from UniversalTersePrint() is that this function prints both the |
| 75 | // // pointer and the NUL-terminated string for a (const or not) char pointer. |
| 76 | // void ::testing::internal::UniversalPrint(const T& value, ostream*); |
| 77 | // |
| 78 | // // Prints the fields of a tuple tersely to a string vector, one |
| 79 | // // element for each field. Tuple support must be enabled in |
| 80 | // // gtest-port.h. |
| 81 | // std::vector<string> UniversalTersePrintTupleFieldsToStrings( |
| 82 | // const Tuple& value); |
| 83 | // |
| 84 | // Known limitation: |
| 85 | // |
| 86 | // The print primitives print the elements of an STL-style container |
| 87 | // using the compiler-inferred type of *iter where iter is a |
| 88 | // const_iterator of the container. When const_iterator is an input |
| 89 | // iterator but not a forward iterator, this inferred type may not |
| 90 | // match value_type, and the print output may be incorrect. In |
| 91 | // practice, this is rarely a problem as for most containers |
| 92 | // const_iterator is a forward iterator. We'll fix this if there's an |
| 93 | // actual need for it. Note that this fix cannot rely on value_type |
| 94 | // being defined as many user-defined container types don't have |
| 95 | // value_type. |
| 96 | |
| 97 | // IWYU pragma: private, include "gtest/gtest.h" |
| 98 | // IWYU pragma: friend gtest/.* |
| 99 | // IWYU pragma: friend gmock/.* |
| 100 | |
| 101 | #ifndef GOOGLETEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ |
| 102 | #define GOOGLETEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ |
| 103 | |
| 104 | #include <functional> |
| 105 | #include <memory> |
| 106 | #include <ostream> // NOLINT |
| 107 | #include <sstream> |
| 108 | #include <string> |
| 109 | #include <tuple> |
| 110 | #include <type_traits> |
| 111 | #include <typeinfo> |
| 112 | #include <utility> |
| 113 | #include <vector> |
| 114 | |
| 115 | #include "gtest/internal/gtest-internal.h" |
| 116 | #include "gtest/internal/gtest-port.h" |
| 117 | |
| 118 | namespace testing { |
| 119 | |
| 120 | // Definitions in the internal* namespaces are subject to change without notice. |
| 121 | // DO NOT USE THEM IN USER CODE! |
| 122 | namespace internal { |
| 123 | |
| 124 | template <typename T> |
| 125 | void UniversalPrint(const T& value, ::std::ostream* os); |
| 126 | |
| 127 | // Used to print an STL-style container when the user doesn't define |
| 128 | // a PrintTo() for it. |
| 129 | struct ContainerPrinter { |
| 130 | template <typename T, |
| 131 | typename = typename std::enable_if< |
| 132 | (sizeof(IsContainerTest<T>(0)) == sizeof(IsContainer)) && |
| 133 | !IsRecursiveContainer<T>::value>::type> |
| 134 | static void PrintValue(const T& container, std::ostream* os) { |
| 135 | const size_t kMaxCount = 32; // The maximum number of elements to print. |
| 136 | *os << '{'; |
| 137 | size_t count = 0; |
| 138 | for (auto&& elem : container) { |
| 139 | if (count > 0) { |
| 140 | *os << ','; |
| 141 | if (count == kMaxCount) { // Enough has been printed. |
| 142 | *os << " ..." ; |
| 143 | break; |
| 144 | } |
| 145 | } |
| 146 | *os << ' '; |
| 147 | // We cannot call PrintTo(elem, os) here as PrintTo() doesn't |
| 148 | // handle `elem` being a native array. |
| 149 | internal::UniversalPrint(elem, os); |
| 150 | ++count; |
| 151 | } |
| 152 | |
| 153 | if (count > 0) { |
| 154 | *os << ' '; |
| 155 | } |
| 156 | *os << '}'; |
| 157 | } |
| 158 | }; |
| 159 | |
| 160 | // Used to print a pointer that is neither a char pointer nor a member |
| 161 | // pointer, when the user doesn't define PrintTo() for it. (A member |
| 162 | // variable pointer or member function pointer doesn't really point to |
| 163 | // a location in the address space. Their representation is |
| 164 | // implementation-defined. Therefore they will be printed as raw |
| 165 | // bytes.) |
| 166 | struct FunctionPointerPrinter { |
| 167 | template <typename T, typename = typename std::enable_if< |
| 168 | std::is_function<T>::value>::type> |
| 169 | static void PrintValue(T* p, ::std::ostream* os) { |
| 170 | if (p == nullptr) { |
| 171 | *os << "NULL" ; |
| 172 | } else { |
| 173 | // T is a function type, so '*os << p' doesn't do what we want |
| 174 | // (it just prints p as bool). We want to print p as a const |
| 175 | // void*. |
| 176 | *os << reinterpret_cast<const void*>(p); |
| 177 | } |
| 178 | } |
| 179 | }; |
| 180 | |
| 181 | struct PointerPrinter { |
| 182 | template <typename T> |
| 183 | static void PrintValue(T* p, ::std::ostream* os) { |
| 184 | if (p == nullptr) { |
| 185 | *os << "NULL" ; |
| 186 | } else { |
| 187 | // T is not a function type. We just call << to print p, |
| 188 | // relying on ADL to pick up user-defined << for their pointer |
| 189 | // types, if any. |
| 190 | *os << p; |
| 191 | } |
| 192 | } |
| 193 | }; |
| 194 | |
| 195 | namespace internal_stream_operator_without_lexical_name_lookup { |
| 196 | |
| 197 | // The presence of an operator<< here will terminate lexical scope lookup |
| 198 | // straight away (even though it cannot be a match because of its argument |
| 199 | // types). Thus, the two operator<< calls in StreamPrinter will find only ADL |
| 200 | // candidates. |
| 201 | struct LookupBlocker {}; |
| 202 | void operator<<(LookupBlocker, LookupBlocker); |
| 203 | |
| 204 | struct StreamPrinter { |
| 205 | template <typename T, |
| 206 | // Don't accept member pointers here. We'd print them via implicit |
| 207 | // conversion to bool, which isn't useful. |
