1 | /* trees.c -- output deflated data using Huffman coding |
2 | * Copyright (C) 1995-2017 Jean-loup Gailly |
3 | * detect_data_type() function provided freely by Cosmin Truta, 2006 |
4 | * For conditions of distribution and use, see copyright notice in zlib.h |
5 | */ |
6 | |
7 | /* |
8 | * ALGORITHM |
9 | * |
10 | * The "deflation" process uses several Huffman trees. The more |
11 | * common source values are represented by shorter bit sequences. |
12 | * |
13 | * Each code tree is stored in a compressed form which is itself |
14 | * a Huffman encoding of the lengths of all the code strings (in |
15 | * ascending order by source values). The actual code strings are |
16 | * reconstructed from the lengths in the inflate process, as described |
17 | * in the deflate specification. |
18 | * |
19 | * REFERENCES |
20 | * |
21 | * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". |
22 | * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc |
23 | * |
24 | * Storer, James A. |
25 | * Data Compression: Methods and Theory, pp. 49-50. |
26 | * Computer Science Press, 1988. ISBN 0-7167-8156-5. |
27 | * |
28 | * Sedgewick, R. |
29 | * Algorithms, p290. |
30 | * Addison-Wesley, 1983. ISBN 0-201-06672-6. |
31 | */ |
32 | |
33 | #include "zbuild.h" |
34 | #include "deflate.h" |
35 | #include "trees.h" |
36 | #include "trees_emit.h" |
37 | #include "trees_tbl.h" |
38 | |
39 | /* The lengths of the bit length codes are sent in order of decreasing |
40 | * probability, to avoid transmitting the lengths for unused bit length codes. |
41 | */ |
42 | |
43 | /* =========================================================================== |
44 | * Local data. These are initialized only once. |
45 | */ |
46 | |
47 | struct static_tree_desc_s { |
48 | const ct_data *static_tree; /* static tree or NULL */ |
49 | const int *; /* extra bits for each code or NULL */ |
50 | int ; /* base index for extra_bits */ |
51 | int elems; /* max number of elements in the tree */ |
52 | unsigned int max_length; /* max bit length for the codes */ |
53 | }; |
54 | |
55 | static const static_tree_desc static_l_desc = |
56 | {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; |
57 | |
58 | static const static_tree_desc static_d_desc = |
59 | {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; |
60 | |
61 | static const static_tree_desc static_bl_desc = |
62 | {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; |
63 | |
64 | /* =========================================================================== |
65 | * Local (static) routines in this file. |
66 | */ |
67 | |
68 | static void init_block (deflate_state *s); |
69 | static void pqdownheap (deflate_state *s, ct_data *tree, int k); |
70 | static void gen_bitlen (deflate_state *s, tree_desc *desc); |
71 | static void build_tree (deflate_state *s, tree_desc *desc); |
72 | static void scan_tree (deflate_state *s, ct_data *tree, int max_code); |
73 | static void send_tree (deflate_state *s, ct_data *tree, int max_code); |
74 | static int build_bl_tree (deflate_state *s); |
75 | static void send_all_trees (deflate_state *s, int lcodes, int dcodes, int blcodes); |
76 | static void compress_block (deflate_state *s, const ct_data *ltree, const ct_data *dtree); |
77 | static int detect_data_type (deflate_state *s); |
78 | static void bi_flush (deflate_state *s); |
79 | |
80 | /* =========================================================================== |
81 | * Initialize the tree data structures for a new zlib stream. |
82 | */ |
83 | void Z_INTERNAL zng_tr_init(deflate_state *s) { |
84 | s->l_desc.dyn_tree = s->dyn_ltree; |
85 | s->l_desc.stat_desc = &static_l_desc; |
86 | |
87 | s->d_desc.dyn_tree = s->dyn_dtree; |
88 | s->d_desc.stat_desc = &static_d_desc; |
89 | |
90 | s->bl_desc.dyn_tree = s->bl_tree; |
91 | s->bl_desc.stat_desc = &static_bl_desc; |
92 | |
93 | s->bi_buf = 0; |
94 | s->bi_valid = 0; |
95 | #ifdef ZLIB_DEBUG |
96 | s->compressed_len = 0L; |
97 | s->bits_sent = 0L; |
98 | #endif |
99 | |
100 | /* Initialize the first block of the first file: */ |
101 | init_block(s); |
102 | } |
103 | |
104 | /* =========================================================================== |
