1 | // Copyright 2007, Google Inc. |
2 | // All rights reserved. |
3 | // |
4 | // Redistribution and use in source and binary forms, with or without |
5 | // modification, are permitted provided that the following conditions are |
6 | // met: |
7 | // |
8 | // * Redistributions of source code must retain the above copyright |
9 | // notice, this list of conditions and the following disclaimer. |
10 | // * Redistributions in binary form must reproduce the above |
11 | // copyright notice, this list of conditions and the following disclaimer |
12 | // in the documentation and/or other materials provided with the |
13 | // distribution. |
14 | // * Neither the name of Google Inc. nor the names of its |
15 | // contributors may be used to endorse or promote products derived from |
16 | // this software without specific prior written permission. |
17 | // |
18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | |
30 | // Google Test - The Google C++ Testing and Mocking Framework |
31 | // |
32 | // This file implements a universal value printer that can print a |
33 | // value of any type T: |
34 | // |
35 | // void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr); |
36 | // |
37 | // A user can teach this function how to print a class type T by |
38 | // defining either operator<<() or PrintTo() in the namespace that |
39 | // defines T. More specifically, the FIRST defined function in the |
40 | // following list will be used (assuming T is defined in namespace |
41 | // foo): |
42 | // |
43 | // 1. foo::PrintTo(const T&, ostream*) |
44 | // 2. operator<<(ostream&, const T&) defined in either foo or the |
45 | // global namespace. |
46 | // |
47 | // However if T is an STL-style container then it is printed element-wise |
48 | // unless foo::PrintTo(const T&, ostream*) is defined. Note that |
49 | // operator<<() is ignored for container types. |
50 | // |
51 | // If none of the above is defined, it will print the debug string of |
52 | // the value if it is a protocol buffer, or print the raw bytes in the |
53 | // value otherwise. |
54 | // |
55 | // To aid debugging: when T is a reference type, the address of the |
56 | // value is also printed; when T is a (const) char pointer, both the |
57 | // pointer value and the NUL-terminated string it points to are |
58 | // printed. |
59 | // |
60 | // We also provide some convenient wrappers: |
61 | // |
62 | // // Prints a value to a string. For a (const or not) char |
63 | // // pointer, the NUL-terminated string (but not the pointer) is |
64 | // // printed. |
65 | // std::string ::testing::PrintToString(const T& value); |
66 | // |
67 | // // Prints a value tersely: for a reference type, the referenced |
68 | // // value (but not the address) is printed; for a (const or not) char |
69 | // // pointer, the NUL-terminated string (but not the pointer) is |
70 | // // printed. |
71 | // void ::testing::internal::UniversalTersePrint(const T& value, ostream*); |
72 | // |
73 | // // Prints value using the type inferred by the compiler. The difference |
74 | // // from UniversalTersePrint() is that this function prints both the |
75 | // // pointer and the NUL-terminated string for a (const or not) char pointer. |
76 | // void ::testing::internal::UniversalPrint(const T& value, ostream*); |
77 | // |
78 | // // Prints the fields of a tuple tersely to a string vector, one |
79 | // // element for each field. Tuple support must be enabled in |
80 | // // gtest-port.h. |
81 | // std::vector<string> UniversalTersePrintTupleFieldsToStrings( |
82 | // const Tuple& value); |
83 | // |
84 | // Known limitation: |
85 | // |
86 | // The print primitives print the elements of an STL-style container |
87 | // using the compiler-inferred type of *iter where iter is a |
88 | // const_iterator of the container. When const_iterator is an input |
89 | // iterator but not a forward iterator, this inferred type may not |
90 | // match value_type, and the print output may be incorrect. In |
91 | // practice, this is rarely a problem as for most containers |
92 | // const_iterator is a forward iterator. We'll fix this if there's an |
93 | // actual need for it. Note that this fix cannot rely on value_type |
94 | // being defined as many user-defined container types don't have |
95 | // value_type. |
96 | |
97 | // IWYU pragma: private, include "gtest/gtest.h" |
98 | // IWYU pragma: friend gtest/.* |
99 | // IWYU pragma: friend gmock/.* |
100 | |
101 | #ifndef GOOGLETEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ |
102 | #define GOOGLETEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ |
103 | |
104 | #include <functional> |
105 | #include <memory> |
106 | #include <ostream> // NOLINT |
107 | #include <sstream> |
108 | #include <string> |
109 | #include <tuple> |
110 | #include <type_traits> |
111 | #include <typeinfo> |
112 | #include <utility> |
113 | #include <vector> |
114 | |
115 | #include "gtest/internal/gtest-internal.h" |
116 | #include "gtest/internal/gtest-port.h" |
117 | |
118 | namespace testing { |
119 | |
120 | // Definitions in the internal* namespaces are subject to change without notice. |
121 | // DO NOT USE THEM IN USER CODE! |
122 | namespace internal { |
123 | |
124 | template <typename T> |
125 | void UniversalPrint(const T& value, ::std::ostream* os); |
126 | |
127 | // Used to print an STL-style container when the user doesn't define |
128 | // a PrintTo() for it. |
129 | struct ContainerPrinter { |
130 | template <typename T, |
131 | typename = typename std::enable_if< |
132 | (sizeof(IsContainerTest<T>(0)) == sizeof(IsContainer)) && |
133 | !IsRecursiveContainer<T>::value>::type> |
