1 | // Copyright 2018 The Abseil Authors. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | |
15 | #ifndef ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_ |
16 | #define ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_ |
17 | |
18 | #ifdef ADDRESS_SANITIZER |
19 | #include <sanitizer/asan_interface.h> |
20 | #endif |
21 | |
22 | #ifdef MEMORY_SANITIZER |
23 | #include <sanitizer/msan_interface.h> |
24 | #endif |
25 | |
26 | #include <cassert> |
27 | #include <cstddef> |
28 | #include <memory> |
29 | #include <tuple> |
30 | #include <type_traits> |
31 | #include <utility> |
32 | |
33 | #include "absl/memory/memory.h" |
34 | #include "absl/utility/utility.h" |
35 | |
36 | namespace absl { |
37 | namespace container_internal { |
38 | |
39 | // Allocates at least n bytes aligned to the specified alignment. |
40 | // Alignment must be a power of 2. It must be positive. |
41 | // |
42 | // Note that many allocators don't honor alignment requirements above certain |
43 | // threshold (usually either alignof(std::max_align_t) or alignof(void*)). |
44 | // Allocate() doesn't apply alignment corrections. If the underlying allocator |
45 | // returns insufficiently alignment pointer, that's what you are going to get. |
46 | template <size_t Alignment, class Alloc> |
47 | void* Allocate(Alloc* alloc, size_t n) { |
48 | static_assert(Alignment > 0, "" ); |
49 | assert(n && "n must be positive" ); |
50 | struct alignas(Alignment) M {}; |
51 | using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>; |
52 | using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>; |
53 | A mem_alloc(*alloc); |
54 | void* p = AT::allocate(mem_alloc, (n + sizeof(M) - 1) / sizeof(M)); |
55 | assert(reinterpret_cast<uintptr_t>(p) % Alignment == 0 && |
56 | "allocator does not respect alignment" ); |
57 | return p; |
58 | } |
59 | |
60 | // The pointer must have been previously obtained by calling |
61 | // Allocate<Alignment>(alloc, n). |
62 | template <size_t Alignment, class Alloc> |
63 | void Deallocate(Alloc* alloc, void* p, size_t n) { |
64 | static_assert(Alignment > 0, "" ); |
65 | assert(n && "n must be positive" ); |
66 | struct alignas(Alignment) M {}; |
67 | using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>; |
68 | using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>; |
69 | A mem_alloc(*alloc); |
70 | AT::deallocate(mem_alloc, static_cast<M*>(p), |
71 | (n + sizeof(M) - 1) / sizeof(M)); |
72 | } |
73 | |
74 | namespace memory_internal { |
75 | |
76 | // Constructs T into uninitialized storage pointed by `ptr` using the args |
77 | // specified in the tuple. |
78 | template <class Alloc, class T, class Tuple, size_t... I> |
79 | void ConstructFromTupleImpl(Alloc* alloc, T* ptr, Tuple&& t, |
80 | absl::index_sequence<I...>) { |
81 | absl::allocator_traits<Alloc>::construct( |
82 | *alloc, ptr, std::get<I>(std::forward<Tuple>(t))...); |
83 | } |
84 | |
85 | template <class T, class F> |
86 | struct WithConstructedImplF { |
87 | template <class... Args> |
88 | decltype(std::declval<F>()(std::declval<T>())) operator()( |
89 | Args&&... args) const { |
90 | return std::forward<F>(f)(T(std::forward<Args>(args)...)); |
91 | } |
92 | F&& f; |
93 | }; |
94 | |
95 | template <class T, class Tuple, size_t... Is, class F> |
96 | decltype(std::declval<F>()(std::declval<T>())) WithConstructedImpl( |
97 | Tuple&& t, absl::index_sequence<Is...>, F&& f) { |
98 | return WithConstructedImplF<T, F>{std::forward<F>(f)}( |