105 | * Initialize a new block. |
106 | */ |
107 | static void init_block(deflate_state *s) { |
108 | int n; /* iterates over tree elements */ |
109 | |
110 | /* Initialize the trees. */ |
111 | for (n = 0; n < L_CODES; n++) |
112 | s->dyn_ltree[n].Freq = 0; |
113 | for (n = 0; n < D_CODES; n++) |
114 | s->dyn_dtree[n].Freq = 0; |
115 | for (n = 0; n < BL_CODES; n++) |
116 | s->bl_tree[n].Freq = 0; |
117 | |
118 | s->dyn_ltree[END_BLOCK].Freq = 1; |
119 | s->opt_len = s->static_len = 0L; |
120 | s->sym_next = s->matches = 0; |
121 | } |
122 | |
123 | #define SMALLEST 1 |
124 | /* Index within the heap array of least frequent node in the Huffman tree */ |
125 | |
126 | |
127 | /* =========================================================================== |
128 | * Remove the smallest element from the heap and recreate the heap with |
129 | * one less element. Updates heap and heap_len. |
130 | */ |
131 | #define pqremove(s, tree, top) \ |
132 | {\ |
133 | top = s->heap[SMALLEST]; \ |
134 | s->heap[SMALLEST] = s->heap[s->heap_len--]; \ |
135 | pqdownheap(s, tree, SMALLEST); \ |
136 | } |
137 | |
138 | /* =========================================================================== |
139 | * Compares to subtrees, using the tree depth as tie breaker when |
140 | * the subtrees have equal frequency. This minimizes the worst case length. |
141 | */ |
142 | #define smaller(tree, n, m, depth) \ |
143 | (tree[n].Freq < tree[m].Freq || \ |
144 | (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) |
145 | |
146 | /* =========================================================================== |
147 | * Restore the heap property by moving down the tree starting at node k, |
148 | * exchanging a node with the smallest of its two sons if necessary, stopping |
149 | * when the heap property is re-established (each father smaller than its |
150 | * two sons). |
151 | */ |
152 | static void pqdownheap(deflate_state *s, ct_data *tree, int k) { |
153 | /* tree: the tree to restore */ |
154 | /* k: node to move down */ |
155 | int v = s->heap[k]; |
156 | int j = k << 1; /* left son of k */ |
157 | while (j <= s->heap_len) { |
158 | /* Set j to the smallest of the two sons: */ |
159 | if (j < s->heap_len && smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { |
160 | j++; |
161 | } |
162 | /* Exit if v is smaller than both sons */ |
163 | if (smaller(tree, v, s->heap[j], s->depth)) |
164 | break; |
165 | |
166 | /* Exchange v with the smallest son */ |
167 | s->heap[k] = s->heap[j]; |
168 | k = j; |
169 | |
170 | /* And continue down the tree, setting j to the left son of k */ |
171 | j <<= 1; |
172 | } |
173 | s->heap[k] = v; |
174 | } |
175 | |
176 | /* =========================================================================== |
177 | * Compute the optimal bit lengths for a tree and update the total bit length |
178 | * for the current block. |
179 | * IN assertion: the fields freq and dad are set, heap[heap_max] and |
180 | * above are the tree nodes sorted by increasing frequency. |
181 | * OUT assertions: the field len is set to the optimal bit length, the |
182 | * array bl_count contains the frequencies for each bit length. |
183 | * The length opt_len is updated; static_len is also updated if stree is |
184 | * not null. |
185 | */ |
186 | static void gen_bitlen(deflate_state *s, tree_desc *desc) { |
187 | /* desc: the tree descriptor */ |
188 | ct_data *tree = desc->dyn_tree; |
189 | int max_code = desc->max_code; |
190 | const ct_data *stree = desc->stat_desc->static_tree; |
191 | const int * = desc->stat_desc->extra_bits; |
192 | int base = desc->stat_desc->extra_base; |
193 | unsigned int max_length = desc->stat_desc->max_length; |
194 | int h; /* heap index */ |
195 | int n, m; /* iterate over the tree elements */ |
196 | unsigned int bits; /* bit length */ |
197 | int xbits; /* extra bits */ |
198 | uint16_t f; /* frequency */ |
199 | int overflow = 0; /* number of elements with bit length too large */ |
200 | |
201 | for (bits = 0; bits <= MAX_BITS; bits++) |
202 | s->bl_count[bits] = 0; |
203 | |
204 | /* In a first pass, compute the optimal bit lengths (which may |
205 | * overflow in the case of the bit length tree). |
206 | */ |
