| 1 | #include "simdjson/internal/numberparsing_tables.h" |
| 2 | #include <limits> |
| 3 | |
| 4 | namespace simdjson { |
| 5 | namespace SIMDJSON_IMPLEMENTATION { |
| 6 | |
| 7 | namespace ondemand { |
| 8 | /** |
| 9 | * The type of a JSON number |
| 10 | */ |
| 11 | enum class number_type { |
| 12 | floating_point_number=1, /// a binary64 number |
| 13 | signed_integer, /// a signed integer that fits in a 64-bit word using two's complement |
| 14 | unsigned_integer /// a positive integer larger or equal to 1<<63 |
| 15 | }; |
| 16 | } |
| 17 | |
| 18 | namespace { |
| 19 | /// @private |
| 20 | namespace numberparsing { |
| 21 | |
| 22 | |
| 23 | |
| 24 | #ifdef JSON_TEST_NUMBERS |
| 25 | #define INVALID_NUMBER(SRC) (found_invalid_number((SRC)), NUMBER_ERROR) |
| 26 | #define WRITE_INTEGER(VALUE, SRC, WRITER) (found_integer((VALUE), (SRC)), (WRITER).append_s64((VALUE))) |
| 27 | #define WRITE_UNSIGNED(VALUE, SRC, WRITER) (found_unsigned_integer((VALUE), (SRC)), (WRITER).append_u64((VALUE))) |
| 28 | #define WRITE_DOUBLE(VALUE, SRC, WRITER) (found_float((VALUE), (SRC)), (WRITER).append_double((VALUE))) |
| 29 | #else |
| 30 | #define INVALID_NUMBER(SRC) (NUMBER_ERROR) |
| 31 | #define WRITE_INTEGER(VALUE, SRC, WRITER) (WRITER).append_s64((VALUE)) |
| 32 | #define WRITE_UNSIGNED(VALUE, SRC, WRITER) (WRITER).append_u64((VALUE)) |
| 33 | #define WRITE_DOUBLE(VALUE, SRC, WRITER) (WRITER).append_double((VALUE)) |
| 34 | #endif |
| 35 | |
| 36 | namespace { |
| 37 | // Convert a mantissa, an exponent and a sign bit into an ieee64 double. |
| 38 | // The real_exponent needs to be in [0, 2046] (technically real_exponent = 2047 would be acceptable). |
| 39 | // The mantissa should be in [0,1<<53). The bit at index (1ULL << 52) while be zeroed. |
| 40 | simdjson_inline double to_double(uint64_t mantissa, uint64_t real_exponent, bool negative) { |
| 41 | double d; |
| 42 | mantissa &= ~(1ULL << 52); |
| 43 | mantissa |= real_exponent << 52; |
| 44 | mantissa |= ((static_cast<uint64_t>(negative)) << 63); |
| 45 | std::memcpy(dest: &d, src: &mantissa, n: sizeof(d)); |
| 46 | return d; |
| 47 | } |
| 48 | } |
| 49 | // Attempts to compute i * 10^(power) exactly; and if "negative" is |
| 50 | // true, negate the result. |
| 51 | // This function will only work in some cases, when it does not work, success is |
| 52 | // set to false. This should work *most of the time* (like 99% of the time). |
| 53 | // We assume that power is in the [smallest_power, |
| 54 | // largest_power] interval: the caller is responsible for this check. |
| 55 | simdjson_inline bool compute_float_64(int64_t power, uint64_t i, bool negative, double &d) { |
| 56 | // we start with a fast path |
| 57 | // It was described in |
| 58 | // Clinger WD. How to read floating point numbers accurately. |
| 59 | // ACM SIGPLAN Notices. 1990 |
| 60 | #ifndef FLT_EVAL_METHOD |
| 61 | #error "FLT_EVAL_METHOD should be defined, please include cfloat." |
| 62 | #endif |
| 63 | #if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) |
| 64 | // We cannot be certain that x/y is rounded to nearest. |
| 65 | if (0 <= power && power <= 22 && i <= 9007199254740991) { |
| 66 | #else |
| 67 | if (-22 <= power && power <= 22 && i <= 9007199254740991) { |
| 68 | #endif |
| 69 | // convert the integer into a double. This is lossless since |
| 70 | // 0 <= i <= 2^53 - 1. |
| 71 | d = double(i); |
| 72 | // |
| 73 | // The general idea is as follows. |
| 74 | // If 0 <= s < 2^53 and if 10^0 <= p <= 10^22 then |
| 75 | // 1) Both s and p can be represented exactly as 64-bit floating-point |
| 76 | // values |
| 77 | // (binary64). |
| 78 | // 2) Because s and p can be represented exactly as floating-point values, |
| 79 | // then s * p |
| 80 | // and s / p will produce correctly rounded values. |
| 81 | // |
| 82 | if (power < 0) { |
| 83 | d = d / simdjson::internal::power_of_ten[-power]; |
| 84 | } else { |
| 85 | d = d * simdjson::internal::power_of_ten[power]; |
| 86 | } |
| 87 | if (negative) { |
| 88 | d = -d; |
| 89 | } |
| 90 | return true; |
| 91 | } |
| 92 | // When 22 < power && power < 22 + 16, we could |
| 93 | // hope for another, secondary fast path. It was |
| 94 | // described by David M. Gay in "Correctly rounded |
| 95 | // binary-decimal and decimal-binary conversions." (1990) |
| 96 | // If you need to compute i * 10^(22 + x) for x < 16, |
| 97 | // first compute i * 10^x, if you know that result is exact |
| 98 | // (e.g., when i * 10^x < 2^53), |
| 99 | // then you can still proceed and do (i * 10^x) * 10^22. |
| 100 | // Is this worth your time? |
| 101 | // You need 22 < power *and* power < 22 + 16 *and* (i * 10^(x-22) < 2^53) |
| 102 | // for this second fast path to work. |
| 103 | // If you you have 22 < power *and* power < 22 + 16, and then you |
| 104 | // optimistically compute "i * 10^(x-22)", there is still a chance that you |
| 105 | // have wasted your time if i * 10^(x-22) >= 2^53. It makes the use cases of |
| 106 | // this optimization maybe less common than we would like. Source: |
| 107 | // http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/ |
| 108 | // also used in RapidJSON: https://rapidjson.org/strtod_8h_source.html |
| 109 | |
| 110 | // The fast path has now failed, so we are failing back on the slower path. |
| 111 | |
| 112 | // In the slow path, we need to adjust i so that it is > 1<<63 which is always |
| 113 | // possible, except if i == 0, so we handle i == 0 separately. |
| 114 | if(i == 0) { |
| 115 | d = negative ? -0.0 : 0.0; |
| 116 | return true; |
| 117 | } |
| 118 | |
| 119 | |
| 120 | // The exponent is 1024 + 63 + power |
| 121 | // + floor(log(5**power)/log(2)). |
| 122 | // The 1024 comes from the ieee64 standard. |
| 123 | // The 63 comes from the fact that we use a 64-bit word. |
| 124 | // |
| 125 | // Computing floor(log(5**power)/log(2)) could be |
| 126 | // slow. Instead we use a fast function. |
| 127 | // |
| 128 | // For power in (-400,350), we have that |
| 129 | // (((152170 + 65536) * power ) >> 16); |
| 130 | // is equal to |
| 131 | // floor(log(5**power)/log(2)) + power when power >= 0 |
| 132 | // and it is equal to |
| 133 | // ceil(log(5**-power)/log(2)) + power when power < 0 |
| 134 | // |
| 135 | // The 65536 is (1<<16) and corresponds to |
| 136 | // (65536 * power) >> 16 ---> power |
| 137 | // |
| 138 | // ((152170 * power ) >> 16) is equal to |
| 139 | // floor(log(5**power)/log(2)) |
| 140 | // |
| 141 | // Note that this is not magic: 152170/(1<<16) is |
| 142 | // approximatively equal to log(5)/log(2). |
| 143 | // The 1<<16 value is a power of two; we could use a |
| 144 | // larger power of 2 if we wanted to. |
| 145 | // |
| 146 | int64_t exponent = (((152170 + 65536) * power) >> 16) + 1024 + 63; |
| 147 | |
| 148 | |
| 149 | // We want the most significant bit of i to be 1. Shift if needed. |
| 150 | int lz = leading_zeroes(input_num: i); |
| 151 | i <<= lz; |
| 152 | |
| 153 | |
| 154 | // We are going to need to do some 64-bit arithmetic to get a precise product. |
| 155 | // We use a table lookup approach. |
| 156 | // It is safe because |
| 157 | // power >= smallest_power |
| 158 | // and power <= largest_power |
| 159 | // We recover the mantissa of the power, it has a leading 1. It is always |
| 160 | // rounded down. |
| 161 | // |
| 162 | // We want the most significant 64 bits of the product. We know |
| 163 | // this will be non-zero because the most significant bit of i is |
| 164 | // 1. |
| 165 | const uint32_t index = 2 * uint32_t(power - simdjson::internal::smallest_power); |
| 166 | // Optimization: It may be that materializing the index as a variable might confuse some compilers and prevent effective complex-addressing loads. (Done for code clarity.) |
| 167 | // |
| 168 | // The full_multiplication function computes the 128-bit product of two 64-bit words |
| 169 | // with a returned value of type value128 with a "low component" corresponding to the |
| 170 | // 64-bit least significant bits of the product and with a "high component" corresponding |