99 | std::get<Is>(std::forward<Tuple>(t))...); |
100 | } |
101 | |
102 | template <class T, size_t... Is> |
103 | auto TupleRefImpl(T&& t, absl::index_sequence<Is...>) |
104 | -> decltype(std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...)) { |
105 | return std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...); |
106 | } |
107 | |
108 | // Returns a tuple of references to the elements of the input tuple. T must be a |
109 | // tuple. |
110 | template <class T> |
111 | auto TupleRef(T&& t) -> decltype( |
112 | TupleRefImpl(std::forward<T>(t), |
113 | absl::make_index_sequence< |
114 | std::tuple_size<typename std::decay<T>::type>::value>())) { |
115 | return TupleRefImpl( |
116 | std::forward<T>(t), |
117 | absl::make_index_sequence< |
118 | std::tuple_size<typename std::decay<T>::type>::value>()); |
119 | } |
120 | |
121 | template <class F, class K, class V> |
122 | decltype(std::declval<F>()(std::declval<const K&>(), std::piecewise_construct, |
123 | std::declval<std::tuple<K>>(), std::declval<V>())) |
124 | DecomposePairImpl(F&& f, std::pair<std::tuple<K>, V> p) { |
125 | const auto& key = std::get<0>(p.first); |
126 | return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first), |
127 | std::move(p.second)); |
128 | } |
129 | |
130 | } // namespace memory_internal |
131 | |
132 | // Constructs T into uninitialized storage pointed by `ptr` using the args |
133 | // specified in the tuple. |
134 | template <class Alloc, class T, class Tuple> |
135 | void ConstructFromTuple(Alloc* alloc, T* ptr, Tuple&& t) { |
136 | memory_internal::ConstructFromTupleImpl( |
137 | alloc, ptr, std::forward<Tuple>(t), |
138 | absl::make_index_sequence< |
139 | std::tuple_size<typename std::decay<Tuple>::type>::value>()); |
140 | } |
141 | |
142 | // Constructs T using the args specified in the tuple and calls F with the |
143 | // constructed value. |
144 | template <class T, class Tuple, class F> |
145 | decltype(std::declval<F>()(std::declval<T>())) WithConstructed( |
146 | Tuple&& t, F&& f) { |
147 | return memory_internal::WithConstructedImpl<T>( |
148 | std::forward<Tuple>(t), |
149 | absl::make_index_sequence< |
150 | std::tuple_size<typename std::decay<Tuple>::type>::value>(), |
151 | std::forward<F>(f)); |
152 | } |
153 | |
154 | // Given arguments of an std::pair's consructor, PairArgs() returns a pair of |
155 | // tuples with references to the passed arguments. The tuples contain |
156 | // constructor arguments for the first and the second elements of the pair. |
157 | // |
158 | // The following two snippets are equivalent. |
159 | // |
160 | // 1. std::pair<F, S> p(args...); |
161 | // |
162 | // 2. auto a = PairArgs(args...); |
163 | // std::pair<F, S> p(std::piecewise_construct, |
164 | // std::move(p.first), std::move(p.second)); |
165 | inline std::pair<std::tuple<>, std::tuple<>> PairArgs() { return {}; } |
166 | template <class F, class S> |
167 | std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(F&& f, S&& s) { |
168 | return {std::piecewise_construct, std::forward_as_tuple(std::forward<F>(f)), |
169 | std::forward_as_tuple(std::forward<S>(s))}; |
170 | } |
171 | template <class F, class S> |
172 | std::pair<std::tuple<const F&>, std::tuple<const S&>> PairArgs( |
173 | const std::pair<F, S>& p) { |
174 | return PairArgs(p.first, p.second); |
175 | } |
176 | template <class F, class S> |
177 | std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(std::pair<F, S>&& p) { |
178 | return PairArgs(std::forward<F>(p.first), std::forward<S>(p.second)); |
