1 | /*************************************************************************** |
2 | * Copyright (c) Johan Mabille, Sylvain Corlay, Wolf Vollprecht and * |
3 | * Martin Renou * |
4 | * Copyright (c) QuantStack * |
5 | * Copyright (c) Serge Guelton * |
6 | * * |
7 | * Distributed under the terms of the BSD 3-Clause License. * |
8 | * * |
9 | * The full license is in the file LICENSE, distributed with this software. * |
10 | ****************************************************************************/ |
11 | |
12 | #include <cmath> |
13 | #include <cstdint> |
14 | #include <cstring> |
15 | |
16 | namespace xsimd |
17 | { |
18 | namespace detail |
19 | { |
20 | |
21 | /* origin: boost/simd/arch/common/scalar/function/rem_pio2.hpp */ |
22 | /* |
23 | * ==================================================== |
24 | * copyright 2016 NumScale SAS |
25 | * |
26 | * Distributed under the Boost Software License, Version 1.0. |
27 | * (See copy at http://boost.org/LICENSE_1_0.txt) |
28 | * ==================================================== |
29 | */ |
30 | #if defined(_MSC_VER) |
31 | #define ONCE0 \ |
32 | __pragma(warning(push)) \ |
33 | __pragma(warning(disable : 4127)) while (0) \ |
34 | __pragma(warning(pop)) /**/ |
35 | #else |
36 | #define ONCE0 while (0) |
37 | #endif |
38 | |
39 | /* |
40 | * ==================================================== |
41 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
42 | * |
43 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
44 | * Permission to use, copy, modify, and distribute this |
45 | * software is freely granted, provided that this notice |
46 | * is preserved. |
47 | * ==================================================== |
48 | */ |
49 | |
50 | #if defined(__GNUC__) && defined(__BYTE_ORDER__) |
51 | #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
52 | #define XSIMD_LITTLE_ENDIAN |
53 | #endif |
54 | #elif defined(_WIN32) |
55 | // We can safely assume that Windows is always little endian |
56 | #define XSIMD_LITTLE_ENDIAN |
57 | #elif defined(i386) || defined(i486) || defined(intel) || defined(x86) || defined(i86pc) || defined(__alpha) || defined(__osf__) |
58 | #define XSIMD_LITTLE_ENDIAN |
59 | #endif |
60 | |
61 | #ifdef XSIMD_LITTLE_ENDIAN |
62 | #define LOW_WORD_IDX 0 |
63 | #define HIGH_WORD_IDX sizeof(std::uint32_t) |
64 | #else |
65 | #define LOW_WORD_IDX sizeof(std::uint32_t) |
66 | #define HIGH_WORD_IDX 0 |
67 | #endif |
68 | |
69 | #define GET_HIGH_WORD(i, d) \ |
70 | do \ |
71 | { \ |
72 | double f = (d); \ |
73 | std::memcpy(&(i), reinterpret_cast<char*>(&f) + HIGH_WORD_IDX, \ |
74 | sizeof(std::uint32_t)); \ |
75 | } \ |
76 | ONCE0 \ |
77 | /**/ |
78 | |
79 | #define GET_LOW_WORD(i, d) \ |
80 | do \ |
81 | { \ |
82 | double f = (d); \ |
83 | std::memcpy(&(i), reinterpret_cast<char*>(&f) + LOW_WORD_IDX, \ |
84 | sizeof(std::uint32_t)); \ |
85 | } \ |
86 | ONCE0 \ |
87 | /**/ |
88 | |
89 | #define SET_HIGH_WORD(d, v) \ |
90 | do \ |
91 | { \ |
92 | double f = (d); \ |
93 | std::uint32_t value = (v); \ |
94 | std::memcpy(reinterpret_cast<char*>(&f) + HIGH_WORD_IDX, \ |
95 | &value, sizeof(std::uint32_t)); \ |
96 | (d) = f; \ |
97 | } \ |
98 | ONCE0 \ |
99 | /**/ |
100 | |
101 | #define SET_LOW_WORD(d, v) \ |
102 | do \ |
103 | { \ |
104 | double f = (d); \ |
105 | std::uint32_t value = (v); \ |
106 | std::memcpy(reinterpret_cast<char*>(&f) + LOW_WORD_IDX, \ |
