| 1 | // Protocol Buffers - Google's data interchange format |
| 2 | // Copyright 2008 Google Inc. All rights reserved. |
| 3 | // https://developers.google.com/protocol-buffers/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are |
| 7 | // met: |
| 8 | // |
| 9 | // * Redistributions of source code must retain the above copyright |
| 10 | // notice, this list of conditions and the following disclaimer. |
| 11 | // * Redistributions in binary form must reproduce the above |
| 12 | // copyright notice, this list of conditions and the following disclaimer |
| 13 | // in the documentation and/or other materials provided with the |
| 14 | // distribution. |
| 15 | // * Neither the name of Google Inc. nor the names of its |
| 16 | // contributors may be used to endorse or promote products derived from |
| 17 | // this software without specific prior written permission. |
| 18 | // |
| 19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | |
| 31 | // Author: kenton@google.com (Kenton Varda) |
| 32 | // Based on original Protocol Buffers design by |
| 33 | // Sanjay Ghemawat, Jeff Dean, and others. |
| 34 | // |
| 35 | // This implementation is heavily optimized to make reads and writes |
| 36 | // of small values (especially varints) as fast as possible. In |
| 37 | // particular, we optimize for the common case that a read or a write |
| 38 | // will not cross the end of the buffer, since we can avoid a lot |
| 39 | // of branching in this case. |
| 40 | |
| 41 | #include <google/protobuf/io/coded_stream.h> |
| 42 | |
| 43 | #include <limits.h> |
| 44 | |
| 45 | #include <algorithm> |
| 46 | #include <cstring> |
| 47 | #include <utility> |
| 48 | |
| 49 | #include <google/protobuf/stubs/logging.h> |
| 50 | #include <google/protobuf/stubs/common.h> |
| 51 | #include <google/protobuf/arena.h> |
| 52 | #include <google/protobuf/io/zero_copy_stream.h> |
| 53 | #include <google/protobuf/io/zero_copy_stream_impl_lite.h> |
| 54 | #include <google/protobuf/stubs/stl_util.h> |
| 55 | |
| 56 | |
| 57 | // Must be included last. |
| 58 | #include <google/protobuf/port_def.inc> |
| 59 | |
| 60 | namespace google { |
| 61 | namespace protobuf { |
| 62 | namespace io { |
| 63 | |
| 64 | namespace { |
| 65 | |
| 66 | static const int kMaxVarintBytes = 10; |
| 67 | static const int kMaxVarint32Bytes = 5; |
| 68 | |
| 69 | |
| 70 | inline bool NextNonEmpty(ZeroCopyInputStream* input, const void** data, |
| 71 | int* size) { |
| 72 | bool success; |
| 73 | do { |
| 74 | success = input->Next(data, size); |
| 75 | } while (success && *size == 0); |
| 76 | return success; |
| 77 | } |
| 78 | |
| 79 | } // namespace |
| 80 | |
| 81 | // CodedInputStream ================================================== |
| 82 | |
| 83 | CodedInputStream::~CodedInputStream() { |
| 84 | if (input_ != NULL) { |
| 85 | BackUpInputToCurrentPosition(); |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | // Static. |
| 90 | int CodedInputStream::default_recursion_limit_ = 100; |
| 91 | |
| 92 | |
| 93 | void CodedInputStream::BackUpInputToCurrentPosition() { |
| 94 | int backup_bytes = BufferSize() + buffer_size_after_limit_ + overflow_bytes_; |
| 95 | if (backup_bytes > 0) { |
| 96 | input_->BackUp(count: backup_bytes); |
| 97 | |
| 98 | // total_bytes_read_ doesn't include overflow_bytes_. |
| 99 | total_bytes_read_ -= BufferSize() + buffer_size_after_limit_; |
| 100 | buffer_end_ = buffer_; |
| 101 | buffer_size_after_limit_ = 0; |
| 102 | overflow_bytes_ = 0; |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | inline void CodedInputStream::RecomputeBufferLimits() { |
| 107 | buffer_end_ += buffer_size_after_limit_; |
| 108 | int closest_limit = std::min(current_limit_, total_bytes_limit_); |
| 109 | if (closest_limit < total_bytes_read_) { |
| 110 | // The limit position is in the current buffer. We must adjust |
| 111 | // the buffer size accordingly. |
| 112 | buffer_size_after_limit_ = total_bytes_read_ - closest_limit; |
| 113 | buffer_end_ -= buffer_size_after_limit_; |
| 114 | } else { |
| 115 | buffer_size_after_limit_ = 0; |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | CodedInputStream::Limit CodedInputStream::PushLimit(int byte_limit) { |
| 120 | // Current position relative to the beginning of the stream. |
| 121 | int current_position = CurrentPosition(); |
| 122 | |
| 123 | Limit old_limit = current_limit_; |
| 124 | |
| 125 | // security: byte_limit is possibly evil, so check for negative values |
| 126 | // and overflow. Also check that the new requested limit is before the |
| 127 | // previous limit; otherwise we continue to enforce the previous limit. |
| 128 | if (PROTOBUF_PREDICT_TRUE(byte_limit >= 0 && |