| 171 | // to the 64-bit most significant bits of the product. |
| 172 | simdjson::internal::value128 firstproduct = jsoncharutils::full_multiplication(value1: i, value2: simdjson::internal::power_of_five_128[index]); |
| 173 | // Both i and power_of_five_128[index] have their most significant bit set to 1 which |
| 174 | // implies that the either the most or the second most significant bit of the product |
| 175 | // is 1. We pack values in this manner for efficiency reasons: it maximizes the use |
| 176 | // we make of the product. It also makes it easy to reason about the product: there |
| 177 | // is 0 or 1 leading zero in the product. |
| 178 | |
| 179 | // Unless the least significant 9 bits of the high (64-bit) part of the full |
| 180 | // product are all 1s, then we know that the most significant 55 bits are |
| 181 | // exact and no further work is needed. Having 55 bits is necessary because |
| 182 | // we need 53 bits for the mantissa but we have to have one rounding bit and |
| 183 | // we can waste a bit if the most significant bit of the product is zero. |
| 184 | if((firstproduct.high & 0x1FF) == 0x1FF) { |
| 185 | // We want to compute i * 5^q, but only care about the top 55 bits at most. |
| 186 | // Consider the scenario where q>=0. Then 5^q may not fit in 64-bits. Doing |
| 187 | // the full computation is wasteful. So we do what is called a "truncated |
| 188 | // multiplication". |
| 189 | // We take the most significant 64-bits, and we put them in |
| 190 | // power_of_five_128[index]. Usually, that's good enough to approximate i * 5^q |
| 191 | // to the desired approximation using one multiplication. Sometimes it does not suffice. |
| 192 | // Then we store the next most significant 64 bits in power_of_five_128[index + 1], and |
| 193 | // then we get a better approximation to i * 5^q. In very rare cases, even that |
| 194 | // will not suffice, though it is seemingly very hard to find such a scenario. |
| 195 | // |
| 196 | // That's for when q>=0. The logic for q<0 is somewhat similar but it is somewhat |
| 197 | // more complicated. |
| 198 | // |
| 199 | // There is an extra layer of complexity in that we need more than 55 bits of |
| 200 | // accuracy in the round-to-even scenario. |
| 201 | // |
| 202 | // The full_multiplication function computes the 128-bit product of two 64-bit words |
| 203 | // with a returned value of type value128 with a "low component" corresponding to the |
| 204 | // 64-bit least significant bits of the product and with a "high component" corresponding |
| 205 | // to the 64-bit most significant bits of the product. |
| 206 | simdjson::internal::value128 secondproduct = jsoncharutils::full_multiplication(value1: i, value2: simdjson::internal::power_of_five_128[index + 1]); |
| 207 | firstproduct.low += secondproduct.high; |
| 208 | if(secondproduct.high > firstproduct.low) { firstproduct.high++; } |
| 209 | // At this point, we might need to add at most one to firstproduct, but this |
| 210 | // can only change the value of firstproduct.high if firstproduct.low is maximal. |
| 211 | if(simdjson_unlikely(firstproduct.low == 0xFFFFFFFFFFFFFFFF)) { |
| 212 | // This is very unlikely, but if so, we need to do much more work! |
| 213 | return false; |
| 214 | } |
| 215 | } |
| 216 | uint64_t lower = firstproduct.low; |
| 217 | uint64_t upper = firstproduct.high; |
| 218 | // The final mantissa should be 53 bits with a leading 1. |
| 219 | // We shift it so that it occupies 54 bits with a leading 1. |
| 220 | /////// |
| 221 | uint64_t upperbit = upper >> 63; |
| 222 | uint64_t mantissa = upper >> (upperbit + 9); |
| 223 | lz += int(1 ^ upperbit); |
| 224 | |
| 225 | // Here we have mantissa < (1<<54). |
| 226 | int64_t real_exponent = exponent - lz; |
| 227 | if (simdjson_unlikely(real_exponent <= 0)) { // we have a subnormal? |
| 228 | // Here have that real_exponent <= 0 so -real_exponent >= 0 |
| 229 | if(-real_exponent + 1 >= 64) { // if we have more than 64 bits below the minimum exponent, you have a zero for sure. |
| 230 | d = negative ? -0.0 : 0.0; |
| 231 | return true; |
| 232 | } |
| 233 | // next line is safe because -real_exponent + 1 < 0 |
| 234 | mantissa >>= -real_exponent + 1; |
| 235 | // Thankfully, we can't have both "round-to-even" and subnormals because |
| 236 | // "round-to-even" only occurs for powers close to 0. |
| 237 | mantissa += (mantissa & 1); // round up |
| 238 | mantissa >>= 1; |
| 239 | // There is a weird scenario where we don't have a subnormal but just. |
| 240 | // Suppose we start with 2.2250738585072013e-308, we end up |
| 241 | // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal |
| 242 | // whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round |
| 243 | // up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer |
| 244 | // subnormal, but we can only know this after rounding. |
| 245 | // So we only declare a subnormal if we are smaller than the threshold. |
| 246 | real_exponent = (mantissa < (uint64_t(1) << 52)) ? 0 : 1; |
| 247 | d = to_double(mantissa, real_exponent, negative); |
| 248 | return true; |
| 249 | } |
| 250 | // We have to round to even. The "to even" part |
| 251 | // is only a problem when we are right in between two floats |
| 252 | // which we guard against. |
| 253 | // If we have lots of trailing zeros, we may fall right between two |
| 254 | // floating-point values. |
| 255 | // |
| 256 | // The round-to-even cases take the form of a number 2m+1 which is in (2^53,2^54] |
| 257 | // times a power of two. That is, it is right between a number with binary significand |
| 258 | // m and another number with binary significand m+1; and it must be the case |
| 259 | // that it cannot be represented by a float itself. |
| 260 | // |
| 261 | // We must have that w * 10 ^q == (2m+1) * 2^p for some power of two 2^p. |
| 262 | // Recall that 10^q = 5^q * 2^q. |
| 263 | // When q >= 0, we must have that (2m+1) is divible by 5^q, so 5^q <= 2^54. We have that |
| 264 | // 5^23 <= 2^54 and it is the last power of five to qualify, so q <= 23. |
| 265 | // When q<0, we have w >= (2m+1) x 5^{-q}. We must have that w<2^{64} so |
| 266 | // (2m+1) x 5^{-q} < 2^{64}. We have that 2m+1>2^{53}. Hence, we must have |
| 267 | // 2^{53} x 5^{-q} < 2^{64}. |
| 268 | // Hence we have 5^{-q} < 2^{11}$ or q>= -4. |
| 269 | // |
| 270 | // We require lower <= 1 and not lower == 0 because we could not prove that |
| 271 | // that lower == 0 is implied; but we could prove that lower <= 1 is a necessary and sufficient test. |
| 272 | if (simdjson_unlikely((lower <= 1) && (power >= -4) && (power <= 23) && ((mantissa & 3) == 1))) { |
| 273 | if((mantissa << (upperbit + 64 - 53 - 2)) == upper) { |
| 274 | mantissa &= ~1; // flip it so that we do not round up |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | mantissa += mantissa & 1; |
| 279 | mantissa >>= 1; |
| 280 | |
| 281 | // Here we have mantissa < (1<<53), unless there was an overflow |
| 282 | if (mantissa >= (1ULL << 53)) { |
| 283 | ////////// |
| 284 | // This will happen when parsing values such as 7.2057594037927933e+16 |
| 285 | //////// |
| 286 | mantissa = (1ULL << 52); |
| 287 | real_exponent++; |
| 288 | } |
| 289 | mantissa &= ~(1ULL << 52); |
| 290 | // we have to check that real_exponent is in range, otherwise we bail out |
| 291 | if (simdjson_unlikely(real_exponent > 2046)) { |
| 292 | // We have an infinite value!!! We could actually throw an error here if we could. |
| 293 | return false; |
| 294 | } |
| 295 | d = to_double(mantissa, real_exponent, negative); |
| 296 | return true; |
| 297 | } |
| 298 | |
| 299 | // We call a fallback floating-point parser that might be slow. Note |
| 300 | // it will accept JSON numbers, but the JSON spec. is more restrictive so |
| 301 | // before you call parse_float_fallback, you need to have validated the input |
| 302 | // string with the JSON grammar. |
| 303 | // It will return an error (false) if the parsed number is infinite. |
| 304 | // The string parsing itself always succeeds. We know that there is at least |
