1 | // Copyright 2017 The Abseil Authors. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | // |
15 | // ----------------------------------------------------------------------------- |
16 | // mutex.h |
17 | // ----------------------------------------------------------------------------- |
18 | // |
19 | // This header file defines a `Mutex` -- a mutually exclusive lock -- and the |
20 | // most common type of synchronization primitive for facilitating locks on |
21 | // shared resources. A mutex is used to prevent multiple threads from accessing |
22 | // and/or writing to a shared resource concurrently. |
23 | // |
24 | // Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional |
25 | // features: |
26 | // * Conditional predicates intrinsic to the `Mutex` object |
27 | // * Shared/reader locks, in addition to standard exclusive/writer locks |
28 | // * Deadlock detection and debug support. |
29 | // |
30 | // The following helper classes are also defined within this file: |
31 | // |
32 | // MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/ |
33 | // write access within the current scope. |
34 | // ReaderMutexLock |
35 | // - An RAII wrapper to acquire and release a `Mutex` for shared/read |
36 | // access within the current scope. |
37 | // |
38 | // WriterMutexLock |
39 | // - Alias for `MutexLock` above, designed for use in distinguishing |
40 | // reader and writer locks within code. |
41 | // |
42 | // In addition to simple mutex locks, this file also defines ways to perform |
43 | // locking under certain conditions. |
44 | // |
45 | // Condition - (Preferred) Used to wait for a particular predicate that |
46 | // depends on state protected by the `Mutex` to become true. |
47 | // CondVar - A lower-level variant of `Condition` that relies on |
48 | // application code to explicitly signal the `CondVar` when |
49 | // a condition has been met. |
50 | // |
51 | // See below for more information on using `Condition` or `CondVar`. |
52 | // |
53 | // Mutexes and mutex behavior can be quite complicated. The information within |
54 | // this header file is limited, as a result. Please consult the Mutex guide for |
55 | // more complete information and examples. |
56 | |
57 | #ifndef ABSL_SYNCHRONIZATION_MUTEX_H_ |
58 | #define ABSL_SYNCHRONIZATION_MUTEX_H_ |
59 | |
60 | #include <atomic> |
61 | #include <cstdint> |
62 | #include <string> |
63 | |
64 | #include "absl/base/const_init.h" |
65 | #include "absl/base/internal/identity.h" |
66 | #include "absl/base/internal/low_level_alloc.h" |
67 | #include "absl/base/internal/thread_identity.h" |
68 | #include "absl/base/internal/tsan_mutex_interface.h" |
69 | #include "absl/base/port.h" |
70 | #include "absl/base/thread_annotations.h" |
71 | #include "absl/synchronization/internal/kernel_timeout.h" |
72 | #include "absl/synchronization/internal/per_thread_sem.h" |
73 | #include "absl/time/time.h" |
74 | |
75 | // Decide if we should use the non-production implementation because |
76 | // the production implementation hasn't been fully ported yet. |
77 | #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX |
78 | #error ABSL_INTERNAL_USE_NONPROD_MUTEX cannot be directly set |
79 | #elif defined(ABSL_LOW_LEVEL_ALLOC_MISSING) |
80 | #define ABSL_INTERNAL_USE_NONPROD_MUTEX 1 |
81 | #include "absl/synchronization/internal/mutex_nonprod.inc" |
82 | #endif |
83 | |
84 | namespace absl { |
85 | |
86 | class Condition; |
87 | struct SynchWaitParams; |
88 | |
89 | // ----------------------------------------------------------------------------- |
90 | // Mutex |
91 | // ----------------------------------------------------------------------------- |
92 | // |
93 | // A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock |
94 | // on some resource, typically a variable or data structure with associated |
95 | // invariants. Proper usage of mutexes prevents concurrent access by different |
96 | // threads to the same resource. |
97 | // |
98 | // A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`. |
99 | // The `Lock()` operation *acquires* a `Mutex` (in a state known as an |
100 | // *exclusive* -- or write -- lock), while the `Unlock()` operation *releases* a |
101 | // Mutex. During the span of time between the Lock() and Unlock() operations, |
102 | // a mutex is said to be *held*. By design all mutexes support exclusive/write |
103 | // locks, as this is the most common way to use a mutex. |
104 | // |
105 | // The `Mutex` state machine for basic lock/unlock operations is quite simple: |
106 | // |
107 | // | | Lock() | Unlock() | |
108 | // |----------------+------------+----------| |
109 | // | Free | Exclusive | invalid | |
110 | // | Exclusive | blocks | Free | |
111 | // |
112 | // Attempts to `Unlock()` must originate from the thread that performed the |
113 | // corresponding `Lock()` operation. |
114 | // |
115 | // An "invalid" operation is disallowed by the API. The `Mutex` implementation |
116 | // is allowed to do anything on an invalid call, including but not limited to |
117 | // crashing with a useful error message, silently succeeding, or corrupting |
118 | // data structures. In debug mode, the implementation attempts to crash with a |
119 | // useful error message. |
120 | // |
121 | // `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it |