107 | &value, sizeof(std::uint32_t)); \ |
108 | (d) = f; \ |
109 | } \ |
110 | ONCE0 \ |
111 | /**/ |
112 | |
113 | /* |
114 | * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) |
115 | * double x[],y[]; int e0,nx,prec; int ipio2[]; |
116 | * |
117 | * __kernel_rem_pio2 return the last three digits of N with |
118 | * y = x - N*pi/2 |
119 | * so that |y| < pi/2. |
120 | * |
121 | * The method is to compute the integer (mod 8) and fraction parts of |
122 | * (2/pi)*x without doing the full multiplication. In general we |
123 | * skip the part of the product that are known to be a huge integer ( |
124 | * more accurately, = 0 mod 8 ). Thus the number of operations are |
125 | * independent of the exponent of the input. |
126 | * |
127 | * (2/pi) is represented by an array of 24-bit integers in ipio2[]. |
128 | * |
129 | * Input parameters: |
130 | * x[] The input value (must be positive) is broken into nx |
131 | * pieces of 24-bit integers in double precision format. |
132 | * x[i] will be the i-th 24 bit of x. The scaled exponent |
133 | * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 |
134 | * match x's up to 24 bits. |
135 | * |
136 | * Example of breaking a double positive z into x[0]+x[1]+x[2]: |
137 | * e0 = ilogb(z)-23 |
138 | * z = scalbn(z,-e0) |
139 | * for i = 0,1,2 |
140 | * x[i] = floor(z) |
141 | * z = (z-x[i])*2**24 |
142 | * |
143 | * |
144 | * y[] ouput result in an array of double precision numbers. |
145 | * The dimension of y[] is: |
146 | * 24-bit precision 1 |
147 | * 53-bit precision 2 |
148 | * 64-bit precision 2 |
149 | * 113-bit precision 3 |
150 | * The actual value is the sum of them. Thus for 113-bit |
151 | * precison, one may have to do something like: |
152 | * |
153 | * long double t,w,r_head, r_tail; |
154 | * t = (long double)y[2] + (long double)y[1]; |
155 | * w = (long double)y[0]; |
156 | * r_head = t+w; |
157 | * r_tail = w - (r_head - t); |
158 | * |
159 | * e0 The exponent of x[0] |
160 | * |
161 | * nx dimension of x[] |
162 | * |
163 | * prec an integer indicating the precision: |
164 | * 0 24 bits (single) |
165 | * 1 53 bits (double) |
166 | * 2 64 bits (extended) |
167 | * 3 113 bits (quad) |
168 | * |
169 | * ipio2[] |
170 | * integer array, contains the (24*i)-th to (24*i+23)-th |
171 | * bit of 2/pi after binary point. The corresponding |
172 | * floating value is |
173 | * |
174 | * ipio2[i] * 2^(-24(i+1)). |
175 | * |
176 | * External function: |
177 | * double scalbn(), floor(); |
178 | * |
179 | * |
180 | * Here is the description of some local variables: |
181 | * |
182 | * jk jk+1 is the initial number of terms of ipio2[] needed |
183 | * in the computation. The recommended value is 2,3,4, |
184 | * 6 for single, double, extended,and quad. |
185 | * |
186 | * jz local integer variable indicating the number of |
187 | * terms of ipio2[] used. |
188 | * |
189 | * jx nx - 1 |
190 | * |
191 | * jv index for pointing to the suitable ipio2[] for the |
192 | * computation. In general, we want |
193 | * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 |
194 | * is an integer. Thus |
195 | * e0-3-24*jv >= 0 or (e0-3)/24 >= jv |
196 | * Hence jv = max(0,(e0-3)/24). |
197 | * |
198 | * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. |
199 | * |
200 | * q[] double array with integral value, representing the |