179 | } |
180 | template <class F, class S> |
181 | auto PairArgs(std::piecewise_construct_t, F&& f, S&& s) |
182 | -> decltype(std::make_pair(memory_internal::TupleRef(std::forward<F>(f)), |
183 | memory_internal::TupleRef(std::forward<S>(s)))) { |
184 | return std::make_pair(memory_internal::TupleRef(std::forward<F>(f)), |
185 | memory_internal::TupleRef(std::forward<S>(s))); |
186 | } |
187 | |
188 | // A helper function for implementing apply() in map policies. |
189 | template <class F, class... Args> |
190 | auto DecomposePair(F&& f, Args&&... args) |
191 | -> decltype(memory_internal::DecomposePairImpl( |
192 | std::forward<F>(f), PairArgs(std::forward<Args>(args)...))) { |
193 | return memory_internal::DecomposePairImpl( |
194 | std::forward<F>(f), PairArgs(std::forward<Args>(args)...)); |
195 | } |
196 | |
197 | // A helper function for implementing apply() in set policies. |
198 | template <class F, class Arg> |
199 | decltype(std::declval<F>()(std::declval<const Arg&>(), std::declval<Arg>())) |
200 | DecomposeValue(F&& f, Arg&& arg) { |
201 | const auto& key = arg; |
202 | return std::forward<F>(f)(key, std::forward<Arg>(arg)); |
203 | } |
204 | |
205 | // Helper functions for asan and msan. |
206 | inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) { |
207 | #ifdef ADDRESS_SANITIZER |
208 | ASAN_POISON_MEMORY_REGION(m, s); |
209 | #endif |
210 | #ifdef MEMORY_SANITIZER |
211 | __msan_poison(m, s); |
212 | #endif |
213 | (void)m; |
214 | (void)s; |
215 | } |
216 | |
217 | inline void SanitizerUnpoisonMemoryRegion(const void* m, size_t s) { |
218 | #ifdef ADDRESS_SANITIZER |
219 | ASAN_UNPOISON_MEMORY_REGION(m, s); |
220 | #endif |
221 | #ifdef MEMORY_SANITIZER |
222 | __msan_unpoison(m, s); |
223 | #endif |
224 | (void)m; |
225 | (void)s; |
226 | } |
227 | |
228 | template <typename T> |
229 | inline void SanitizerPoisonObject(const T* object) { |
230 | SanitizerPoisonMemoryRegion(object, sizeof(T)); |
231 | } |
232 | |
233 | template <typename T> |
234 | inline void SanitizerUnpoisonObject(const T* object) { |
235 | SanitizerUnpoisonMemoryRegion(object, sizeof(T)); |
236 | } |
237 | |
238 | namespace memory_internal { |
239 | |
240 | // If Pair is a standard-layout type, OffsetOf<Pair>::kFirst and |
241 | // OffsetOf<Pair>::kSecond are equivalent to offsetof(Pair, first) and |
242 | // offsetof(Pair, second) respectively. Otherwise they are -1. |
243 | // |
244 | // The purpose of OffsetOf is to avoid calling offsetof() on non-standard-layout |
245 | // type, which is non-portable. |
246 | template <class Pair, class = std::true_type> |
247 | struct OffsetOf { |
248 | static constexpr size_t kFirst = -1; |
249 | static constexpr size_t kSecond = -1; |
250 | }; |
251 | |
252 | template <class Pair> |
253 | struct OffsetOf<Pair, typename std::is_standard_layout<Pair>::type> { |
254 | static constexpr size_t kFirst = offsetof(Pair, first); |
255 | static constexpr size_t kSecond = offsetof(Pair, second); |
256 | }; |
257 | |
258 | template <class K, class V> |
259 | struct IsLayoutCompatible { |
260 | private: |
261 | struct Pair { |
262 | K first; |
263 | V second; |
264 | }; |
265 | |
266 | // Is P layout-compatible with Pair? |
267 | template <class P> |
268 | static constexpr bool LayoutCompatible() { |
269 | return std::is_standard_layout<P>() && sizeof(P) == sizeof(Pair) && |
270 | alignof(P) == alignof(Pair) && |
271 | memory_internal::OffsetOf<P>::kFirst == |
272 | memory_internal::OffsetOf<Pair>::kFirst && |