122 | // is, however, approximately fair over long periods, and starvation-free for |
123 | // threads at the same priority. |
124 | // |
125 | // The lock/unlock primitives are now annotated with lock annotations |
126 | // defined in (base/thread_annotations.h). When writing multi-threaded code, |
127 | // you should use lock annotations whenever possible to document your lock |
128 | // synchronization policy. Besides acting as documentation, these annotations |
129 | // also help compilers or static analysis tools to identify and warn about |
130 | // issues that could potentially result in race conditions and deadlocks. |
131 | // |
132 | // For more information about the lock annotations, please see |
133 | // [Thread Safety Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html) |
134 | // in the Clang documentation. |
135 | // |
136 | // See also `MutexLock`, below, for scoped `Mutex` acquisition. |
137 | |
138 | class LOCKABLE Mutex { |
139 | public: |
140 | // Creates a `Mutex` that is not held by anyone. This constructor is |
141 | // typically used for Mutexes allocated on the heap or the stack. |
142 | // |
143 | // To create `Mutex` instances with static storage duration |
144 | // (e.g. a namespace-scoped or global variable), see |
145 | // `Mutex::Mutex(absl::kConstInit)` below instead. |
146 | Mutex(); |
147 | |
148 | // Creates a mutex with static storage duration. A global variable |
149 | // constructed this way avoids the lifetime issues that can occur on program |
150 | // startup and shutdown. (See absl/base/const_init.h.) |
151 | // |
152 | // For Mutexes allocated on the heap and stack, instead use the default |
153 | // constructor, which can interact more fully with the thread sanitizer. |
154 | // |
155 | // Example usage: |
156 | // namespace foo { |
157 | // ABSL_CONST_INIT Mutex mu(absl::kConstInit); |
158 | // } |
159 | explicit constexpr Mutex(absl::ConstInitType); |
160 | |
161 | ~Mutex(); |
162 | |
163 | // Mutex::Lock() |
164 | // |
165 | // Blocks the calling thread, if necessary, until this `Mutex` is free, and |
166 | // then acquires it exclusively. (This lock is also known as a "write lock.") |
167 | void Lock() EXCLUSIVE_LOCK_FUNCTION(); |
168 | |
169 | // Mutex::Unlock() |
170 | // |
171 | // Releases this `Mutex` and returns it from the exclusive/write state to the |
172 | // free state. Caller must hold the `Mutex` exclusively. |
173 | void Unlock() UNLOCK_FUNCTION(); |
174 | |
175 | // Mutex::TryLock() |
176 | // |
177 | // If the mutex can be acquired without blocking, does so exclusively and |
178 | // returns `true`. Otherwise, returns `false`. Returns `true` with high |
179 | // probability if the `Mutex` was free. |
180 | bool TryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true); |
181 | |
182 | // Mutex::AssertHeld() |
183 | // |
184 | // Return immediately if this thread holds the `Mutex` exclusively (in write |
185 | // mode). Otherwise, may report an error (typically by crashing with a |
186 | // diagnostic), or may return immediately. |
187 | void AssertHeld() const ASSERT_EXCLUSIVE_LOCK(); |
188 | |
189 | // --------------------------------------------------------------------------- |
190 | // Reader-Writer Locking |
191 | // --------------------------------------------------------------------------- |
192 | |
193 | // A Mutex can also be used as a starvation-free reader-writer lock. |
194 | // Neither read-locks nor write-locks are reentrant/recursive to avoid |
195 | // potential client programming errors. |
196 | // |
197 | // The Mutex API provides `Writer*()` aliases for the existing `Lock()`, |
198 | // `Unlock()` and `TryLock()` methods for use within applications mixing |
199 | // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this |
200 | // manner can make locking behavior clearer when mixing read and write modes. |
201 | // |
202 | // Introducing reader locks necessarily complicates the `Mutex` state |
203 | // machine somewhat. The table below illustrates the allowed state transitions |
204 | // of a mutex in such cases. Note that ReaderLock() may block even if the lock |
205 | // is held in shared mode; this occurs when another thread is blocked on a |
206 | // call to WriterLock(). |
207 | // |
208 | // --------------------------------------------------------------------------- |
209 | // Operation: WriterLock() Unlock() ReaderLock() ReaderUnlock() |
210 | // --------------------------------------------------------------------------- |
211 | // State |
212 | // --------------------------------------------------------------------------- |
213 | // Free Exclusive invalid Shared(1) invalid |
214 | // Shared(1) blocks invalid Shared(2) or blocks Free |
215 | // Shared(n) n>1 blocks invalid Shared(n+1) or blocks Shared(n-1) |
216 | // Exclusive blocks Free blocks invalid |
217 | // --------------------------------------------------------------------------- |
218 | // |
219 | // In comments below, "shared" refers to a state of Shared(n) for any n > 0. |
220 | |
221 | // Mutex::ReaderLock() |
222 | // |
223 | // Blocks the calling thread, if necessary, until this `Mutex` is either free, |
224 | // or in shared mode, and then acquires a share of it. Note that |