| 208 | typename = typename std::enable_if< |
| 209 | !std::is_member_pointer<T>::value>::type, |
| 210 | // Only accept types for which we can find a streaming operator via |
| 211 | // ADL (possibly involving implicit conversions). |
| 212 | typename = decltype(std::declval<std::ostream&>() |
| 213 | << std::declval<const T&>())> |
| 214 | static void PrintValue(const T& value, ::std::ostream* os) { |
| 215 | // Call streaming operator found by ADL, possibly with implicit conversions |
| 216 | // of the arguments. |
| 217 | *os << value; |
| 218 | } |
| 219 | }; |
| 220 | |
| 221 | } // namespace internal_stream_operator_without_lexical_name_lookup |
| 222 | |
| 223 | struct ProtobufPrinter { |
| 224 | // We print a protobuf using its ShortDebugString() when the string |
| 225 | // doesn't exceed this many characters; otherwise we print it using |
| 226 | // DebugString() for better readability. |
| 227 | static const size_t kProtobufOneLinerMaxLength = 50; |
| 228 | |
| 229 | template <typename T, |
| 230 | typename = typename std::enable_if< |
| 231 | internal::HasDebugStringAndShortDebugString<T>::value>::type> |
| 232 | static void PrintValue(const T& value, ::std::ostream* os) { |
| 233 | std::string pretty_str = value.ShortDebugString(); |
| 234 | if (pretty_str.length() > kProtobufOneLinerMaxLength) { |
| 235 | pretty_str = "\n" + value.DebugString(); |
| 236 | } |
| 237 | *os << ("<" + pretty_str + ">" ); |
| 238 | } |
| 239 | }; |
| 240 | |
| 241 | struct ConvertibleToIntegerPrinter { |
| 242 | // Since T has no << operator or PrintTo() but can be implicitly |
| 243 | // converted to BiggestInt, we print it as a BiggestInt. |
| 244 | // |
| 245 | // Most likely T is an enum type (either named or unnamed), in which |
| 246 | // case printing it as an integer is the desired behavior. In case |
| 247 | // T is not an enum, printing it as an integer is the best we can do |
| 248 | // given that it has no user-defined printer. |
| 249 | static void PrintValue(internal::BiggestInt value, ::std::ostream* os) { |
| 250 | *os << value; |
| 251 | } |
| 252 | }; |
| 253 | |
| 254 | struct ConvertibleToStringViewPrinter { |
| 255 | #if GTEST_INTERNAL_HAS_STRING_VIEW |
| 256 | static void PrintValue(internal::StringView value, ::std::ostream* os) { |
| 257 | internal::UniversalPrint(value, os); |
| 258 | } |
| 259 | #endif |
| 260 | }; |
| 261 | |
| 262 | // Prints the given number of bytes in the given object to the given |
| 263 | // ostream. |
| 264 | GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes, |
| 265 | size_t count, ::std::ostream* os); |
| 266 | struct RawBytesPrinter { |
| 267 | // SFINAE on `sizeof` to make sure we have a complete type. |
| 268 | template <typename T, size_t = sizeof(T)> |
| 269 | static void PrintValue(const T& value, ::std::ostream* os) { |
| 270 | PrintBytesInObjectTo( |
| 271 | obj_bytes: static_cast<const unsigned char*>( |
| 272 | // Load bearing cast to void* to support iOS |
| 273 | reinterpret_cast<const void*>(std::addressof(value))), |
| 274 | count: sizeof(value), os); |
| 275 | } |
| 276 | }; |
| 277 | |
| 278 | struct FallbackPrinter { |
| 279 | template <typename T> |
| 280 | static void PrintValue(const T&, ::std::ostream* os) { |
| 281 | *os << "(incomplete type)" ; |
| 282 | } |
| 283 | }; |
| 284 | |
| 285 | // Try every printer in order and return the first one that works. |
| 286 | template <typename T, typename E, typename Printer, typename... Printers> |
| 287 | struct FindFirstPrinter : FindFirstPrinter<T, E, Printers...> {}; |
| 288 | |
| 289 | template <typename T, typename Printer, typename... Printers> |
| 290 | struct FindFirstPrinter< |
| 291 | T, decltype(Printer::PrintValue(std::declval<const T&>(), nullptr)), |
| 292 | Printer, Printers...> { |
| 293 | using type = Printer; |
| 294 | }; |
| 295 | |
| 296 | // Select the best printer in the following order: |
| 297 | // - Print containers (they have begin/end/etc). |
| 298 | // - Print function pointers. |
| 299 | // - Print object pointers. |
| 300 | // - Use the stream operator, if available. |
| 301 | // - Print protocol buffers. |
| 302 | // - Print types convertible to BiggestInt. |
| 303 | // - Print types convertible to StringView, if available. |
| 304 | // - Fallback to printing the raw bytes of the object. |
| 305 | template <typename T> |
| 306 | void PrintWithFallback(const T& value, ::std::ostream* os) { |
| 307 | using Printer = typename FindFirstPrinter< |
| 308 | T, void, ContainerPrinter, FunctionPointerPrinter, PointerPrinter, |
| 309 | internal_stream_operator_without_lexical_name_lookup::StreamPrinter, |
| 310 | ProtobufPrinter, ConvertibleToIntegerPrinter, |
| 311 | ConvertibleToStringViewPrinter, RawBytesPrinter, FallbackPrinter>::type; |
| 312 | Printer::PrintValue(value, os); |
| 313 | } |
| 314 | |
| 315 | // FormatForComparison<ToPrint, OtherOperand>::Format(value) formats a |
| 316 | // value of type ToPrint that is an operand of a comparison assertion |
| 317 | // (e.g. ASSERT_EQ). OtherOperand is the type of the other operand in |
| 318 | // the comparison, and is used to help determine the best way to |
| 319 | // format the value. In particular, when the value is a C string |
| 320 | // (char pointer) and the other operand is an STL string object, we |
| 321 | // want to format the C string as a string, since we know it is |
| 322 | // compared by value with the string object. If the value is a char |
| 323 | // pointer but the other operand is not an STL string object, we don't |
| 324 | // know whether the pointer is supposed to point to a NUL-terminated |
