| 1 | // Protocol Buffers - Google's data interchange format |
| 2 | // Copyright 2008 Google Inc. All rights reserved. |
| 3 | // https://developers.google.com/protocol-buffers/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are |
| 7 | // met: |
| 8 | // |
| 9 | // * Redistributions of source code must retain the above copyright |
| 10 | // notice, this list of conditions and the following disclaimer. |
| 11 | // * Redistributions in binary form must reproduce the above |
| 12 | // copyright notice, this list of conditions and the following disclaimer |
| 13 | // in the documentation and/or other materials provided with the |
| 14 | // distribution. |
| 15 | // * Neither the name of Google Inc. nor the names of its |
| 16 | // contributors may be used to endorse or promote products derived from |
| 17 | // this software without specific prior written permission. |
| 18 | // |
| 19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | |
| 31 | #include <google/protobuf/util/time_util.h> |
| 32 | |
| 33 | #include <cstdint> |
| 34 | |
| 35 | #include <google/protobuf/stubs/strutil.h> |
| 36 | #include <google/protobuf/duration.pb.h> |
| 37 | #include <google/protobuf/timestamp.pb.h> |
| 38 | #include <google/protobuf/stubs/int128.h> |
| 39 | #include <google/protobuf/stubs/stringprintf.h> |
| 40 | #include <google/protobuf/stubs/time.h> |
| 41 | |
| 42 | // Must go after other includes. |
| 43 | #include <google/protobuf/port_def.inc> |
| 44 | |
| 45 | namespace google { |
| 46 | namespace protobuf { |
| 47 | namespace util { |
| 48 | |
| 49 | using google::protobuf::Duration; |
| 50 | using google::protobuf::Timestamp; |
| 51 | |
| 52 | namespace { |
| 53 | static const int kNanosPerSecond = 1000000000; |
| 54 | static const int kMicrosPerSecond = 1000000; |
| 55 | static const int kMillisPerSecond = 1000; |
| 56 | static const int kNanosPerMillisecond = 1000000; |
| 57 | static const int kNanosPerMicrosecond = 1000; |
| 58 | static const int kSecondsPerMinute = 60; // Note that we ignore leap seconds. |
| 59 | static const int kSecondsPerHour = 3600; |
| 60 | |
| 61 | template <typename T> |
| 62 | T CreateNormalized(int64_t seconds, int64_t nanos); |
| 63 | |
| 64 | template <> |
| 65 | Timestamp CreateNormalized(int64_t seconds, int64_t nanos) { |
| 66 | // Make sure nanos is in the range. |
| 67 | if (nanos <= -kNanosPerSecond || nanos >= kNanosPerSecond) { |
| 68 | seconds += nanos / kNanosPerSecond; |
| 69 | nanos = nanos % kNanosPerSecond; |
| 70 | } |
| 71 | // For Timestamp nanos should be in the range [0, 999999999] |
| 72 | if (nanos < 0) { |
| 73 | seconds -= 1; |
| 74 | nanos += kNanosPerSecond; |
| 75 | } |
| 76 | GOOGLE_DCHECK(seconds >= TimeUtil::kTimestampMinSeconds && |
| 77 | seconds <= TimeUtil::kTimestampMaxSeconds); |
| 78 | Timestamp result; |
| 79 | result.set_seconds(seconds); |
| 80 | result.set_nanos(static_cast<int32_t>(nanos)); |
| 81 | return result; |
| 82 | } |
| 83 | |
| 84 | template <> |
| 85 | Duration CreateNormalized(int64_t seconds, int64_t nanos) { |
| 86 | // Make sure nanos is in the range. |
| 87 | if (nanos <= -kNanosPerSecond || nanos >= kNanosPerSecond) { |
| 88 | seconds += nanos / kNanosPerSecond; |
| 89 | nanos = nanos % kNanosPerSecond; |
| 90 | } |
| 91 | // nanos should have the same sign as seconds. |
| 92 | if (seconds < 0 && nanos > 0) { |
| 93 | seconds += 1; |
| 94 | nanos -= kNanosPerSecond; |
| 95 | } else if (seconds > 0 && nanos < 0) { |