225 | // `ReaderLock()` will block if some other thread has an exclusive/writer lock |
226 | // on the mutex. |
227 | |
228 | void ReaderLock() SHARED_LOCK_FUNCTION(); |
229 | |
230 | // Mutex::ReaderUnlock() |
231 | // |
232 | // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to |
233 | // the free state if this thread holds the last reader lock on the mutex. Note |
234 | // that you cannot call `ReaderUnlock()` on a mutex held in write mode. |
235 | void ReaderUnlock() UNLOCK_FUNCTION(); |
236 | |
237 | // Mutex::ReaderTryLock() |
238 | // |
239 | // If the mutex can be acquired without blocking, acquires this mutex for |
240 | // shared access and returns `true`. Otherwise, returns `false`. Returns |
241 | // `true` with high probability if the `Mutex` was free or shared. |
242 | bool ReaderTryLock() SHARED_TRYLOCK_FUNCTION(true); |
243 | |
244 | // Mutex::AssertReaderHeld() |
245 | // |
246 | // Returns immediately if this thread holds the `Mutex` in at least shared |
247 | // mode (read mode). Otherwise, may report an error (typically by |
248 | // crashing with a diagnostic), or may return immediately. |
249 | void AssertReaderHeld() const ASSERT_SHARED_LOCK(); |
250 | |
251 | // Mutex::WriterLock() |
252 | // Mutex::WriterUnlock() |
253 | // Mutex::WriterTryLock() |
254 | // |
255 | // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`. |
256 | // |
257 | // These methods may be used (along with the complementary `Reader*()` |
258 | // methods) to distingish simple exclusive `Mutex` usage (`Lock()`, |
259 | // etc.) from reader/writer lock usage. |
260 | void WriterLock() EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); } |
261 | |
262 | void WriterUnlock() UNLOCK_FUNCTION() { this->Unlock(); } |
263 | |
264 | bool WriterTryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true) { |
265 | return this->TryLock(); |
266 | } |
267 | |
268 | // --------------------------------------------------------------------------- |
269 | // Conditional Critical Regions |
270 | // --------------------------------------------------------------------------- |
271 | |
272 | // Conditional usage of a `Mutex` can occur using two distinct paradigms: |
273 | // |
274 | // * Use of `Mutex` member functions with `Condition` objects. |
275 | // * Use of the separate `CondVar` abstraction. |
276 | // |
277 | // In general, prefer use of `Condition` and the `Mutex` member functions |
278 | // listed below over `CondVar`. When there are multiple threads waiting on |
279 | // distinctly different conditions, however, a battery of `CondVar`s may be |
280 | // more efficient. This section discusses use of `Condition` objects. |
281 | // |
282 | // `Mutex` contains member functions for performing lock operations only under |
283 | // certain conditions, of class `Condition`. For correctness, the `Condition` |
284 | // must return a boolean that is a pure function, only of state protected by |
285 | // the `Mutex`. The condition must be invariant w.r.t. environmental state |
286 | // such as thread, cpu id, or time, and must be `noexcept`. The condition will |
287 | // always be invoked with the mutex held in at least read mode, so you should |
288 | // not block it for long periods or sleep it on a timer. |
289 | // |
290 | // Since a condition must not depend directly on the current time, use |
291 | // `*WithTimeout()` member function variants to make your condition |
292 | // effectively true after a given duration, or `*WithDeadline()` variants to |
293 | // make your condition effectively true after a given time. |
294 | // |
295 | // The condition function should have no side-effects aside from debug |
296 | // logging; as a special exception, the function may acquire other mutexes |
297 | // provided it releases all those that it acquires. (This exception was |
298 | // required to allow logging.) |
299 | |
300 | // Mutex::Await() |
301 | // |
302 | // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true` |
303 | // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the |
304 | // same mode in which it was previously held. If the condition is initially |
305 | // `true`, `Await()` *may* skip the release/re-acquire step. |
306 | // |
307 | // `Await()` requires that this thread holds this `Mutex` in some mode. |
308 | void Await(const Condition &cond); |
309 | |
310 | // Mutex::LockWhen() |
311 | // Mutex::ReaderLockWhen() |
312 | // Mutex::WriterLockWhen() |
313 | // |
314 | // Blocks until simultaneously both `cond` is `true` and this `Mutex` can |
315 | // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is |
316 | // logically equivalent to `*Lock(); Await();` though they may have different |
317 | // performance characteristics. |
318 | void LockWhen(const Condition &cond) EXCLUSIVE_LOCK_FUNCTION(); |
319 | |
320 | void ReaderLockWhen(const Condition &cond) SHARED_LOCK_FUNCTION(); |
321 | |
322 | void WriterLockWhen(const Condition &cond) EXCLUSIVE_LOCK_FUNCTION() { |
323 | this->LockWhen(cond); |
324 | } |
325 | |
326 | // --------------------------------------------------------------------------- |
327 | // Mutex Variants with Timeouts/Deadlines |
328 | // --------------------------------------------------------------------------- |
329 | |
330 | // Mutex::AwaitWithTimeout() |
331 | // Mutex::AwaitWithDeadline() |