207 | tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ |
208 | |
209 | for (h = s->heap_max + 1; h < HEAP_SIZE; h++) { |
210 | n = s->heap[h]; |
211 | bits = tree[tree[n].Dad].Len + 1u; |
212 | if (bits > max_length){ |
213 | bits = max_length; |
214 | overflow++; |
215 | } |
216 | tree[n].Len = (uint16_t)bits; |
217 | /* We overwrite tree[n].Dad which is no longer needed */ |
218 | |
219 | if (n > max_code) /* not a leaf node */ |
220 | continue; |
221 | |
222 | s->bl_count[bits]++; |
223 | xbits = 0; |
224 | if (n >= base) |
225 | xbits = extra[n-base]; |
226 | f = tree[n].Freq; |
227 | s->opt_len += (unsigned long)f * (unsigned int)(bits + xbits); |
228 | if (stree) |
229 | s->static_len += (unsigned long)f * (unsigned int)(stree[n].Len + xbits); |
230 | } |
231 | if (overflow == 0) |
232 | return; |
233 | |
234 | Tracev((stderr, "\nbit length overflow\n" )); |
235 | /* This happens for example on obj2 and pic of the Calgary corpus */ |
236 | |
237 | /* Find the first bit length which could increase: */ |
238 | do { |
239 | bits = max_length - 1; |
240 | while (s->bl_count[bits] == 0) |
241 | bits--; |
242 | s->bl_count[bits]--; /* move one leaf down the tree */ |
243 | s->bl_count[bits+1] += 2u; /* move one overflow item as its brother */ |
244 | s->bl_count[max_length]--; |
245 | /* The brother of the overflow item also moves one step up, |
246 | * but this does not affect bl_count[max_length] |
247 | */ |
248 | overflow -= 2; |
249 | } while (overflow > 0); |
250 | |
251 | /* Now recompute all bit lengths, scanning in increasing frequency. |
252 | * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all |
253 | * lengths instead of fixing only the wrong ones. This idea is taken |
254 | * from 'ar' written by Haruhiko Okumura.) |
255 | */ |
256 | for (bits = max_length; bits != 0; bits--) { |
257 | n = s->bl_count[bits]; |
258 | while (n != 0) { |
259 | m = s->heap[--h]; |
260 | if (m > max_code) |
261 | continue; |
262 | if (tree[m].Len != bits) { |
263 | Tracev((stderr, "code %d bits %d->%u\n" , m, tree[m].Len, bits)); |
264 | s->opt_len += (unsigned long)(bits * tree[m].Freq); |
265 | s->opt_len -= (unsigned long)(tree[m].Len * tree[m].Freq); |
266 | tree[m].Len = (uint16_t)bits; |
267 | } |
268 | n--; |
269 | } |
270 | } |
271 | } |
272 | |
273 | /* =========================================================================== |
274 | * Generate the codes for a given tree and bit counts (which need not be |
275 | * optimal). |
276 | * IN assertion: the array bl_count contains the bit length statistics for |
277 | * the given tree and the field len is set for all tree elements. |
278 | * OUT assertion: the field code is set for all tree elements of non |
279 | * zero code length. |
280 | */ |
281 | Z_INTERNAL void gen_codes(ct_data *tree, int max_code, uint16_t *bl_count) { |
282 | /* tree: the tree to decorate */ |
283 | /* max_code: largest code with non zero frequency */ |
284 | /* bl_count: number of codes at each bit length */ |
285 | uint16_t next_code[MAX_BITS+1]; /* next code value for each bit length */ |
286 | unsigned int code = 0; /* running code value */ |
287 | int bits; /* bit index */ |
288 | int n; /* code index */ |
289 | |
290 | /* The distribution counts are first used to generate the code values |
291 | * without bit reversal. |
292 | */ |
293 | for (bits = 1; bits <= MAX_BITS; bits++) { |
294 | code = (code + bl_count[bits-1]) << 1; |
295 | next_code[bits] = (uint16_t)code; |
296 | } |
297 | /* Check that the bit counts in bl_count are consistent. The last code |
298 | * must be all ones. |
299 | */ |
300 | Assert(code + bl_count[MAX_BITS]-1 == (1 << MAX_BITS)-1, "inconsistent bit counts" ); |
301 | Tracev((stderr, "\ngen_codes: max_code %d " , max_code)); |
302 | |
303 | for (n = 0; n <= max_code; n++) { |
304 | int len = tree[n].Len; |
305 | if (len == 0) |
306 | continue; |
307 | /* Now reverse the bits */ |
308 | tree[n].Code = (uint16_t)bi_reverse(code: next_code[len]++, len); |
309 | |
310 | Tracecv(tree != static_ltree, (stderr, "\nn %3d %c l %2d c %4x (%x) " , |
311 | n, (isgraph(n & 0xff) ? n : ' '), len, tree[n].Code, next_code[len]-1)); |
312 | } |
313 | } |
314 | |