| 129 | byte_limit <= INT_MAX - current_position && |
| 130 | byte_limit < current_limit_ - current_position)) { |
| 131 | current_limit_ = current_position + byte_limit; |
| 132 | RecomputeBufferLimits(); |
| 133 | } |
| 134 | |
| 135 | return old_limit; |
| 136 | } |
| 137 | |
| 138 | void CodedInputStream::PopLimit(Limit limit) { |
| 139 | // The limit passed in is actually the *old* limit, which we returned from |
| 140 | // PushLimit(). |
| 141 | current_limit_ = limit; |
| 142 | RecomputeBufferLimits(); |
| 143 | |
| 144 | // We may no longer be at a legitimate message end. ReadTag() needs to be |
| 145 | // called again to find out. |
| 146 | legitimate_message_end_ = false; |
| 147 | } |
| 148 | |
| 149 | std::pair<CodedInputStream::Limit, int> |
| 150 | CodedInputStream::IncrementRecursionDepthAndPushLimit(int byte_limit) { |
| 151 | return std::make_pair(x: PushLimit(byte_limit), y&: --recursion_budget_); |
| 152 | } |
| 153 | |
| 154 | CodedInputStream::Limit CodedInputStream::ReadLengthAndPushLimit() { |
| 155 | uint32_t length; |
| 156 | return PushLimit(byte_limit: ReadVarint32(value: &length) ? length : 0); |
| 157 | } |
| 158 | |
| 159 | bool CodedInputStream::DecrementRecursionDepthAndPopLimit(Limit limit) { |
| 160 | bool result = ConsumedEntireMessage(); |
| 161 | PopLimit(limit); |
| 162 | GOOGLE_DCHECK_LT(recursion_budget_, recursion_limit_); |
| 163 | ++recursion_budget_; |
| 164 | return result; |
| 165 | } |
| 166 | |
| 167 | bool CodedInputStream::CheckEntireMessageConsumedAndPopLimit(Limit limit) { |
| 168 | bool result = ConsumedEntireMessage(); |
| 169 | PopLimit(limit); |
| 170 | return result; |
| 171 | } |
| 172 | |
| 173 | int CodedInputStream::BytesUntilLimit() const { |
| 174 | if (current_limit_ == INT_MAX) return -1; |
| 175 | int current_position = CurrentPosition(); |
| 176 | |
| 177 | return current_limit_ - current_position; |
| 178 | } |
| 179 | |
| 180 | void CodedInputStream::SetTotalBytesLimit(int total_bytes_limit) { |
| 181 | // Make sure the limit isn't already past, since this could confuse other |
| 182 | // code. |
| 183 | int current_position = CurrentPosition(); |
| 184 | total_bytes_limit_ = std::max(current_position, total_bytes_limit); |
| 185 | RecomputeBufferLimits(); |
| 186 | } |
| 187 | |
| 188 | int CodedInputStream::BytesUntilTotalBytesLimit() const { |
| 189 | if (total_bytes_limit_ == INT_MAX) return -1; |
| 190 | return total_bytes_limit_ - CurrentPosition(); |
| 191 | } |
| 192 | |
| 193 | void CodedInputStream::PrintTotalBytesLimitError() { |
| 194 | GOOGLE_LOG(ERROR) |
| 195 | << "A protocol message was rejected because it was too " |
| 196 | "big (more than " |
| 197 | << total_bytes_limit_ |
| 198 | << " bytes). To increase the limit (or to disable these " |
| 199 | "warnings), see CodedInputStream::SetTotalBytesLimit() " |
| 200 | "in third_party/protobuf/io/coded_stream.h." ; |
| 201 | } |
| 202 | |
| 203 | bool CodedInputStream::SkipFallback(int count, int original_buffer_size) { |
| 204 | if (buffer_size_after_limit_ > 0) { |
| 205 | // We hit a limit inside this buffer. Advance to the limit and fail. |
| 206 | Advance(amount: original_buffer_size); |
| 207 | return false; |
| 208 | } |
| 209 | |
| 210 | count -= original_buffer_size; |
| 211 | buffer_ = NULL; |
| 212 | buffer_end_ = buffer_; |
| 213 | |
| 214 | // Make sure this skip doesn't try to skip past the current limit. |
| 215 | int closest_limit = std::min(current_limit_, total_bytes_limit_); |
| 216 | int bytes_until_limit = closest_limit - total_bytes_read_; |
| 217 | if (bytes_until_limit < count) { |
| 218 | // We hit the limit. Skip up to it then fail. |
| 219 | if (bytes_until_limit > 0) { |
| 220 | total_bytes_read_ = closest_limit; |
| 221 | input_->Skip(count: bytes_until_limit); |
| 222 | } |
| 223 | return false; |
| 224 | } |
| 225 | |
| 226 | if (!input_->Skip(count)) { |
| 227 | total_bytes_read_ = input_->ByteCount(); |
| 228 | return false; |
| 229 | } |
| 230 | total_bytes_read_ += count; |
| 231 | return true; |
| 232 | } |
| 233 | |
| 234 | bool CodedInputStream::GetDirectBufferPointer(const void** data, int* size) { |
| 235 | if (BufferSize() == 0 && !Refresh()) return false; |
| 236 | |
| 237 | *data = buffer_; |
| 238 | *size = BufferSize(); |
| 239 | return true; |
| 240 | } |
| 241 | |
| 242 | bool CodedInputStream::ReadRaw(void* buffer, int size) { |
| 243 | int current_buffer_size; |
| 244 | while ((current_buffer_size = BufferSize()) < size) { |
| 245 | // Reading past end of buffer. Copy what we have, then refresh. |
| 246 | memcpy(dest: buffer, src: buffer_, n: current_buffer_size); |
| 247 | buffer = reinterpret_cast<uint8_t*>(buffer) + current_buffer_size; |