332 | // |
333 | // If `cond` is initially true, do nothing, or act as though `cond` is |
334 | // initially false. |
335 | // |
336 | // If `cond` is initially false, unlock this `Mutex` and block until |
337 | // simultaneously: |
338 | // - either `cond` is true or the {timeout has expired, deadline has passed} |
339 | // and |
340 | // - this `Mutex` can be reacquired, |
341 | // then reacquire this `Mutex` in the same mode in which it was previously |
342 | // held, returning `true` iff `cond` is `true` on return. |
343 | // |
344 | // Deadlines in the past are equivalent to an immediate deadline. |
345 | // Negative timeouts are equivalent to a zero timeout. |
346 | // |
347 | // This method requires that this thread holds this `Mutex` in some mode. |
348 | bool AwaitWithTimeout(const Condition &cond, absl::Duration timeout); |
349 | |
350 | bool AwaitWithDeadline(const Condition &cond, absl::Time deadline); |
351 | |
352 | // Mutex::LockWhenWithTimeout() |
353 | // Mutex::ReaderLockWhenWithTimeout() |
354 | // Mutex::WriterLockWhenWithTimeout() |
355 | // |
356 | // Blocks until simultaneously both: |
357 | // - either `cond` is `true` or the timeout has expired, and |
358 | // - this `Mutex` can be acquired, |
359 | // then atomically acquires this `Mutex`, returning `true` iff `cond` is |
360 | // `true` on return. |
361 | // |
362 | // Negative timeouts are equivalent to a zero timeout. |
363 | bool LockWhenWithTimeout(const Condition &cond, absl::Duration timeout) |
364 | EXCLUSIVE_LOCK_FUNCTION(); |
365 | bool ReaderLockWhenWithTimeout(const Condition &cond, absl::Duration timeout) |
366 | SHARED_LOCK_FUNCTION(); |
367 | bool WriterLockWhenWithTimeout(const Condition &cond, absl::Duration timeout) |
368 | EXCLUSIVE_LOCK_FUNCTION() { |
369 | return this->LockWhenWithTimeout(cond, timeout); |
370 | } |
371 | |
372 | // Mutex::LockWhenWithDeadline() |
373 | // Mutex::ReaderLockWhenWithDeadline() |
374 | // Mutex::WriterLockWhenWithDeadline() |
375 | // |
376 | // Blocks until simultaneously both: |
377 | // - either `cond` is `true` or the deadline has been passed, and |
378 | // - this `Mutex` can be acquired, |
379 | // then atomically acquires this Mutex, returning `true` iff `cond` is `true` |
380 | // on return. |
381 | // |
382 | // Deadlines in the past are equivalent to an immediate deadline. |
383 | bool LockWhenWithDeadline(const Condition &cond, absl::Time deadline) |
384 | EXCLUSIVE_LOCK_FUNCTION(); |
385 | bool ReaderLockWhenWithDeadline(const Condition &cond, absl::Time deadline) |
386 | SHARED_LOCK_FUNCTION(); |
387 | bool WriterLockWhenWithDeadline(const Condition &cond, absl::Time deadline) |
388 | EXCLUSIVE_LOCK_FUNCTION() { |
389 | return this->LockWhenWithDeadline(cond, deadline); |
390 | } |
391 | |
392 | // --------------------------------------------------------------------------- |
393 | // Debug Support: Invariant Checking, Deadlock Detection, Logging. |
394 | // --------------------------------------------------------------------------- |
395 | |
396 | // Mutex::EnableInvariantDebugging() |
397 | // |
398 | // If `invariant`!=null and if invariant debugging has been enabled globally, |
399 | // cause `(*invariant)(arg)` to be called at moments when the invariant for |
400 | // this `Mutex` should hold (for example: just after acquire, just before |
401 | // release). |
402 | // |
403 | // The routine `invariant` should have no side-effects since it is not |
404 | // guaranteed how many times it will be called; it should check the invariant |
405 | // and crash if it does not hold. Enabling global invariant debugging may |
406 | // substantially reduce `Mutex` performance; it should be set only for |
407 | // non-production runs. Optimization options may also disable invariant |
408 | // checks. |
409 | void EnableInvariantDebugging(void (*invariant)(void *), void *arg); |
410 | |
411 | // Mutex::EnableDebugLog() |
412 | // |
413 | // Cause all subsequent uses of this `Mutex` to be logged via |
414 | // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous |
415 | // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made. |
416 | // |
417 | // Note: This method substantially reduces `Mutex` performance. |
418 | void EnableDebugLog(const char *name); |
419 | |
420 | // Deadlock detection |
421 | |
422 | // Mutex::ForgetDeadlockInfo() |
423 | // |
424 | // Forget any deadlock-detection information previously gathered |
425 | // about this `Mutex`. Call this method in debug mode when the lock ordering |
426 | // of a `Mutex` changes. |
427 | void ForgetDeadlockInfo(); |
428 | |
429 | // Mutex::AssertNotHeld() |
430 | // |
431 | // Return immediately if this thread does not hold this `Mutex` in any |
432 | // mode; otherwise, may report an error (typically by crashing with a |
433 | // diagnostic), or may return immediately. |
434 | // |
435 | // Currently this check is performed only if all of: |
436 | // - in debug mode |
437 | // - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort |
438 | // - number of locks concurrently held by this thread is not large. |
439 | // are true. |
440 | void AssertNotHeld() const; |
441 | |
442 | // Special cases. |
443 | |
444 | // A `MuHow` is a constant that indicates how a lock should be acquired. |