273 | memory_internal::OffsetOf<P>::kSecond == |
274 | memory_internal::OffsetOf<Pair>::kSecond; |
275 | } |
276 | |
277 | public: |
278 | // Whether pair<const K, V> and pair<K, V> are layout-compatible. If they are, |
279 | // then it is safe to store them in a union and read from either. |
280 | static constexpr bool value = std::is_standard_layout<K>() && |
281 | std::is_standard_layout<Pair>() && |
282 | memory_internal::OffsetOf<Pair>::kFirst == 0 && |
283 | LayoutCompatible<std::pair<K, V>>() && |
284 | LayoutCompatible<std::pair<const K, V>>(); |
285 | }; |
286 | |
287 | } // namespace memory_internal |
288 | |
289 | // The internal storage type for key-value containers like flat_hash_map. |
290 | // |
291 | // It is convenient for the value_type of a flat_hash_map<K, V> to be |
292 | // pair<const K, V>; the "const K" prevents accidental modification of the key |
293 | // when dealing with the reference returned from find() and similar methods. |
294 | // However, this creates other problems; we want to be able to emplace(K, V) |
295 | // efficiently with move operations, and similarly be able to move a |
296 | // pair<K, V> in insert(). |
297 | // |
298 | // The solution is this union, which aliases the const and non-const versions |
299 | // of the pair. This also allows flat_hash_map<const K, V> to work, even though |
300 | // that has the same efficiency issues with move in emplace() and insert() - |
301 | // but people do it anyway. |
302 | // |
303 | // If kMutableKeys is false, only the value member can be accessed. |
304 | // |
305 | // If kMutableKeys is true, key can be accessed through all slots while value |
306 | // and mutable_value must be accessed only via INITIALIZED slots. Slots are |
307 | // created and destroyed via mutable_value so that the key can be moved later. |
308 | // |
309 | // Accessing one of the union fields while the other is active is safe as |
310 | // long as they are layout-compatible, which is guaranteed by the definition of |
311 | // kMutableKeys. For C++11, the relevant section of the standard is |
312 | // https://timsong-cpp.github.io/cppwp/n3337/class.mem#19 (9.2.19) |
313 | template <class K, class V> |
314 | union map_slot_type { |
315 | map_slot_type() {} |
316 | ~map_slot_type() = delete; |
317 | using value_type = std::pair<const K, V>; |
318 | using mutable_value_type = std::pair<K, V>; |
319 | |
320 | value_type value; |
321 | mutable_value_type mutable_value; |
322 | K key; |
323 | }; |
324 | |
325 | template <class K, class V> |
326 | struct map_slot_policy { |
327 | using slot_type = map_slot_type<K, V>; |
328 | using value_type = std::pair<const K, V>; |
329 | using mutable_value_type = std::pair<K, V>; |
330 | |
331 | private: |
332 | static void emplace(slot_type* slot) { |
333 | // The construction of union doesn't do anything at runtime but it allows us |
334 | // to access its members without violating aliasing rules. |
335 | new (slot) slot_type; |
336 | } |
337 | // If pair<const K, V> and pair<K, V> are layout-compatible, we can accept one |
338 | // or the other via slot_type. We are also free to access the key via |
339 | // slot_type::key in this case. |
340 | using kMutableKeys = memory_internal::IsLayoutCompatible<K, V>; |
341 | |
342 | public: |
343 | static value_type& element(slot_type* slot) { return slot->value; } |
344 | static const value_type& element(const slot_type* slot) { |
345 | return slot->value; |
346 | } |
347 | |