| 248 | size -= current_buffer_size; |
| 249 | Advance(amount: current_buffer_size); |
| 250 | if (!Refresh()) return false; |
| 251 | } |
| 252 | |
| 253 | memcpy(dest: buffer, src: buffer_, n: size); |
| 254 | Advance(amount: size); |
| 255 | |
| 256 | return true; |
| 257 | } |
| 258 | |
| 259 | bool CodedInputStream::ReadString(std::string* buffer, int size) { |
| 260 | if (size < 0) return false; // security: size is often user-supplied |
| 261 | |
| 262 | if (BufferSize() >= size) { |
| 263 | STLStringResizeUninitialized(s: buffer, new_size: size); |
| 264 | std::pair<char*, bool> z = as_string_data(s: buffer); |
| 265 | if (z.second) { |
| 266 | // Oddly enough, memcpy() requires its first two args to be non-NULL even |
| 267 | // if we copy 0 bytes. So, we have ensured that z.first is non-NULL here. |
| 268 | GOOGLE_DCHECK(z.first != NULL); |
| 269 | memcpy(dest: z.first, src: buffer_, n: size); |
| 270 | Advance(amount: size); |
| 271 | } |
| 272 | return true; |
| 273 | } |
| 274 | |
| 275 | return ReadStringFallback(buffer, size); |
| 276 | } |
| 277 | |
| 278 | bool CodedInputStream::ReadStringFallback(std::string* buffer, int size) { |
| 279 | if (!buffer->empty()) { |
| 280 | buffer->clear(); |
| 281 | } |
| 282 | |
| 283 | int closest_limit = std::min(current_limit_, total_bytes_limit_); |
| 284 | if (closest_limit != INT_MAX) { |
| 285 | int bytes_to_limit = closest_limit - CurrentPosition(); |
| 286 | if (bytes_to_limit > 0 && size > 0 && size <= bytes_to_limit) { |
| 287 | buffer->reserve(res_arg: size); |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | int current_buffer_size; |
| 292 | while ((current_buffer_size = BufferSize()) < size) { |
| 293 | // Some STL implementations "helpfully" crash on buffer->append(NULL, 0). |
| 294 | if (current_buffer_size != 0) { |
| 295 | // Note: string1.append(string2) is O(string2.size()) (as opposed to |
| 296 | // O(string1.size() + string2.size()), which would be bad). |
| 297 | buffer->append(s: reinterpret_cast<const char*>(buffer_), |
| 298 | n: current_buffer_size); |
| 299 | } |
| 300 | size -= current_buffer_size; |
| 301 | Advance(amount: current_buffer_size); |
| 302 | if (!Refresh()) return false; |
| 303 | } |
| 304 | |
| 305 | buffer->append(s: reinterpret_cast<const char*>(buffer_), n: size); |
| 306 | Advance(amount: size); |
| 307 | |
| 308 | return true; |
| 309 | } |
| 310 | |
| 311 | |
| 312 | bool CodedInputStream::ReadLittleEndian32Fallback(uint32_t* value) { |
| 313 | uint8_t bytes[sizeof(*value)]; |
| 314 | |
| 315 | const uint8_t* ptr; |
| 316 | if (BufferSize() >= static_cast<int64_t>(sizeof(*value))) { |
| 317 | // Fast path: Enough bytes in the buffer to read directly. |
| 318 | ptr = buffer_; |
| 319 | Advance(amount: sizeof(*value)); |
| 320 | } else { |
| 321 | // Slow path: Had to read past the end of the buffer. |
| 322 | if (!ReadRaw(buffer: bytes, size: sizeof(*value))) return false; |
| 323 | ptr = bytes; |
| 324 | } |
| 325 | ReadLittleEndian32FromArray(buffer: ptr, value); |
| 326 | return true; |
| 327 | } |
| 328 | |
| 329 | bool CodedInputStream::ReadLittleEndian64Fallback(uint64_t* value) { |
| 330 | uint8_t bytes[sizeof(*value)]; |
| 331 | |
| 332 | const uint8_t* ptr; |
| 333 | if (BufferSize() >= static_cast<int64_t>(sizeof(*value))) { |
| 334 | // Fast path: Enough bytes in the buffer to read directly. |
| 335 | ptr = buffer_; |
| 336 | Advance(amount: sizeof(*value)); |
| 337 | } else { |
| 338 | // Slow path: Had to read past the end of the buffer. |
| 339 | if (!ReadRaw(buffer: bytes, size: sizeof(*value))) return false; |
| 340 | ptr = bytes; |
| 341 | } |
| 342 | ReadLittleEndian64FromArray(buffer: ptr, value); |
| 343 | return true; |
| 344 | } |
| 345 | |
| 346 | namespace { |
| 347 | |
| 348 | // Decodes varint64 with known size, N, and returns next pointer. Knowing N at |
| 349 | // compile time, compiler can generate optimal code. For example, instead of |
| 350 | // subtracting 0x80 at each iteration, it subtracts properly shifted mask once. |
| 351 | template <size_t N> |
| 352 | const uint8_t* DecodeVarint64KnownSize(const uint8_t* buffer, uint64_t* value) { |
| 353 | GOOGLE_DCHECK_GT(N, 0); |
| 354 | uint64_t result = static_cast<uint64_t>(buffer[N - 1]) << (7 * (N - 1)); |
| 355 | for (size_t i = 0, offset = 0; i < N - 1; i++, offset += 7) { |
| 356 | result += static_cast<uint64_t>(buffer[i] - 0x80) << offset; |
| 357 | } |
| 358 | *value = result; |
| 359 | return buffer + N; |
| 360 | } |
| 361 | |
| 362 | // Read a varint from the given buffer, write it to *value, and return a pair. |
| 363 | // The first part of the pair is true iff the read was successful. The second |