445 | // Internal implementation detail. Clients should ignore. |
446 | typedef const struct MuHowS *MuHow; |
447 | |
448 | // Mutex::InternalAttemptToUseMutexInFatalSignalHandler() |
449 | // |
450 | // Causes the `Mutex` implementation to prepare itself for re-entry caused by |
451 | // future use of `Mutex` within a fatal signal handler. This method is |
452 | // intended for use only for last-ditch attempts to log crash information. |
453 | // It does not guarantee that attempts to use Mutexes within the handler will |
454 | // not deadlock; it merely makes other faults less likely. |
455 | // |
456 | // WARNING: This routine must be invoked from a signal handler, and the |
457 | // signal handler must either loop forever or terminate the process. |
458 | // Attempts to return from (or `longjmp` out of) the signal handler once this |
459 | // call has been made may cause arbitrary program behaviour including |
460 | // crashes and deadlocks. |
461 | static void InternalAttemptToUseMutexInFatalSignalHandler(); |
462 | |
463 | private: |
464 | #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX |
465 | friend class CondVar; |
466 | |
467 | synchronization_internal::MutexImpl *impl() { return impl_.get(); } |
468 | |
469 | synchronization_internal::SynchronizationStorage< |
470 | synchronization_internal::MutexImpl> |
471 | impl_; |
472 | #else |
473 | std::atomic<intptr_t> mu_; // The Mutex state. |
474 | |
475 | // Post()/Wait() versus associated PerThreadSem; in class for required |
476 | // friendship with PerThreadSem. |
477 | static inline void IncrementSynchSem(Mutex *mu, |
478 | base_internal::PerThreadSynch *w); |
479 | static inline bool DecrementSynchSem( |
480 | Mutex *mu, base_internal::PerThreadSynch *w, |
481 | synchronization_internal::KernelTimeout t); |
482 | |
483 | // slow path acquire |
484 | void LockSlowLoop(SynchWaitParams *waitp, int flags); |
485 | // wrappers around LockSlowLoop() |
486 | bool LockSlowWithDeadline(MuHow how, const Condition *cond, |
487 | synchronization_internal::KernelTimeout t, |
488 | int flags); |
489 | void LockSlow(MuHow how, const Condition *cond, |
490 | int flags) ABSL_ATTRIBUTE_COLD; |
491 | // slow path release |
492 | void UnlockSlow(SynchWaitParams *waitp) ABSL_ATTRIBUTE_COLD; |
493 | // Common code between Await() and AwaitWithTimeout/Deadline() |
494 | bool AwaitCommon(const Condition &cond, |
495 | synchronization_internal::KernelTimeout t); |
496 | // Attempt to remove thread s from queue. |
497 | void TryRemove(base_internal::PerThreadSynch *s); |
498 | // Block a thread on mutex. |
499 | void Block(base_internal::PerThreadSynch *s); |
500 | // Wake a thread; return successor. |
501 | base_internal::PerThreadSynch *Wakeup(base_internal::PerThreadSynch *w); |
502 | |
503 | friend class CondVar; // for access to Trans()/Fer(). |
504 | void Trans(MuHow how); // used for CondVar->Mutex transfer |
505 | void Fer( |
506 | base_internal::PerThreadSynch *w); // used for CondVar->Mutex transfer |
507 | #endif |
508 | |
509 | // Catch the error of writing Mutex when intending MutexLock. |
510 | Mutex(const volatile Mutex * /*ignored*/) {} // NOLINT(runtime/explicit) |
511 | |
512 | Mutex(const Mutex&) = delete; |
513 | Mutex& operator=(const Mutex&) = delete; |
514 | }; |
515 | |
516 | // ----------------------------------------------------------------------------- |
517 | // Mutex RAII Wrappers |
518 | // ----------------------------------------------------------------------------- |
519 | |
520 | // MutexLock |
521 | // |
522 | // `MutexLock` is a helper class, which acquires and releases a `Mutex` via |
523 | // RAII. |
524 | // |
525 | // Example: |
526 | // |
527 | // Class Foo { |
528 | // |
529 | // Foo::Bar* Baz() { |
530 | // MutexLock l(&lock_); |
531 | // ... |
532 | // return bar; |
533 | // } |
534 | // |
535 | // private: |
536 | // Mutex lock_; |
537 | // }; |
538 | class SCOPED_LOCKABLE MutexLock { |
539 | public: |
540 | explicit MutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) { |
541 | this->mu_->Lock(); |
542 | } |
543 | |
544 | MutexLock(const MutexLock &) = delete; // NOLINT(runtime/mutex) |
545 | MutexLock(MutexLock&&) = delete; // NOLINT(runtime/mutex) |
546 | MutexLock& operator=(const MutexLock&) = delete; |
547 | MutexLock& operator=(MutexLock&&) = delete; |
548 | |
549 | ~MutexLock() UNLOCK_FUNCTION() { this->mu_->Unlock(); } |
550 | |
551 | private: |
552 | Mutex *const mu_; |
553 | }; |
554 | |
555 | // ReaderMutexLock |
556 | // |
557 | // The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and |
558 | // releases a shared lock on a `Mutex` via RAII. |
559 | class SCOPED_LOCKABLE ReaderMutexLock { |
560 | public: |
561 | explicit ReaderMutexLock(Mutex *mu) SHARED_LOCK_FUNCTION(mu) |
562 | : mu_(mu) { |
563 | mu->ReaderLock(); |
564 | } |
565 | |
566 | ReaderMutexLock(const ReaderMutexLock&) = delete; |
567 | ReaderMutexLock(ReaderMutexLock&&) = delete; |
568 | ReaderMutexLock& operator=(const ReaderMutexLock&) = delete; |
569 | ReaderMutexLock& operator=(ReaderMutexLock&&) = delete; |
570 | |
571 | ~ReaderMutexLock() UNLOCK_FUNCTION() { |
572 | this->mu_->ReaderUnlock(); |
573 | } |
574 | |
575 | private: |
576 | Mutex *const mu_; |
577 | }; |
578 | |
579 | // WriterMutexLock |
580 | // |