201 | * 24-bits chunk of the product of x and 2/pi. |
202 | * |
203 | * q0 the corresponding exponent of q[0]. Note that the |
204 | * exponent for q[i] would be q0-24*i. |
205 | * |
206 | * PIo2[] double precision array, obtained by cutting pi/2 |
207 | * into 24 bits chunks. |
208 | * |
209 | * f[] ipio2[] in floating point |
210 | * |
211 | * iq[] integer array by breaking up q[] in 24-bits chunk. |
212 | * |
213 | * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] |
214 | * |
215 | * ih integer. If >0 it indicates q[] is >= 0.5, hence |
216 | * it also indicates the *sign* of the result. |
217 | * |
218 | */ |
219 | |
220 | inline int32_t __kernel_rem_pio2(double* x, double* y, int32_t e0, int32_t nx, int32_t prec, const int32_t* ipio2) noexcept |
221 | { |
222 | static const int32_t init_jk[] = { 2, 3, 4, 6 }; /* initial value for jk */ |
223 | |
224 | static const double PIo2[] = { |
225 | 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ |
226 | 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ |
227 | 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ |
228 | 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ |
229 | 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ |
230 | 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ |
231 | 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ |
232 | 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ |
233 | }; |
234 | |
235 | static const double |
236 | zero |
237 | = 0.0, |
238 | one = 1.0, |
239 | two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ |
240 | twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ |
241 | |
242 | int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih; |
243 | double z, fw, f[20], fq[20], q[20]; |
244 | |
245 | /* initialize jk*/ |
246 | jk = init_jk[prec]; |
247 | jp = jk; |
248 | |
249 | /* determine jx,jv,q0, note that 3>q0 */ |
250 | jx = nx - 1; |
251 | jv = (e0 - 3) / 24; |
252 | if (jv < 0) |
253 | jv = 0; |
254 | q0 = e0 - 24 * (jv + 1); |
255 | |
256 | /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ |
257 | j = jv - jx; |
258 | m = jx + jk; |
259 | for (i = 0; i <= m; i++, j++) |
260 | f[i] = (j < 0) ? zero : (double)ipio2[j]; |
261 | |
262 | /* compute q[0],q[1],...q[jk] */ |
263 | for (i = 0; i <= jk; i++) |
264 | { |
265 | for (j = 0, fw = 0.0; j <= jx; j++) |
266 | fw += x[j] * f[jx + i - j]; |
267 | q[i] = fw; |
268 | } |
269 | |
270 | jz = jk; |
271 | |
272 | recompute: |
273 | /* distill q[] into iq[] reversingly */ |
274 | for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) |
275 | { |
276 | fw = (double)((int32_t)(twon24 * z)); |
277 | iq[i] = (int)(z - two24 * fw); |
278 | z = q[j - 1] + fw; |
279 | } |
280 | |
281 | /* compute n */ |
282 | z = std::scalbn(x: z, n: q0); /* actual value of z */ |
283 | z -= 8.0 * std::floor(x: z * 0.125); /* trim off integer >= 8 */ |
284 | n = (int32_t)z; |
285 | z -= (double)n; |
286 | ih = 0; |
287 | if (q0 > 0) |
288 | { /* need iq[jz-1] to determine n */ |
289 | i = (iq[jz - 1] >> (24 - q0)); |
290 | n += i; |
291 | iq[jz - 1] -= i << (24 - q0); |
292 | ih = iq[jz - 1] >> (23 - q0); |
293 | } |
294 | else if (q0 == 0) |
295 | ih = iq[jz - 1] >> 23; |
296 | else if (z >= 0.5) |
297 | ih = 2; |
298 | |
299 | if (ih > 0) |
300 | { /* q > 0.5 */ |
301 | n += 1; |
302 | carry = 0; |
303 | for (i = 0; i < jz; i++) |