| 364 | // part is buffer + (number of bytes read). This function is always inlined, |
| 365 | // so returning a pair is costless. |
| 366 | PROTOBUF_ALWAYS_INLINE |
| 367 | ::std::pair<bool, const uint8_t*> ReadVarint32FromArray(uint32_t first_byte, |
| 368 | const uint8_t* buffer, |
| 369 | uint32_t* value); |
| 370 | inline ::std::pair<bool, const uint8_t*> ReadVarint32FromArray( |
| 371 | uint32_t first_byte, const uint8_t* buffer, uint32_t* value) { |
| 372 | // Fast path: We have enough bytes left in the buffer to guarantee that |
| 373 | // this read won't cross the end, so we can skip the checks. |
| 374 | GOOGLE_DCHECK_EQ(*buffer, first_byte); |
| 375 | GOOGLE_DCHECK_EQ(first_byte & 0x80, 0x80) << first_byte; |
| 376 | const uint8_t* ptr = buffer; |
| 377 | uint32_t b; |
| 378 | uint32_t result = first_byte - 0x80; |
| 379 | ++ptr; // We just processed the first byte. Move on to the second. |
| 380 | b = *(ptr++); |
| 381 | result += b << 7; |
| 382 | if (!(b & 0x80)) goto done; |
| 383 | result -= 0x80 << 7; |
| 384 | b = *(ptr++); |
| 385 | result += b << 14; |
| 386 | if (!(b & 0x80)) goto done; |
| 387 | result -= 0x80 << 14; |
| 388 | b = *(ptr++); |
| 389 | result += b << 21; |
| 390 | if (!(b & 0x80)) goto done; |
| 391 | result -= 0x80 << 21; |
| 392 | b = *(ptr++); |
| 393 | result += b << 28; |
| 394 | if (!(b & 0x80)) goto done; |
| 395 | // "result -= 0x80 << 28" is irrelevant. |
| 396 | |
| 397 | // If the input is larger than 32 bits, we still need to read it all |
| 398 | // and discard the high-order bits. |
| 399 | for (int i = 0; i < kMaxVarintBytes - kMaxVarint32Bytes; i++) { |
| 400 | b = *(ptr++); |
| 401 | if (!(b & 0x80)) goto done; |
| 402 | } |
| 403 | |
| 404 | // We have overrun the maximum size of a varint (10 bytes). Assume |
| 405 | // the data is corrupt. |
| 406 | return std::make_pair(x: false, y&: ptr); |
| 407 | |
| 408 | done: |
| 409 | *value = result; |
| 410 | return std::make_pair(x: true, y&: ptr); |
| 411 | } |
| 412 | |
| 413 | PROTOBUF_ALWAYS_INLINE::std::pair<bool, const uint8_t*> ReadVarint64FromArray( |
| 414 | const uint8_t* buffer, uint64_t* value); |
| 415 | inline ::std::pair<bool, const uint8_t*> ReadVarint64FromArray( |
| 416 | const uint8_t* buffer, uint64_t* value) { |
| 417 | // Assumes varint64 is at least 2 bytes. |
| 418 | GOOGLE_DCHECK_GE(buffer[0], 128); |
| 419 | |
| 420 | const uint8_t* next; |
| 421 | if (buffer[1] < 128) { |
| 422 | next = DecodeVarint64KnownSize<2>(buffer, value); |
| 423 | } else if (buffer[2] < 128) { |
| 424 | next = DecodeVarint64KnownSize<3>(buffer, value); |
| 425 | } else if (buffer[3] < 128) { |
| 426 | next = DecodeVarint64KnownSize<4>(buffer, value); |
| 427 | } else if (buffer[4] < 128) { |
| 428 | next = DecodeVarint64KnownSize<5>(buffer, value); |
| 429 | } else if (buffer[5] < 128) { |
| 430 | next = DecodeVarint64KnownSize<6>(buffer, value); |
| 431 | } else if (buffer[6] < 128) { |
| 432 | next = DecodeVarint64KnownSize<7>(buffer, value); |
| 433 | } else if (buffer[7] < 128) { |
| 434 | next = DecodeVarint64KnownSize<8>(buffer, value); |
| 435 | } else if (buffer[8] < 128) { |
| 436 | next = DecodeVarint64KnownSize<9>(buffer, value); |
| 437 | } else if (buffer[9] < 128) { |
| 438 | next = DecodeVarint64KnownSize<10>(buffer, value); |
| 439 | } else { |
| 440 | // We have overrun the maximum size of a varint (10 bytes). Assume |
| 441 | // the data is corrupt. |
| 442 | return std::make_pair(x: false, y: buffer + 11); |
| 443 | } |
| 444 | |
| 445 | return std::make_pair(x: true, y&: next); |
| 446 | } |
| 447 | |
| 448 | } // namespace |
| 449 | |
| 450 | bool CodedInputStream::ReadVarint32Slow(uint32_t* value) { |
| 451 | // Directly invoke ReadVarint64Fallback, since we already tried to optimize |
| 452 | // for one-byte varints. |
| 453 | std::pair<uint64_t, bool> p = ReadVarint64Fallback(); |
| 454 | *value = static_cast<uint32_t>(p.first); |
| 455 | return p.second; |
| 456 | } |
| 457 | |
| 458 | int64_t CodedInputStream::ReadVarint32Fallback(uint32_t first_byte_or_zero) { |
| 459 | if (BufferSize() >= kMaxVarintBytes || |
| 460 | // Optimization: We're also safe if the buffer is non-empty and it ends |
| 461 | // with a byte that would terminate a varint. |
| 462 | (buffer_end_ > buffer_ && !(buffer_end_[-1] & 0x80))) { |
| 463 | GOOGLE_DCHECK_NE(first_byte_or_zero, 0) |
| 464 | << "Caller should provide us with *buffer_ when buffer is non-empty" ; |
| 465 | uint32_t temp; |
| 466 | ::std::pair<bool, const uint8_t*> p = |
| 467 | ReadVarint32FromArray(first_byte: first_byte_or_zero, buffer: buffer_, value: &temp); |
| 468 | if (!p.first) return -1; |