| 96 | seconds -= 1; |
| 97 | nanos += kNanosPerSecond; |
| 98 | } |
| 99 | GOOGLE_DCHECK(seconds >= TimeUtil::kDurationMinSeconds && |
| 100 | seconds <= TimeUtil::kDurationMaxSeconds); |
| 101 | Duration result; |
| 102 | result.set_seconds(seconds); |
| 103 | result.set_nanos(static_cast<int32_t>(nanos)); |
| 104 | return result; |
| 105 | } |
| 106 | |
| 107 | // Format nanoseconds with either 3, 6, or 9 digits depending on the required |
| 108 | // precision to represent the exact value. |
| 109 | std::string FormatNanos(int32_t nanos) { |
| 110 | if (nanos % kNanosPerMillisecond == 0) { |
| 111 | return StringPrintf(format: "%03d" , nanos / kNanosPerMillisecond); |
| 112 | } else if (nanos % kNanosPerMicrosecond == 0) { |
| 113 | return StringPrintf(format: "%06d" , nanos / kNanosPerMicrosecond); |
| 114 | } else { |
| 115 | return StringPrintf(format: "%09d" , nanos); |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | std::string FormatTime(int64_t seconds, int32_t nanos) { |
| 120 | return ::google::protobuf::internal::FormatTime(seconds, nanos); |
| 121 | } |
| 122 | |
| 123 | bool ParseTime(const std::string& value, int64_t* seconds, int32_t* nanos) { |
| 124 | return ::google::protobuf::internal::ParseTime(value, seconds, nanos); |
| 125 | } |
| 126 | |
| 127 | void CurrentTime(int64_t* seconds, int32_t* nanos) { |
| 128 | return ::google::protobuf::internal::GetCurrentTime(seconds, nanos); |
| 129 | } |
| 130 | |
| 131 | // Truncates the remainder part after division. |
| 132 | int64_t RoundTowardZero(int64_t value, int64_t divider) { |
| 133 | int64_t result = value / divider; |
| 134 | int64_t remainder = value % divider; |
| 135 | // Before C++11, the sign of the remainder is implementation dependent if |
| 136 | // any of the operands is negative. Here we try to enforce C++11's "rounded |
| 137 | // toward zero" semantics. For example, for (-5) / 2 an implementation may |
| 138 | // give -3 as the result with the remainder being 1. This function ensures |
| 139 | // we always return -2 (closer to zero) regardless of the implementation. |
| 140 | if (result < 0 && remainder > 0) { |
| 141 | return result + 1; |
| 142 | } else { |
| 143 | return result; |
| 144 | } |
| 145 | } |
| 146 | } // namespace |
| 147 | |
| 148 | // Actually define these static const integers. Required by C++ standard (but |
| 149 | // some compilers don't like it). |
| 150 | #ifndef _MSC_VER |
| 151 | const int64_t TimeUtil::kTimestampMinSeconds; |
| 152 | const int64_t TimeUtil::kTimestampMaxSeconds; |
| 153 | const int64_t TimeUtil::kDurationMaxSeconds; |
| 154 | const int64_t TimeUtil::kDurationMinSeconds; |
| 155 | #endif // !_MSC_VER |
| 156 | |
| 157 | std::string TimeUtil::ToString(const Timestamp& timestamp) { |
| 158 | return FormatTime(seconds: timestamp.seconds(), nanos: timestamp.nanos()); |
| 159 | } |
| 160 | |
| 161 | bool TimeUtil::FromString(const std::string& value, Timestamp* timestamp) { |
| 162 | int64_t seconds; |
| 163 | int32_t nanos; |
| 164 | if (!ParseTime(value, seconds: &seconds, nanos: &nanos)) { |
| 165 | return false; |
| 166 | } |
| 167 | *timestamp = CreateNormalized<Timestamp>(seconds, nanos); |
| 168 | return true; |
| 169 | } |
| 170 | |
| 171 | Timestamp TimeUtil::GetCurrentTime() { |
| 172 | int64_t seconds; |
| 173 | int32_t nanos; |
| 174 | CurrentTime(seconds: &seconds, nanos: &nanos); |
| 175 | return CreateNormalized<Timestamp>(seconds, nanos); |