| 305 | // one digit. |
| 306 | static bool parse_float_fallback(const uint8_t *ptr, double *outDouble) { |
| 307 | *outDouble = simdjson::internal::from_chars(first: reinterpret_cast<const char *>(ptr)); |
| 308 | // We do not accept infinite values. |
| 309 | |
| 310 | // Detecting finite values in a portable manner is ridiculously hard, ideally |
| 311 | // we would want to do: |
| 312 | // return !std::isfinite(*outDouble); |
| 313 | // but that mysteriously fails under legacy/old libc++ libraries, see |
| 314 | // https://github.com/simdjson/simdjson/issues/1286 |
| 315 | // |
| 316 | // Therefore, fall back to this solution (the extra parens are there |
| 317 | // to handle that max may be a macro on windows). |
| 318 | return !(*outDouble > (std::numeric_limits<double>::max)() || *outDouble < std::numeric_limits<double>::lowest()); |
| 319 | } |
| 320 | static bool parse_float_fallback(const uint8_t *ptr, const uint8_t *end_ptr, double *outDouble) { |
| 321 | *outDouble = simdjson::internal::from_chars(first: reinterpret_cast<const char *>(ptr), end: reinterpret_cast<const char *>(end_ptr)); |
| 322 | // We do not accept infinite values. |
| 323 | |
| 324 | // Detecting finite values in a portable manner is ridiculously hard, ideally |
| 325 | // we would want to do: |
| 326 | // return !std::isfinite(*outDouble); |
| 327 | // but that mysteriously fails under legacy/old libc++ libraries, see |
| 328 | // https://github.com/simdjson/simdjson/issues/1286 |
| 329 | // |
| 330 | // Therefore, fall back to this solution (the extra parens are there |
| 331 | // to handle that max may be a macro on windows). |
| 332 | return !(*outDouble > (std::numeric_limits<double>::max)() || *outDouble < std::numeric_limits<double>::lowest()); |
| 333 | } |
| 334 | |
| 335 | // check quickly whether the next 8 chars are made of digits |
| 336 | // at a glance, it looks better than Mula's |
| 337 | // http://0x80.pl/articles/swar-digits-validate.html |
| 338 | simdjson_inline bool is_made_of_eight_digits_fast(const uint8_t *chars) { |
| 339 | uint64_t val; |
| 340 | // this can read up to 7 bytes beyond the buffer size, but we require |
| 341 | // SIMDJSON_PADDING of padding |
| 342 | static_assert(7 <= SIMDJSON_PADDING, "SIMDJSON_PADDING must be bigger than 7" ); |
| 343 | std::memcpy(dest: &val, src: chars, n: 8); |
| 344 | // a branchy method might be faster: |
| 345 | // return (( val & 0xF0F0F0F0F0F0F0F0 ) == 0x3030303030303030) |
| 346 | // && (( (val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0 ) == |
| 347 | // 0x3030303030303030); |
| 348 | return (((val & 0xF0F0F0F0F0F0F0F0) | |
| 349 | (((val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0) >> 4)) == |
| 350 | 0x3333333333333333); |
| 351 | } |
| 352 | |
| 353 | template<typename W> |
| 354 | error_code slow_float_parsing(simdjson_unused const uint8_t * src, W writer) { |
| 355 | double d; |
| 356 | if (parse_float_fallback(ptr: src, outDouble: &d)) { |
| 357 | writer.append_double(d); |
| 358 | return SUCCESS; |
| 359 | } |
| 360 | return INVALID_NUMBER(src); |
| 361 | } |
| 362 | |
| 363 | template<typename I> |
| 364 | SIMDJSON_NO_SANITIZE_UNDEFINED // We deliberately allow overflow here and check later |
| 365 | simdjson_inline bool parse_digit(const uint8_t c, I &i) { |
| 366 | const uint8_t digit = static_cast<uint8_t>(c - '0'); |
| 367 | if (digit > 9) { |
| 368 | return false; |
| 369 | } |
| 370 | // PERF NOTE: multiplication by 10 is cheaper than arbitrary integer multiplication |
| 371 | i = 10 * i + digit; // might overflow, we will handle the overflow later |
| 372 | return true; |
| 373 | } |
| 374 | |
| 375 | simdjson_inline error_code parse_decimal(simdjson_unused const uint8_t *const src, const uint8_t *&p, uint64_t &i, int64_t &exponent) { |
| 376 | // we continue with the fiction that we have an integer. If the |
| 377 | // floating point number is representable as x * 10^z for some integer |
| 378 | // z that fits in 53 bits, then we will be able to convert back the |
| 379 | // the integer into a float in a lossless manner. |
| 380 | const uint8_t *const first_after_period = p; |
| 381 | |
| 382 | #ifdef SIMDJSON_SWAR_NUMBER_PARSING |
| 383 | #if SIMDJSON_SWAR_NUMBER_PARSING |
| 384 | // this helps if we have lots of decimals! |
| 385 | // this turns out to be frequent enough. |
| 386 | if (is_made_of_eight_digits_fast(chars: p)) { |
| 387 | i = i * 100000000 + parse_eight_digits_unrolled(chars: p); |
| 388 | p += 8; |
| 389 | } |
| 390 | #endif // SIMDJSON_SWAR_NUMBER_PARSING |
| 391 | #endif // #ifdef SIMDJSON_SWAR_NUMBER_PARSING |
| 392 | // Unrolling the first digit makes a small difference on some implementations (e.g. westmere) |
| 393 | if (parse_digit(c: *p, i)) { ++p; } |
| 394 | while (parse_digit(c: *p, i)) { p++; } |
| 395 | exponent = first_after_period - p; |
| 396 | // Decimal without digits (123.) is illegal |
| 397 | if (exponent == 0) { |
| 398 | return INVALID_NUMBER(src); |
| 399 | } |
| 400 | return SUCCESS; |
| 401 | } |
| 402 | |
| 403 | simdjson_inline error_code parse_exponent(simdjson_unused const uint8_t *const src, const uint8_t *&p, int64_t &exponent) { |
| 404 | // Exp Sign: -123.456e[-]78 |
| 405 | bool neg_exp = ('-' == *p); |
| 406 | if (neg_exp || '+' == *p) { p++; } // Skip + as well |
| 407 | |
| 408 | // Exponent: -123.456e-[78] |
| 409 | auto start_exp = p; |
| 410 | int64_t exp_number = 0; |
| 411 | while (parse_digit(c: *p, i&: exp_number)) { ++p; } |
| 412 | // It is possible for parse_digit to overflow. |
| 413 | // In particular, it could overflow to INT64_MIN, and we cannot do - INT64_MIN. |
| 414 | // Thus we *must* check for possible overflow before we negate exp_number. |
| 415 | |
| 416 | // Performance notes: it may seem like combining the two "simdjson_unlikely checks" below into |
| 417 | // a single simdjson_unlikely path would be faster. The reasoning is sound, but the compiler may |
| 418 | // not oblige and may, in fact, generate two distinct paths in any case. It might be |
| 419 | // possible to do uint64_t(p - start_exp - 1) >= 18 but it could end up trading off |
| 420 | // instructions for a simdjson_likely branch, an unconclusive gain. |
| 421 | |
| 422 | // If there were no digits, it's an error. |
| 423 | if (simdjson_unlikely(p == start_exp)) { |
| 424 | return INVALID_NUMBER(src); |
| 425 | } |
| 426 | // We have a valid positive exponent in exp_number at this point, except that |
| 427 | // it may have overflowed. |
| 428 | |
| 429 | // If there were more than 18 digits, we may have overflowed the integer. We have to do |
| 430 | // something!!!! |
| 431 | if (simdjson_unlikely(p > start_exp+18)) { |
| 432 | // Skip leading zeroes: 1e000000000000000000001 is technically valid and doesn't overflow |
| 433 | while (*start_exp == '0') { start_exp++; } |
| 434 | // 19 digits could overflow int64_t and is kind of absurd anyway. We don't |
| 435 | // support exponents smaller than -999,999,999,999,999,999 and bigger |
| 436 | // than 999,999,999,999,999,999. |
| 437 | // We can truncate. |
| 438 | // Note that 999999999999999999 is assuredly too large. The maximal ieee64 value before |
| 439 | // infinity is ~1.8e308. The smallest subnormal is ~5e-324. So, actually, we could |
| 440 | // truncate at 324. |
| 441 | // Note that there is no reason to fail per se at this point in time. |
| 442 | // E.g., 0e999999999999999999999 is a fine number. |
| 443 | if (p > start_exp+18) { exp_number = 999999999999999999; } |
| 444 | } |
| 445 | // At this point, we know that exp_number is a sane, positive, signed integer. |
| 446 | // It is <= 999,999,999,999,999,999. As long as 'exponent' is in |
| 447 | // [-8223372036854775808, 8223372036854775808], we won't overflow. Because 'exponent' |
| 448 | // is bounded in magnitude by the size of the JSON input, we are fine in this universe. |
| 449 | // To sum it up: the next line should never overflow. |
| 450 | exponent += (neg_exp ? -exp_number : exp_number); |
| 451 | return SUCCESS; |
| 452 | } |
| 453 | |