581 | // The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and |
582 | // releases a write (exclusive) lock on a `Mutex` via RAII. |
583 | class SCOPED_LOCKABLE WriterMutexLock { |
584 | public: |
585 | explicit WriterMutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu) |
586 | : mu_(mu) { |
587 | mu->WriterLock(); |
588 | } |
589 | |
590 | WriterMutexLock(const WriterMutexLock&) = delete; |
591 | WriterMutexLock(WriterMutexLock&&) = delete; |
592 | WriterMutexLock& operator=(const WriterMutexLock&) = delete; |
593 | WriterMutexLock& operator=(WriterMutexLock&&) = delete; |
594 | |
595 | ~WriterMutexLock() UNLOCK_FUNCTION() { |
596 | this->mu_->WriterUnlock(); |
597 | } |
598 | |
599 | private: |
600 | Mutex *const mu_; |
601 | }; |
602 | |
603 | // ----------------------------------------------------------------------------- |
604 | // Condition |
605 | // ----------------------------------------------------------------------------- |
606 | // |
607 | // As noted above, `Mutex` contains a number of member functions which take a |
608 | // `Condition` as an argument; clients can wait for conditions to become `true` |
609 | // before attempting to acquire the mutex. These sections are known as |
610 | // "condition critical" sections. To use a `Condition`, you simply need to |
611 | // construct it, and use within an appropriate `Mutex` member function; |
612 | // everything else in the `Condition` class is an implementation detail. |
613 | // |
614 | // A `Condition` is specified as a function pointer which returns a boolean. |
615 | // `Condition` functions should be pure functions -- their results should depend |
616 | // only on passed arguments, should not consult any external state (such as |
617 | // clocks), and should have no side-effects, aside from debug logging. Any |
618 | // objects that the function may access should be limited to those which are |
619 | // constant while the mutex is blocked on the condition (e.g. a stack variable), |
620 | // or objects of state protected explicitly by the mutex. |
621 | // |
622 | // No matter which construction is used for `Condition`, the underlying |
623 | // function pointer / functor / callable must not throw any |
624 | // exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in |
625 | // the face of a throwing `Condition`. (When Abseil is allowed to depend |
626 | // on C++17, these function pointers will be explicitly marked |
627 | // `noexcept`; until then this requirement cannot be enforced in the |
628 | // type system.) |
629 | // |
630 | // Note: to use a `Condition`, you need only construct it and pass it within the |
631 | // appropriate `Mutex' member function, such as `Mutex::Await()`. |
632 | // |
633 | // Example: |
634 | // |
635 | // // assume count_ is not internal reference count |
636 | // int count_ GUARDED_BY(mu_); |
637 | // |
638 | // mu_.LockWhen(Condition(+[](int* count) { return *count == 0; }, |
639 | // &count_)); |
640 | // |
641 | // When multiple threads are waiting on exactly the same condition, make sure |
642 | // that they are constructed with the same parameters (same pointer to function |
643 | // + arg, or same pointer to object + method), so that the mutex implementation |
644 | // can avoid redundantly evaluating the same condition for each thread. |
645 | class Condition { |
646 | public: |
647 | // A Condition that returns the result of "(*func)(arg)" |
648 | Condition(bool (*func)(void *), void *arg); |
649 | |
650 | // Templated version for people who are averse to casts. |
651 | // |
652 | // To use a lambda, prepend it with unary plus, which converts the lambda |
653 | // into a function pointer: |
654 | // Condition(+[](T* t) { return ...; }, arg). |
655 | // |
656 | // Note: lambdas in this case must contain no bound variables. |
657 | // |
658 | // See class comment for performance advice. |
659 | template<typename T> |
660 | Condition(bool (*func)(T *), T *arg); |
661 | |
662 | // Templated version for invoking a method that returns a `bool`. |
663 | // |
664 | // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates |
665 | // `object->Method()`. |
666 | // |
667 | // Implementation Note: `absl::internal::identity` is used to allow methods to |
668 | // come from base classes. A simpler signature like |
669 | // `Condition(T*, bool (T::*)())` does not suffice. |
670 | template<typename T> |
671 | Condition(T *object, bool (absl::internal::identity<T>::type::* method)()); |
672 | |
673 | // Same as above, for const members |
674 | template<typename T> |
675 | Condition(const T *object, |
676 | bool (absl::internal::identity<T>::type::* method)() const); |
677 | |
678 | // A Condition that returns the value of `*cond` |
679 | explicit Condition(const bool *cond); |
680 | |
681 | // Templated version for invoking a functor that returns a `bool`. |
682 | // This approach accepts pointers to non-mutable lambdas, `std::function`, |
683 | // the result of` std::bind` and user-defined functors that define |
684 | // `bool F::operator()() const`. |
685 | // |
686 | // Example: |
687 | // |
688 | // auto reached = [this, current]() { |
689 | // mu_.AssertReaderHeld(); // For annotalysis. |
690 | // return processed_ >= current; |
691 | // }; |
692 | // mu_.Await(Condition(&reached)); |
693 | |