315 | /* =========================================================================== |
316 | * Construct one Huffman tree and assigns the code bit strings and lengths. |
317 | * Update the total bit length for the current block. |
318 | * IN assertion: the field freq is set for all tree elements. |
319 | * OUT assertions: the fields len and code are set to the optimal bit length |
320 | * and corresponding code. The length opt_len is updated; static_len is |
321 | * also updated if stree is not null. The field max_code is set. |
322 | */ |
323 | static void build_tree(deflate_state *s, tree_desc *desc) { |
324 | /* desc: the tree descriptor */ |
325 | ct_data *tree = desc->dyn_tree; |
326 | const ct_data *stree = desc->stat_desc->static_tree; |
327 | int elems = desc->stat_desc->elems; |
328 | int n, m; /* iterate over heap elements */ |
329 | int max_code = -1; /* largest code with non zero frequency */ |
330 | int node; /* new node being created */ |
331 | |
332 | /* Construct the initial heap, with least frequent element in |
333 | * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. |
334 | * heap[0] is not used. |
335 | */ |
336 | s->heap_len = 0; |
337 | s->heap_max = HEAP_SIZE; |
338 | |
339 | for (n = 0; n < elems; n++) { |
340 | if (tree[n].Freq != 0) { |
341 | s->heap[++(s->heap_len)] = max_code = n; |
342 | s->depth[n] = 0; |
343 | } else { |
344 | tree[n].Len = 0; |
345 | } |
346 | } |
347 | |
348 | /* The pkzip format requires that at least one distance code exists, |
349 | * and that at least one bit should be sent even if there is only one |
350 | * possible code. So to avoid special checks later on we force at least |
351 | * two codes of non zero frequency. |
352 | */ |
353 | while (s->heap_len < 2) { |
354 | node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); |
355 | tree[node].Freq = 1; |
356 | s->depth[node] = 0; |
357 | s->opt_len--; |
358 | if (stree) |
359 | s->static_len -= stree[node].Len; |
360 | /* node is 0 or 1 so it does not have extra bits */ |
361 | } |
362 | desc->max_code = max_code; |
363 | |
364 | /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, |
365 | * establish sub-heaps of increasing lengths: |
366 | */ |
367 | for (n = s->heap_len/2; n >= 1; n--) |
368 | pqdownheap(s, tree, k: n); |
369 | |
370 | /* Construct the Huffman tree by repeatedly combining the least two |
371 | * frequent nodes. |
372 | */ |
373 | node = elems; /* next internal node of the tree */ |
374 | do { |
375 | pqremove(s, tree, n); /* n = node of least frequency */ |
376 | m = s->heap[SMALLEST]; /* m = node of next least frequency */ |
377 | |
378 | s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ |
379 | s->heap[--(s->heap_max)] = m; |
380 | |
381 | /* Create a new node father of n and m */ |
382 | tree[node].Freq = tree[n].Freq + tree[m].Freq; |
383 | s->depth[node] = (unsigned char)((s->depth[n] >= s->depth[m] ? |
384 | s->depth[n] : s->depth[m]) + 1); |
385 | tree[n].Dad = tree[m].Dad = (uint16_t)node; |
386 | #ifdef DUMP_BL_TREE |
387 | if (tree == s->bl_tree) { |
388 | fprintf(stderr, "\nnode %d(%d), sons %d(%d) %d(%d)" , |
389 | node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); |
390 | } |
391 | #endif |
392 | /* and insert the new node in the heap */ |
393 | s->heap[SMALLEST] = node++; |
394 | pqdownheap(s, tree, SMALLEST); |
395 | } while (s->heap_len >= 2); |
396 | |
397 | s->heap[--(s->heap_max)] = s->heap[SMALLEST]; |
398 | |
399 | /* At this point, the fields freq and dad are set. We can now |
400 | * generate the bit lengths. |
401 | */ |
402 | gen_bitlen(s, desc: (tree_desc *)desc); |
403 | |
404 | /* The field len is now set, we can generate the bit codes */ |
405 | gen_codes(tree: (ct_data *)tree, max_code, bl_count: s->bl_count); |
406 | } |
407 | |
408 | /* =========================================================================== |
409 | * Scan a literal or distance tree to determine the frequencies of the codes |
410 | * in the bit length tree. |
411 | */ |
412 | static void scan_tree(deflate_state *s, ct_data *tree, int max_code) { |
413 | /* tree: the tree to be scanned */ |
414 | /* max_code: and its largest code of non zero frequency */ |
415 | int n; /* iterates over all tree elements */ |