134 | static void PrintValue(const T& container, std::ostream* os) { |
135 | const size_t kMaxCount = 32; // The maximum number of elements to print. |
136 | *os << '{'; |
137 | size_t count = 0; |
138 | for (auto&& elem : container) { |
139 | if (count > 0) { |
140 | *os << ','; |
141 | if (count == kMaxCount) { // Enough has been printed. |
142 | *os << " ..." ; |
143 | break; |
144 | } |
145 | } |
146 | *os << ' '; |
147 | // We cannot call PrintTo(elem, os) here as PrintTo() doesn't |
148 | // handle `elem` being a native array. |
149 | internal::UniversalPrint(elem, os); |
150 | ++count; |
151 | } |
152 | |
153 | if (count > 0) { |
154 | *os << ' '; |
155 | } |
156 | *os << '}'; |
157 | } |
158 | }; |
159 | |
160 | // Used to print a pointer that is neither a char pointer nor a member |
161 | // pointer, when the user doesn't define PrintTo() for it. (A member |
162 | // variable pointer or member function pointer doesn't really point to |
163 | // a location in the address space. Their representation is |
164 | // implementation-defined. Therefore they will be printed as raw |
165 | // bytes.) |
166 | struct FunctionPointerPrinter { |
167 | template <typename T, typename = typename std::enable_if< |
168 | std::is_function<T>::value>::type> |
169 | static void PrintValue(T* p, ::std::ostream* os) { |
170 | if (p == nullptr) { |
171 | *os << "NULL" ; |
172 | } else { |
173 | // T is a function type, so '*os << p' doesn't do what we want |
174 | // (it just prints p as bool). We want to print p as a const |
175 | // void*. |
176 | *os << reinterpret_cast<const void*>(p); |
177 | } |
178 | } |
179 | }; |
180 | |
181 | struct PointerPrinter { |
182 | template <typename T> |
183 | static void PrintValue(T* p, ::std::ostream* os) { |
184 | if (p == nullptr) { |
185 | *os << "NULL" ; |
186 | } else { |
187 | // T is not a function type. We just call << to print p, |
188 | // relying on ADL to pick up user-defined << for their pointer |
189 | // types, if any. |
190 | *os << p; |
191 | } |
192 | } |
193 | }; |
194 | |
195 | namespace internal_stream_operator_without_lexical_name_lookup { |
196 | |
197 | // The presence of an operator<< here will terminate lexical scope lookup |
198 | // straight away (even though it cannot be a match because of its argument |
199 | // types). Thus, the two operator<< calls in StreamPrinter will find only ADL |
200 | // candidates. |
201 | struct LookupBlocker {}; |
202 | void operator<<(LookupBlocker, LookupBlocker); |
203 | |
204 | struct StreamPrinter { |
205 | template <typename T, |
206 | // Don't accept member pointers here. We'd print them via implicit |
207 | // conversion to bool, which isn't useful. |
208 | typename = typename std::enable_if< |
209 | !std::is_member_pointer<T>::value>::type, |
210 | // Only accept types for which we can find a streaming operator via |
211 | // ADL (possibly involving implicit conversions). |
212 | typename = decltype(std::declval<std::ostream&>() |
213 | << std::declval<const T&>())> |
214 | static void PrintValue(const T& value, ::std::ostream* os) { |
215 | // Call streaming operator found by ADL, possibly with implicit conversions |
216 | // of the arguments. |
217 | *os << value; |
218 | } |
219 | }; |
220 | |
221 | } // namespace internal_stream_operator_without_lexical_name_lookup |
222 | |
223 | struct ProtobufPrinter { |
224 | // We print a protobuf using its ShortDebugString() when the string |
225 | // doesn't exceed this many characters; otherwise we print it using |
226 | // DebugString() for better readability. |
227 | static const size_t kProtobufOneLinerMaxLength = 50; |
228 | |
229 | template <typename T, |
230 | typename = typename std::enable_if< |
231 | internal::HasDebugStringAndShortDebugString<T>::value>::type> |
232 | static void PrintValue(const T& value, ::std::ostream* os) { |
233 | std::string pretty_str = value.ShortDebugString(); |
234 | if (pretty_str.length() > kProtobufOneLinerMaxLength) { |
235 | pretty_str = "\n" + value.DebugString(); |
236 | } |
237 | *os << ("<" + pretty_str + ">" ); |
238 | } |
239 | }; |
240 | |
241 | struct ConvertibleToIntegerPrinter { |
242 | // Since T has no << operator or PrintTo() but can be implicitly |
243 | // converted to BiggestInt, we print it as a BiggestInt. |
244 | // |
245 | // Most likely T is an enum type (either named or unnamed), in which |
246 | // case printing it as an integer is the desired behavior. In case |
247 | // T is not an enum, printing it as an integer is the best we can do |
248 | // given that it has no user-defined printer. |
249 | static void PrintValue(internal::BiggestInt value, ::std::ostream* os) { |
250 | *os << value; |
251 | } |
252 | }; |
253 | |
254 | struct ConvertibleToStringViewPrinter { |
255 | #if GTEST_INTERNAL_HAS_STRING_VIEW |
256 | static void PrintValue(internal::StringView value, ::std::ostream* os) { |
257 | internal::UniversalPrint(value, os); |
258 | } |
259 | #endif |
260 | }; |
261 | |
262 | // Prints the given number of bytes in the given object to the given |
263 | // ostream. |
264 | GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes, |
265 | size_t count, ::std::ostream* os); |
266 | struct RawBytesPrinter { |
267 | // SFINAE on `sizeof` to make sure we have a complete type. |
268 | template <typename T, size_t = sizeof(T)> |
269 | static void PrintValue(const T& value, ::std::ostream* os) { |
270 | PrintBytesInObjectTo( |
271 | obj_bytes: static_cast<const unsigned char*>( |
272 | // Load bearing cast to void* to support iOS |
273 | reinterpret_cast<const void*>(std::addressof(value))), |
274 | count: sizeof(value), os); |
275 | } |
276 | }; |
277 | |
278 | struct FallbackPrinter { |