304 | { /* compute 1-q */ |
305 | j = iq[i]; |
306 | if (carry == 0) |
307 | { |
308 | if (j != 0) |
309 | { |
310 | carry = 1; |
311 | iq[i] = 0x1000000 - j; |
312 | } |
313 | } |
314 | else |
315 | iq[i] = 0xffffff - j; |
316 | } |
317 | if (q0 > 0) |
318 | { /* rare case: chance is 1 in 12 */ |
319 | switch (q0) |
320 | { |
321 | case 1: |
322 | iq[jz - 1] &= 0x7fffff; |
323 | break; |
324 | case 2: |
325 | iq[jz - 1] &= 0x3fffff; |
326 | break; |
327 | } |
328 | } |
329 | if (ih == 2) |
330 | { |
331 | z = one - z; |
332 | if (carry != 0) |
333 | z -= std::scalbn(x: one, n: q0); |
334 | } |
335 | } |
336 | |
337 | /* check if recomputation is needed */ |
338 | if (z == zero) |
339 | { |
340 | j = 0; |
341 | for (i = jz - 1; i >= jk; i--) |
342 | j |= iq[i]; |
343 | if (j == 0) |
344 | { /* need recomputation */ |
345 | for (k = 1; iq[jk - k] == 0; k++) |
346 | ; /* k = no. of terms needed */ |
347 | |
348 | for (i = jz + 1; i <= jz + k; i++) |
349 | { /* add q[jz+1] to q[jz+k] */ |
350 | f[jx + i] = (double)ipio2[jv + i]; |
351 | for (j = 0, fw = 0.0; j <= jx; j++) |
352 | fw += x[j] * f[jx + i - j]; |
353 | q[i] = fw; |
354 | } |
355 | jz += k; |
356 | goto recompute; |
357 | } |
358 | } |
359 | |
360 | /* chop off zero terms */ |
361 | if (z == 0.0) |
362 | { |
363 | jz -= 1; |
364 | q0 -= 24; |
365 | while (iq[jz] == 0) |
366 | { |
367 | jz--; |
368 | q0 -= 24; |
369 | } |
370 | } |
371 | else |
372 | { /* break z into 24-bit if necessary */ |
373 | z = std::scalbn(x: z, n: -q0); |
374 | if (z >= two24) |
375 | { |
376 | fw = (double)((int32_t)(twon24 * z)); |
377 | iq[jz] = (int32_t)(z - two24 * fw); |
378 | jz += 1; |
379 | q0 += 24; |
380 | iq[jz] = (int32_t)fw; |
381 | } |
382 | else |
383 | iq[jz] = (int32_t)z; |
384 | } |
385 | |
386 | /* convert integer "bit" chunk to floating-point value */ |
387 | fw = scalbn(x: one, n: q0); |
388 | for (i = jz; i >= 0; i--) |
389 | { |
390 | q[i] = fw * (double)iq[i]; |
391 | fw *= twon24; |
392 | } |
393 | |
394 | /* compute PIo2[0,...,jp]*q[jz,...,0] */ |
395 | for (i = jz; i >= 0; i--) |
396 | { |
397 | for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++) |
398 | fw += PIo2[k] * q[i + k]; |
399 | fq[jz - i] = fw; |
400 | } |
401 | |
402 | /* compress fq[] into y[] */ |
403 | switch (prec) |
404 | { |
405 | case 0: |
406 | fw = 0.0; |
407 | for (i = jz; i >= 0; i--) |
408 | fw += fq[i]; |
409 | y[0] = (ih == 0) ? fw : -fw; |
410 | break; |
411 | case 1: |
412 | case 2: |
413 | fw = 0.0; |
414 | for (i = jz; i >= 0; i--) |
415 | fw += fq[i]; |
416 | y[0] = (ih == 0) ? fw : -fw; |
417 | fw = fq[0] - fw; |
418 | for (i = 1; i <= jz; i++) |
419 | fw += fq[i]; |
420 | y[1] = (ih == 0) ? fw : -fw; |
421 | break; |
422 | case 3: /* painful */ |
423 | for (i = jz; i > 0; i--) |
424 | { |
425 | fw = fq[i - 1] + fq[i]; |
426 | fq[i] += fq[i - 1] - fw; |
427 | fq[i - 1] = fw; |
428 | } |
429 | for (i = jz; i > 1; i--) |
430 | { |
431 | fw = fq[i - 1] + fq[i]; |
432 | fq[i] += fq[i - 1] - fw; |
433 | fq[i - 1] = fw; |
434 | } |
435 | for (fw = 0.0, i = jz; i >= 2; i--) |
436 | fw += fq[i]; |
437 | if (ih == 0) |
438 | { |
439 | y[0] = fq[0]; |
440 | y[1] = fq[1]; |
441 | y[2] = fw; |
442 | } |
443 | else |
444 | { |
445 | y[0] = -fq[0]; |
446 | y[1] = -fq[1]; |
447 | y[2] = -fw; |
448 | } |
449 | } |
450 | return n & 7; |
451 | } |
452 | |