| 469 | buffer_ = p.second; |
| 470 | return temp; |
| 471 | } else { |
| 472 | // Really slow case: we will incur the cost of an extra function call here, |
| 473 | // but moving this out of line reduces the size of this function, which |
| 474 | // improves the common case. In micro benchmarks, this is worth about 10-15% |
| 475 | uint32_t temp; |
| 476 | return ReadVarint32Slow(value: &temp) ? static_cast<int64_t>(temp) : -1; |
| 477 | } |
| 478 | } |
| 479 | |
| 480 | int CodedInputStream::ReadVarintSizeAsIntSlow() { |
| 481 | // Directly invoke ReadVarint64Fallback, since we already tried to optimize |
| 482 | // for one-byte varints. |
| 483 | std::pair<uint64_t, bool> p = ReadVarint64Fallback(); |
| 484 | if (!p.second || p.first > static_cast<uint64_t>(INT_MAX)) return -1; |
| 485 | return p.first; |
| 486 | } |
| 487 | |
| 488 | int CodedInputStream::ReadVarintSizeAsIntFallback() { |
| 489 | if (BufferSize() >= kMaxVarintBytes || |
| 490 | // Optimization: We're also safe if the buffer is non-empty and it ends |
| 491 | // with a byte that would terminate a varint. |
| 492 | (buffer_end_ > buffer_ && !(buffer_end_[-1] & 0x80))) { |
| 493 | uint64_t temp; |
| 494 | ::std::pair<bool, const uint8_t*> p = ReadVarint64FromArray(buffer: buffer_, value: &temp); |
| 495 | if (!p.first || temp > static_cast<uint64_t>(INT_MAX)) return -1; |
| 496 | buffer_ = p.second; |
| 497 | return temp; |
| 498 | } else { |
| 499 | // Really slow case: we will incur the cost of an extra function call here, |
| 500 | // but moving this out of line reduces the size of this function, which |
| 501 | // improves the common case. In micro benchmarks, this is worth about 10-15% |
| 502 | return ReadVarintSizeAsIntSlow(); |
| 503 | } |
| 504 | } |
| 505 | |
| 506 | uint32_t CodedInputStream::ReadTagSlow() { |
| 507 | if (buffer_ == buffer_end_) { |
| 508 | // Call refresh. |
| 509 | if (!Refresh()) { |
| 510 | // Refresh failed. Make sure that it failed due to EOF, not because |
| 511 | // we hit total_bytes_limit_, which, unlike normal limits, is not a |
| 512 | // valid place to end a message. |
| 513 | int current_position = total_bytes_read_ - buffer_size_after_limit_; |
| 514 | if (current_position >= total_bytes_limit_) { |
| 515 | // Hit total_bytes_limit_. But if we also hit the normal limit, |
| 516 | // we're still OK. |
| 517 | legitimate_message_end_ = current_limit_ == total_bytes_limit_; |
| 518 | } else { |
| 519 | legitimate_message_end_ = true; |
| 520 | } |
| 521 | return 0; |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | // For the slow path, just do a 64-bit read. Try to optimize for one-byte tags |
| 526 | // again, since we have now refreshed the buffer. |
| 527 | uint64_t result = 0; |
| 528 | if (!ReadVarint64(value: &result)) return 0; |
| 529 | return static_cast<uint32_t>(result); |
| 530 | } |
| 531 | |
| 532 | uint32_t CodedInputStream::ReadTagFallback(uint32_t first_byte_or_zero) { |
| 533 | const int buf_size = BufferSize(); |
| 534 | if (buf_size >= kMaxVarintBytes || |
| 535 | // Optimization: We're also safe if the buffer is non-empty and it ends |
| 536 | // with a byte that would terminate a varint. |
| 537 | (buf_size > 0 && !(buffer_end_[-1] & 0x80))) { |
| 538 | GOOGLE_DCHECK_EQ(first_byte_or_zero, buffer_[0]); |
| 539 | if (first_byte_or_zero == 0) { |
| 540 | ++buffer_; |
| 541 | return 0; |
| 542 | } |
| 543 | uint32_t tag; |
| 544 | ::std::pair<bool, const uint8_t*> p = |
| 545 | ReadVarint32FromArray(first_byte: first_byte_or_zero, buffer: buffer_, value: &tag); |
| 546 | if (!p.first) { |
| 547 | return 0; |
| 548 | } |
| 549 | buffer_ = p.second; |
| 550 | return tag; |
| 551 | } else { |
| 552 | // We are commonly at a limit when attempting to read tags. Try to quickly |
| 553 | // detect this case without making another function call. |
| 554 | if ((buf_size == 0) && |
| 555 | ((buffer_size_after_limit_ > 0) || |
| 556 | (total_bytes_read_ == current_limit_)) && |
| 557 | // Make sure that the limit we hit is not total_bytes_limit_, since |
| 558 | // in that case we still need to call Refresh() so that it prints an |
| 559 | // error. |
| 560 | total_bytes_read_ - buffer_size_after_limit_ < total_bytes_limit_) { |
| 561 | // We hit a byte limit. |
| 562 | legitimate_message_end_ = true; |
| 563 | return 0; |
| 564 | } |
| 565 | return ReadTagSlow(); |
| 566 | } |
| 567 | } |
| 568 | |
| 569 | bool CodedInputStream::ReadVarint64Slow(uint64_t* value) { |
| 570 | // Slow path: This read might cross the end of the buffer, so we |
| 571 | // need to check and refresh the buffer if and when it does. |
| 572 | |
| 573 | uint64_t result = 0; |
| 574 | int count = 0; |