279 | template <typename T> |
280 | static void PrintValue(const T&, ::std::ostream* os) { |
281 | *os << "(incomplete type)" ; |
282 | } |
283 | }; |
284 | |
285 | // Try every printer in order and return the first one that works. |
286 | template <typename T, typename E, typename Printer, typename... Printers> |
287 | struct FindFirstPrinter : FindFirstPrinter<T, E, Printers...> {}; |
288 | |
289 | template <typename T, typename Printer, typename... Printers> |
290 | struct FindFirstPrinter< |
291 | T, decltype(Printer::PrintValue(std::declval<const T&>(), nullptr)), |
292 | Printer, Printers...> { |
293 | using type = Printer; |
294 | }; |
295 | |
296 | // Select the best printer in the following order: |
297 | // - Print containers (they have begin/end/etc). |
298 | // - Print function pointers. |
299 | // - Print object pointers. |
300 | // - Use the stream operator, if available. |
301 | // - Print protocol buffers. |
302 | // - Print types convertible to BiggestInt. |
303 | // - Print types convertible to StringView, if available. |
304 | // - Fallback to printing the raw bytes of the object. |
305 | template <typename T> |
306 | void PrintWithFallback(const T& value, ::std::ostream* os) { |
307 | using Printer = typename FindFirstPrinter< |
308 | T, void, ContainerPrinter, FunctionPointerPrinter, PointerPrinter, |
309 | internal_stream_operator_without_lexical_name_lookup::StreamPrinter, |
310 | ProtobufPrinter, ConvertibleToIntegerPrinter, |
311 | ConvertibleToStringViewPrinter, RawBytesPrinter, FallbackPrinter>::type; |
312 | Printer::PrintValue(value, os); |
313 | } |
314 | |
315 | // FormatForComparison<ToPrint, OtherOperand>::Format(value) formats a |
316 | // value of type ToPrint that is an operand of a comparison assertion |
317 | // (e.g. ASSERT_EQ). OtherOperand is the type of the other operand in |
318 | // the comparison, and is used to help determine the best way to |
319 | // format the value. In particular, when the value is a C string |
320 | // (char pointer) and the other operand is an STL string object, we |
321 | // want to format the C string as a string, since we know it is |
322 | // compared by value with the string object. If the value is a char |
323 | // pointer but the other operand is not an STL string object, we don't |
324 | // know whether the pointer is supposed to point to a NUL-terminated |
325 | // string, and thus want to print it as a pointer to be safe. |
326 | // |
327 | // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. |
328 | |
329 | // The default case. |
330 | template <typename ToPrint, typename OtherOperand> |
331 | class FormatForComparison { |
332 | public: |
333 | static ::std::string Format(const ToPrint& value) { |
334 | return ::testing::PrintToString(value); |
335 | } |
336 | }; |
337 | |
338 | // Array. |
339 | template <typename ToPrint, size_t N, typename OtherOperand> |
340 | class FormatForComparison<ToPrint[N], OtherOperand> { |
341 | public: |
342 | static ::std::string Format(const ToPrint* value) { |
343 | return FormatForComparison<const ToPrint*, OtherOperand>::Format(value); |
344 | } |
345 | }; |
346 | |
347 | // By default, print C string as pointers to be safe, as we don't know |
348 | // whether they actually point to a NUL-terminated string. |
349 | |
350 | #define GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(CharType) \ |
351 | template <typename OtherOperand> \ |
352 | class FormatForComparison<CharType*, OtherOperand> { \ |
353 | public: \ |
354 | static ::std::string Format(CharType* value) { \ |
355 | return ::testing::PrintToString(static_cast<const void*>(value)); \ |
356 | } \ |
357 | } |
358 | |
359 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char); |
360 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char); |
361 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(wchar_t); |
362 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const wchar_t); |
363 | #ifdef __cpp_lib_char8_t |
364 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char8_t); |
365 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char8_t); |
366 | #endif |
367 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char16_t); |
368 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char16_t); |
369 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char32_t); |
370 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char32_t); |
371 | |
372 | #undef GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_ |
373 | |
374 | // If a C string is compared with an STL string object, we know it's meant |
375 | // to point to a NUL-terminated string, and thus can print it as a string. |
376 | |
377 | #define GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(CharType, OtherStringType) \ |
378 | template <> \ |
379 | class FormatForComparison<CharType*, OtherStringType> { \ |
380 | public: \ |
381 | static ::std::string Format(CharType* value) { \ |
382 | return ::testing::PrintToString(value); \ |
383 | } \ |
384 | } |
385 | |
386 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::std::string); |
387 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::std::string); |
388 | #ifdef __cpp_lib_char8_t |
389 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char8_t, ::std::u8string); |
390 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char8_t, ::std::u8string); |
391 | #endif |
392 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char16_t, ::std::u16string); |
393 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char16_t, ::std::u16string); |
394 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char32_t, ::std::u32string); |
395 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char32_t, ::std::u32string); |