453 | inline std::int32_t __ieee754_rem_pio2(double x, double* y) noexcept |
454 | { |
455 | static const std::int32_t two_over_pi[] = { |
456 | 0xA2F983, |
457 | 0x6E4E44, |
458 | 0x1529FC, |
459 | 0x2757D1, |
460 | 0xF534DD, |
461 | 0xC0DB62, |
462 | 0x95993C, |
463 | 0x439041, |
464 | 0xFE5163, |
465 | 0xABDEBB, |
466 | 0xC561B7, |
467 | 0x246E3A, |
468 | 0x424DD2, |
469 | 0xE00649, |
470 | 0x2EEA09, |
471 | 0xD1921C, |
472 | 0xFE1DEB, |
473 | 0x1CB129, |
474 | 0xA73EE8, |
475 | 0x8235F5, |
476 | 0x2EBB44, |
477 | 0x84E99C, |
478 | 0x7026B4, |
479 | 0x5F7E41, |
480 | 0x3991D6, |
481 | 0x398353, |
482 | 0x39F49C, |
483 | 0x845F8B, |
484 | 0xBDF928, |
485 | 0x3B1FF8, |
486 | 0x97FFDE, |
487 | 0x05980F, |
488 | 0xEF2F11, |
489 | 0x8B5A0A, |
490 | 0x6D1F6D, |
491 | 0x367ECF, |
492 | 0x27CB09, |
493 | 0xB74F46, |
494 | 0x3F669E, |
495 | 0x5FEA2D, |
496 | 0x7527BA, |
497 | 0xC7EBE5, |
498 | 0xF17B3D, |
499 | 0x0739F7, |
500 | 0x8A5292, |
501 | 0xEA6BFB, |
502 | 0x5FB11F, |
503 | 0x8D5D08, |
504 | 0x560330, |
505 | 0x46FC7B, |
506 | 0x6BABF0, |
507 | 0xCFBC20, |
508 | 0x9AF436, |
509 | 0x1DA9E3, |
510 | 0x91615E, |
511 | 0xE61B08, |
512 | 0x659985, |
513 | 0x5F14A0, |
514 | 0x68408D, |
515 | 0xFFD880, |
516 | 0x4D7327, |
517 | 0x310606, |
518 | 0x1556CA, |
519 | 0x73A8C9, |
520 | 0x60E27B, |
521 | 0xC08C6B, |
522 | }; |
523 | |
524 | static const std::int32_t npio2_hw[] = { |
525 | 0x3FF921FB, |
526 | 0x400921FB, |
527 | 0x4012D97C, |
528 | 0x401921FB, |
529 | 0x401F6A7A, |
530 | 0x4022D97C, |
531 | 0x4025FDBB, |
532 | 0x402921FB, |
533 | 0x402C463A, |
534 | 0x402F6A7A, |
535 | 0x4031475C, |
536 | 0x4032D97C, |
537 | 0x40346B9C, |
538 | 0x4035FDBB, |
539 | 0x40378FDB, |
540 | 0x403921FB, |
541 | 0x403AB41B, |
542 | 0x403C463A, |
543 | 0x403DD85A, |
544 | 0x403F6A7A, |
545 | 0x40407E4C, |
546 | 0x4041475C, |
547 | 0x4042106C, |
548 | 0x4042D97C, |
549 | 0x4043A28C, |
550 | 0x40446B9C, |
551 | 0x404534AC, |
552 | 0x4045FDBB, |
553 | 0x4046C6CB, |
554 | 0x40478FDB, |
555 | 0x404858EB, |
556 | 0x404921FB, |
557 | }; |
558 | |
559 | /* |
560 | * invpio2: 53 bits of 2/pi |
561 | * pio2_1: first 33 bit of pi/2 |
562 | * pio2_1t: pi/2 - pio2_1 |
563 | * pio2_2: second 33 bit of pi/2 |
564 | * pio2_2t: pi/2 - (pio2_1+pio2_2) |
565 | * pio2_3: third 33 bit of pi/2 |
566 | * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) |
567 | */ |
568 | |
569 | static const double |
570 | zero |
571 | = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ |
572 | half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ |
573 | two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ |
574 | invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ |
575 | pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */ |
576 | pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */ |
577 | pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */ |
578 | pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */ |
579 | pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */ |
580 | pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */ |
581 | |
582 | double z = 0., w, t, r, fn; |
583 | double tx[3]; |
584 | std::int32_t e0, i, j, nx, n, ix, hx; |
585 | std::uint32_t low; |
586 | |
587 | GET_HIGH_WORD(hx, x); /* high word of x */ |
588 | ix = hx & 0x7fffffff; |
589 | if (ix <= 0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */ |
590 | { |
591 | y[0] = x; |