| 325 | // string, and thus want to print it as a pointer to be safe. |
| 326 | // |
| 327 | // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. |
| 328 | |
| 329 | // The default case. |
| 330 | template <typename ToPrint, typename OtherOperand> |
| 331 | class FormatForComparison { |
| 332 | public: |
| 333 | static ::std::string Format(const ToPrint& value) { |
| 334 | return ::testing::PrintToString(value); |
| 335 | } |
| 336 | }; |
| 337 | |
| 338 | // Array. |
| 339 | template <typename ToPrint, size_t N, typename OtherOperand> |
| 340 | class FormatForComparison<ToPrint[N], OtherOperand> { |
| 341 | public: |
| 342 | static ::std::string Format(const ToPrint* value) { |
| 343 | return FormatForComparison<const ToPrint*, OtherOperand>::Format(value); |
| 344 | } |
| 345 | }; |
| 346 | |
| 347 | // By default, print C string as pointers to be safe, as we don't know |
| 348 | // whether they actually point to a NUL-terminated string. |
| 349 | |
| 350 | #define GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(CharType) \ |
| 351 | template <typename OtherOperand> \ |
| 352 | class FormatForComparison<CharType*, OtherOperand> { \ |
| 353 | public: \ |
| 354 | static ::std::string Format(CharType* value) { \ |
| 355 | return ::testing::PrintToString(static_cast<const void*>(value)); \ |
| 356 | } \ |
| 357 | } |
| 358 | |
| 359 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char); |
| 360 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char); |
| 361 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(wchar_t); |
| 362 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const wchar_t); |
| 363 | #ifdef __cpp_lib_char8_t |
| 364 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char8_t); |
| 365 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char8_t); |
| 366 | #endif |
| 367 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char16_t); |
| 368 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char16_t); |
| 369 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char32_t); |
| 370 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char32_t); |
| 371 | |
| 372 | #undef GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_ |
| 373 | |
| 374 | // If a C string is compared with an STL string object, we know it's meant |
| 375 | // to point to a NUL-terminated string, and thus can print it as a string. |
| 376 | |
| 377 | #define GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(CharType, OtherStringType) \ |
| 378 | template <> \ |
| 379 | class FormatForComparison<CharType*, OtherStringType> { \ |
| 380 | public: \ |
| 381 | static ::std::string Format(CharType* value) { \ |
| 382 | return ::testing::PrintToString(value); \ |
| 383 | } \ |
| 384 | } |
| 385 | |
| 386 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::std::string); |
| 387 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::std::string); |
| 388 | #ifdef __cpp_lib_char8_t |
| 389 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char8_t, ::std::u8string); |
| 390 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char8_t, ::std::u8string); |
| 391 | #endif |
| 392 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char16_t, ::std::u16string); |
| 393 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char16_t, ::std::u16string); |
| 394 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char32_t, ::std::u32string); |
| 395 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char32_t, ::std::u32string); |
| 396 | |
| 397 | #if GTEST_HAS_STD_WSTRING |
| 398 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::std::wstring); |
| 399 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::std::wstring); |
| 400 | #endif |
| 401 | |
| 402 | #undef GTEST_IMPL_FORMAT_C_STRING_AS_STRING_ |
| 403 | |
| 404 | // Formats a comparison assertion (e.g. ASSERT_EQ, EXPECT_LT, and etc) |
| 405 | // operand to be used in a failure message. The type (but not value) |
| 406 | // of the other operand may affect the format. This allows us to |
| 407 | // print a char* as a raw pointer when it is compared against another |
| 408 | // char* or void*, and print it as a C string when it is compared |
| 409 | // against an std::string object, for example. |
| 410 | // |
| 411 | // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. |
| 412 | template <typename T1, typename T2> |
| 413 | std::string FormatForComparisonFailureMessage(const T1& value, |
| 414 | const T2& /* other_operand */) { |
| 415 | return FormatForComparison<T1, T2>::Format(value); |
| 416 | } |
| 417 | |
| 418 | // UniversalPrinter<T>::Print(value, ostream_ptr) prints the given |
| 419 | // value to the given ostream. The caller must ensure that |
| 420 | // 'ostream_ptr' is not NULL, or the behavior is undefined. |
| 421 | // |
| 422 | // We define UniversalPrinter as a class template (as opposed to a |
| 423 | // function template), as we need to partially specialize it for |
| 424 | // reference types, which cannot be done with function templates. |
| 425 | template <typename T> |
| 426 | class UniversalPrinter; |
| 427 | |
| 428 | // Prints the given value using the << operator if it has one; |
| 429 | // otherwise prints the bytes in it. This is what |
| 430 | // UniversalPrinter<T>::Print() does when PrintTo() is not specialized |
| 431 | // or overloaded for type T. |
| 432 | // |
| 433 | // A user can override this behavior for a class type Foo by defining |
| 434 | // an overload of PrintTo() in the namespace where Foo is defined. We |