396 | |
397 | #if GTEST_HAS_STD_WSTRING |
398 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::std::wstring); |
399 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::std::wstring); |
400 | #endif |
401 | |
402 | #undef GTEST_IMPL_FORMAT_C_STRING_AS_STRING_ |
403 | |
404 | // Formats a comparison assertion (e.g. ASSERT_EQ, EXPECT_LT, and etc) |
405 | // operand to be used in a failure message. The type (but not value) |
406 | // of the other operand may affect the format. This allows us to |
407 | // print a char* as a raw pointer when it is compared against another |
408 | // char* or void*, and print it as a C string when it is compared |
409 | // against an std::string object, for example. |
410 | // |
411 | // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. |
412 | template <typename T1, typename T2> |
413 | std::string FormatForComparisonFailureMessage(const T1& value, |
414 | const T2& /* other_operand */) { |
415 | return FormatForComparison<T1, T2>::Format(value); |
416 | } |
417 | |
418 | // UniversalPrinter<T>::Print(value, ostream_ptr) prints the given |
419 | // value to the given ostream. The caller must ensure that |
420 | // 'ostream_ptr' is not NULL, or the behavior is undefined. |
421 | // |
422 | // We define UniversalPrinter as a class template (as opposed to a |
423 | // function template), as we need to partially specialize it for |
424 | // reference types, which cannot be done with function templates. |
425 | template <typename T> |
426 | class UniversalPrinter; |
427 | |
428 | // Prints the given value using the << operator if it has one; |
429 | // otherwise prints the bytes in it. This is what |
430 | // UniversalPrinter<T>::Print() does when PrintTo() is not specialized |
431 | // or overloaded for type T. |
432 | // |
433 | // A user can override this behavior for a class type Foo by defining |
434 | // an overload of PrintTo() in the namespace where Foo is defined. We |
435 | // give the user this option as sometimes defining a << operator for |
436 | // Foo is not desirable (e.g. the coding style may prevent doing it, |
437 | // or there is already a << operator but it doesn't do what the user |
438 | // wants). |
439 | template <typename T> |
440 | void PrintTo(const T& value, ::std::ostream* os) { |
441 | internal::PrintWithFallback(value, os); |
442 | } |
443 | |
444 | // The following list of PrintTo() overloads tells |
445 | // UniversalPrinter<T>::Print() how to print standard types (built-in |
446 | // types, strings, plain arrays, and pointers). |
447 | |
448 | // Overloads for various char types. |
449 | GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os); |
450 | GTEST_API_ void PrintTo(signed char c, ::std::ostream* os); |
451 | inline void PrintTo(char c, ::std::ostream* os) { |
452 | // When printing a plain char, we always treat it as unsigned. This |
453 | // way, the output won't be affected by whether the compiler thinks |
454 | // char is signed or not. |
455 | PrintTo(c: static_cast<unsigned char>(c), os); |
456 | } |
457 | |
458 | // Overloads for other simple built-in types. |
459 | inline void PrintTo(bool x, ::std::ostream* os) { |
460 | *os << (x ? "true" : "false" ); |
461 | } |
462 | |
463 | // Overload for wchar_t type. |
464 | // Prints a wchar_t as a symbol if it is printable or as its internal |
465 | // code otherwise and also as its decimal code (except for L'\0'). |
466 | // The L'\0' char is printed as "L'\\0'". The decimal code is printed |
467 | // as signed integer when wchar_t is implemented by the compiler |
468 | // as a signed type and is printed as an unsigned integer when wchar_t |
469 | // is implemented as an unsigned type. |
470 | GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os); |
471 | |
472 | GTEST_API_ void PrintTo(char32_t c, ::std::ostream* os); |
473 | inline void PrintTo(char16_t c, ::std::ostream* os) { |
474 | PrintTo(c: ImplicitCast_<char32_t>(x: c), os); |
475 | } |
476 | #ifdef __cpp_char8_t |
477 | inline void PrintTo(char8_t c, ::std::ostream* os) { |
478 | PrintTo(ImplicitCast_<char32_t>(c), os); |
479 | } |
480 | #endif |
481 | |
482 | // gcc/clang __{u,}int128_t |
483 | #if defined(__SIZEOF_INT128__) |
484 | GTEST_API_ void PrintTo(__uint128_t v, ::std::ostream* os); |
485 | GTEST_API_ void PrintTo(__int128_t v, ::std::ostream* os); |
486 | #endif // __SIZEOF_INT128__ |
487 | |
488 | // The default resolution used to print floating-point values uses only |
489 | // 6 digits, which can be confusing if a test compares two values whose |
490 | // difference lies in the 7th digit. So we'd like to print out numbers |
491 | // in full precision. |
492 | // However if the value is something simple like 1.1, full will print a |
493 | // long string like 1.100000001 due to floating-point numbers not using |
494 | // a base of 10. This routiune returns an appropriate resolution for a |
495 | // given floating-point number, that is, 6 if it will be accurate, or a |
496 | // max_digits10 value (full precision) if it won't, for values between |
497 | // 0.0001 and one million. |
498 | // It does this by computing what those digits would be (by multiplying |
499 | // by an appropriate power of 10), then dividing by that power again to |
500 | // see if gets the original value back. |
501 | // A similar algorithm applies for values larger than one million; note |
502 | // that for those values, we must divide to get a six-digit number, and |
503 | // then multiply to possibly get the original value again. |
504 | template <typename FloatType> |
505 | int AppropriateResolution(FloatType val) { |