592 | y[1] = 0; |
593 | return 0; |
594 | } |
595 | if (ix < 0x4002d97c) |
596 | { /* |x| < 3pi/4, special case with n=+-1 */ |
597 | if (hx > 0) |
598 | { |
599 | z = x - pio2_1; |
600 | if (ix != 0x3ff921fb) |
601 | { /* 33+53 bit pi is good enough */ |
602 | y[0] = z - pio2_1t; |
603 | y[1] = (z - y[0]) - pio2_1t; |
604 | } |
605 | else |
606 | { /* near pi/2, use 33+33+53 bit pi */ |
607 | z -= pio2_2; |
608 | y[0] = z - pio2_2t; |
609 | y[1] = (z - y[0]) - pio2_2t; |
610 | } |
611 | return 1; |
612 | } |
613 | else |
614 | { /* negative x */ |
615 | z = x + pio2_1; |
616 | if (ix != 0x3ff921fb) |
617 | { /* 33+53 bit pi is good enough */ |
618 | y[0] = z + pio2_1t; |
619 | y[1] = (z - y[0]) + pio2_1t; |
620 | } |
621 | else |
622 | { /* near pi/2, use 33+33+53 bit pi */ |
623 | z += pio2_2; |
624 | y[0] = z + pio2_2t; |
625 | y[1] = (z - y[0]) + pio2_2t; |
626 | } |
627 | |
628 | return -1; |
629 | } |
630 | } |
631 | if (ix <= 0x413921fb) |
632 | { /* |x| ~<= 2^19*(pi/2), medium_ size */ |
633 | t = std::fabs(x: x); |
634 | n = (std::int32_t)(t * invpio2 + half); |
635 | fn = (double)n; |
636 | r = t - fn * pio2_1; |
637 | w = fn * pio2_1t; /* 1st round good to 85 bit */ |
638 | if ((n < 32) && (n > 0) && (ix != npio2_hw[n - 1])) |
639 | { |
640 | y[0] = r - w; /* quick check no cancellation */ |
641 | } |
642 | else |
643 | { |
644 | std::uint32_t high; |
645 | j = ix >> 20; |
646 | y[0] = r - w; |
647 | GET_HIGH_WORD(high, y[0]); |
648 | i = j - static_cast<int32_t>((high >> 20) & 0x7ff); |
649 | if (i > 16) |
650 | { /* 2nd iteration needed, good to 118 */ |
651 | t = r; |
652 | w = fn * pio2_2; |
653 | r = t - w; |
654 | w = fn * pio2_2t - ((t - r) - w); |
655 | y[0] = r - w; |
656 | GET_HIGH_WORD(high, y[0]); |
657 | i = j - static_cast<int32_t>((high >> 20) & 0x7ff); |
658 | if (i > 49) |
659 | { /* 3rd iteration need, 151 bits acc */ |
660 | t = r; /* will cover all possible cases */ |
661 | w = fn * pio2_3; |
662 | r = t - w; |
663 | w = fn * pio2_3t - ((t - r) - w); |
664 | y[0] = r - w; |
665 | } |
666 | } |
667 | } |
668 | y[1] = (r - y[0]) - w; |
669 | if (hx < 0) |
670 | { |
671 | y[0] = -y[0]; |
672 | y[1] = -y[1]; |
673 | return -n; |
674 | } |
675 | else |
676 | return n; |
677 | } |
678 | /* |
679 | * all other (large) arguments |
680 | */ |
681 | if (ix >= 0x7ff00000) |
682 | { /* x is inf or NaN */ |
683 | y[0] = y[1] = x - x; |
684 | return 0; |
685 | } |
686 | /* set z = scalbn(|x|,ilogb(x)-23) */ |
687 | GET_LOW_WORD(low, x); |
688 | SET_LOW_WORD(z, low); |
689 | e0 = (ix >> 20) - 1046; /* e0 = ilogb(z)-23; */ |
690 | SET_HIGH_WORD(z, static_cast<uint32_t>(ix - (e0 << 20))); |
691 | for (i = 0; i < 2; i++) |
692 | { |
693 | tx[i] = (double)((std::int32_t)(z)); |
694 | z = (z - tx[i]) * two24; |
695 | } |
696 | tx[2] = z; |
697 | nx = 3; |
698 | while (tx[nx - 1] == zero) |
699 | nx--; /* skip zero term */ |
700 | n = __kernel_rem_pio2(x: tx, y, e0, nx, prec: 2, ipio2: two_over_pi); |
701 | if (hx < 0) |
702 | { |
703 | y[0] = -y[0]; |
704 | y[1] = -y[1]; |
705 | return -n; |
706 | } |
707 | return n; |
708 | } |
709 | } |
710 | |
711 | #undef XSIMD_LITTLE_ENDIAN |
712 | #undef SET_LOW_WORD |
713 | #undef SET_HIGH_WORD |
714 | #undef GET_LOW_WORD |
715 | #undef GET_HIGH_WORD |
716 | #undef HIGH_WORD_IDX |
717 | #undef LOW_WORD_IDX |
718 | #undef ONCE0 |
719 | } |
720 | |