| 575 | uint32_t b; |
| 576 | |
| 577 | do { |
| 578 | if (count == kMaxVarintBytes) { |
| 579 | *value = 0; |
| 580 | return false; |
| 581 | } |
| 582 | while (buffer_ == buffer_end_) { |
| 583 | if (!Refresh()) { |
| 584 | *value = 0; |
| 585 | return false; |
| 586 | } |
| 587 | } |
| 588 | b = *buffer_; |
| 589 | result |= static_cast<uint64_t>(b & 0x7F) << (7 * count); |
| 590 | Advance(amount: 1); |
| 591 | ++count; |
| 592 | } while (b & 0x80); |
| 593 | |
| 594 | *value = result; |
| 595 | return true; |
| 596 | } |
| 597 | |
| 598 | std::pair<uint64_t, bool> CodedInputStream::ReadVarint64Fallback() { |
| 599 | if (BufferSize() >= kMaxVarintBytes || |
| 600 | // Optimization: We're also safe if the buffer is non-empty and it ends |
| 601 | // with a byte that would terminate a varint. |
| 602 | (buffer_end_ > buffer_ && !(buffer_end_[-1] & 0x80))) { |
| 603 | uint64_t temp; |
| 604 | ::std::pair<bool, const uint8_t*> p = ReadVarint64FromArray(buffer: buffer_, value: &temp); |
| 605 | if (!p.first) { |
| 606 | return std::make_pair(x: 0, y: false); |
| 607 | } |
| 608 | buffer_ = p.second; |
| 609 | return std::make_pair(x&: temp, y: true); |
| 610 | } else { |
| 611 | uint64_t temp; |
| 612 | bool success = ReadVarint64Slow(value: &temp); |
| 613 | return std::make_pair(x&: temp, y&: success); |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | bool CodedInputStream::Refresh() { |
| 618 | GOOGLE_DCHECK_EQ(0, BufferSize()); |
| 619 | |
| 620 | if (buffer_size_after_limit_ > 0 || overflow_bytes_ > 0 || |
| 621 | total_bytes_read_ == current_limit_) { |
| 622 | // We've hit a limit. Stop. |
| 623 | int current_position = total_bytes_read_ - buffer_size_after_limit_; |
| 624 | |
| 625 | if (current_position >= total_bytes_limit_ && |
| 626 | total_bytes_limit_ != current_limit_) { |
| 627 | // Hit total_bytes_limit_. |
| 628 | PrintTotalBytesLimitError(); |
| 629 | } |
| 630 | |
| 631 | return false; |
| 632 | } |
| 633 | |
| 634 | const void* void_buffer; |
| 635 | int buffer_size; |
| 636 | if (NextNonEmpty(input: input_, data: &void_buffer, size: &buffer_size)) { |
| 637 | buffer_ = reinterpret_cast<const uint8_t*>(void_buffer); |
| 638 | buffer_end_ = buffer_ + buffer_size; |
| 639 | GOOGLE_CHECK_GE(buffer_size, 0); |
| 640 | |
| 641 | if (total_bytes_read_ <= INT_MAX - buffer_size) { |
| 642 | total_bytes_read_ += buffer_size; |
| 643 | } else { |
| 644 | // Overflow. Reset buffer_end_ to not include the bytes beyond INT_MAX. |
| 645 | // We can't get that far anyway, because total_bytes_limit_ is guaranteed |
| 646 | // to be less than it. We need to keep track of the number of bytes |
| 647 | // we discarded, though, so that we can call input_->BackUp() to back |
| 648 | // up over them on destruction. |
| 649 | |
| 650 | // The following line is equivalent to: |
| 651 | // overflow_bytes_ = total_bytes_read_ + buffer_size - INT_MAX; |
| 652 | // except that it avoids overflows. Signed integer overflow has |
| 653 | // undefined results according to the C standard. |
| 654 | overflow_bytes_ = total_bytes_read_ - (INT_MAX - buffer_size); |
| 655 | buffer_end_ -= overflow_bytes_; |
| 656 | total_bytes_read_ = INT_MAX; |
| 657 | } |
| 658 | |
| 659 | RecomputeBufferLimits(); |
| 660 | return true; |
| 661 | } else { |
| 662 | buffer_ = NULL; |
| 663 | buffer_end_ = NULL; |
| 664 | return false; |
| 665 | } |
| 666 | } |
| 667 | |
| 668 | // CodedOutputStream ================================================= |
| 669 | |
| 670 | void EpsCopyOutputStream::EnableAliasing(bool enabled) { |
| 671 | aliasing_enabled_ = enabled && stream_->AllowsAliasing(); |
| 672 | } |
| 673 | |
| 674 | int64_t EpsCopyOutputStream::ByteCount(uint8_t* ptr) const { |
| 675 | // Calculate the current offset relative to the end of the stream buffer. |
| 676 | int delta = (end_ - ptr) + (buffer_end_ ? 0 : kSlopBytes); |
| 677 | return stream_->ByteCount() - delta; |
| 678 | } |
| 679 | |
| 680 | // Flushes what's written out to the underlying ZeroCopyOutputStream buffers. |
| 681 | // Returns the size remaining in the buffer and sets buffer_end_ to the start |
| 682 | // of the remaining buffer, ie. [buffer_end_, buffer_end_ + return value) |
| 683 | int EpsCopyOutputStream::Flush(uint8_t* ptr) { |
| 684 | while (buffer_end_ && ptr > end_) { |
| 685 | int overrun = ptr - end_; |
| 686 | GOOGLE_DCHECK(!had_error_); |
| 687 | GOOGLE_DCHECK(overrun <= kSlopBytes); // NOLINT |
| 688 | ptr = Next() + overrun; |
| 689 | if (had_error_) return 0; |
| 690 | } |
| 691 | int s; |
| 692 | if (buffer_end_) { |
| 693 | std::memcpy(dest: buffer_end_, src: buffer_, n: ptr - buffer_); |
| 694 | buffer_end_ += ptr - buffer_; |