| 454 | simdjson_inline size_t significant_digits(const uint8_t * start_digits, size_t digit_count) { |
| 455 | // It is possible that the integer had an overflow. |
| 456 | // We have to handle the case where we have 0.0000somenumber. |
| 457 | const uint8_t *start = start_digits; |
| 458 | while ((*start == '0') || (*start == '.')) { ++start; } |
| 459 | // we over-decrement by one when there is a '.' |
| 460 | return digit_count - size_t(start - start_digits); |
| 461 | } |
| 462 | |
| 463 | template<typename W> |
| 464 | simdjson_inline error_code write_float(const uint8_t *const src, bool negative, uint64_t i, const uint8_t * start_digits, size_t digit_count, int64_t exponent, W &writer) { |
| 465 | // If we frequently had to deal with long strings of digits, |
| 466 | // we could extend our code by using a 128-bit integer instead |
| 467 | // of a 64-bit integer. However, this is uncommon in practice. |
| 468 | // |
| 469 | // 9999999999999999999 < 2**64 so we can accommodate 19 digits. |
| 470 | // If we have a decimal separator, then digit_count - 1 is the number of digits, but we |
| 471 | // may not have a decimal separator! |
| 472 | if (simdjson_unlikely(digit_count > 19 && significant_digits(start_digits, digit_count) > 19)) { |
| 473 | // Ok, chances are good that we had an overflow! |
| 474 | // this is almost never going to get called!!! |
| 475 | // we start anew, going slowly!!! |
| 476 | // This will happen in the following examples: |
| 477 | // 10000000000000000000000000000000000000000000e+308 |
| 478 | // 3.1415926535897932384626433832795028841971693993751 |
| 479 | // |
| 480 | // NOTE: This makes a *copy* of the writer and passes it to slow_float_parsing. This happens |
| 481 | // because slow_float_parsing is a non-inlined function. If we passed our writer reference to |
| 482 | // it, it would force it to be stored in memory, preventing the compiler from picking it apart |
| 483 | // and putting into registers. i.e. if we pass it as reference, it gets slow. |
| 484 | // This is what forces the skip_double, as well. |
| 485 | error_code error = slow_float_parsing(src, writer); |
| 486 | writer.skip_double(); |
| 487 | return error; |
| 488 | } |
| 489 | // NOTE: it's weird that the simdjson_unlikely() only wraps half the if, but it seems to get slower any other |
| 490 | // way we've tried: https://github.com/simdjson/simdjson/pull/990#discussion_r448497331 |
| 491 | // To future reader: we'd love if someone found a better way, or at least could explain this result! |
| 492 | if (simdjson_unlikely(exponent < simdjson::internal::smallest_power) || (exponent > simdjson::internal::largest_power)) { |
| 493 | // |
| 494 | // Important: smallest_power is such that it leads to a zero value. |
| 495 | // Observe that 18446744073709551615e-343 == 0, i.e. (2**64 - 1) e -343 is zero |
| 496 | // so something x 10^-343 goes to zero, but not so with something x 10^-342. |
| 497 | static_assert(simdjson::internal::smallest_power <= -342, "smallest_power is not small enough" ); |
| 498 | // |
| 499 | if((exponent < simdjson::internal::smallest_power) || (i == 0)) { |
| 500 | // E.g. Parse "-0.0e-999" into the same value as "-0.0". See https://en.wikipedia.org/wiki/Signed_zero |
| 501 | WRITE_DOUBLE(negative ? -0.0 : 0.0, src, writer); |
| 502 | return SUCCESS; |
| 503 | } else { // (exponent > largest_power) and (i != 0) |
| 504 | // We have, for sure, an infinite value and simdjson refuses to parse infinite values. |
| 505 | return INVALID_NUMBER(src); |
| 506 | } |
| 507 | } |
| 508 | double d; |
| 509 | if (!compute_float_64(power: exponent, i, negative, d)) { |
| 510 | // we are almost never going to get here. |
| 511 | if (!parse_float_fallback(ptr: src, outDouble: &d)) { return INVALID_NUMBER(src); } |
| 512 | } |
| 513 | WRITE_DOUBLE(d, src, writer); |
| 514 | return SUCCESS; |
| 515 | } |
| 516 | |
| 517 | // for performance analysis, it is sometimes useful to skip parsing |
| 518 | #ifdef SIMDJSON_SKIPNUMBERPARSING |
| 519 | |
| 520 | template<typename W> |
| 521 | simdjson_inline error_code parse_number(const uint8_t *const, W &writer) { |
| 522 | writer.append_s64(0); // always write zero |
| 523 | return SUCCESS; // always succeeds |
| 524 | } |
| 525 | |
| 526 | simdjson_unused simdjson_inline simdjson_result<uint64_t> parse_unsigned(const uint8_t * const src) noexcept { return 0; } |
| 527 | simdjson_unused simdjson_inline simdjson_result<int64_t> parse_integer(const uint8_t * const src) noexcept { return 0; } |
| 528 | simdjson_unused simdjson_inline simdjson_result<double> parse_double(const uint8_t * const src) noexcept { return 0; } |
| 529 | simdjson_unused simdjson_inline simdjson_result<uint64_t> parse_unsigned_in_string(const uint8_t * const src) noexcept { return 0; } |
| 530 | simdjson_unused simdjson_inline simdjson_result<int64_t> parse_integer_in_string(const uint8_t * const src) noexcept { return 0; } |
| 531 | simdjson_unused simdjson_inline simdjson_result<double> parse_double_in_string(const uint8_t * const src) noexcept { return 0; } |
| 532 | simdjson_unused simdjson_inline bool is_negative(const uint8_t * src) noexcept { return false; } |
| 533 | simdjson_unused simdjson_inline simdjson_result<bool> is_integer(const uint8_t * src) noexcept { return false; } |
| 534 | simdjson_unused simdjson_inline simdjson_result<ondemand::number_type> get_number_type(const uint8_t * src) noexcept { return ondemand::number_type::signed_integer; } |
| 535 | #else |
| 536 | |
| 537 | // parse the number at src |
| 538 | // define JSON_TEST_NUMBERS for unit testing |
| 539 | // |
| 540 | // It is assumed that the number is followed by a structural ({,},],[) character |
| 541 | // or a white space character. If that is not the case (e.g., when the JSON |
| 542 | // document is made of a single number), then it is necessary to copy the |
| 543 | // content and append a space before calling this function. |
| 544 | // |
| 545 | // Our objective is accurate parsing (ULP of 0) at high speed. |
| 546 | template<typename W> |
| 547 | simdjson_inline error_code parse_number(const uint8_t *const src, W &writer) { |
| 548 | |
| 549 | // |
| 550 | // Check for minus sign |
| 551 | // |
| 552 | bool negative = (*src == '-'); |
| 553 | const uint8_t *p = src + uint8_t(negative); |
| 554 | |
| 555 | // |
| 556 | // Parse the integer part. |
| 557 | // |
| 558 | // PERF NOTE: we don't use is_made_of_eight_digits_fast because large integers like 123456789 are rare |
| 559 | const uint8_t *const start_digits = p; |
| 560 | uint64_t i = 0; |
| 561 | while (parse_digit(c: *p, i)) { p++; } |
| 562 | |
| 563 | // If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error. |
| 564 | // Optimization note: size_t is expected to be unsigned. |
| 565 | size_t digit_count = size_t(p - start_digits); |
| 566 | if (digit_count == 0 || ('0' == *start_digits && digit_count > 1)) { return INVALID_NUMBER(src); } |
| 567 | |
| 568 | // |
| 569 | // Handle floats if there is a . or e (or both) |
| 570 | // |
| 571 | int64_t exponent = 0; |
| 572 | bool is_float = false; |
| 573 | if ('.' == *p) { |
| 574 | is_float = true; |
| 575 | ++p; |
| 576 | SIMDJSON_TRY( parse_decimal(src, p, i, exponent) ); |
| 577 | digit_count = int(p - start_digits); // used later to guard against overflows |
| 578 | } |
| 579 | if (('e' == *p) || ('E' == *p)) { |
| 580 | is_float = true; |
| 581 | ++p; |
| 582 | SIMDJSON_TRY( parse_exponent(src, p, exponent) ); |
| 583 | } |
| 584 | if (is_float) { |
| 585 | const bool dirty_end = jsoncharutils::is_not_structural_or_whitespace(c: *p); |
| 586 | SIMDJSON_TRY( write_float(src, negative, i, start_digits, digit_count, exponent, writer) ); |
| 587 | if (dirty_end) { return INVALID_NUMBER(src); } |
| 588 | return SUCCESS; |
| 589 | } |
| 590 | |
| 591 | // The longest negative 64-bit number is 19 digits. |
| 592 | // The longest positive 64-bit number is 20 digits. |
| 593 | // We do it this way so we don't trigger this branch unless we must. |
| 594 | size_t longest_digit_count = negative ? 19 : 20; |