| 176 | } |
| 177 | |
| 178 | Timestamp TimeUtil::GetEpoch() { return Timestamp(); } |
| 179 | |
| 180 | std::string TimeUtil::ToString(const Duration& duration) { |
| 181 | std::string result; |
| 182 | int64_t seconds = duration.seconds(); |
| 183 | int32_t nanos = duration.nanos(); |
| 184 | if (seconds < 0 || nanos < 0) { |
| 185 | result += "-" ; |
| 186 | seconds = -seconds; |
| 187 | nanos = -nanos; |
| 188 | } |
| 189 | result += StrCat(a: seconds); |
| 190 | if (nanos != 0) { |
| 191 | result += "." + FormatNanos(nanos); |
| 192 | } |
| 193 | result += "s" ; |
| 194 | return result; |
| 195 | } |
| 196 | |
| 197 | static int64_t Pow(int64_t x, int y) { |
| 198 | int64_t result = 1; |
| 199 | for (int i = 0; i < y; ++i) { |
| 200 | result *= x; |
| 201 | } |
| 202 | return result; |
| 203 | } |
| 204 | |
| 205 | bool TimeUtil::FromString(const std::string& value, Duration* duration) { |
| 206 | if (value.length() <= 1 || value[value.length() - 1] != 's') { |
| 207 | return false; |
| 208 | } |
| 209 | bool negative = (value[0] == '-'); |
| 210 | size_t sign_length = (negative ? 1 : 0); |
| 211 | // Parse the duration value as two integers rather than a float value |
| 212 | // to avoid precision loss. |
| 213 | std::string seconds_part, nanos_part; |
| 214 | size_t pos = value.find_last_of(c: '.'); |
| 215 | if (pos == std::string::npos) { |
| 216 | seconds_part = value.substr(pos: sign_length, n: value.length() - 1 - sign_length); |
| 217 | nanos_part = "0" ; |
| 218 | } else { |
| 219 | seconds_part = value.substr(pos: sign_length, n: pos - sign_length); |
| 220 | nanos_part = value.substr(pos: pos + 1, n: value.length() - pos - 2); |
| 221 | } |
| 222 | char* end; |
| 223 | int64_t seconds = strto64(nptr: seconds_part.c_str(), endptr: &end, base: 10); |
| 224 | if (end != seconds_part.c_str() + seconds_part.length()) { |
| 225 | return false; |
| 226 | } |
| 227 | int64_t nanos = strto64(nptr: nanos_part.c_str(), endptr: &end, base: 10); |
| 228 | if (end != nanos_part.c_str() + nanos_part.length()) { |
| 229 | return false; |
| 230 | } |
| 231 | nanos = nanos * Pow(x: 10, y: static_cast<int>(9 - nanos_part.length())); |
| 232 | if (negative) { |
| 233 | // If a Duration is negative, both seconds and nanos should be negative. |
| 234 | seconds = -seconds; |
| 235 | nanos = -nanos; |
| 236 | } |
| 237 | duration->set_seconds(seconds); |
| 238 | duration->set_nanos(static_cast<int32_t>(nanos)); |
| 239 | return true; |
| 240 | } |
| 241 | |
| 242 | Duration TimeUtil::NanosecondsToDuration(int64_t nanos) { |
| 243 | return CreateNormalized<Duration>(seconds: nanos / kNanosPerSecond, |
| 244 | nanos: nanos % kNanosPerSecond); |
| 245 | } |
| 246 | |
| 247 | Duration TimeUtil::MicrosecondsToDuration(int64_t micros) { |
| 248 | return CreateNormalized<Duration>( |
| 249 | seconds: micros / kMicrosPerSecond, |
| 250 | nanos: (micros % kMicrosPerSecond) * kNanosPerMicrosecond); |
| 251 | } |
| 252 | |
| 253 | Duration TimeUtil::MillisecondsToDuration(int64_t millis) { |
| 254 | return CreateNormalized<Duration>( |
| 255 | seconds: millis / kMillisPerSecond, |
| 256 | nanos: (millis % kMillisPerSecond) * kNanosPerMillisecond); |
| 257 | } |
| 258 | |
| 259 | Duration TimeUtil::SecondsToDuration(int64_t seconds) { |
| 260 | return CreateNormalized<Duration>(seconds, nanos: 0); |
| 261 | } |
| 262 | |
| 263 | Duration TimeUtil::MinutesToDuration(int64_t minutes) { |