416 | int prevlen = -1; /* last emitted length */ |
417 | int curlen; /* length of current code */ |
418 | int nextlen = tree[0].Len; /* length of next code */ |
419 | uint16_t count = 0; /* repeat count of the current code */ |
420 | uint16_t max_count = 7; /* max repeat count */ |
421 | uint16_t min_count = 4; /* min repeat count */ |
422 | |
423 | if (nextlen == 0) |
424 | max_count = 138, min_count = 3; |
425 | |
426 | tree[max_code+1].Len = (uint16_t)0xffff; /* guard */ |
427 | |
428 | for (n = 0; n <= max_code; n++) { |
429 | curlen = nextlen; |
430 | nextlen = tree[n+1].Len; |
431 | if (++count < max_count && curlen == nextlen) { |
432 | continue; |
433 | } else if (count < min_count) { |
434 | s->bl_tree[curlen].Freq += count; |
435 | } else if (curlen != 0) { |
436 | if (curlen != prevlen) |
437 | s->bl_tree[curlen].Freq++; |
438 | s->bl_tree[REP_3_6].Freq++; |
439 | } else if (count <= 10) { |
440 | s->bl_tree[REPZ_3_10].Freq++; |
441 | } else { |
442 | s->bl_tree[REPZ_11_138].Freq++; |
443 | } |
444 | count = 0; |
445 | prevlen = curlen; |
446 | if (nextlen == 0) { |
447 | max_count = 138, min_count = 3; |
448 | } else if (curlen == nextlen) { |
449 | max_count = 6, min_count = 3; |
450 | } else { |
451 | max_count = 7, min_count = 4; |
452 | } |
453 | } |
454 | } |
455 | |
456 | /* =========================================================================== |
457 | * Send a literal or distance tree in compressed form, using the codes in |
458 | * bl_tree. |
459 | */ |
460 | static void send_tree(deflate_state *s, ct_data *tree, int max_code) { |
461 | /* tree: the tree to be scanned */ |
462 | /* max_code and its largest code of non zero frequency */ |
463 | int n; /* iterates over all tree elements */ |
464 | int prevlen = -1; /* last emitted length */ |
465 | int curlen; /* length of current code */ |
466 | int nextlen = tree[0].Len; /* length of next code */ |
467 | int count = 0; /* repeat count of the current code */ |
468 | int max_count = 7; /* max repeat count */ |
469 | int min_count = 4; /* min repeat count */ |
470 | |
471 | /* tree[max_code+1].Len = -1; */ /* guard already set */ |
472 | if (nextlen == 0) |
473 | max_count = 138, min_count = 3; |
474 | |
475 | // Temp local variables |
476 | uint32_t bi_valid = s->bi_valid; |
477 | uint64_t bi_buf = s->bi_buf; |
478 | |
479 | for (n = 0; n <= max_code; n++) { |
480 | curlen = nextlen; |
481 | nextlen = tree[n+1].Len; |
482 | if (++count < max_count && curlen == nextlen) { |
483 | continue; |
484 | } else if (count < min_count) { |
485 | do { |
486 | send_code(s, curlen, s->bl_tree, bi_buf, bi_valid); |
487 | } while (--count != 0); |
488 | |
489 | } else if (curlen != 0) { |
490 | if (curlen != prevlen) { |
491 | send_code(s, curlen, s->bl_tree, bi_buf, bi_valid); |
492 | count--; |
493 | } |
494 | Assert(count >= 3 && count <= 6, " 3_6?" ); |
495 | send_code(s, REP_3_6, s->bl_tree, bi_buf, bi_valid); |
496 | send_bits(s, count-3, 2, bi_buf, bi_valid); |
497 | |
498 | } else if (count <= 10) { |
499 | send_code(s, REPZ_3_10, s->bl_tree, bi_buf, bi_valid); |
500 | send_bits(s, count-3, 3, bi_buf, bi_valid); |
501 | |
502 | } else { |
503 | send_code(s, REPZ_11_138, s->bl_tree, bi_buf, bi_valid); |
504 | send_bits(s, count-11, 7, bi_buf, bi_valid); |
505 | } |
506 | count = 0; |
507 | prevlen = curlen; |
508 | if (nextlen == 0) { |
509 | max_count = 138, min_count = 3; |
510 | } else if (curlen == nextlen) { |
511 | max_count = 6, min_count = 3; |
512 | } else { |
513 | max_count = 7, min_count = 4; |
514 | } |
515 | } |
516 | |
517 | // Store back temp variables |
518 | s->bi_buf = bi_buf; |
519 | s->bi_valid = bi_valid; |
520 | } |
521 | |
522 | /* =========================================================================== |
523 | * Construct the Huffman tree for the bit lengths and return the index in |
524 | * bl_order of the last bit length code to send. |
525 | */ |
526 | static int build_bl_tree(deflate_state *s) { |
527 | int max_blindex; /* index of last bit length code of non zero freq */ |
528 | |
529 | /* Determine the bit length frequencies for literal and distance trees */ |
530 | scan_tree(s, tree: (ct_data *)s->dyn_ltree, max_code: s->l_desc.max_code); |