694 | // See class comment for performance advice. In particular, if there |
695 | // might be more than one waiter for the same condition, make sure |
696 | // that all waiters construct the condition with the same pointers. |
697 | |
698 | // Implementation note: The second template parameter ensures that this |
699 | // constructor doesn't participate in overload resolution if T doesn't have |
700 | // `bool operator() const`. |
701 | template <typename T, typename E = decltype( |
702 | static_cast<bool (T::*)() const>(&T::operator()))> |
703 | explicit Condition(const T *obj) |
704 | : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {} |
705 | |
706 | // A Condition that always returns `true`. |
707 | static const Condition kTrue; |
708 | |
709 | // Evaluates the condition. |
710 | bool Eval() const; |
711 | |
712 | // Returns `true` if the two conditions are guaranteed to return the same |
713 | // value if evaluated at the same time, `false` if the evaluation *may* return |
714 | // different results. |
715 | // |
716 | // Two `Condition` values are guaranteed equal if both their `func` and `arg` |
717 | // components are the same. A null pointer is equivalent to a `true` |
718 | // condition. |
719 | static bool GuaranteedEqual(const Condition *a, const Condition *b); |
720 | |
721 | private: |
722 | typedef bool (*InternalFunctionType)(void * arg); |
723 | typedef bool (Condition::*InternalMethodType)(); |
724 | typedef bool (*InternalMethodCallerType)(void * arg, |
725 | InternalMethodType internal_method); |
726 | |
727 | bool (*eval_)(const Condition*); // Actual evaluator |
728 | InternalFunctionType function_; // function taking pointer returning bool |
729 | InternalMethodType method_; // method returning bool |
730 | void *arg_; // arg of function_ or object of method_ |
731 | |
732 | Condition(); // null constructor used only to create kTrue |
733 | |
734 | // Various functions eval_ can point to: |
735 | static bool CallVoidPtrFunction(const Condition*); |
736 | template <typename T> static bool CastAndCallFunction(const Condition* c); |
737 | template <typename T> static bool CastAndCallMethod(const Condition* c); |
738 | }; |
739 | |
740 | // ----------------------------------------------------------------------------- |
741 | // CondVar |
742 | // ----------------------------------------------------------------------------- |
743 | // |
744 | // A condition variable, reflecting state evaluated separately outside of the |
745 | // `Mutex` object, which can be signaled to wake callers. |
746 | // This class is not normally needed; use `Mutex` member functions such as |
747 | // `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases |
748 | // with many threads and many conditions, `CondVar` may be faster. |
749 | // |
750 | // The implementation may deliver signals to any condition variable at |
751 | // any time, even when no call to `Signal()` or `SignalAll()` is made; as a |
752 | // result, upon being awoken, you must check the logical condition you have |
753 | // been waiting upon. |
754 | // |
755 | // Examples: |
756 | // |
757 | // Usage for a thread waiting for some condition C protected by mutex mu: |
758 | // mu.Lock(); |
759 | // while (!C) { cv->Wait(&mu); } // releases and reacquires mu |
760 | // // C holds; process data |
761 | // mu.Unlock(); |
762 | // |
763 | // Usage to wake T is: |
764 | // mu.Lock(); |
765 | // // process data, possibly establishing C |
766 | // if (C) { cv->Signal(); } |
767 | // mu.Unlock(); |
768 | // |
769 | // If C may be useful to more than one waiter, use `SignalAll()` instead of |
770 | // `Signal()`. |
771 | // |
772 | // With this implementation it is efficient to use `Signal()/SignalAll()` inside |
773 | // the locked region; this usage can make reasoning about your program easier. |
774 | // |
775 | class CondVar { |
776 | public: |
777 | CondVar(); |
778 | ~CondVar(); |
779 | |
780 | // CondVar::Wait() |
781 | // |
782 | // Atomically releases a `Mutex` and blocks on this condition variable. |
783 | // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a |
784 | // spurious wakeup), then reacquires the `Mutex` and returns. |
785 | // |
786 | // Requires and ensures that the current thread holds the `Mutex`. |
787 | void Wait(Mutex *mu); |
788 | |
789 | // CondVar::WaitWithTimeout() |
790 | // |
791 | // Atomically releases a `Mutex` and blocks on this condition variable. |
792 | // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a |
793 | // spurious wakeup), or until the timeout has expired, then reacquires |
794 | // the `Mutex` and returns. |
795 | // |
796 | // Returns true if the timeout has expired without this `CondVar` |
797 | // being signalled in any manner. If both the timeout has expired |
798 | // and this `CondVar` has been signalled, the implementation is free |
799 | // to return `true` or `false`. |
800 | // |
801 | // Requires and ensures that the current thread holds the `Mutex`. |
802 | bool WaitWithTimeout(Mutex *mu, absl::Duration timeout); |
803 | |
804 | // CondVar::WaitWithDeadline() |
805 | // |
806 | // Atomically releases a `Mutex` and blocks on this condition variable. |
807 | // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a |
808 | // spurious wakeup), or until the deadline has passed, then reacquires |