| 435 | // give the user this option as sometimes defining a << operator for |
| 436 | // Foo is not desirable (e.g. the coding style may prevent doing it, |
| 437 | // or there is already a << operator but it doesn't do what the user |
| 438 | // wants). |
| 439 | template <typename T> |
| 440 | void PrintTo(const T& value, ::std::ostream* os) { |
| 441 | internal::PrintWithFallback(value, os); |
| 442 | } |
| 443 | |
| 444 | // The following list of PrintTo() overloads tells |
| 445 | // UniversalPrinter<T>::Print() how to print standard types (built-in |
| 446 | // types, strings, plain arrays, and pointers). |
| 447 | |
| 448 | // Overloads for various char types. |
| 449 | GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os); |
| 450 | GTEST_API_ void PrintTo(signed char c, ::std::ostream* os); |
| 451 | inline void PrintTo(char c, ::std::ostream* os) { |
| 452 | // When printing a plain char, we always treat it as unsigned. This |
| 453 | // way, the output won't be affected by whether the compiler thinks |
| 454 | // char is signed or not. |
| 455 | PrintTo(c: static_cast<unsigned char>(c), os); |
| 456 | } |
| 457 | |
| 458 | // Overloads for other simple built-in types. |
| 459 | inline void PrintTo(bool x, ::std::ostream* os) { |
| 460 | *os << (x ? "true" : "false" ); |
| 461 | } |
| 462 | |
| 463 | // Overload for wchar_t type. |
| 464 | // Prints a wchar_t as a symbol if it is printable or as its internal |
| 465 | // code otherwise and also as its decimal code (except for L'\0'). |
| 466 | // The L'\0' char is printed as "L'\\0'". The decimal code is printed |
| 467 | // as signed integer when wchar_t is implemented by the compiler |
| 468 | // as a signed type and is printed as an unsigned integer when wchar_t |
| 469 | // is implemented as an unsigned type. |
| 470 | GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os); |
| 471 | |
| 472 | GTEST_API_ void PrintTo(char32_t c, ::std::ostream* os); |
| 473 | inline void PrintTo(char16_t c, ::std::ostream* os) { |
| 474 | PrintTo(c: ImplicitCast_<char32_t>(x: c), os); |
| 475 | } |
| 476 | #ifdef __cpp_char8_t |
| 477 | inline void PrintTo(char8_t c, ::std::ostream* os) { |
| 478 | PrintTo(ImplicitCast_<char32_t>(c), os); |
| 479 | } |
| 480 | #endif |
| 481 | |
| 482 | // gcc/clang __{u,}int128_t |
| 483 | #if defined(__SIZEOF_INT128__) |
| 484 | GTEST_API_ void PrintTo(__uint128_t v, ::std::ostream* os); |
| 485 | GTEST_API_ void PrintTo(__int128_t v, ::std::ostream* os); |
| 486 | #endif // __SIZEOF_INT128__ |
| 487 | |
| 488 | // The default resolution used to print floating-point values uses only |
| 489 | // 6 digits, which can be confusing if a test compares two values whose |
| 490 | // difference lies in the 7th digit. So we'd like to print out numbers |
| 491 | // in full precision. |
| 492 | // However if the value is something simple like 1.1, full will print a |
| 493 | // long string like 1.100000001 due to floating-point numbers not using |
| 494 | // a base of 10. This routiune returns an appropriate resolution for a |
| 495 | // given floating-point number, that is, 6 if it will be accurate, or a |
| 496 | // max_digits10 value (full precision) if it won't, for values between |
| 497 | // 0.0001 and one million. |
| 498 | // It does this by computing what those digits would be (by multiplying |
| 499 | // by an appropriate power of 10), then dividing by that power again to |
| 500 | // see if gets the original value back. |
| 501 | // A similar algorithm applies for values larger than one million; note |
| 502 | // that for those values, we must divide to get a six-digit number, and |
| 503 | // then multiply to possibly get the original value again. |
| 504 | template <typename FloatType> |
| 505 | int AppropriateResolution(FloatType val) { |
| 506 | int full = std::numeric_limits<FloatType>::max_digits10; |
| 507 | if (val < 0) val = -val; |
| 508 | |
| 509 | if (val < 1000000) { |
| 510 | FloatType mulfor6 = 1e10; |
| 511 | if (val >= 100000.0) { // 100,000 to 999,999 |
| 512 | mulfor6 = 1.0; |
| 513 | } else if (val >= 10000.0) { |
| 514 | mulfor6 = 1e1; |
| 515 | } else if (val >= 1000.0) { |
| 516 | mulfor6 = 1e2; |
| 517 | } else if (val >= 100.0) { |
| 518 | mulfor6 = 1e3; |
| 519 | } else if (val >= 10.0) { |
| 520 | mulfor6 = 1e4; |
| 521 | } else if (val >= 1.0) { |
| 522 | mulfor6 = 1e5; |
| 523 | } else if (val >= 0.1) { |
| 524 | mulfor6 = 1e6; |
| 525 | } else if (val >= 0.01) { |
| 526 | mulfor6 = 1e7; |
| 527 | } else if (val >= 0.001) { |
| 528 | mulfor6 = 1e8; |
| 529 | } else if (val >= 0.0001) { |
| 530 | mulfor6 = 1e9; |
| 531 | } |
| 532 | if (static_cast<int32_t>(val * mulfor6 + 0.5) / mulfor6 == val) return 6; |
| 533 | } else if (val < 1e10) { |
| 534 | FloatType divfor6 = 1.0; |
| 535 | if (val >= 1e9) { // 1,000,000,000 to 9,999,999,999 |
| 536 | divfor6 = 10000; |
| 537 | } else if (val >= 1e8) { // 100,000,000 to 999,999,999 |
| 538 | divfor6 = 1000; |
| 539 | } else if (val >= 1e7) { // 10,000,000 to 99,999,999 |
| 540 | divfor6 = 100; |
| 541 | } else if (val >= 1e6) { // 1,000,000 to 9,999,999 |
| 542 | divfor6 = 10; |
| 543 | } |
| 544 | if (static_cast<int32_t>(val / divfor6 + 0.5) * divfor6 == val) return 6; |
| 545 | } |
| 546 | return full; |
| 547 | } |
| 548 | |
| 549 | inline void PrintTo(float f, ::std::ostream* os) { |
| 550 | auto old_precision = os->precision(); |
| 551 | os->precision(prec: AppropriateResolution(val: f)); |
| 552 | *os << f; |
| 553 | os->precision(prec: old_precision); |
| 554 | } |
| 555 | |