531 | scan_tree(s, tree: (ct_data *)s->dyn_dtree, max_code: s->d_desc.max_code); |
532 | |
533 | /* Build the bit length tree: */ |
534 | build_tree(s, desc: (tree_desc *)(&(s->bl_desc))); |
535 | /* opt_len now includes the length of the tree representations, except |
536 | * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. |
537 | */ |
538 | |
539 | /* Determine the number of bit length codes to send. The pkzip format |
540 | * requires that at least 4 bit length codes be sent. (appnote.txt says |
541 | * 3 but the actual value used is 4.) |
542 | */ |
543 | for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { |
544 | if (s->bl_tree[bl_order[max_blindex]].Len != 0) |
545 | break; |
546 | } |
547 | /* Update opt_len to include the bit length tree and counts */ |
548 | s->opt_len += 3*((unsigned long)max_blindex+1) + 5+5+4; |
549 | Tracev((stderr, "\ndyn trees: dyn %lu, stat %lu" , s->opt_len, s->static_len)); |
550 | |
551 | return max_blindex; |
552 | } |
553 | |
554 | /* =========================================================================== |
555 | * Send the header for a block using dynamic Huffman trees: the counts, the |
556 | * lengths of the bit length codes, the literal tree and the distance tree. |
557 | * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. |
558 | */ |
559 | static void send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes) { |
560 | int rank; /* index in bl_order */ |
561 | |
562 | Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes" ); |
563 | Assert(lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, "too many codes" ); |
564 | |
565 | // Temp local variables |
566 | uint32_t bi_valid = s->bi_valid; |
567 | uint64_t bi_buf = s->bi_buf; |
568 | |
569 | Tracev((stderr, "\nbl counts: " )); |
570 | send_bits(s, lcodes-257, 5, bi_buf, bi_valid); /* not +255 as stated in appnote.txt */ |
571 | send_bits(s, dcodes-1, 5, bi_buf, bi_valid); |
572 | send_bits(s, blcodes-4, 4, bi_buf, bi_valid); /* not -3 as stated in appnote.txt */ |
573 | for (rank = 0; rank < blcodes; rank++) { |
574 | Tracev((stderr, "\nbl code %2u " , bl_order[rank])); |
575 | send_bits(s, s->bl_tree[bl_order[rank]].Len, 3, bi_buf, bi_valid); |
576 | } |
577 | Tracev((stderr, "\nbl tree: sent %lu" , s->bits_sent)); |
578 | |
579 | // Store back temp variables |
580 | s->bi_buf = bi_buf; |
581 | s->bi_valid = bi_valid; |
582 | |
583 | send_tree(s, tree: (ct_data *)s->dyn_ltree, max_code: lcodes-1); /* literal tree */ |
584 | Tracev((stderr, "\nlit tree: sent %lu" , s->bits_sent)); |
585 | |
586 | send_tree(s, tree: (ct_data *)s->dyn_dtree, max_code: dcodes-1); /* distance tree */ |
587 | Tracev((stderr, "\ndist tree: sent %lu" , s->bits_sent)); |
588 | } |
589 | |
590 | /* =========================================================================== |
591 | * Send a stored block |
592 | */ |
593 | void Z_INTERNAL zng_tr_stored_block(deflate_state *s, char *buf, uint32_t stored_len, int last) { |
594 | /* buf: input block */ |
595 | /* stored_len: length of input block */ |
596 | /* last: one if this is the last block for a file */ |
597 | zng_tr_emit_tree(s, STORED_BLOCK, last); /* send block type */ |
598 | zng_tr_emit_align(s); /* align on byte boundary */ |
599 | cmpr_bits_align(s); |
600 | put_short(s, w: (uint16_t)stored_len); |
601 | put_short(s, w: (uint16_t)~stored_len); |
602 | cmpr_bits_add(s, 32); |
603 | sent_bits_add(s, 32); |
604 | if (stored_len) { |
605 | memcpy(dest: s->pending_buf + s->pending, src: (unsigned char *)buf, n: stored_len); |
606 | s->pending += stored_len; |
607 | cmpr_bits_add(s, stored_len << 3); |
608 | sent_bits_add(s, stored_len << 3); |
609 | } |
610 | } |
611 | |
612 | /* =========================================================================== |
613 | * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) |
614 | */ |
615 | void Z_INTERNAL zng_tr_flush_bits(deflate_state *s) { |
616 | bi_flush(s); |
617 | } |
618 | |
619 | /* =========================================================================== |
620 | * Send one empty static block to give enough lookahead for inflate. |
621 | * This takes 10 bits, of which 7 may remain in the bit buffer. |
622 | */ |