| 264 | return CreateNormalized<Duration>(seconds: minutes * kSecondsPerMinute, nanos: 0); |
| 265 | } |
| 266 | |
| 267 | Duration TimeUtil::HoursToDuration(int64_t hours) { |
| 268 | return CreateNormalized<Duration>(seconds: hours * kSecondsPerHour, nanos: 0); |
| 269 | } |
| 270 | |
| 271 | int64_t TimeUtil::DurationToNanoseconds(const Duration& duration) { |
| 272 | return duration.seconds() * kNanosPerSecond + duration.nanos(); |
| 273 | } |
| 274 | |
| 275 | int64_t TimeUtil::DurationToMicroseconds(const Duration& duration) { |
| 276 | return duration.seconds() * kMicrosPerSecond + |
| 277 | RoundTowardZero(value: duration.nanos(), divider: kNanosPerMicrosecond); |
| 278 | } |
| 279 | |
| 280 | int64_t TimeUtil::DurationToMilliseconds(const Duration& duration) { |
| 281 | return duration.seconds() * kMillisPerSecond + |
| 282 | RoundTowardZero(value: duration.nanos(), divider: kNanosPerMillisecond); |
| 283 | } |
| 284 | |
| 285 | int64_t TimeUtil::DurationToSeconds(const Duration& duration) { |
| 286 | return duration.seconds(); |
| 287 | } |
| 288 | |
| 289 | int64_t TimeUtil::DurationToMinutes(const Duration& duration) { |
| 290 | return RoundTowardZero(value: duration.seconds(), divider: kSecondsPerMinute); |
| 291 | } |
| 292 | |
| 293 | int64_t TimeUtil::DurationToHours(const Duration& duration) { |
| 294 | return RoundTowardZero(value: duration.seconds(), divider: kSecondsPerHour); |
| 295 | } |
| 296 | |
| 297 | Timestamp TimeUtil::NanosecondsToTimestamp(int64_t nanos) { |
| 298 | return CreateNormalized<Timestamp>(seconds: nanos / kNanosPerSecond, |
| 299 | nanos: nanos % kNanosPerSecond); |
| 300 | } |
| 301 | |
| 302 | Timestamp TimeUtil::MicrosecondsToTimestamp(int64_t micros) { |
| 303 | return CreateNormalized<Timestamp>( |
| 304 | seconds: micros / kMicrosPerSecond, |
| 305 | nanos: micros % kMicrosPerSecond * kNanosPerMicrosecond); |
| 306 | } |
| 307 | |
| 308 | Timestamp TimeUtil::MillisecondsToTimestamp(int64_t millis) { |
| 309 | return CreateNormalized<Timestamp>( |
| 310 | seconds: millis / kMillisPerSecond, |
| 311 | nanos: millis % kMillisPerSecond * kNanosPerMillisecond); |
| 312 | } |
| 313 | |
| 314 | Timestamp TimeUtil::SecondsToTimestamp(int64_t seconds) { |
| 315 | return CreateNormalized<Timestamp>(seconds, nanos: 0); |
| 316 | } |
| 317 | |
| 318 | int64_t TimeUtil::TimestampToNanoseconds(const Timestamp& timestamp) { |
| 319 | return timestamp.seconds() * kNanosPerSecond + timestamp.nanos(); |
| 320 | } |
| 321 | |
| 322 | int64_t TimeUtil::TimestampToMicroseconds(const Timestamp& timestamp) { |
| 323 | return timestamp.seconds() * kMicrosPerSecond + |
| 324 | RoundTowardZero(value: timestamp.nanos(), divider: kNanosPerMicrosecond); |
| 325 | } |
| 326 | |
| 327 | int64_t TimeUtil::TimestampToMilliseconds(const Timestamp& timestamp) { |
| 328 | return timestamp.seconds() * kMillisPerSecond + |
| 329 | RoundTowardZero(value: timestamp.nanos(), divider: kNanosPerMillisecond); |
| 330 | } |
| 331 | |
| 332 | int64_t TimeUtil::TimestampToSeconds(const Timestamp& timestamp) { |
| 333 | return timestamp.seconds(); |
| 334 | } |
| 335 | |
| 336 | Timestamp TimeUtil::TimeTToTimestamp(time_t value) { |
| 337 | return CreateNormalized<Timestamp>(seconds: static_cast<int64_t>(value), nanos: 0); |
| 338 | } |
| 339 | |
| 340 | time_t TimeUtil::TimestampToTimeT(const Timestamp& value) { |
| 341 | return static_cast<time_t>(value.seconds()); |
| 342 | } |
| 343 | |