| 556 | inline void PrintTo(double d, ::std::ostream* os) { |
| 557 | auto old_precision = os->precision(); |
| 558 | os->precision(prec: AppropriateResolution(val: d)); |
| 559 | *os << d; |
| 560 | os->precision(prec: old_precision); |
| 561 | } |
| 562 | |
| 563 | // Overloads for C strings. |
| 564 | GTEST_API_ void PrintTo(const char* s, ::std::ostream* os); |
| 565 | inline void PrintTo(char* s, ::std::ostream* os) { |
| 566 | PrintTo(s: ImplicitCast_<const char*>(x: s), os); |
| 567 | } |
| 568 | |
| 569 | // signed/unsigned char is often used for representing binary data, so |
| 570 | // we print pointers to it as void* to be safe. |
| 571 | inline void PrintTo(const signed char* s, ::std::ostream* os) { |
| 572 | PrintTo(value: ImplicitCast_<const void*>(x: s), os); |
| 573 | } |
| 574 | inline void PrintTo(signed char* s, ::std::ostream* os) { |
| 575 | PrintTo(value: ImplicitCast_<const void*>(x: s), os); |
| 576 | } |
| 577 | inline void PrintTo(const unsigned char* s, ::std::ostream* os) { |
| 578 | PrintTo(value: ImplicitCast_<const void*>(x: s), os); |
| 579 | } |
| 580 | inline void PrintTo(unsigned char* s, ::std::ostream* os) { |
| 581 | PrintTo(value: ImplicitCast_<const void*>(x: s), os); |
| 582 | } |
| 583 | #ifdef __cpp_char8_t |
| 584 | // Overloads for u8 strings. |
| 585 | GTEST_API_ void PrintTo(const char8_t* s, ::std::ostream* os); |
| 586 | inline void PrintTo(char8_t* s, ::std::ostream* os) { |
| 587 | PrintTo(ImplicitCast_<const char8_t*>(s), os); |
| 588 | } |
| 589 | #endif |
| 590 | // Overloads for u16 strings. |
| 591 | GTEST_API_ void PrintTo(const char16_t* s, ::std::ostream* os); |
| 592 | inline void PrintTo(char16_t* s, ::std::ostream* os) { |
| 593 | PrintTo(s: ImplicitCast_<const char16_t*>(x: s), os); |
| 594 | } |
| 595 | // Overloads for u32 strings. |
| 596 | GTEST_API_ void PrintTo(const char32_t* s, ::std::ostream* os); |
| 597 | inline void PrintTo(char32_t* s, ::std::ostream* os) { |
| 598 | PrintTo(s: ImplicitCast_<const char32_t*>(x: s), os); |
| 599 | } |
| 600 | |
| 601 | // MSVC can be configured to define wchar_t as a typedef of unsigned |
| 602 | // short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native |
| 603 | // type. When wchar_t is a typedef, defining an overload for const |
| 604 | // wchar_t* would cause unsigned short* be printed as a wide string, |
| 605 | // possibly causing invalid memory accesses. |
| 606 | #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) |
| 607 | // Overloads for wide C strings |
| 608 | GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os); |
| 609 | inline void PrintTo(wchar_t* s, ::std::ostream* os) { |
| 610 | PrintTo(s: ImplicitCast_<const wchar_t*>(x: s), os); |
| 611 | } |
| 612 | #endif |
| 613 | |
| 614 | // Overload for C arrays. Multi-dimensional arrays are printed |
| 615 | // properly. |
| 616 | |
| 617 | // Prints the given number of elements in an array, without printing |
| 618 | // the curly braces. |
| 619 | template <typename T> |
| 620 | void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) { |
| 621 | UniversalPrint(a[0], os); |
| 622 | for (size_t i = 1; i != count; i++) { |
| 623 | *os << ", " ; |
| 624 | UniversalPrint(a[i], os); |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | // Overloads for ::std::string. |
| 629 | GTEST_API_ void PrintStringTo(const ::std::string& s, ::std::ostream* os); |
| 630 | inline void PrintTo(const ::std::string& s, ::std::ostream* os) { |
| 631 | PrintStringTo(s, os); |
| 632 | } |
| 633 | |
| 634 | // Overloads for ::std::u8string |
| 635 | #ifdef __cpp_lib_char8_t |
| 636 | GTEST_API_ void PrintU8StringTo(const ::std::u8string& s, ::std::ostream* os); |
| 637 | inline void PrintTo(const ::std::u8string& s, ::std::ostream* os) { |
| 638 | PrintU8StringTo(s, os); |
| 639 | } |
| 640 | #endif |
| 641 | |
| 642 | // Overloads for ::std::u16string |
| 643 | GTEST_API_ void PrintU16StringTo(const ::std::u16string& s, ::std::ostream* os); |
| 644 | inline void PrintTo(const ::std::u16string& s, ::std::ostream* os) { |
| 645 | PrintU16StringTo(s, os); |
| 646 | } |
| 647 | |
| 648 | // Overloads for ::std::u32string |
| 649 | GTEST_API_ void PrintU32StringTo(const ::std::u32string& s, ::std::ostream* os); |
| 650 | inline void PrintTo(const ::std::u32string& s, ::std::ostream* os) { |
| 651 | PrintU32StringTo(s, os); |
| 652 | } |
| 653 | |
| 654 | // Overloads for ::std::wstring. |
| 655 | #if GTEST_HAS_STD_WSTRING |
| 656 | GTEST_API_ void PrintWideStringTo(const ::std::wstring& s, ::std::ostream* os); |
| 657 | inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) { |
| 658 | PrintWideStringTo(s, os); |
| 659 | } |
| 660 | #endif // GTEST_HAS_STD_WSTRING |
| 661 | |
| 662 | #if GTEST_INTERNAL_HAS_STRING_VIEW |
| 663 | // Overload for internal::StringView. |
| 664 | inline void PrintTo(internal::StringView sp, ::std::ostream* os) { |
| 665 | PrintTo(s: ::std::string(sp), os); |
| 666 | } |
| 667 | #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| 668 | |
| 669 | inline void PrintTo(std::nullptr_t, ::std::ostream* os) { *os << "(nullptr)" ; } |
| 670 | |
| 671 | #if GTEST_HAS_RTTI |
| 672 | inline void PrintTo(const std::type_info& info, std::ostream* os) { |
| 673 | *os << internal::GetTypeName(type: info); |
| 674 | } |
| 675 | #endif // GTEST_HAS_RTTI |
| 676 | |
| 677 | template <typename T> |
| 678 | void PrintTo(std::reference_wrapper<T> ref, ::std::ostream* os) { |
| 679 | UniversalPrinter<T&>::Print(ref.get(), os); |
| 680 | } |
| 681 | |
| 682 | inline const void* VoidifyPointer(const void* p) { return p; } |