348 | static const K& key(const slot_type* slot) { |
349 | return kMutableKeys::value ? slot->key : slot->value.first; |
350 | } |
351 | |
352 | template <class Allocator, class... Args> |
353 | static void construct(Allocator* alloc, slot_type* slot, Args&&... args) { |
354 | emplace(slot); |
355 | if (kMutableKeys::value) { |
356 | absl::allocator_traits<Allocator>::construct(*alloc, &slot->mutable_value, |
357 | std::forward<Args>(args)...); |
358 | } else { |
359 | absl::allocator_traits<Allocator>::construct(*alloc, &slot->value, |
360 | std::forward<Args>(args)...); |
361 | } |
362 | } |
363 | |
364 | // Construct this slot by moving from another slot. |
365 | template <class Allocator> |
366 | static void construct(Allocator* alloc, slot_type* slot, slot_type* other) { |
367 | emplace(slot); |
368 | if (kMutableKeys::value) { |
369 | absl::allocator_traits<Allocator>::construct( |
370 | *alloc, &slot->mutable_value, std::move(other->mutable_value)); |
371 | } else { |
372 | absl::allocator_traits<Allocator>::construct(*alloc, &slot->value, |
373 | std::move(other->value)); |
374 | } |
375 | } |
376 | |
377 | template <class Allocator> |
378 | static void destroy(Allocator* alloc, slot_type* slot) { |
379 | if (kMutableKeys::value) { |
380 | absl::allocator_traits<Allocator>::destroy(*alloc, &slot->mutable_value); |
381 | } else { |
382 | absl::allocator_traits<Allocator>::destroy(*alloc, &slot->value); |
383 | } |
384 | } |
385 | |
386 | template <class Allocator> |
387 | static void transfer(Allocator* alloc, slot_type* new_slot, |
388 | slot_type* old_slot) { |
389 | emplace(new_slot); |
390 | if (kMutableKeys::value) { |
391 | absl::allocator_traits<Allocator>::construct( |
392 | *alloc, &new_slot->mutable_value, std::move(old_slot->mutable_value)); |
393 | } else { |
394 | absl::allocator_traits<Allocator>::construct(*alloc, &new_slot->value, |
395 | std::move(old_slot->value)); |
396 | } |
397 | destroy(alloc, old_slot); |
398 | } |
399 | |
400 | template <class Allocator> |
401 | static void swap(Allocator* alloc, slot_type* a, slot_type* b) { |
402 | if (kMutableKeys::value) { |
403 | using std::swap; |
404 | swap(a->mutable_value, b->mutable_value); |
405 | } else { |
406 | value_type tmp = std::move(a->value); |
407 | absl::allocator_traits<Allocator>::destroy(*alloc, &a->value); |
408 | absl::allocator_traits<Allocator>::construct(*alloc, &a->value, |
409 | std::move(b->value)); |
410 | absl::allocator_traits<Allocator>::destroy(*alloc, &b->value); |
411 | absl::allocator_traits<Allocator>::construct(*alloc, &b->value, |
412 | std::move(tmp)); |
413 | } |
414 | } |
415 | |
416 | template <class Allocator> |
417 | static void move(Allocator* alloc, slot_type* src, slot_type* dest) { |
418 | if (kMutableKeys::value) { |
419 | dest->mutable_value = std::move(src->mutable_value); |
420 | } else { |
421 | absl::allocator_traits<Allocator>::destroy(*alloc, &dest->value); |
422 | absl::allocator_traits<Allocator>::construct(*alloc, &dest->value, |
423 | std::move(src->value)); |
424 | } |
425 | } |
426 | |
427 | template <class Allocator> |
428 | static void move(Allocator* alloc, slot_type* first, slot_type* last, |
429 | slot_type* result) { |
430 | for (slot_type *src = first, *dest = result; src != last; ++src, ++dest) |
431 | move(alloc, src, dest); |
432 | } |
433 | }; |
434 | |
435 | } // namespace container_internal |
436 | } // namespace absl |
437 | |
438 | #endif // ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_ |
439 | |