| 595 | if (digit_count > longest_digit_count) { return INVALID_NUMBER(src); } |
| 596 | if (digit_count == longest_digit_count) { |
| 597 | if (negative) { |
| 598 | // Anything negative above INT64_MAX+1 is invalid |
| 599 | if (i > uint64_t(INT64_MAX)+1) { return INVALID_NUMBER(src); } |
| 600 | WRITE_INTEGER(~i+1, src, writer); |
| 601 | if (jsoncharutils::is_not_structural_or_whitespace(c: *p)) { return INVALID_NUMBER(src); } |
| 602 | return SUCCESS; |
| 603 | // Positive overflow check: |
| 604 | // - A 20 digit number starting with 2-9 is overflow, because 18,446,744,073,709,551,615 is the |
| 605 | // biggest uint64_t. |
| 606 | // - A 20 digit number starting with 1 is overflow if it is less than INT64_MAX. |
| 607 | // If we got here, it's a 20 digit number starting with the digit "1". |
| 608 | // - If a 20 digit number starting with 1 overflowed (i*10+digit), the result will be smaller |
| 609 | // than 1,553,255,926,290,448,384. |
| 610 | // - That is smaller than the smallest possible 20-digit number the user could write: |
| 611 | // 10,000,000,000,000,000,000. |
| 612 | // - Therefore, if the number is positive and lower than that, it's overflow. |
| 613 | // - The value we are looking at is less than or equal to INT64_MAX. |
| 614 | // |
| 615 | } else if (src[0] != uint8_t('1') || i <= uint64_t(INT64_MAX)) { return INVALID_NUMBER(src); } |
| 616 | } |
| 617 | |
| 618 | // Write unsigned if it doesn't fit in a signed integer. |
| 619 | if (i > uint64_t(INT64_MAX)) { |
| 620 | WRITE_UNSIGNED(i, src, writer); |
| 621 | } else { |
| 622 | WRITE_INTEGER(negative ? (~i+1) : i, src, writer); |
| 623 | } |
| 624 | if (jsoncharutils::is_not_structural_or_whitespace(c: *p)) { return INVALID_NUMBER(src); } |
| 625 | return SUCCESS; |
| 626 | } |
| 627 | |
| 628 | // Inlineable functions |
| 629 | namespace { |
| 630 | |
| 631 | // This table can be used to characterize the final character of an integer |
| 632 | // string. For JSON structural character and allowable white space characters, |
| 633 | // we return SUCCESS. For 'e', '.' and 'E', we return INCORRECT_TYPE. Otherwise |
| 634 | // we return NUMBER_ERROR. |
| 635 | // Optimization note: we could easily reduce the size of the table by half (to 128) |
| 636 | // at the cost of an extra branch. |
| 637 | // Optimization note: we want the values to use at most 8 bits (not, e.g., 32 bits): |
| 638 | static_assert(error_code(uint8_t(NUMBER_ERROR))== NUMBER_ERROR, "bad NUMBER_ERROR cast" ); |
| 639 | static_assert(error_code(uint8_t(SUCCESS))== SUCCESS, "bad NUMBER_ERROR cast" ); |
| 640 | static_assert(error_code(uint8_t(INCORRECT_TYPE))== INCORRECT_TYPE, "bad NUMBER_ERROR cast" ); |
| 641 | |
| 642 | const uint8_t integer_string_finisher[256] = { |
| 643 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 644 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, SUCCESS, |
| 645 | SUCCESS, NUMBER_ERROR, NUMBER_ERROR, SUCCESS, NUMBER_ERROR, |
| 646 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 647 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 648 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 649 | NUMBER_ERROR, NUMBER_ERROR, SUCCESS, NUMBER_ERROR, NUMBER_ERROR, |
| 650 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 651 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, SUCCESS, |
| 652 | NUMBER_ERROR, INCORRECT_TYPE, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 653 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 654 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, SUCCESS, NUMBER_ERROR, |
| 655 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 656 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, INCORRECT_TYPE, |
| 657 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 658 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 659 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 660 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 661 | NUMBER_ERROR, SUCCESS, NUMBER_ERROR, SUCCESS, NUMBER_ERROR, |
| 662 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 663 | NUMBER_ERROR, INCORRECT_TYPE, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 664 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 665 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 666 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 667 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, SUCCESS, NUMBER_ERROR, |
| 668 | SUCCESS, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 669 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 670 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 671 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 672 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 673 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 674 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 675 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 676 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 677 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 678 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 679 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 680 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 681 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 682 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 683 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 684 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 685 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 686 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 687 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 688 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 689 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 690 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 691 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 692 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 693 | NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, NUMBER_ERROR, |
| 694 | NUMBER_ERROR}; |
| 695 | |
| 696 | // Parse any number from 0 to 18,446,744,073,709,551,615 |
| 697 | simdjson_unused simdjson_inline simdjson_result<uint64_t> parse_unsigned(const uint8_t * const src) noexcept { |
| 698 | const uint8_t *p = src; |
| 699 | // |
| 700 | // Parse the integer part. |
| 701 | // |
| 702 | // PERF NOTE: we don't use is_made_of_eight_digits_fast because large integers like 123456789 are rare |
| 703 | const uint8_t *const start_digits = p; |
| 704 | uint64_t i = 0; |
| 705 | while (parse_digit(c: *p, i)) { p++; } |
| 706 | |
| 707 | // If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error. |
| 708 | // Optimization note: size_t is expected to be unsigned. |
| 709 | size_t digit_count = size_t(p - start_digits); |
| 710 | // The longest positive 64-bit number is 20 digits. |
| 711 | // We do it this way so we don't trigger this branch unless we must. |
| 712 | // Optimization note: the compiler can probably merge |
| 713 | // ((digit_count == 0) || (digit_count > 20)) |
| 714 | // into a single branch since digit_count is unsigned. |
| 715 | if ((digit_count == 0) || (digit_count > 20)) { return INCORRECT_TYPE; } |
| 716 | // Here digit_count > 0. |
| 717 | if (('0' == *start_digits) && (digit_count > 1)) { return NUMBER_ERROR; } |
| 718 | // We can do the following... |
| 719 | // if (!jsoncharutils::is_structural_or_whitespace(*p)) { |
| 720 | // return (*p == '.' || *p == 'e' || *p == 'E') ? INCORRECT_TYPE : NUMBER_ERROR; |
| 721 | // } |
| 722 | // as a single table lookup: |
| 723 | if (integer_string_finisher[*p] != SUCCESS) { return error_code(integer_string_finisher[*p]); } |
| 724 | |
| 725 | if (digit_count == 20) { |
| 726 | // Positive overflow check: |
| 727 | // - A 20 digit number starting with 2-9 is overflow, because 18,446,744,073,709,551,615 is the |
| 728 | // biggest uint64_t. |
| 729 | // - A 20 digit number starting with 1 is overflow if it is less than INT64_MAX. |
| 730 | // If we got here, it's a 20 digit number starting with the digit "1". |
| 731 | // - If a 20 digit number starting with 1 overflowed (i*10+digit), the result will be smaller |