| 683 | inline const void* VoidifyPointer(volatile const void* p) { |
| 684 | return const_cast<const void*>(p); |
| 685 | } |
| 686 | |
| 687 | template <typename T, typename Ptr> |
| 688 | void PrintSmartPointer(const Ptr& ptr, std::ostream* os, char) { |
| 689 | if (ptr == nullptr) { |
| 690 | *os << "(nullptr)" ; |
| 691 | } else { |
| 692 | // We can't print the value. Just print the pointer.. |
| 693 | *os << "(" << (VoidifyPointer)(ptr.get()) << ")" ; |
| 694 | } |
| 695 | } |
| 696 | template <typename T, typename Ptr, |
| 697 | typename = typename std::enable_if<!std::is_void<T>::value && |
| 698 | !std::is_array<T>::value>::type> |
| 699 | void PrintSmartPointer(const Ptr& ptr, std::ostream* os, int) { |
| 700 | if (ptr == nullptr) { |
| 701 | *os << "(nullptr)" ; |
| 702 | } else { |
| 703 | *os << "(ptr = " << (VoidifyPointer)(ptr.get()) << ", value = " ; |
| 704 | UniversalPrinter<T>::Print(*ptr, os); |
| 705 | *os << ")" ; |
| 706 | } |
| 707 | } |
| 708 | |
| 709 | template <typename T, typename D> |
| 710 | void PrintTo(const std::unique_ptr<T, D>& ptr, std::ostream* os) { |
| 711 | (PrintSmartPointer<T>)(ptr, os, 0); |
| 712 | } |
| 713 | |
| 714 | template <typename T> |
| 715 | void PrintTo(const std::shared_ptr<T>& ptr, std::ostream* os) { |
| 716 | (PrintSmartPointer<T>)(ptr, os, 0); |
| 717 | } |
| 718 | |
| 719 | // Helper function for printing a tuple. T must be instantiated with |
| 720 | // a tuple type. |
| 721 | template <typename T> |
| 722 | void PrintTupleTo(const T&, std::integral_constant<size_t, 0>, |
| 723 | ::std::ostream*) {} |
| 724 | |
| 725 | template <typename T, size_t I> |
| 726 | void PrintTupleTo(const T& t, std::integral_constant<size_t, I>, |
| 727 | ::std::ostream* os) { |
| 728 | PrintTupleTo(t, std::integral_constant<size_t, I - 1>(), os); |
| 729 | GTEST_INTENTIONAL_CONST_COND_PUSH_() |
| 730 | if (I > 1) { |
| 731 | GTEST_INTENTIONAL_CONST_COND_POP_() |
| 732 | *os << ", " ; |
| 733 | } |
| 734 | UniversalPrinter<typename std::tuple_element<I - 1, T>::type>::Print( |
| 735 | std::get<I - 1>(t), os); |
| 736 | } |
| 737 | |
| 738 | template <typename... Types> |
| 739 | void PrintTo(const ::std::tuple<Types...>& t, ::std::ostream* os) { |
| 740 | *os << "(" ; |
| 741 | PrintTupleTo(t, std::integral_constant<size_t, sizeof...(Types)>(), os); |
| 742 | *os << ")" ; |
| 743 | } |
| 744 | |
| 745 | // Overload for std::pair. |
| 746 | template <typename T1, typename T2> |
| 747 | void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) { |
| 748 | *os << '('; |
| 749 | // We cannot use UniversalPrint(value.first, os) here, as T1 may be |
| 750 | // a reference type. The same for printing value.second. |
| 751 | UniversalPrinter<T1>::Print(value.first, os); |
| 752 | *os << ", " ; |
| 753 | UniversalPrinter<T2>::Print(value.second, os); |
| 754 | *os << ')'; |
| 755 | } |
| 756 | |
| 757 | // Implements printing a non-reference type T by letting the compiler |
| 758 | // pick the right overload of PrintTo() for T. |
| 759 | template <typename T> |
| 760 | class UniversalPrinter { |
| 761 | public: |
| 762 | // MSVC warns about adding const to a function type, so we want to |
| 763 | // disable the warning. |
| 764 | GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180) |
| 765 | |
| 766 | // Note: we deliberately don't call this PrintTo(), as that name |
| 767 | // conflicts with ::testing::internal::PrintTo in the body of the |
| 768 | // function. |
| 769 | static void Print(const T& value, ::std::ostream* os) { |
| 770 | // By default, ::testing::internal::PrintTo() is used for printing |
| 771 | // the value. |
| 772 | // |
| 773 | // Thanks to Koenig look-up, if T is a class and has its own |
| 774 | // PrintTo() function defined in its namespace, that function will |
| 775 | // be visible here. Since it is more specific than the generic ones |
| 776 | // in ::testing::internal, it will be picked by the compiler in the |
| 777 | // following statement - exactly what we want. |
| 778 | PrintTo(value, os); |
| 779 | } |
| 780 | |
| 781 | GTEST_DISABLE_MSC_WARNINGS_POP_() |
| 782 | }; |
| 783 | |
| 784 | // Remove any const-qualifiers before passing a type to UniversalPrinter. |
| 785 | template <typename T> |
| 786 | class UniversalPrinter<const T> : public UniversalPrinter<T> {}; |
| 787 | |
| 788 | #if GTEST_INTERNAL_HAS_ANY |
| 789 | |
| 790 | // Printer for std::any / absl::any |
| 791 | |
| 792 | template <> |
| 793 | class UniversalPrinter<Any> { |
| 794 | public: |
| 795 | static void Print(const Any& value, ::std::ostream* os) { |
| 796 | if (value.has_value()) { |
| 797 | *os << "value of type " << GetTypeName(value); |
| 798 | } else { |
| 799 | *os << "no value" ; |
| 800 | } |
| 801 | } |
| 802 | |
| 803 | private: |
| 804 | static std::string GetTypeName(const Any& value) { |
| 805 | #if GTEST_HAS_RTTI |
| 806 | return internal::GetTypeName(type: value.type()); |
| 807 | #else |
| 808 | static_cast<void>(value); // possibly unused |
| 809 | return "<unknown_type>" ; |
| 810 | #endif // GTEST_HAS_RTTI |
| 811 | } |
| 812 | }; |
| 813 | |
| 814 | #endif // GTEST_INTERNAL_HAS_ANY |
| 815 | |
| 816 | #if GTEST_INTERNAL_HAS_OPTIONAL |
| 817 | |
| 818 | // Printer for std::optional / absl::optional |
| 819 | |
| 820 | template <typename T> |
| 821 | class UniversalPrinter<Optional<T>> { |
| 822 | public: |
| 823 | static void Print(const Optional<T>& value, ::std::ostream* os) { |
| 824 | *os << '('; |
| 825 | if (!value) { |
| 826 | *os << "nullopt" ; |
| 827 | } else { |