506 | int full = std::numeric_limits<FloatType>::max_digits10; |
507 | if (val < 0) val = -val; |
508 | |
509 | if (val < 1000000) { |
510 | FloatType mulfor6 = 1e10; |
511 | if (val >= 100000.0) { // 100,000 to 999,999 |
512 | mulfor6 = 1.0; |
513 | } else if (val >= 10000.0) { |
514 | mulfor6 = 1e1; |
515 | } else if (val >= 1000.0) { |
516 | mulfor6 = 1e2; |
517 | } else if (val >= 100.0) { |
518 | mulfor6 = 1e3; |
519 | } else if (val >= 10.0) { |
520 | mulfor6 = 1e4; |
521 | } else if (val >= 1.0) { |
522 | mulfor6 = 1e5; |
523 | } else if (val >= 0.1) { |
524 | mulfor6 = 1e6; |
525 | } else if (val >= 0.01) { |
526 | mulfor6 = 1e7; |
527 | } else if (val >= 0.001) { |
528 | mulfor6 = 1e8; |
529 | } else if (val >= 0.0001) { |
530 | mulfor6 = 1e9; |
531 | } |
532 | if (static_cast<int32_t>(val * mulfor6 + 0.5) / mulfor6 == val) return 6; |
533 | } else if (val < 1e10) { |
534 | FloatType divfor6 = 1.0; |
535 | if (val >= 1e9) { // 1,000,000,000 to 9,999,999,999 |
536 | divfor6 = 10000; |
537 | } else if (val >= 1e8) { // 100,000,000 to 999,999,999 |
538 | divfor6 = 1000; |
539 | } else if (val >= 1e7) { // 10,000,000 to 99,999,999 |
540 | divfor6 = 100; |
541 | } else if (val >= 1e6) { // 1,000,000 to 9,999,999 |
542 | divfor6 = 10; |
543 | } |
544 | if (static_cast<int32_t>(val / divfor6 + 0.5) * divfor6 == val) return 6; |
545 | } |
546 | return full; |
547 | } |
548 | |
549 | inline void PrintTo(float f, ::std::ostream* os) { |
550 | auto old_precision = os->precision(); |
551 | os->precision(prec: AppropriateResolution(val: f)); |
552 | *os << f; |
553 | os->precision(prec: old_precision); |
554 | } |
555 | |
556 | inline void PrintTo(double d, ::std::ostream* os) { |
557 | auto old_precision = os->precision(); |
558 | os->precision(prec: AppropriateResolution(val: d)); |
559 | *os << d; |
560 | os->precision(prec: old_precision); |
561 | } |
562 | |
563 | // Overloads for C strings. |
564 | GTEST_API_ void PrintTo(const char* s, ::std::ostream* os); |
565 | inline void PrintTo(char* s, ::std::ostream* os) { |
566 | PrintTo(s: ImplicitCast_<const char*>(x: s), os); |
567 | } |
568 | |
569 | // signed/unsigned char is often used for representing binary data, so |
570 | // we print pointers to it as void* to be safe. |
571 | inline void PrintTo(const signed char* s, ::std::ostream* os) { |
572 | PrintTo(value: ImplicitCast_<const void*>(x: s), os); |
573 | } |
574 | inline void PrintTo(signed char* s, ::std::ostream* os) { |
575 | PrintTo(value: ImplicitCast_<const void*>(x: s), os); |
576 | } |
577 | inline void PrintTo(const unsigned char* s, ::std::ostream* os) { |
578 | PrintTo(value: ImplicitCast_<const void*>(x: s), os); |
579 | } |
580 | inline void PrintTo(unsigned char* s, ::std::ostream* os) { |
581 | PrintTo(value: ImplicitCast_<const void*>(x: s), os); |
582 | } |
583 | #ifdef __cpp_char8_t |
584 | // Overloads for u8 strings. |
585 | GTEST_API_ void PrintTo(const char8_t* s, ::std::ostream* os); |
586 | inline void PrintTo(char8_t* s, ::std::ostream* os) { |
587 | PrintTo(ImplicitCast_<const char8_t*>(s), os); |
588 | } |
589 | #endif |
590 | // Overloads for u16 strings. |
591 | GTEST_API_ void PrintTo(const char16_t* s, ::std::ostream* os); |
592 | inline void PrintTo(char16_t* s, ::std::ostream* os) { |
593 | PrintTo(s: ImplicitCast_<const char16_t*>(x: s), os); |
594 | } |
595 | // Overloads for u32 strings. |
596 | GTEST_API_ void PrintTo(const char32_t* s, ::std::ostream* os); |
597 | inline void PrintTo(char32_t* s, ::std::ostream* os) { |
598 | PrintTo(s: ImplicitCast_<const char32_t*>(x: s), os); |
599 | } |
600 | |
601 | // MSVC can be configured to define wchar_t as a typedef of unsigned |
602 | // short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native |
603 | // type. When wchar_t is a typedef, defining an overload for const |
604 | // wchar_t* would cause unsigned short* be printed as a wide string, |
605 | // possibly causing invalid memory accesses. |
606 | #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) |
607 | // Overloads for wide C strings |
608 | GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os); |
609 | inline void PrintTo(wchar_t* s, ::std::ostream* os) { |
610 | PrintTo(s: ImplicitCast_<const wchar_t*>(x: s), os); |
611 | } |
612 | #endif |
613 | |
614 | // Overload for C arrays. Multi-dimensional arrays are printed |
615 | // properly. |
616 | |
617 | // Prints the given number of elements in an array, without printing |
618 | // the curly braces. |
619 | template <typename T> |
620 | void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) { |
621 | UniversalPrint(a[0], os); |
622 | for (size_t i = 1; i != count; i++) { |
623 | *os << ", " ; |
624 | UniversalPrint(a[i], os); |
625 | } |
626 | } |
627 | |
628 | // Overloads for ::std::string. |
629 | GTEST_API_ void PrintStringTo(const ::std::string& s, ::std::ostream* os); |
630 | inline void PrintTo(const ::std::string& s, ::std::ostream* os) { |
631 | PrintStringTo(s, os); |
632 | } |
633 | |
634 | // Overloads for ::std::u8string |
635 | #ifdef __cpp_lib_char8_t |
636 | GTEST_API_ void PrintU8StringTo(const ::std::u8string& s, ::std::ostream* os); |
637 | inline void PrintTo(const ::std::u8string& s, ::std::ostream* os) { |
638 | PrintU8StringTo(s, os); |
639 | } |
640 | #endif |
641 | |
642 | // Overloads for ::std::u16string |
643 | GTEST_API_ void PrintU16StringTo(const ::std::u16string& s, ::std::ostream* os); |
644 | inline void PrintTo(const ::std::u16string& s, ::std::ostream* os) { |
645 | PrintU16StringTo(s, os); |
646 | } |
647 | |
648 | // Overloads for ::std::u32string |
649 | GTEST_API_ void PrintU32StringTo(const ::std::u32string& s, ::std::ostream* os); |