| 732 | // than 1,553,255,926,290,448,384. |
| 733 | // - That is smaller than the smallest possible 20-digit number the user could write: |
| 734 | // 10,000,000,000,000,000,000. |
| 735 | // - Therefore, if the number is positive and lower than that, it's overflow. |
| 736 | // - The value we are looking at is less than or equal to INT64_MAX. |
| 737 | // |
| 738 | if (src[0] != uint8_t('1') || i <= uint64_t(INT64_MAX)) { return INCORRECT_TYPE; } |
| 739 | } |
| 740 | |
| 741 | return i; |
| 742 | } |
| 743 | |
| 744 | |
| 745 | // Parse any number from 0 to 18,446,744,073,709,551,615 |
| 746 | // Never read at src_end or beyond |
| 747 | simdjson_unused simdjson_inline simdjson_result<uint64_t> parse_unsigned(const uint8_t * const src, const uint8_t * const src_end) noexcept { |
| 748 | const uint8_t *p = src; |
| 749 | // |
| 750 | // Parse the integer part. |
| 751 | // |
| 752 | // PERF NOTE: we don't use is_made_of_eight_digits_fast because large integers like 123456789 are rare |
| 753 | const uint8_t *const start_digits = p; |
| 754 | uint64_t i = 0; |
| 755 | while ((p != src_end) && parse_digit(c: *p, i)) { p++; } |
| 756 | |
| 757 | // If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error. |
| 758 | // Optimization note: size_t is expected to be unsigned. |
| 759 | size_t digit_count = size_t(p - start_digits); |
| 760 | // The longest positive 64-bit number is 20 digits. |
| 761 | // We do it this way so we don't trigger this branch unless we must. |
| 762 | // Optimization note: the compiler can probably merge |
| 763 | // ((digit_count == 0) || (digit_count > 20)) |
| 764 | // into a single branch since digit_count is unsigned. |
| 765 | if ((digit_count == 0) || (digit_count > 20)) { return INCORRECT_TYPE; } |
| 766 | // Here digit_count > 0. |
| 767 | if (('0' == *start_digits) && (digit_count > 1)) { return NUMBER_ERROR; } |
| 768 | // We can do the following... |
| 769 | // if (!jsoncharutils::is_structural_or_whitespace(*p)) { |
| 770 | // return (*p == '.' || *p == 'e' || *p == 'E') ? INCORRECT_TYPE : NUMBER_ERROR; |
| 771 | // } |
| 772 | // as a single table lookup: |
| 773 | if ((p != src_end) && integer_string_finisher[*p] != SUCCESS) { return error_code(integer_string_finisher[*p]); } |
| 774 | |
| 775 | if (digit_count == 20) { |
| 776 | // Positive overflow check: |
| 777 | // - A 20 digit number starting with 2-9 is overflow, because 18,446,744,073,709,551,615 is the |
| 778 | // biggest uint64_t. |
| 779 | // - A 20 digit number starting with 1 is overflow if it is less than INT64_MAX. |
| 780 | // If we got here, it's a 20 digit number starting with the digit "1". |
| 781 | // - If a 20 digit number starting with 1 overflowed (i*10+digit), the result will be smaller |
| 782 | // than 1,553,255,926,290,448,384. |
| 783 | // - That is smaller than the smallest possible 20-digit number the user could write: |
| 784 | // 10,000,000,000,000,000,000. |
| 785 | // - Therefore, if the number is positive and lower than that, it's overflow. |
| 786 | // - The value we are looking at is less than or equal to INT64_MAX. |
| 787 | // |
| 788 | if (src[0] != uint8_t('1') || i <= uint64_t(INT64_MAX)) { return INCORRECT_TYPE; } |
| 789 | } |
| 790 | |
| 791 | return i; |
| 792 | } |
| 793 | |
| 794 | // Parse any number from 0 to 18,446,744,073,709,551,615 |
| 795 | simdjson_unused simdjson_inline simdjson_result<uint64_t> parse_unsigned_in_string(const uint8_t * const src) noexcept { |
| 796 | const uint8_t *p = src + 1; |
| 797 | // |
| 798 | // Parse the integer part. |
| 799 | // |
| 800 | // PERF NOTE: we don't use is_made_of_eight_digits_fast because large integers like 123456789 are rare |
| 801 | const uint8_t *const start_digits = p; |
| 802 | uint64_t i = 0; |
| 803 | while (parse_digit(c: *p, i)) { p++; } |
| 804 | |
| 805 | // If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error. |
| 806 | // Optimization note: size_t is expected to be unsigned. |
| 807 | size_t digit_count = size_t(p - start_digits); |
| 808 | // The longest positive 64-bit number is 20 digits. |
| 809 | // We do it this way so we don't trigger this branch unless we must. |
| 810 | // Optimization note: the compiler can probably merge |
| 811 | // ((digit_count == 0) || (digit_count > 20)) |
| 812 | // into a single branch since digit_count is unsigned. |
| 813 | if ((digit_count == 0) || (digit_count > 20)) { return INCORRECT_TYPE; } |
| 814 | // Here digit_count > 0. |
| 815 | if (('0' == *start_digits) && (digit_count > 1)) { return NUMBER_ERROR; } |
| 816 | // We can do the following... |
| 817 | // if (!jsoncharutils::is_structural_or_whitespace(*p)) { |
| 818 | // return (*p == '.' || *p == 'e' || *p == 'E') ? INCORRECT_TYPE : NUMBER_ERROR; |
| 819 | // } |
| 820 | // as a single table lookup: |
| 821 | if (*p != '"') { return NUMBER_ERROR; } |
| 822 | |
| 823 | if (digit_count == 20) { |
| 824 | // Positive overflow check: |
| 825 | // - A 20 digit number starting with 2-9 is overflow, because 18,446,744,073,709,551,615 is the |
| 826 | // biggest uint64_t. |
| 827 | // - A 20 digit number starting with 1 is overflow if it is less than INT64_MAX. |
| 828 | // If we got here, it's a 20 digit number starting with the digit "1". |
| 829 | // - If a 20 digit number starting with 1 overflowed (i*10+digit), the result will be smaller |
| 830 | // than 1,553,255,926,290,448,384. |
| 831 | // - That is smaller than the smallest possible 20-digit number the user could write: |
| 832 | // 10,000,000,000,000,000,000. |
| 833 | // - Therefore, if the number is positive and lower than that, it's overflow. |
| 834 | // - The value we are looking at is less than or equal to INT64_MAX. |
| 835 | // |
| 836 | // Note: we use src[1] and not src[0] because src[0] is the quote character in this |
| 837 | // instance. |
| 838 | if (src[1] != uint8_t('1') || i <= uint64_t(INT64_MAX)) { return INCORRECT_TYPE; } |
| 839 | } |
| 840 | |
| 841 | return i; |
| 842 | } |
| 843 | |
| 844 | // Parse any number from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 |
| 845 | simdjson_unused simdjson_inline simdjson_result<int64_t> parse_integer(const uint8_t *src) noexcept { |
| 846 | // |
| 847 | // Check for minus sign |
| 848 | // |
| 849 | bool negative = (*src == '-'); |
| 850 | const uint8_t *p = src + uint8_t(negative); |
| 851 | |
| 852 | // |
| 853 | // Parse the integer part. |
| 854 | // |
| 855 | // PERF NOTE: we don't use is_made_of_eight_digits_fast because large integers like 123456789 are rare |
| 856 | const uint8_t *const start_digits = p; |
| 857 | uint64_t i = 0; |
| 858 | while (parse_digit(c: *p, i)) { p++; } |
| 859 | |
| 860 | // If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error. |
| 861 | // Optimization note: size_t is expected to be unsigned. |
| 862 | size_t digit_count = size_t(p - start_digits); |
| 863 | // We go from |
| 864 | // -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 |
| 865 | // so we can never represent numbers that have more than 19 digits. |
| 866 | size_t longest_digit_count = 19; |
| 867 | // Optimization note: the compiler can probably merge |
| 868 | // ((digit_count == 0) || (digit_count > longest_digit_count)) |
| 869 | // into a single branch since digit_count is unsigned. |
| 870 | if ((digit_count == 0) || (digit_count > longest_digit_count)) { return INCORRECT_TYPE; } |
| 871 | // Here digit_count > 0. |
| 872 | if (('0' == *start_digits) && (digit_count > 1)) { return NUMBER_ERROR; } |
| 873 | // We can do the following... |
| 874 | // if (!jsoncharutils::is_structural_or_whitespace(*p)) { |
| 875 | // return (*p == '.' || *p == 'e' || *p == 'E') ? INCORRECT_TYPE : NUMBER_ERROR; |
| 876 | // } |
| 877 | // as a single table lookup: |
| 878 | if(integer_string_finisher[*p] != SUCCESS) { return error_code(integer_string_finisher[*p]); } |
| 879 | // Negative numbers have can go down to - INT64_MAX - 1 whereas positive numbers are limited to INT64_MAX. |
| 880 | // Performance note: This check is only needed when digit_count == longest_digit_count but it is |