| 695 | s = end_ - ptr; |
| 696 | } else { |
| 697 | // The stream is writing directly in the ZeroCopyOutputStream buffer. |
| 698 | s = end_ + kSlopBytes - ptr; |
| 699 | buffer_end_ = ptr; |
| 700 | } |
| 701 | GOOGLE_DCHECK(s >= 0); // NOLINT |
| 702 | return s; |
| 703 | } |
| 704 | |
| 705 | uint8_t* EpsCopyOutputStream::Trim(uint8_t* ptr) { |
| 706 | if (had_error_) return ptr; |
| 707 | int s = Flush(ptr); |
| 708 | stream_->BackUp(count: s); |
| 709 | // Reset to initial state (expecting new buffer) |
| 710 | buffer_end_ = end_ = buffer_; |
| 711 | return buffer_; |
| 712 | } |
| 713 | |
| 714 | |
| 715 | uint8_t* EpsCopyOutputStream::FlushAndResetBuffer(uint8_t* ptr) { |
| 716 | if (had_error_) return buffer_; |
| 717 | int s = Flush(ptr); |
| 718 | if (had_error_) return buffer_; |
| 719 | return SetInitialBuffer(data: buffer_end_, size: s); |
| 720 | } |
| 721 | |
| 722 | bool EpsCopyOutputStream::Skip(int count, uint8_t** pp) { |
| 723 | if (count < 0) return false; |
| 724 | if (had_error_) { |
| 725 | *pp = buffer_; |
| 726 | return false; |
| 727 | } |
| 728 | int size = Flush(ptr: *pp); |
| 729 | if (had_error_) { |
| 730 | *pp = buffer_; |
| 731 | return false; |
| 732 | } |
| 733 | void* data = buffer_end_; |
| 734 | while (count > size) { |
| 735 | count -= size; |
| 736 | if (!stream_->Next(data: &data, size: &size)) { |
| 737 | *pp = Error(); |
| 738 | return false; |
| 739 | } |
| 740 | } |
| 741 | *pp = SetInitialBuffer(data: static_cast<uint8_t*>(data) + count, size: size - count); |
| 742 | return true; |
| 743 | } |
| 744 | |
| 745 | bool EpsCopyOutputStream::GetDirectBufferPointer(void** data, int* size, |
| 746 | uint8_t** pp) { |
| 747 | if (had_error_) { |
| 748 | *pp = buffer_; |
| 749 | return false; |
| 750 | } |
| 751 | *size = Flush(ptr: *pp); |
| 752 | if (had_error_) { |
| 753 | *pp = buffer_; |
| 754 | return false; |
| 755 | } |
| 756 | *data = buffer_end_; |
| 757 | while (*size == 0) { |
| 758 | if (!stream_->Next(data, size)) { |
| 759 | *pp = Error(); |
| 760 | return false; |
| 761 | } |
| 762 | } |
| 763 | *pp = SetInitialBuffer(data: *data, size: *size); |
| 764 | return true; |
| 765 | } |
| 766 | |
| 767 | uint8_t* EpsCopyOutputStream::GetDirectBufferForNBytesAndAdvance(int size, |
| 768 | uint8_t** pp) { |
| 769 | if (had_error_) { |
| 770 | *pp = buffer_; |
| 771 | return nullptr; |
| 772 | } |
| 773 | int s = Flush(ptr: *pp); |
| 774 | if (had_error_) { |
| 775 | *pp = buffer_; |
| 776 | return nullptr; |
| 777 | } |
| 778 | if (s >= size) { |
| 779 | auto res = buffer_end_; |
| 780 | *pp = SetInitialBuffer(data: buffer_end_ + size, size: s - size); |
| 781 | return res; |
| 782 | } else { |
| 783 | *pp = SetInitialBuffer(data: buffer_end_, size: s); |
| 784 | return nullptr; |
| 785 | } |
| 786 | } |
| 787 | |
| 788 | uint8_t* EpsCopyOutputStream::Next() { |
| 789 | GOOGLE_DCHECK(!had_error_); // NOLINT |
| 790 | if (PROTOBUF_PREDICT_FALSE(stream_ == nullptr)) return Error(); |
| 791 | if (buffer_end_) { |
| 792 | // We're in the patch buffer and need to fill up the previous buffer. |
| 793 | std::memcpy(dest: buffer_end_, src: buffer_, n: end_ - buffer_); |
| 794 | uint8_t* ptr; |
| 795 | int size; |
| 796 | do { |
| 797 | void* data; |
| 798 | if (PROTOBUF_PREDICT_FALSE(!stream_->Next(&data, &size))) { |
| 799 | // Stream has an error, we use the patch buffer to continue to be |
| 800 | // able to write. |
| 801 | return Error(); |
| 802 | } |
| 803 | ptr = static_cast<uint8_t*>(data); |
| 804 | } while (size == 0); |
| 805 | if (PROTOBUF_PREDICT_TRUE(size > kSlopBytes)) { |
| 806 | std::memcpy(dest: ptr, src: end_, n: kSlopBytes); |
| 807 | end_ = ptr + size - kSlopBytes; |
| 808 | buffer_end_ = nullptr; |
| 809 | return ptr; |
| 810 | } else { |
| 811 | GOOGLE_DCHECK(size > 0); // NOLINT |
| 812 | // Buffer to small |
| 813 | std::memmove(dest: buffer_, src: end_, n: kSlopBytes); |
| 814 | buffer_end_ = ptr; |
| 815 | end_ = buffer_ + size; |
| 816 | return buffer_; |
| 817 | } |
| 818 | } else { |
| 819 | std::memcpy(dest: buffer_, src: end_, n: kSlopBytes); |
| 820 | buffer_end_ = end_; |
| 821 | end_ = buffer_ + kSlopBytes; |
| 822 | return buffer_; |
| 823 | } |
| 824 | } |
| 825 | |
| 826 | uint8_t* EpsCopyOutputStream::EnsureSpaceFallback(uint8_t* ptr) { |
| 827 | do { |
| 828 | if (PROTOBUF_PREDICT_FALSE(had_error_)) return buffer_; |
| 829 | int overrun = ptr - end_; |
| 830 | GOOGLE_DCHECK(overrun >= 0); // NOLINT |
| 831 | GOOGLE_DCHECK(overrun <= kSlopBytes); // NOLINT |
| 832 | ptr = Next() + overrun; |
| 833 | } while (ptr >= end_); |
| 834 | GOOGLE_DCHECK(ptr < end_); // NOLINT |
| 835 | return ptr; |
| 836 | } |
| 837 | |