650 | inline void PrintTo(const ::std::u32string& s, ::std::ostream* os) { |
651 | PrintU32StringTo(s, os); |
652 | } |
653 | |
654 | // Overloads for ::std::wstring. |
655 | #if GTEST_HAS_STD_WSTRING |
656 | GTEST_API_ void PrintWideStringTo(const ::std::wstring& s, ::std::ostream* os); |
657 | inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) { |
658 | PrintWideStringTo(s, os); |
659 | } |
660 | #endif // GTEST_HAS_STD_WSTRING |
661 | |
662 | #if GTEST_INTERNAL_HAS_STRING_VIEW |
663 | // Overload for internal::StringView. |
664 | inline void PrintTo(internal::StringView sp, ::std::ostream* os) { |
665 | PrintTo(s: ::std::string(sp), os); |
666 | } |
667 | #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
668 | |
669 | inline void PrintTo(std::nullptr_t, ::std::ostream* os) { *os << "(nullptr)" ; } |
670 | |
671 | #if GTEST_HAS_RTTI |
672 | inline void PrintTo(const std::type_info& info, std::ostream* os) { |
673 | *os << internal::GetTypeName(type: info); |
674 | } |
675 | #endif // GTEST_HAS_RTTI |
676 | |
677 | template <typename T> |
678 | void PrintTo(std::reference_wrapper<T> ref, ::std::ostream* os) { |
679 | UniversalPrinter<T&>::Print(ref.get(), os); |
680 | } |
681 | |
682 | inline const void* VoidifyPointer(const void* p) { return p; } |
683 | inline const void* VoidifyPointer(volatile const void* p) { |
684 | return const_cast<const void*>(p); |
685 | } |
686 | |
687 | template <typename T, typename Ptr> |
688 | void PrintSmartPointer(const Ptr& ptr, std::ostream* os, char) { |
689 | if (ptr == nullptr) { |
690 | *os << "(nullptr)" ; |
691 | } else { |
692 | // We can't print the value. Just print the pointer.. |
693 | *os << "(" << (VoidifyPointer)(ptr.get()) << ")" ; |
694 | } |
695 | } |
696 | template <typename T, typename Ptr, |
697 | typename = typename std::enable_if<!std::is_void<T>::value && |
698 | !std::is_array<T>::value>::type> |
699 | void PrintSmartPointer(const Ptr& ptr, std::ostream* os, int) { |
700 | if (ptr == nullptr) { |
701 | *os << "(nullptr)" ; |
702 | } else { |
703 | *os << "(ptr = " << (VoidifyPointer)(ptr.get()) << ", value = " ; |
704 | UniversalPrinter<T>::Print(*ptr, os); |
705 | *os << ")" ; |
706 | } |
707 | } |
708 | |
709 | template <typename T, typename D> |
710 | void PrintTo(const std::unique_ptr<T, D>& ptr, std::ostream* os) { |
711 | (PrintSmartPointer<T>)(ptr, os, 0); |
712 | } |
713 | |
714 | template <typename T> |
715 | void PrintTo(const std::shared_ptr<T>& ptr, std::ostream* os) { |
716 | (PrintSmartPointer<T>)(ptr, os, 0); |
717 | } |
718 | |
719 | // Helper function for printing a tuple. T must be instantiated with |
720 | // a tuple type. |
721 | template <typename T> |
722 | void PrintTupleTo(const T&, std::integral_constant<size_t, 0>, |
723 | ::std::ostream*) {} |
724 | |
725 | template <typename T, size_t I> |
726 | void PrintTupleTo(const T& t, std::integral_constant<size_t, I>, |
727 | ::std::ostream* os) { |
728 | PrintTupleTo(t, std::integral_constant<size_t, I - 1>(), os); |
729 | GTEST_INTENTIONAL_CONST_COND_PUSH_() |
730 | if (I > 1) { |
731 | GTEST_INTENTIONAL_CONST_COND_POP_() |
732 | *os << ", " ; |
733 | } |
734 | UniversalPrinter<typename std::tuple_element<I - 1, T>::type>::Print( |
735 | std::get<I - 1>(t), os); |
736 | } |
737 | |
738 | template <typename... Types> |
739 | void PrintTo(const ::std::tuple<Types...>& t, ::std::ostream* os) { |
740 | *os << "(" ; |
741 | PrintTupleTo(t, std::integral_constant<size_t, sizeof...(Types)>(), os); |
742 | *os << ")" ; |
743 | } |
744 | |
745 | // Overload for std::pair. |
746 | template <typename T1, typename T2> |
747 | void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) { |
748 | *os << '('; |
749 | // We cannot use UniversalPrint(value.first, os) here, as T1 may be |
750 | // a reference type. The same for printing value.second. |
751 | UniversalPrinter<T1>::Print(value.first, os); |
752 | *os << ", " ; |
753 | UniversalPrinter<T2>::Print(value.second, os); |
754 | *os << ')'; |
755 | } |
756 | |
757 | // Implements printing a non-reference type T by letting the compiler |
758 | // pick the right overload of PrintTo() for T. |
759 | template <typename T> |
760 | class UniversalPrinter { |
761 | public: |
762 | // MSVC warns about adding const to a function type, so we want to |
763 | // disable the warning. |
764 | GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180) |
765 | |
766 | // Note: we deliberately don't call this PrintTo(), as that name |
767 | // conflicts with ::testing::internal::PrintTo in the body of the |
768 | // function. |
769 | static void Print(const T& value, ::std::ostream* os) { |
770 | // By default, ::testing::internal::PrintTo() is used for printing |
771 | // the value. |
772 | // |
773 | // Thanks to Koenig look-up, if T is a class and has its own |
774 | // PrintTo() function defined in its namespace, that function will |
775 | // be visible here. Since it is more specific than the generic ones |
776 | // in ::testing::internal, it will be picked by the compiler in the |
777 | // following statement - exactly what we want. |
778 | PrintTo(value, os); |
779 | } |
780 | |
781 | GTEST_DISABLE_MSC_WARNINGS_POP_() |
782 | }; |
783 | |
784 | // Remove any const-qualifiers before passing a type to UniversalPrinter. |
785 | template <typename T> |
786 | class UniversalPrinter<const T> : public UniversalPrinter<T> {}; |
787 | |
788 | #if GTEST_INTERNAL_HAS_ANY |
789 | |
790 | // Printer for std::any / absl::any |
791 | |
792 | template <> |
793 | class UniversalPrinter<Any> { |
794 | public: |
795 | static void Print(const Any& value, ::std::ostream* os) { |
796 | if (value.has_value()) { |