| 344 | Timestamp TimeUtil::TimevalToTimestamp(const timeval& value) { |
| 345 | return CreateNormalized<Timestamp>(seconds: value.tv_sec, |
| 346 | nanos: value.tv_usec * kNanosPerMicrosecond); |
| 347 | } |
| 348 | |
| 349 | timeval TimeUtil::TimestampToTimeval(const Timestamp& value) { |
| 350 | timeval result; |
| 351 | result.tv_sec = value.seconds(); |
| 352 | result.tv_usec = RoundTowardZero(value: value.nanos(), divider: kNanosPerMicrosecond); |
| 353 | return result; |
| 354 | } |
| 355 | |
| 356 | Duration TimeUtil::TimevalToDuration(const timeval& value) { |
| 357 | return CreateNormalized<Duration>(seconds: value.tv_sec, |
| 358 | nanos: value.tv_usec * kNanosPerMicrosecond); |
| 359 | } |
| 360 | |
| 361 | timeval TimeUtil::DurationToTimeval(const Duration& value) { |
| 362 | timeval result; |
| 363 | result.tv_sec = value.seconds(); |
| 364 | result.tv_usec = RoundTowardZero(value: value.nanos(), divider: kNanosPerMicrosecond); |
| 365 | // timeval.tv_usec's range is [0, 1000000) |
| 366 | if (result.tv_usec < 0) { |
| 367 | result.tv_sec -= 1; |
| 368 | result.tv_usec += kMicrosPerSecond; |
| 369 | } |
| 370 | return result; |
| 371 | } |
| 372 | |
| 373 | } // namespace util |
| 374 | } // namespace protobuf |
| 375 | } // namespace google |
| 376 | |
| 377 | namespace google { |
| 378 | namespace protobuf { |
| 379 | namespace { |
| 380 | using ::PROTOBUF_NAMESPACE_ID::util::CreateNormalized; |
| 381 | using ::PROTOBUF_NAMESPACE_ID::util::kNanosPerSecond; |
| 382 | |
| 383 | // Convert a Duration to uint128. |
| 384 | void ToUint128(const Duration& value, uint128* result, bool* negative) { |
| 385 | if (value.seconds() < 0 || value.nanos() < 0) { |
| 386 | *negative = true; |
| 387 | *result = static_cast<uint64_t>(-value.seconds()); |
| 388 | *result = *result * kNanosPerSecond + static_cast<uint32_t>(-value.nanos()); |
| 389 | } else { |
| 390 | *negative = false; |
| 391 | *result = static_cast<uint64_t>(value.seconds()); |
| 392 | *result = *result * kNanosPerSecond + static_cast<uint32_t>(value.nanos()); |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | void ToDuration(const uint128& value, bool negative, Duration* duration) { |
| 397 | int64_t seconds = |
| 398 | static_cast<int64_t>(Uint128Low64(v: value / kNanosPerSecond)); |
| 399 | int32_t nanos = |
| 400 | static_cast<int32_t>(Uint128Low64(v: value % kNanosPerSecond)); |
| 401 | if (negative) { |
| 402 | seconds = -seconds; |
| 403 | nanos = -nanos; |
| 404 | } |
| 405 | duration->set_seconds(seconds); |
| 406 | duration->set_nanos(nanos); |
| 407 | } |
| 408 | } // namespace |
| 409 | |
| 410 | Duration& operator+=(Duration& d1, const Duration& d2) { |
| 411 | d1 = CreateNormalized<Duration>(seconds: d1.seconds() + d2.seconds(), |
| 412 | nanos: d1.nanos() + d2.nanos()); |
| 413 | return d1; |
| 414 | } |
| 415 | |
| 416 | Duration& operator-=(Duration& d1, const Duration& d2) { // NOLINT |
| 417 | d1 = CreateNormalized<Duration>(seconds: d1.seconds() - d2.seconds(), |
| 418 | nanos: d1.nanos() - d2.nanos()); |
| 419 | return d1; |
| 420 | } |
| 421 | |
| 422 | Duration& operator*=(Duration& d, int64_t r) { // NOLINT |
| 423 | bool negative; |
| 424 | uint128 value; |
| 425 | ToUint128(value: d, result: &value, negative: &negative); |
| 426 | if (r > 0) { |
| 427 | value *= static_cast<uint64_t>(r); |
| 428 | } else { |
| 429 | negative = !negative; |
| 430 | value *= static_cast<uint64_t>(-r); |