623 | void Z_INTERNAL zng_tr_align(deflate_state *s) { |
624 | zng_tr_emit_tree(s, STATIC_TREES, last: 0); |
625 | zng_tr_emit_end_block(s, ltree: static_ltree, last: 0); |
626 | bi_flush(s); |
627 | } |
628 | |
629 | /* =========================================================================== |
630 | * Determine the best encoding for the current block: dynamic trees, static |
631 | * trees or store, and write out the encoded block. |
632 | */ |
633 | void Z_INTERNAL zng_tr_flush_block(deflate_state *s, char *buf, uint32_t stored_len, int last) { |
634 | /* buf: input block, or NULL if too old */ |
635 | /* stored_len: length of input block */ |
636 | /* last: one if this is the last block for a file */ |
637 | unsigned long opt_lenb, static_lenb; /* opt_len and static_len in bytes */ |
638 | int max_blindex = 0; /* index of last bit length code of non zero freq */ |
639 | |
640 | /* Build the Huffman trees unless a stored block is forced */ |
641 | if (UNLIKELY(s->sym_next == 0)) { |
642 | /* Emit an empty static tree block with no codes */ |
643 | opt_lenb = static_lenb = 0; |
644 | s->static_len = 7; |
645 | } else if (s->level > 0) { |
646 | /* Check if the file is binary or text */ |
647 | if (s->strm->data_type == Z_UNKNOWN) |
648 | s->strm->data_type = detect_data_type(s); |
649 | |
650 | /* Construct the literal and distance trees */ |
651 | build_tree(s, desc: (tree_desc *)(&(s->l_desc))); |
652 | Tracev((stderr, "\nlit data: dyn %lu, stat %lu" , s->opt_len, s->static_len)); |
653 | |
654 | build_tree(s, desc: (tree_desc *)(&(s->d_desc))); |
655 | Tracev((stderr, "\ndist data: dyn %lu, stat %lu" , s->opt_len, s->static_len)); |
656 | /* At this point, opt_len and static_len are the total bit lengths of |
657 | * the compressed block data, excluding the tree representations. |
658 | */ |
659 | |
660 | /* Build the bit length tree for the above two trees, and get the index |
661 | * in bl_order of the last bit length code to send. |
662 | */ |
663 | max_blindex = build_bl_tree(s); |
664 | |
665 | /* Determine the best encoding. Compute the block lengths in bytes. */ |
666 | opt_lenb = (s->opt_len+3+7) >> 3; |
667 | static_lenb = (s->static_len+3+7) >> 3; |
668 | |
669 | Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %u lit %u " , |
670 | opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, |
671 | s->sym_next / 3)); |
672 | |
673 | if (static_lenb <= opt_lenb) |
674 | opt_lenb = static_lenb; |
675 | |
676 | } else { |
677 | Assert(buf != NULL, "lost buf" ); |
678 | opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ |
679 | } |
680 | |
681 | if (stored_len+4 <= opt_lenb && buf != NULL) { |
682 | /* 4: two words for the lengths |
683 | * The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. |
684 | * Otherwise we can't have processed more than WSIZE input bytes since |
685 | * the last block flush, because compression would have been |
686 | * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to |
687 | * transform a block into a stored block. |
688 | */ |
689 | zng_tr_stored_block(s, buf, stored_len, last); |
690 | |
691 | } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { |
692 | zng_tr_emit_tree(s, STATIC_TREES, last); |
693 | compress_block(s, ltree: (const ct_data *)static_ltree, dtree: (const ct_data *)static_dtree); |
694 | cmpr_bits_add(s, s->static_len); |
695 | } else { |
696 | zng_tr_emit_tree(s, DYN_TREES, last); |
697 | send_all_trees(s, lcodes: s->l_desc.max_code+1, dcodes: s->d_desc.max_code+1, blcodes: max_blindex+1); |
698 | compress_block(s, ltree: (const ct_data *)s->dyn_ltree, dtree: (const ct_data *)s->dyn_dtree); |
699 | cmpr_bits_add(s, s->opt_len); |
700 | } |
701 | Assert(s->compressed_len == s->bits_sent, "bad compressed size" ); |
702 | /* The above check is made mod 2^32, for files larger than 512 MB |
703 | * and unsigned long implemented on 32 bits. |
704 | */ |
705 | init_block(s); |
706 | |
707 | if (last) { |
708 | zng_tr_emit_align(s); |
709 | } |
710 | Tracev((stderr, "\ncomprlen %lu(%lu) " , s->compressed_len>>3, s->compressed_len-7*last)); |
711 | } |
712 | |
713 | /* =========================================================================== |