797 | *os << "value of type " << GetTypeName(value); |
798 | } else { |
799 | *os << "no value" ; |
800 | } |
801 | } |
802 | |
803 | private: |
804 | static std::string GetTypeName(const Any& value) { |
805 | #if GTEST_HAS_RTTI |
806 | return internal::GetTypeName(type: value.type()); |
807 | #else |
808 | static_cast<void>(value); // possibly unused |
809 | return "<unknown_type>" ; |
810 | #endif // GTEST_HAS_RTTI |
811 | } |
812 | }; |
813 | |
814 | #endif // GTEST_INTERNAL_HAS_ANY |
815 | |
816 | #if GTEST_INTERNAL_HAS_OPTIONAL |
817 | |
818 | // Printer for std::optional / absl::optional |
819 | |
820 | template <typename T> |
821 | class UniversalPrinter<Optional<T>> { |
822 | public: |
823 | static void Print(const Optional<T>& value, ::std::ostream* os) { |
824 | *os << '('; |
825 | if (!value) { |
826 | *os << "nullopt" ; |
827 | } else { |
828 | UniversalPrint(*value, os); |
829 | } |
830 | *os << ')'; |
831 | } |
832 | }; |
833 | |
834 | template <> |
835 | class UniversalPrinter<decltype(Nullopt())> { |
836 | public: |
837 | static void Print(decltype(Nullopt()), ::std::ostream* os) { |
838 | *os << "(nullopt)" ; |
839 | } |
840 | }; |
841 | |
842 | #endif // GTEST_INTERNAL_HAS_OPTIONAL |
843 | |
844 | #if GTEST_INTERNAL_HAS_VARIANT |
845 | |
846 | // Printer for std::variant / absl::variant |
847 | |
848 | template <typename... T> |
849 | class UniversalPrinter<Variant<T...>> { |
850 | public: |
851 | static void Print(const Variant<T...>& value, ::std::ostream* os) { |
852 | *os << '('; |
853 | #if GTEST_HAS_ABSL |
854 | absl::visit(Visitor{os, value.index()}, value); |
855 | #else |
856 | std::visit(Visitor{os, value.index()}, value); |
857 | #endif // GTEST_HAS_ABSL |
858 | *os << ')'; |
859 | } |
860 | |
861 | private: |
862 | struct Visitor { |
863 | template <typename U> |
864 | void operator()(const U& u) const { |
865 | *os << "'" << GetTypeName<U>() << "(index = " << index |
866 | << ")' with value " ; |
867 | UniversalPrint(u, os); |
868 | } |
869 | ::std::ostream* os; |
870 | std::size_t index; |
871 | }; |
872 | }; |
873 | |
874 | #endif // GTEST_INTERNAL_HAS_VARIANT |
875 | |
876 | // UniversalPrintArray(begin, len, os) prints an array of 'len' |
877 | // elements, starting at address 'begin'. |
878 | template <typename T> |
879 | void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) { |
880 | if (len == 0) { |
881 | *os << "{}" ; |
882 | } else { |
883 | *os << "{ " ; |
884 | const size_t kThreshold = 18; |
885 | const size_t kChunkSize = 8; |
886 | // If the array has more than kThreshold elements, we'll have to |
887 | // omit some details by printing only the first and the last |
888 | // kChunkSize elements. |
889 | if (len <= kThreshold) { |
890 | PrintRawArrayTo(begin, len, os); |
891 | } else { |
892 | PrintRawArrayTo(begin, kChunkSize, os); |
893 | *os << ", ..., " ; |
894 | PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os); |
895 | } |
896 | *os << " }" ; |
897 | } |
898 | } |
899 | // This overload prints a (const) char array compactly. |
900 | GTEST_API_ void UniversalPrintArray(const char* begin, size_t len, |
901 | ::std::ostream* os); |
902 | |
903 | #ifdef __cpp_char8_t |
904 | // This overload prints a (const) char8_t array compactly. |
905 | GTEST_API_ void UniversalPrintArray(const char8_t* begin, size_t len, |
906 | ::std::ostream* os); |
907 | #endif |
908 | |
909 | // This overload prints a (const) char16_t array compactly. |
910 | GTEST_API_ void UniversalPrintArray(const char16_t* begin, size_t len, |
911 | ::std::ostream* os); |
912 | |
913 | // This overload prints a (const) char32_t array compactly. |
914 | GTEST_API_ void UniversalPrintArray(const char32_t* begin, size_t len, |
915 | ::std::ostream* os); |
916 | |
917 | // This overload prints a (const) wchar_t array compactly. |
918 | GTEST_API_ void UniversalPrintArray(const wchar_t* begin, size_t len, |
919 | ::std::ostream* os); |
920 | |
921 | // Implements printing an array type T[N]. |
922 | template <typename T, size_t N> |
923 | class UniversalPrinter<T[N]> { |
924 | public: |
925 | // Prints the given array, omitting some elements when there are too |
926 | // many. |
927 | static void Print(const T (&a)[N], ::std::ostream* os) { |
928 | UniversalPrintArray(a, N, os); |
929 | } |
930 | }; |
931 | |
932 | // Implements printing a reference type T&. |
933 | template <typename T> |
934 | class UniversalPrinter<T&> { |
935 | public: |
936 | // MSVC warns about adding const to a function type, so we want to |
937 | // disable the warning. |
938 | GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180) |
939 | |
940 | static void Print(const T& value, ::std::ostream* os) { |
941 | // Prints the address of the value. We use reinterpret_cast here |
942 | // as static_cast doesn't compile when T is a function type. |
943 | *os << "@" << reinterpret_cast<const void*>(&value) << " " ; |
944 | |
945 | // Then prints the value itself. |
946 | UniversalPrint(value, os); |
947 | } |
948 | |
949 | GTEST_DISABLE_MSC_WARNINGS_POP_() |
950 | }; |
951 | |
952 | // Prints a value tersely: for a reference type, the referenced value |
953 | // (but not the address) is printed; for a (const) char pointer, the |
954 | // NUL-terminated string (but not the pointer) is printed. |
955 | |
956 | template <typename T> |
957 | class UniversalTersePrinter { |
958 | public: |
959 | static void Print(const T& value, ::std::ostream* os) { |
960 | UniversalPrint(value, os); |
961 | } |
962 | }; |
963 | template <typename T> |
964 | class UniversalTersePrinter<T&> { |
965 | public: |
966 | static void Print(const T& value, ::std::ostream* os) { |
967 | UniversalPrint(value, os); |
968 | } |
969 | }; |