| 431 | } |
| 432 | ToDuration(value, negative, duration: &d); |
| 433 | return d; |
| 434 | } |
| 435 | |
| 436 | Duration& operator*=(Duration& d, double r) { // NOLINT |
| 437 | double result = |
| 438 | (static_cast<double>(d.seconds()) + d.nanos() * (1.0 / kNanosPerSecond)) * |
| 439 | r; |
| 440 | int64_t seconds = static_cast<int64_t>(result); |
| 441 | int32_t nanos = static_cast<int32_t>((result - static_cast<double>(seconds)) * |
| 442 | kNanosPerSecond); |
| 443 | // Note that we normalize here not just because nanos can have a different |
| 444 | // sign from seconds but also that nanos can be any arbitrary value when |
| 445 | // overflow happens (i.e., the result is a much larger value than what |
| 446 | // int64 can represent). |
| 447 | d = CreateNormalized<Duration>(seconds, nanos); |
| 448 | return d; |
| 449 | } |
| 450 | |
| 451 | Duration& operator/=(Duration& d, int64_t r) { // NOLINT |
| 452 | bool negative; |
| 453 | uint128 value; |
| 454 | ToUint128(value: d, result: &value, negative: &negative); |
| 455 | if (r > 0) { |
| 456 | value /= static_cast<uint64_t>(r); |
| 457 | } else { |
| 458 | negative = !negative; |
| 459 | value /= static_cast<uint64_t>(-r); |
| 460 | } |
| 461 | ToDuration(value, negative, duration: &d); |
| 462 | return d; |
| 463 | } |
| 464 | |
| 465 | Duration& operator/=(Duration& d, double r) { // NOLINT |
| 466 | return d *= 1.0 / r; |
| 467 | } |
| 468 | |
| 469 | Duration& operator%=(Duration& d1, const Duration& d2) { // NOLINT |
| 470 | bool negative1, negative2; |
| 471 | uint128 value1, value2; |
| 472 | ToUint128(value: d1, result: &value1, negative: &negative1); |
| 473 | ToUint128(value: d2, result: &value2, negative: &negative2); |
| 474 | uint128 result = value1 % value2; |
| 475 | // When negative values are involved in division, we round the division |
| 476 | // result towards zero. With this semantics, sign of the remainder is the |
| 477 | // same as the dividend. For example: |
| 478 | // -5 / 10 = 0, -5 % 10 = -5 |
| 479 | // -5 / (-10) = 0, -5 % (-10) = -5 |
| 480 | // 5 / (-10) = 0, 5 % (-10) = 5 |
| 481 | ToDuration(value: result, negative: negative1, duration: &d1); |
| 482 | return d1; |
| 483 | } |
| 484 | |
| 485 | int64_t operator/(const Duration& d1, const Duration& d2) { |
| 486 | bool negative1, negative2; |
| 487 | uint128 value1, value2; |
| 488 | ToUint128(value: d1, result: &value1, negative: &negative1); |
| 489 | ToUint128(value: d2, result: &value2, negative: &negative2); |
| 490 | int64_t result = Uint128Low64(v: value1 / value2); |
| 491 | if (negative1 != negative2) { |
| 492 | result = -result; |
| 493 | } |
| 494 | return result; |
| 495 | } |
| 496 | |
| 497 | Timestamp& operator+=(Timestamp& t, const Duration& d) { // NOLINT |
| 498 | t = CreateNormalized<Timestamp>(seconds: t.seconds() + d.seconds(), |
| 499 | nanos: t.nanos() + d.nanos()); |
| 500 | return t; |
| 501 | } |
| 502 | |
| 503 | Timestamp& operator-=(Timestamp& t, const Duration& d) { // NOLINT |
| 504 | t = CreateNormalized<Timestamp>(seconds: t.seconds() - d.seconds(), |
| 505 | nanos: t.nanos() - d.nanos()); |
| 506 | return t; |
| 507 | } |
| 508 | |
| 509 | Duration operator-(const Timestamp& t1, const Timestamp& t2) { |
| 510 | return CreateNormalized<Duration>(seconds: t1.seconds() - t2.seconds(), |
| 511 | nanos: t1.nanos() - t2.nanos()); |
| 512 | } |
| 513 | } // namespace protobuf |
| 514 | } // namespace google |
| 515 | |