| 838 | uint8_t* EpsCopyOutputStream::WriteRawFallback(const void* data, int size, |
| 839 | uint8_t* ptr) { |
| 840 | int s = GetSize(ptr); |
| 841 | while (s < size) { |
| 842 | std::memcpy(dest: ptr, src: data, n: s); |
| 843 | size -= s; |
| 844 | data = static_cast<const uint8_t*>(data) + s; |
| 845 | ptr = EnsureSpaceFallback(ptr: ptr + s); |
| 846 | s = GetSize(ptr); |
| 847 | } |
| 848 | std::memcpy(dest: ptr, src: data, n: size); |
| 849 | return ptr + size; |
| 850 | } |
| 851 | |
| 852 | uint8_t* EpsCopyOutputStream::WriteAliasedRaw(const void* data, int size, |
| 853 | uint8_t* ptr) { |
| 854 | if (size < GetSize(ptr) |
| 855 | ) { |
| 856 | return WriteRaw(data, size, ptr); |
| 857 | } else { |
| 858 | ptr = Trim(ptr); |
| 859 | if (stream_->WriteAliasedRaw(data, size)) return ptr; |
| 860 | return Error(); |
| 861 | } |
| 862 | } |
| 863 | |
| 864 | #ifndef PROTOBUF_LITTLE_ENDIAN |
| 865 | uint8_t* EpsCopyOutputStream::WriteRawLittleEndian32(const void* data, int size, |
| 866 | uint8_t* ptr) { |
| 867 | auto p = static_cast<const uint8_t*>(data); |
| 868 | auto end = p + size; |
| 869 | while (end - p >= kSlopBytes) { |
| 870 | ptr = EnsureSpace(ptr); |
| 871 | uint32_t buffer[4]; |
| 872 | static_assert(sizeof(buffer) == kSlopBytes, "Buffer must be kSlopBytes" ); |
| 873 | std::memcpy(buffer, p, kSlopBytes); |
| 874 | p += kSlopBytes; |
| 875 | for (auto x : buffer) |
| 876 | ptr = CodedOutputStream::WriteLittleEndian32ToArray(x, ptr); |
| 877 | } |
| 878 | while (p < end) { |
| 879 | ptr = EnsureSpace(ptr); |
| 880 | uint32_t buffer; |
| 881 | std::memcpy(&buffer, p, 4); |
| 882 | p += 4; |
| 883 | ptr = CodedOutputStream::WriteLittleEndian32ToArray(buffer, ptr); |
| 884 | } |
| 885 | return ptr; |
| 886 | } |
| 887 | |
| 888 | uint8_t* EpsCopyOutputStream::WriteRawLittleEndian64(const void* data, int size, |
| 889 | uint8_t* ptr) { |
| 890 | auto p = static_cast<const uint8_t*>(data); |
| 891 | auto end = p + size; |
| 892 | while (end - p >= kSlopBytes) { |
| 893 | ptr = EnsureSpace(ptr); |
| 894 | uint64_t buffer[2]; |
| 895 | static_assert(sizeof(buffer) == kSlopBytes, "Buffer must be kSlopBytes" ); |
| 896 | std::memcpy(buffer, p, kSlopBytes); |
| 897 | p += kSlopBytes; |
| 898 | for (auto x : buffer) |
| 899 | ptr = CodedOutputStream::WriteLittleEndian64ToArray(x, ptr); |
| 900 | } |
| 901 | while (p < end) { |
| 902 | ptr = EnsureSpace(ptr); |
| 903 | uint64_t buffer; |
| 904 | std::memcpy(&buffer, p, 8); |
| 905 | p += 8; |
| 906 | ptr = CodedOutputStream::WriteLittleEndian64ToArray(buffer, ptr); |
| 907 | } |
| 908 | return ptr; |
| 909 | } |
| 910 | #endif |
| 911 | |
| 912 | |
| 913 | uint8_t* EpsCopyOutputStream::WriteStringMaybeAliasedOutline(uint32_t num, |
| 914 | const std::string& s, |
| 915 | uint8_t* ptr) { |
| 916 | ptr = EnsureSpace(ptr); |
| 917 | uint32_t size = s.size(); |
| 918 | ptr = WriteLengthDelim(num, size, ptr); |
| 919 | return WriteRawMaybeAliased(data: s.data(), size, ptr); |
| 920 | } |
| 921 | |
| 922 | uint8_t* EpsCopyOutputStream::WriteStringOutline(uint32_t num, const std::string& s, |
| 923 | uint8_t* ptr) { |
| 924 | ptr = EnsureSpace(ptr); |
| 925 | uint32_t size = s.size(); |
| 926 | ptr = WriteLengthDelim(num, size, ptr); |
| 927 | return WriteRaw(data: s.data(), size, ptr); |
| 928 | } |
| 929 | |
| 930 | std::atomic<bool> CodedOutputStream::default_serialization_deterministic_{ |
| 931 | false}; |
| 932 | |
| 933 | CodedOutputStream::~CodedOutputStream() { Trim(); } |
| 934 | |
| 935 | |
| 936 | uint8_t* CodedOutputStream::WriteStringWithSizeToArray(const std::string& str, |
| 937 | uint8_t* target) { |
| 938 | GOOGLE_DCHECK_LE(str.size(), std::numeric_limits<uint32_t>::max()); |
| 939 | target = WriteVarint32ToArray(value: str.size(), target); |
| 940 | return WriteStringToArray(str, target); |
| 941 | } |
| 942 | |
| 943 | uint8_t* CodedOutputStream::WriteVarint32ToArrayOutOfLineHelper(uint32_t value, |
| 944 | uint8_t* target) { |
| 945 | GOOGLE_DCHECK_GE(value, 0x80); |
| 946 | target[0] |= static_cast<uint8_t>(0x80); |
| 947 | value >>= 7; |
| 948 | target[1] = static_cast<uint8_t>(value); |
| 949 | if (value < 0x80) { |
| 950 | return target + 2; |
| 951 | } |
| 952 | target += 2; |
| 953 | do { |
| 954 | // Turn on continuation bit in the byte we just wrote. |
| 955 | target[-1] |= static_cast<uint8_t>(0x80); |
| 956 | value >>= 7; |
| 957 | *target = static_cast<uint8_t>(value); |
| 958 | ++target; |
| 959 | } while (value >= 0x80); |
| 960 | return target; |
| 961 | } |
| 962 | |
| 963 | } // namespace io |
| 964 | } // namespace protobuf |
| 965 | } // namespace google |
| 966 | |
| 967 | #include <google/protobuf/port_undef.inc> |
| 968 | |