| 881 | // so cheap that we might as well always make it. |
| 882 | if(i > uint64_t(INT64_MAX) + uint64_t(negative)) { return INCORRECT_TYPE; } |
| 883 | return negative ? (~i+1) : i; |
| 884 | } |
| 885 | |
| 886 | // Parse any number from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 |
| 887 | // Never read at src_end or beyond |
| 888 | simdjson_unused simdjson_inline simdjson_result<int64_t> parse_integer(const uint8_t * const src, const uint8_t * const src_end) noexcept { |
| 889 | // |
| 890 | // Check for minus sign |
| 891 | // |
| 892 | if(src == src_end) { return NUMBER_ERROR; } |
| 893 | bool negative = (*src == '-'); |
| 894 | const uint8_t *p = src + uint8_t(negative); |
| 895 | |
| 896 | // |
| 897 | // Parse the integer part. |
| 898 | // |
| 899 | // PERF NOTE: we don't use is_made_of_eight_digits_fast because large integers like 123456789 are rare |
| 900 | const uint8_t *const start_digits = p; |
| 901 | uint64_t i = 0; |
| 902 | while ((p != src_end) && parse_digit(c: *p, i)) { p++; } |
| 903 | |
| 904 | // If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error. |
| 905 | // Optimization note: size_t is expected to be unsigned. |
| 906 | size_t digit_count = size_t(p - start_digits); |
| 907 | // We go from |
| 908 | // -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 |
| 909 | // so we can never represent numbers that have more than 19 digits. |
| 910 | size_t longest_digit_count = 19; |
| 911 | // Optimization note: the compiler can probably merge |
| 912 | // ((digit_count == 0) || (digit_count > longest_digit_count)) |
| 913 | // into a single branch since digit_count is unsigned. |
| 914 | if ((digit_count == 0) || (digit_count > longest_digit_count)) { return INCORRECT_TYPE; } |
| 915 | // Here digit_count > 0. |
| 916 | if (('0' == *start_digits) && (digit_count > 1)) { return NUMBER_ERROR; } |
| 917 | // We can do the following... |
| 918 | // if (!jsoncharutils::is_structural_or_whitespace(*p)) { |
| 919 | // return (*p == '.' || *p == 'e' || *p == 'E') ? INCORRECT_TYPE : NUMBER_ERROR; |
| 920 | // } |
| 921 | // as a single table lookup: |
| 922 | if((p != src_end) && integer_string_finisher[*p] != SUCCESS) { return error_code(integer_string_finisher[*p]); } |
| 923 | // Negative numbers have can go down to - INT64_MAX - 1 whereas positive numbers are limited to INT64_MAX. |
| 924 | // Performance note: This check is only needed when digit_count == longest_digit_count but it is |
| 925 | // so cheap that we might as well always make it. |
| 926 | if(i > uint64_t(INT64_MAX) + uint64_t(negative)) { return INCORRECT_TYPE; } |
| 927 | return negative ? (~i+1) : i; |
| 928 | } |
| 929 | |
| 930 | // Parse any number from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 |
| 931 | simdjson_unused simdjson_inline simdjson_result<int64_t> parse_integer_in_string(const uint8_t *src) noexcept { |
| 932 | // |
| 933 | // Check for minus sign |
| 934 | // |
| 935 | bool negative = (*(src + 1) == '-'); |
| 936 | src += uint8_t(negative) + 1; |
| 937 | |
| 938 | // |
| 939 | // Parse the integer part. |
| 940 | // |
| 941 | // PERF NOTE: we don't use is_made_of_eight_digits_fast because large integers like 123456789 are rare |
| 942 | const uint8_t *const start_digits = src; |
| 943 | uint64_t i = 0; |
| 944 | while (parse_digit(c: *src, i)) { src++; } |
| 945 | |
| 946 | // If there were no digits, or if the integer starts with 0 and has more than one digit, it's an error. |
| 947 | // Optimization note: size_t is expected to be unsigned. |
| 948 | size_t digit_count = size_t(src - start_digits); |
| 949 | // We go from |
| 950 | // -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 |
| 951 | // so we can never represent numbers that have more than 19 digits. |
| 952 | size_t longest_digit_count = 19; |
| 953 | // Optimization note: the compiler can probably merge |
| 954 | // ((digit_count == 0) || (digit_count > longest_digit_count)) |
| 955 | // into a single branch since digit_count is unsigned. |
| 956 | if ((digit_count == 0) || (digit_count > longest_digit_count)) { return INCORRECT_TYPE; } |
| 957 | // Here digit_count > 0. |
| 958 | if (('0' == *start_digits) && (digit_count > 1)) { return NUMBER_ERROR; } |
| 959 | // We can do the following... |
| 960 | // if (!jsoncharutils::is_structural_or_whitespace(*src)) { |
| 961 | // return (*src == '.' || *src == 'e' || *src == 'E') ? INCORRECT_TYPE : NUMBER_ERROR; |
| 962 | // } |
| 963 | // as a single table lookup: |
| 964 | if(*src != '"') { return NUMBER_ERROR; } |
| 965 | // Negative numbers have can go down to - INT64_MAX - 1 whereas positive numbers are limited to INT64_MAX. |
| 966 | // Performance note: This check is only needed when digit_count == longest_digit_count but it is |
| 967 | // so cheap that we might as well always make it. |
| 968 | if(i > uint64_t(INT64_MAX) + uint64_t(negative)) { return INCORRECT_TYPE; } |
| 969 | return negative ? (~i+1) : i; |
| 970 | } |
| 971 | |
| 972 | simdjson_unused simdjson_inline simdjson_result<double> parse_double(const uint8_t * src) noexcept { |
| 973 | // |
| 974 | // Check for minus sign |
| 975 | // |
| 976 | bool negative = (*src == '-'); |
| 977 | src += uint8_t(negative); |
| 978 | |
| 979 | // |
| 980 | // Parse the integer part. |
| 981 | // |
| 982 | uint64_t i = 0; |
| 983 | const uint8_t *p = src; |
| 984 | p += parse_digit(c: *p, i); |
| 985 | bool leading_zero = (i == 0); |
| 986 | while (parse_digit(c: *p, i)) { p++; } |
| 987 | // no integer digits, or 0123 (zero must be solo) |
| 988 | if ( p == src ) { return INCORRECT_TYPE; } |
| 989 | if ( (leading_zero && p != src+1)) { return NUMBER_ERROR; } |
| 990 | |
| 991 | // |
| 992 | // Parse the decimal part. |
| 993 | // |
| 994 | int64_t exponent = 0; |
| 995 | bool overflow; |
| 996 | if (simdjson_likely(*p == '.')) { |
| 997 | p++; |
| 998 | const uint8_t *start_decimal_digits = p; |
| 999 | if (!parse_digit(c: *p, i)) { return NUMBER_ERROR; } // no decimal digits |
| 1000 | p++; |
| 1001 | while (parse_digit(c: *p, i)) { p++; } |
| 1002 | exponent = -(p - start_decimal_digits); |
| 1003 | |
| 1004 | // Overflow check. More than 19 digits (minus the decimal) may be overflow. |
| 1005 | overflow = p-src-1 > 19; |
| 1006 | if (simdjson_unlikely(overflow && leading_zero)) { |
| 1007 | // Skip leading 0.00000 and see if it still overflows |
| 1008 | const uint8_t *start_digits = src + 2; |
| 1009 | while (*start_digits == '0') { start_digits++; } |
| 1010 | overflow = start_digits-src > 19; |
| 1011 | } |
| 1012 | } else { |
| 1013 | overflow = p-src > 19; |
| 1014 | } |
| 1015 | |
| 1016 | // |
| 1017 | // Parse the exponent |
| 1018 | // |
| 1019 | if (*p == 'e' || *p == 'E') { |
| 1020 | p++; |
| 1021 | bool exp_neg = *p == '-'; |
| 1022 | p += exp_neg || *p == '+'; |
| 1023 | |
| 1024 | uint64_t exp = 0; |
| 1025 | const uint8_t *start_exp_digits = p; |
| 1026 | while (parse_digit(c: *p, i&: exp)) { p++; } |
| 1027 | // no exp digits, or 20+ exp digits |
| 1028 | if (p-start_exp_digits == 0 || p-start_exp_digits > 19) { return NUMBER_ERROR; } |
| 1029 | |
| 1030 | exponent += exp_neg ? 0-exp : exp; |
| 1031 | } |
| 1032 | |
| 1033 | if (jsoncharutils::is_not_structural_or_whitespace(c: *p)) { return NUMBER_ERROR; } |
| 1034 | |
| 1035 | overflow = overflow || exponent < simdjson::internal::smallest_power || exponent > simdjson::internal::largest_power; |
| 1036 | |
| 1037 | // |
| 1038 | // Assemble (or slow-parse) the float |
| 1039 | // |
| 1040 | double d; |
| 1041 | if (simdjson_likely(!overflow)) { |
| 1042 | if (compute_float_64(power: exponent, i, negative, d)) { return d; } |
| 1043 | } |
| 1044 | if (!parse_float_fallback(ptr: src - uint8_t(negative), outDouble: &d)) { |
| 1045 | return NUMBER_ERROR; |
| 1046 | } |
| 1047 | return d; |
| 1048 | } |
| 1049 | |
| 1050 | simdjson_unused simdjson_inline bool is_negative(const uint8_t * src) noexcept { |
| 1051 | return (*src == '-'); |
| 1052 | } |
| 1053 | |
| 1054 | simdjson_unused simdjson_inline simdjson_result<bool> is_integer(const uint8_t * src) noexcept { |