714 | * Send the block data compressed using the given Huffman trees |
715 | */ |
716 | static void compress_block(deflate_state *s, const ct_data *ltree, const ct_data *dtree) { |
717 | /* ltree: literal tree */ |
718 | /* dtree: distance tree */ |
719 | unsigned dist; /* distance of matched string */ |
720 | int lc; /* match length or unmatched char (if dist == 0) */ |
721 | unsigned sx = 0; /* running index in sym_buf */ |
722 | |
723 | if (s->sym_next != 0) { |
724 | do { |
725 | dist = s->sym_buf[sx++] & 0xff; |
726 | dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8; |
727 | lc = s->sym_buf[sx++]; |
728 | if (dist == 0) { |
729 | zng_emit_lit(s, ltree, c: lc); |
730 | } else { |
731 | zng_emit_dist(s, ltree, dtree, lc, dist); |
732 | } /* literal or match pair ? */ |
733 | |
734 | /* Check that the overlay between pending_buf and sym_buf is ok: */ |
735 | Assert(s->pending < s->lit_bufsize + sx, "pending_buf overflow" ); |
736 | } while (sx < s->sym_next); |
737 | } |
738 | |
739 | zng_emit_end_block(s, ltree, last: 0); |
740 | } |
741 | |
742 | /* =========================================================================== |
743 | * Check if the data type is TEXT or BINARY, using the following algorithm: |
744 | * - TEXT if the two conditions below are satisfied: |
745 | * a) There are no non-portable control characters belonging to the |
746 | * "black list" (0..6, 14..25, 28..31). |
747 | * b) There is at least one printable character belonging to the |
748 | * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). |
749 | * - BINARY otherwise. |
750 | * - The following partially-portable control characters form a |
751 | * "gray list" that is ignored in this detection algorithm: |
752 | * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). |
753 | * IN assertion: the fields Freq of dyn_ltree are set. |
754 | */ |
755 | static int detect_data_type(deflate_state *s) { |
756 | /* black_mask is the bit mask of black-listed bytes |
757 | * set bits 0..6, 14..25, and 28..31 |
758 | * 0xf3ffc07f = binary 11110011111111111100000001111111 |
759 | */ |
760 | unsigned long black_mask = 0xf3ffc07fUL; |
761 | int n; |
762 | |
763 | /* Check for non-textual ("black-listed") bytes. */ |
764 | for (n = 0; n <= 31; n++, black_mask >>= 1) |
765 | if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) |
766 | return Z_BINARY; |
767 | |
768 | /* Check for textual ("white-listed") bytes. */ |
769 | if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 || s->dyn_ltree[13].Freq != 0) |
770 | return Z_TEXT; |
771 | for (n = 32; n < LITERALS; n++) |
772 | if (s->dyn_ltree[n].Freq != 0) |
773 | return Z_TEXT; |
774 | |
775 | /* There are no "black-listed" or "white-listed" bytes: |
776 | * this stream either is empty or has tolerated ("gray-listed") bytes only. |
777 | */ |
778 | return Z_BINARY; |
779 | } |
780 | |
781 | /* =========================================================================== |
782 | * Flush the bit buffer, keeping at most 7 bits in it. |
783 | */ |
784 | static void bi_flush(deflate_state *s) { |
785 | if (s->bi_valid == 64) { |
786 | put_uint64(s, lld: s->bi_buf); |
787 | s->bi_buf = 0; |
788 | s->bi_valid = 0; |
789 | } else { |
790 | if (s->bi_valid >= 32) { |
791 | put_uint32(s, dw: (uint32_t)s->bi_buf); |
792 | s->bi_buf >>= 32; |
793 | s->bi_valid -= 32; |
794 | } |
795 | if (s->bi_valid >= 16) { |
796 | put_short(s, w: (uint16_t)s->bi_buf); |
797 | s->bi_buf >>= 16; |
798 | s->bi_valid -= 16; |
799 | } |
800 | if (s->bi_valid >= 8) { |
801 | put_byte(s, s->bi_buf); |
802 | s->bi_buf >>= 8; |
803 | s->bi_valid -= 8; |
804 | } |
805 | } |
806 | } |
807 | |
808 | /* =========================================================================== |
809 | * Reverse the first len bits of a code, using straightforward code (a faster |
810 | * method would use a table) |
811 | * IN assertion: 1 <= len <= 15 |
812 | */ |
813 | Z_INTERNAL unsigned bi_reverse(unsigned code, int len) { |
814 | /* code: the value to invert */ |
815 | /* len: its bit length */ |
816 | Z_REGISTER unsigned res = 0; |
817 | do { |
818 | res |= code & 1; |
819 | code >>= 1, res <<= 1; |
820 | } while (--len > 0); |
821 | return res >> 1; |
822 | } |
823 | |