| 828 | UniversalPrint(*value, os); |
| 829 | } |
| 830 | *os << ')'; |
| 831 | } |
| 832 | }; |
| 833 | |
| 834 | template <> |
| 835 | class UniversalPrinter<decltype(Nullopt())> { |
| 836 | public: |
| 837 | static void Print(decltype(Nullopt()), ::std::ostream* os) { |
| 838 | *os << "(nullopt)" ; |
| 839 | } |
| 840 | }; |
| 841 | |
| 842 | #endif // GTEST_INTERNAL_HAS_OPTIONAL |
| 843 | |
| 844 | #if GTEST_INTERNAL_HAS_VARIANT |
| 845 | |
| 846 | // Printer for std::variant / absl::variant |
| 847 | |
| 848 | template <typename... T> |
| 849 | class UniversalPrinter<Variant<T...>> { |
| 850 | public: |
| 851 | static void Print(const Variant<T...>& value, ::std::ostream* os) { |
| 852 | *os << '('; |
| 853 | #if GTEST_HAS_ABSL |
| 854 | absl::visit(Visitor{os, value.index()}, value); |
| 855 | #else |
| 856 | std::visit(Visitor{os, value.index()}, value); |
| 857 | #endif // GTEST_HAS_ABSL |
| 858 | *os << ')'; |
| 859 | } |
| 860 | |
| 861 | private: |
| 862 | struct Visitor { |
| 863 | template <typename U> |
| 864 | void operator()(const U& u) const { |
| 865 | *os << "'" << GetTypeName<U>() << "(index = " << index |
| 866 | << ")' with value " ; |
| 867 | UniversalPrint(u, os); |
| 868 | } |
| 869 | ::std::ostream* os; |
| 870 | std::size_t index; |
| 871 | }; |
| 872 | }; |
| 873 | |
| 874 | #endif // GTEST_INTERNAL_HAS_VARIANT |
| 875 | |
| 876 | // UniversalPrintArray(begin, len, os) prints an array of 'len' |
| 877 | // elements, starting at address 'begin'. |
| 878 | template <typename T> |
| 879 | void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) { |
| 880 | if (len == 0) { |
| 881 | *os << "{}" ; |
| 882 | } else { |
| 883 | *os << "{ " ; |
| 884 | const size_t kThreshold = 18; |
| 885 | const size_t kChunkSize = 8; |
| 886 | // If the array has more than kThreshold elements, we'll have to |
| 887 | // omit some details by printing only the first and the last |
| 888 | // kChunkSize elements. |
| 889 | if (len <= kThreshold) { |
| 890 | PrintRawArrayTo(begin, len, os); |
| 891 | } else { |
| 892 | PrintRawArrayTo(begin, kChunkSize, os); |
| 893 | *os << ", ..., " ; |
| 894 | PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os); |
| 895 | } |
| 896 | *os << " }" ; |
| 897 | } |
| 898 | } |
| 899 | // This overload prints a (const) char array compactly. |
| 900 | GTEST_API_ void UniversalPrintArray(const char* begin, size_t len, |
| 901 | ::std::ostream* os); |
| 902 | |
| 903 | #ifdef __cpp_char8_t |
| 904 | // This overload prints a (const) char8_t array compactly. |
| 905 | GTEST_API_ void UniversalPrintArray(const char8_t* begin, size_t len, |
| 906 | ::std::ostream* os); |
| 907 | #endif |
| 908 | |
| 909 | // This overload prints a (const) char16_t array compactly. |
| 910 | GTEST_API_ void UniversalPrintArray(const char16_t* begin, size_t len, |
| 911 | ::std::ostream* os); |
| 912 | |
| 913 | // This overload prints a (const) char32_t array compactly. |
| 914 | GTEST_API_ void UniversalPrintArray(const char32_t* begin, size_t len, |
| 915 | ::std::ostream* os); |
| 916 | |
| 917 | // This overload prints a (const) wchar_t array compactly. |
| 918 | GTEST_API_ void UniversalPrintArray(const wchar_t* begin, size_t len, |
| 919 | ::std::ostream* os); |
| 920 | |
| 921 | // Implements printing an array type T[N]. |
| 922 | template <typename T, size_t N> |
| 923 | class UniversalPrinter<T[N]> { |
| 924 | public: |
| 925 | // Prints the given array, omitting some elements when there are too |
| 926 | // many. |
| 927 | static void Print(const T (&a)[N], ::std::ostream* os) { |
| 928 | UniversalPrintArray(a, N, os); |
| 929 | } |
| 930 | }; |
| 931 | |
| 932 | // Implements printing a reference type T&. |
| 933 | template <typename T> |
| 934 | class UniversalPrinter<T&> { |
| 935 | public: |
| 936 | // MSVC warns about adding const to a function type, so we want to |
| 937 | // disable the warning. |
| 938 | GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180) |
| 939 | |
| 940 | static void Print(const T& value, ::std::ostream* os) { |
| 941 | // Prints the address of the value. We use reinterpret_cast here |
| 942 | // as static_cast doesn't compile when T is a function type. |
| 943 | *os << "@" << reinterpret_cast<const void*>(&value) << " " ; |
| 944 | |
| 945 | // Then prints the value itself. |
| 946 | UniversalPrint(value, os); |
| 947 | } |
| 948 | |
| 949 | GTEST_DISABLE_MSC_WARNINGS_POP_() |
| 950 | }; |
| 951 | |
| 952 | // Prints a value tersely: for a reference type, the referenced value |
| 953 | // (but not the address) is printed; for a (const) char pointer, the |
| 954 | // NUL-terminated string (but not the pointer) is printed. |
| 955 | |
| 956 | template <typename T> |
| 957 | class UniversalTersePrinter { |
| 958 | public: |
| 959 | static void Print(const T& value, ::std::ostream* os) { |
| 960 | UniversalPrint(value, os); |
| 961 | } |
| 962 | }; |
| 963 | template <typename T> |
| 964 | class UniversalTersePrinter<T&> { |
| 965 | public: |
| 966 | static void Print(const T& value, ::std::ostream* os) { |
| 967 | UniversalPrint(value, os); |
| 968 | } |
| 969 | }; |
| 970 | template <typename T> |
| 971 | class UniversalTersePrinter<std::reference_wrapper<T>> { |
| 972 | public: |
| 973 | static void Print(std::reference_wrapper<T> value, ::std::ostream* os) { |
| 974 | UniversalTersePrinter<T>::Print(value.get(), os); |
| 975 | } |
| 976 | }; |
| 977 | template <typename T, size_t N> |
| 978 | class UniversalTersePrinter<T[N]> { |
| 979 | public: |
| 980 | static void Print(const T (&value)[N], ::std::ostream* os) { |