| 1055 | bool negative = (*src == '-'); |
| 1056 | src += uint8_t(negative); |
| 1057 | const uint8_t *p = src; |
| 1058 | while(static_cast<uint8_t>(*p - '0') <= 9) { p++; } |
| 1059 | if ( p == src ) { return NUMBER_ERROR; } |
| 1060 | if (jsoncharutils::is_structural_or_whitespace(c: *p)) { return true; } |
| 1061 | return false; |
| 1062 | } |
| 1063 | |
| 1064 | simdjson_unused simdjson_inline simdjson_result<ondemand::number_type> get_number_type(const uint8_t * src) noexcept { |
| 1065 | bool negative = (*src == '-'); |
| 1066 | src += uint8_t(negative); |
| 1067 | const uint8_t *p = src; |
| 1068 | while(static_cast<uint8_t>(*p - '0') <= 9) { p++; } |
| 1069 | if ( p == src ) { return NUMBER_ERROR; } |
| 1070 | if (jsoncharutils::is_structural_or_whitespace(c: *p)) { |
| 1071 | // We have an integer. |
| 1072 | // If the number is negative and valid, it must be a signed integer. |
| 1073 | if(negative) { return ondemand::number_type::signed_integer; } |
| 1074 | // We want values larger or equal to 9223372036854775808 to be unsigned |
| 1075 | // integers, and the other values to be signed integers. |
| 1076 | int digit_count = int(p - src); |
| 1077 | if(digit_count >= 19) { |
| 1078 | const uint8_t * smaller_big_integer = reinterpret_cast<const uint8_t *>("9223372036854775808" ); |
| 1079 | if((digit_count >= 20) || (memcmp(s1: src, s2: smaller_big_integer, n: 19) >= 0)) { |
| 1080 | return ondemand::number_type::unsigned_integer; |
| 1081 | } |
| 1082 | } |
| 1083 | return ondemand::number_type::signed_integer; |
| 1084 | } |
| 1085 | // Hopefully, we have 'e' or 'E' or '.'. |
| 1086 | return ondemand::number_type::floating_point_number; |
| 1087 | } |
| 1088 | |
| 1089 | // Never read at src_end or beyond |
| 1090 | simdjson_unused simdjson_inline simdjson_result<double> parse_double(const uint8_t * src, const uint8_t * const src_end) noexcept { |
| 1091 | if(src == src_end) { return NUMBER_ERROR; } |
| 1092 | // |
| 1093 | // Check for minus sign |
| 1094 | // |
| 1095 | bool negative = (*src == '-'); |
| 1096 | src += uint8_t(negative); |
| 1097 | |
| 1098 | // |
| 1099 | // Parse the integer part. |
| 1100 | // |
| 1101 | uint64_t i = 0; |
| 1102 | const uint8_t *p = src; |
| 1103 | if(p == src_end) { return NUMBER_ERROR; } |
| 1104 | p += parse_digit(c: *p, i); |
| 1105 | bool leading_zero = (i == 0); |
| 1106 | while ((p != src_end) && parse_digit(c: *p, i)) { p++; } |
| 1107 | // no integer digits, or 0123 (zero must be solo) |
| 1108 | if ( p == src ) { return INCORRECT_TYPE; } |
| 1109 | if ( (leading_zero && p != src+1)) { return NUMBER_ERROR; } |
| 1110 | |
| 1111 | // |
| 1112 | // Parse the decimal part. |
| 1113 | // |
| 1114 | int64_t exponent = 0; |
| 1115 | bool overflow; |
| 1116 | if (simdjson_likely((p != src_end) && (*p == '.'))) { |
| 1117 | p++; |
| 1118 | const uint8_t *start_decimal_digits = p; |
| 1119 | if ((p == src_end) || !parse_digit(c: *p, i)) { return NUMBER_ERROR; } // no decimal digits |
| 1120 | p++; |
| 1121 | while ((p != src_end) && parse_digit(c: *p, i)) { p++; } |
| 1122 | exponent = -(p - start_decimal_digits); |
| 1123 | |
| 1124 | // Overflow check. More than 19 digits (minus the decimal) may be overflow. |
| 1125 | overflow = p-src-1 > 19; |
| 1126 | if (simdjson_unlikely(overflow && leading_zero)) { |
| 1127 | // Skip leading 0.00000 and see if it still overflows |
| 1128 | const uint8_t *start_digits = src + 2; |
| 1129 | while (*start_digits == '0') { start_digits++; } |
| 1130 | overflow = start_digits-src > 19; |
| 1131 | } |
| 1132 | } else { |
| 1133 | overflow = p-src > 19; |
| 1134 | } |
| 1135 | |
| 1136 | // |
| 1137 | // Parse the exponent |
| 1138 | // |
| 1139 | if ((p != src_end) && (*p == 'e' || *p == 'E')) { |
| 1140 | p++; |
| 1141 | if(p == src_end) { return NUMBER_ERROR; } |
| 1142 | bool exp_neg = *p == '-'; |
| 1143 | p += exp_neg || *p == '+'; |
| 1144 | |
| 1145 | uint64_t exp = 0; |
| 1146 | const uint8_t *start_exp_digits = p; |
| 1147 | while ((p != src_end) && parse_digit(c: *p, i&: exp)) { p++; } |
| 1148 | // no exp digits, or 20+ exp digits |
| 1149 | if (p-start_exp_digits == 0 || p-start_exp_digits > 19) { return NUMBER_ERROR; } |
| 1150 | |
| 1151 | exponent += exp_neg ? 0-exp : exp; |
| 1152 | } |
| 1153 | |
| 1154 | if ((p != src_end) && jsoncharutils::is_not_structural_or_whitespace(c: *p)) { return NUMBER_ERROR; } |
| 1155 | |
| 1156 | overflow = overflow || exponent < simdjson::internal::smallest_power || exponent > simdjson::internal::largest_power; |
| 1157 | |
| 1158 | // |
| 1159 | // Assemble (or slow-parse) the float |
| 1160 | // |
| 1161 | double d; |
| 1162 | if (simdjson_likely(!overflow)) { |
| 1163 | if (compute_float_64(power: exponent, i, negative, d)) { return d; } |
| 1164 | } |
| 1165 | if (!parse_float_fallback(ptr: src - uint8_t(negative), end_ptr: src_end, outDouble: &d)) { |
| 1166 | return NUMBER_ERROR; |
| 1167 | } |
| 1168 | return d; |
| 1169 | } |
| 1170 | |
| 1171 | simdjson_unused simdjson_inline simdjson_result<double> parse_double_in_string(const uint8_t * src) noexcept { |
| 1172 | // |
| 1173 | // Check for minus sign |
| 1174 | // |
| 1175 | bool negative = (*(src + 1) == '-'); |
| 1176 | src += uint8_t(negative) + 1; |
| 1177 | |
| 1178 | // |
| 1179 | // Parse the integer part. |
| 1180 | // |
| 1181 | uint64_t i = 0; |
| 1182 | const uint8_t *p = src; |
| 1183 | p += parse_digit(c: *p, i); |
| 1184 | bool leading_zero = (i == 0); |
| 1185 | while (parse_digit(c: *p, i)) { p++; } |
| 1186 | // no integer digits, or 0123 (zero must be solo) |
| 1187 | if ( p == src ) { return INCORRECT_TYPE; } |
| 1188 | if ( (leading_zero && p != src+1)) { return NUMBER_ERROR; } |
| 1189 | |
| 1190 | // |
| 1191 | // Parse the decimal part. |
| 1192 | // |
| 1193 | int64_t exponent = 0; |
| 1194 | bool overflow; |
| 1195 | if (simdjson_likely(*p == '.')) { |
| 1196 | p++; |
| 1197 | const uint8_t *start_decimal_digits = p; |
| 1198 | if (!parse_digit(c: *p, i)) { return NUMBER_ERROR; } // no decimal digits |
| 1199 | p++; |
| 1200 | while (parse_digit(c: *p, i)) { p++; } |
| 1201 | exponent = -(p - start_decimal_digits); |
| 1202 | |
| 1203 | // Overflow check. More than 19 digits (minus the decimal) may be overflow. |
| 1204 | overflow = p-src-1 > 19; |
| 1205 | if (simdjson_unlikely(overflow && leading_zero)) { |
| 1206 | // Skip leading 0.00000 and see if it still overflows |
| 1207 | const uint8_t *start_digits = src + 2; |
| 1208 | while (*start_digits == '0') { start_digits++; } |
| 1209 | overflow = start_digits-src > 19; |
| 1210 | } |
| 1211 | } else { |
| 1212 | overflow = p-src > 19; |
| 1213 | } |
| 1214 | |
| 1215 | // |
| 1216 | // Parse the exponent |
| 1217 | // |
| 1218 | if (*p == 'e' || *p == 'E') { |
| 1219 | p++; |
| 1220 | bool exp_neg = *p == '-'; |
| 1221 | p += exp_neg || *p == '+'; |
| 1222 | |
| 1223 | uint64_t exp = 0; |
| 1224 | const uint8_t *start_exp_digits = p; |
| 1225 | while (parse_digit(c: *p, i&: exp)) { p++; } |
| 1226 | // no exp digits, or 20+ exp digits |
| 1227 | if (p-start_exp_digits == 0 || p-start_exp_digits > 19) { return NUMBER_ERROR; } |
| 1228 | |
| 1229 | exponent += exp_neg ? 0-exp : exp; |
| 1230 | } |
| 1231 | |
| 1232 | if (*p != '"') { return NUMBER_ERROR; } |
| 1233 | |
| 1234 | overflow = overflow || exponent < simdjson::internal::smallest_power || exponent > simdjson::internal::largest_power; |
| 1235 | |
| 1236 | // |
| 1237 | // Assemble (or slow-parse) the float |
| 1238 | // |
| 1239 | double d; |
| 1240 | if (simdjson_likely(!overflow)) { |
| 1241 | if (compute_float_64(power: exponent, i, negative, d)) { return d; } |
| 1242 | } |
| 1243 | if (!parse_float_fallback(ptr: src - uint8_t(negative), outDouble: &d)) { |
| 1244 | return NUMBER_ERROR; |
| 1245 | } |
| 1246 | return d; |
| 1247 | } |
| 1248 | } //namespace {} |
| 1249 | #endif // SIMDJSON_SKIPNUMBERPARSING |
| 1250 | |
| 1251 | } // namespace numberparsing |
| 1252 | } // unnamed namespace |
| 1253 | } // namespace SIMDJSON_IMPLEMENTATION |
| 1254 | } // namespace simdjson |
| 1255 | |