970 | template <typename T> |
971 | class UniversalTersePrinter<std::reference_wrapper<T>> { |
972 | public: |
973 | static void Print(std::reference_wrapper<T> value, ::std::ostream* os) { |
974 | UniversalTersePrinter<T>::Print(value.get(), os); |
975 | } |
976 | }; |
977 | template <typename T, size_t N> |
978 | class UniversalTersePrinter<T[N]> { |
979 | public: |
980 | static void Print(const T (&value)[N], ::std::ostream* os) { |
981 | UniversalPrinter<T[N]>::Print(value, os); |
982 | } |
983 | }; |
984 | template <> |
985 | class UniversalTersePrinter<const char*> { |
986 | public: |
987 | static void Print(const char* str, ::std::ostream* os) { |
988 | if (str == nullptr) { |
989 | *os << "NULL" ; |
990 | } else { |
991 | UniversalPrint(value: std::string(str), os); |
992 | } |
993 | } |
994 | }; |
995 | template <> |
996 | class UniversalTersePrinter<char*> : public UniversalTersePrinter<const char*> { |
997 | }; |
998 | |
999 | #ifdef __cpp_char8_t |
1000 | template <> |
1001 | class UniversalTersePrinter<const char8_t*> { |
1002 | public: |
1003 | static void Print(const char8_t* str, ::std::ostream* os) { |
1004 | if (str == nullptr) { |
1005 | *os << "NULL" ; |
1006 | } else { |
1007 | UniversalPrint(::std::u8string(str), os); |
1008 | } |
1009 | } |
1010 | }; |
1011 | template <> |
1012 | class UniversalTersePrinter<char8_t*> |
1013 | : public UniversalTersePrinter<const char8_t*> {}; |
1014 | #endif |
1015 | |
1016 | template <> |
1017 | class UniversalTersePrinter<const char16_t*> { |
1018 | public: |
1019 | static void Print(const char16_t* str, ::std::ostream* os) { |
1020 | if (str == nullptr) { |
1021 | *os << "NULL" ; |
1022 | } else { |
1023 | UniversalPrint(value: ::std::u16string(str), os); |
1024 | } |
1025 | } |
1026 | }; |
1027 | template <> |
1028 | class UniversalTersePrinter<char16_t*> |
1029 | : public UniversalTersePrinter<const char16_t*> {}; |
1030 | |
1031 | template <> |
1032 | class UniversalTersePrinter<const char32_t*> { |
1033 | public: |
1034 | static void Print(const char32_t* str, ::std::ostream* os) { |
1035 | if (str == nullptr) { |
1036 | *os << "NULL" ; |
1037 | } else { |
1038 | UniversalPrint(value: ::std::u32string(str), os); |
1039 | } |
1040 | } |
1041 | }; |
1042 | template <> |
1043 | class UniversalTersePrinter<char32_t*> |
1044 | : public UniversalTersePrinter<const char32_t*> {}; |
1045 | |
1046 | #if GTEST_HAS_STD_WSTRING |
1047 | template <> |
1048 | class UniversalTersePrinter<const wchar_t*> { |
1049 | public: |
1050 | static void Print(const wchar_t* str, ::std::ostream* os) { |
1051 | if (str == nullptr) { |
1052 | *os << "NULL" ; |
1053 | } else { |
1054 | UniversalPrint(value: ::std::wstring(str), os); |
1055 | } |
1056 | } |
1057 | }; |
1058 | #endif |
1059 | |
1060 | template <> |
1061 | class UniversalTersePrinter<wchar_t*> { |
1062 | public: |
1063 | static void Print(wchar_t* str, ::std::ostream* os) { |
1064 | UniversalTersePrinter<const wchar_t*>::Print(str, os); |
1065 | } |
1066 | }; |
1067 | |
1068 | template <typename T> |
1069 | void UniversalTersePrint(const T& value, ::std::ostream* os) { |
1070 | UniversalTersePrinter<T>::Print(value, os); |
1071 | } |
1072 | |
1073 | // Prints a value using the type inferred by the compiler. The |
1074 | // difference between this and UniversalTersePrint() is that for a |
1075 | // (const) char pointer, this prints both the pointer and the |
1076 | // NUL-terminated string. |
1077 | template <typename T> |
1078 | void UniversalPrint(const T& value, ::std::ostream* os) { |
1079 | // A workarond for the bug in VC++ 7.1 that prevents us from instantiating |
1080 | // UniversalPrinter with T directly. |
1081 | typedef T T1; |
1082 | UniversalPrinter<T1>::Print(value, os); |
1083 | } |
1084 | |
1085 | typedef ::std::vector<::std::string> Strings; |
1086 | |
1087 | // Tersely prints the first N fields of a tuple to a string vector, |
1088 | // one element for each field. |
1089 | template <typename Tuple> |
1090 | void TersePrintPrefixToStrings(const Tuple&, std::integral_constant<size_t, 0>, |
1091 | Strings*) {} |
1092 | template <typename Tuple, size_t I> |
1093 | void TersePrintPrefixToStrings(const Tuple& t, |
1094 | std::integral_constant<size_t, I>, |
1095 | Strings* strings) { |
1096 | TersePrintPrefixToStrings(t, std::integral_constant<size_t, I - 1>(), |
1097 | strings); |
1098 | ::std::stringstream ss; |
1099 | UniversalTersePrint(std::get<I - 1>(t), &ss); |
1100 | strings->push_back(x: ss.str()); |
1101 | } |
1102 | |
1103 | // Prints the fields of a tuple tersely to a string vector, one |
1104 | // element for each field. See the comment before |
1105 | // UniversalTersePrint() for how we define "tersely". |
1106 | template <typename Tuple> |
1107 | Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) { |
1108 | Strings result; |
1109 | TersePrintPrefixToStrings( |
1110 | value, std::integral_constant<size_t, std::tuple_size<Tuple>::value>(), |
1111 | &result); |
1112 | return result; |
1113 | } |
1114 | |
1115 | } // namespace internal |
1116 | |
1117 | template <typename T> |
1118 | ::std::string PrintToString(const T& value) { |
1119 | ::std::stringstream ss; |
1120 | internal::UniversalTersePrinter<T>::Print(value, &ss); |
1121 | return ss.str(); |
1122 | } |
1123 | |
1124 | } // namespace testing |
1125 | |
1126 | // Include any custom printer added by the local installation. |
1127 | // We must include this header at the end to make sure it can use the |
1128 | // declarations from this file. |
1129 | #include "gtest/internal/custom/gtest-printers.h" |
1130 | |
1131 | #endif // GOOGLETEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ |
1132 | |