| 981 | UniversalPrinter<T[N]>::Print(value, os); |
| 982 | } |
| 983 | }; |
| 984 | template <> |
| 985 | class UniversalTersePrinter<const char*> { |
| 986 | public: |
| 987 | static void Print(const char* str, ::std::ostream* os) { |
| 988 | if (str == nullptr) { |
| 989 | *os << "NULL" ; |
| 990 | } else { |
| 991 | UniversalPrint(value: std::string(str), os); |
| 992 | } |
| 993 | } |
| 994 | }; |
| 995 | template <> |
| 996 | class UniversalTersePrinter<char*> : public UniversalTersePrinter<const char*> { |
| 997 | }; |
| 998 | |
| 999 | #ifdef __cpp_char8_t |
| 1000 | template <> |
| 1001 | class UniversalTersePrinter<const char8_t*> { |
| 1002 | public: |
| 1003 | static void Print(const char8_t* str, ::std::ostream* os) { |
| 1004 | if (str == nullptr) { |
| 1005 | *os << "NULL" ; |
| 1006 | } else { |
| 1007 | UniversalPrint(::std::u8string(str), os); |
| 1008 | } |
| 1009 | } |
| 1010 | }; |
| 1011 | template <> |
| 1012 | class UniversalTersePrinter<char8_t*> |
| 1013 | : public UniversalTersePrinter<const char8_t*> {}; |
| 1014 | #endif |
| 1015 | |
| 1016 | template <> |
| 1017 | class UniversalTersePrinter<const char16_t*> { |
| 1018 | public: |
| 1019 | static void Print(const char16_t* str, ::std::ostream* os) { |
| 1020 | if (str == nullptr) { |
| 1021 | *os << "NULL" ; |
| 1022 | } else { |
| 1023 | UniversalPrint(value: ::std::u16string(str), os); |
| 1024 | } |
| 1025 | } |
| 1026 | }; |
| 1027 | template <> |
| 1028 | class UniversalTersePrinter<char16_t*> |
| 1029 | : public UniversalTersePrinter<const char16_t*> {}; |
| 1030 | |
| 1031 | template <> |
| 1032 | class UniversalTersePrinter<const char32_t*> { |
| 1033 | public: |
| 1034 | static void Print(const char32_t* str, ::std::ostream* os) { |
| 1035 | if (str == nullptr) { |
| 1036 | *os << "NULL" ; |
| 1037 | } else { |
| 1038 | UniversalPrint(value: ::std::u32string(str), os); |
| 1039 | } |
| 1040 | } |
| 1041 | }; |
| 1042 | template <> |
| 1043 | class UniversalTersePrinter<char32_t*> |
| 1044 | : public UniversalTersePrinter<const char32_t*> {}; |
| 1045 | |
| 1046 | #if GTEST_HAS_STD_WSTRING |
| 1047 | template <> |
| 1048 | class UniversalTersePrinter<const wchar_t*> { |
| 1049 | public: |
| 1050 | static void Print(const wchar_t* str, ::std::ostream* os) { |
| 1051 | if (str == nullptr) { |
| 1052 | *os << "NULL" ; |
| 1053 | } else { |
| 1054 | UniversalPrint(value: ::std::wstring(str), os); |
| 1055 | } |
| 1056 | } |
| 1057 | }; |
| 1058 | #endif |
| 1059 | |
| 1060 | template <> |
| 1061 | class UniversalTersePrinter<wchar_t*> { |
| 1062 | public: |
| 1063 | static void Print(wchar_t* str, ::std::ostream* os) { |
| 1064 | UniversalTersePrinter<const wchar_t*>::Print(str, os); |
| 1065 | } |
| 1066 | }; |
| 1067 | |
| 1068 | template <typename T> |
| 1069 | void UniversalTersePrint(const T& value, ::std::ostream* os) { |
| 1070 | UniversalTersePrinter<T>::Print(value, os); |
| 1071 | } |
| 1072 | |
| 1073 | // Prints a value using the type inferred by the compiler. The |
| 1074 | // difference between this and UniversalTersePrint() is that for a |
| 1075 | // (const) char pointer, this prints both the pointer and the |
| 1076 | // NUL-terminated string. |
| 1077 | template <typename T> |
| 1078 | void UniversalPrint(const T& value, ::std::ostream* os) { |
| 1079 | // A workarond for the bug in VC++ 7.1 that prevents us from instantiating |
| 1080 | // UniversalPrinter with T directly. |
| 1081 | typedef T T1; |
| 1082 | UniversalPrinter<T1>::Print(value, os); |
| 1083 | } |
| 1084 | |
| 1085 | typedef ::std::vector<::std::string> Strings; |
| 1086 | |
| 1087 | // Tersely prints the first N fields of a tuple to a string vector, |
| 1088 | // one element for each field. |
| 1089 | template <typename Tuple> |
| 1090 | void TersePrintPrefixToStrings(const Tuple&, std::integral_constant<size_t, 0>, |
| 1091 | Strings*) {} |
| 1092 | template <typename Tuple, size_t I> |
| 1093 | void TersePrintPrefixToStrings(const Tuple& t, |
| 1094 | std::integral_constant<size_t, I>, |
| 1095 | Strings* strings) { |
| 1096 | TersePrintPrefixToStrings(t, std::integral_constant<size_t, I - 1>(), |
| 1097 | strings); |
| 1098 | ::std::stringstream ss; |
| 1099 | UniversalTersePrint(std::get<I - 1>(t), &ss); |
| 1100 | strings->push_back(x: ss.str()); |
| 1101 | } |
| 1102 | |
| 1103 | // Prints the fields of a tuple tersely to a string vector, one |
| 1104 | // element for each field. See the comment before |
| 1105 | // UniversalTersePrint() for how we define "tersely". |
| 1106 | template <typename Tuple> |
| 1107 | Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) { |
| 1108 | Strings result; |
| 1109 | TersePrintPrefixToStrings( |
| 1110 | value, std::integral_constant<size_t, std::tuple_size<Tuple>::value>(), |
| 1111 | &result); |
| 1112 | return result; |
| 1113 | } |
| 1114 | |
| 1115 | } // namespace internal |
| 1116 | |
| 1117 | template <typename T> |
| 1118 | ::std::string PrintToString(const T& value) { |
| 1119 | ::std::stringstream ss; |
| 1120 | internal::UniversalTersePrinter<T>::Print(value, &ss); |
| 1121 | return ss.str(); |
| 1122 | } |
| 1123 | |
| 1124 | } // namespace testing |
| 1125 | |
| 1126 | // Include any custom printer added by the local installation. |
| 1127 | // We must include this header at the end to make sure it can use the |
| 1128 | // declarations from this file. |
| 1129 | #include "gtest/internal/custom/gtest-printers.h" |
| 1130 | |
| 1131 | #endif // GOOGLETEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ |
| 1132 | |