809 | // the `Mutex` and returns. |
810 | // |
811 | // Deadlines in the past are equivalent to an immediate deadline. |
812 | // |
813 | // Returns true if the deadline has passed without this `CondVar` |
814 | // being signalled in any manner. If both the deadline has passed |
815 | // and this `CondVar` has been signalled, the implementation is free |
816 | // to return `true` or `false`. |
817 | // |
818 | // Requires and ensures that the current thread holds the `Mutex`. |
819 | bool WaitWithDeadline(Mutex *mu, absl::Time deadline); |
820 | |
821 | // CondVar::Signal() |
822 | // |
823 | // Signal this `CondVar`; wake at least one waiter if one exists. |
824 | void Signal(); |
825 | |
826 | // CondVar::SignalAll() |
827 | // |
828 | // Signal this `CondVar`; wake all waiters. |
829 | void SignalAll(); |
830 | |
831 | // CondVar::EnableDebugLog() |
832 | // |
833 | // Causes all subsequent uses of this `CondVar` to be logged via |
834 | // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`. |
835 | // Note: this method substantially reduces `CondVar` performance. |
836 | void EnableDebugLog(const char *name); |
837 | |
838 | private: |
839 | #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX |
840 | synchronization_internal::CondVarImpl *impl() { return impl_.get(); } |
841 | synchronization_internal::SynchronizationStorage< |
842 | synchronization_internal::CondVarImpl> |
843 | impl_; |
844 | #else |
845 | bool WaitCommon(Mutex *mutex, synchronization_internal::KernelTimeout t); |
846 | void Remove(base_internal::PerThreadSynch *s); |
847 | void Wakeup(base_internal::PerThreadSynch *w); |
848 | std::atomic<intptr_t> cv_; // Condition variable state. |
849 | #endif |
850 | CondVar(const CondVar&) = delete; |
851 | CondVar& operator=(const CondVar&) = delete; |
852 | }; |
853 | |
854 | |
855 | // Variants of MutexLock. |
856 | // |
857 | // If you find yourself using one of these, consider instead using |
858 | // Mutex::Unlock() and/or if-statements for clarity. |
859 | |
860 | // MutexLockMaybe |
861 | // |
862 | // MutexLockMaybe is like MutexLock, but is a no-op when mu is null. |
863 | class SCOPED_LOCKABLE MutexLockMaybe { |
864 | public: |
865 | explicit MutexLockMaybe(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu) |
866 | : mu_(mu) { if (this->mu_ != nullptr) { this->mu_->Lock(); } } |
867 | ~MutexLockMaybe() UNLOCK_FUNCTION() { |
868 | if (this->mu_ != nullptr) { this->mu_->Unlock(); } |
869 | } |
870 | private: |
871 | Mutex *const mu_; |
872 | MutexLockMaybe(const MutexLockMaybe&) = delete; |
873 | MutexLockMaybe(MutexLockMaybe&&) = delete; |
874 | MutexLockMaybe& operator=(const MutexLockMaybe&) = delete; |
875 | MutexLockMaybe& operator=(MutexLockMaybe&&) = delete; |
876 | }; |
877 | |
878 | // ReleasableMutexLock |
879 | // |
880 | // ReleasableMutexLock is like MutexLock, but permits `Release()` of its |
881 | // mutex before destruction. `Release()` may be called at most once. |
882 | class SCOPED_LOCKABLE ReleasableMutexLock { |
883 | public: |
884 | explicit ReleasableMutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu) |
885 | : mu_(mu) { |
886 | this->mu_->Lock(); |
887 | } |
888 | ~ReleasableMutexLock() UNLOCK_FUNCTION() { |
889 | if (this->mu_ != nullptr) { this->mu_->Unlock(); } |
890 | } |
891 | |
892 | void Release() UNLOCK_FUNCTION(); |
893 | |
894 | private: |
895 | Mutex *mu_; |
896 | ReleasableMutexLock(const ReleasableMutexLock&) = delete; |
897 | ReleasableMutexLock(ReleasableMutexLock&&) = delete; |
898 | ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete; |
899 | ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete; |
900 | }; |
901 | |
902 | #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX |
903 | inline constexpr Mutex::Mutex(absl::ConstInitType) : impl_(absl::kConstInit) {} |
904 | |
905 | #else |
906 | inline Mutex::Mutex() : mu_(0) { |
907 | ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static); |
908 | } |
909 | |
910 | inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {} |
911 | |
912 | inline CondVar::CondVar() : cv_(0) {} |
913 | #endif |
914 | |
915 | // static |
916 | template <typename T> |
917 | bool Condition::CastAndCallMethod(const Condition *c) { |
918 | typedef bool (T::*MemberType)(); |
919 | MemberType rm = reinterpret_cast<MemberType>(c->method_); |
920 | T *x = static_cast<T *>(c->arg_); |
921 | return (x->*rm)(); |
922 | } |
923 | |
924 | // static |
925 | template <typename T> |
926 | bool Condition::CastAndCallFunction(const Condition *c) { |
927 | typedef bool (*FuncType)(T *); |
928 | FuncType fn = reinterpret_cast<FuncType>(c->function_); |
929 | T *x = static_cast<T *>(c->arg_); |
930 | return (*fn)(x); |
931 | } |
932 | |
933 | template <typename T> |
934 | inline Condition::Condition(bool (*func)(T *), T *arg) |
935 | : eval_(&CastAndCallFunction<T>), |
936 | function_(reinterpret_cast<InternalFunctionType>(func)), |
937 | method_(nullptr), |
938 | arg_(const_cast<void *>(static_cast<const void *>(arg))) {} |
939 | |
940 | template <typename T> |
941 | inline Condition::Condition(T *object, |
942 | bool (absl::internal::identity<T>::type::*method)()) |
943 | : eval_(&CastAndCallMethod<T>), |
944 | function_(nullptr), |
945 | method_(reinterpret_cast<InternalMethodType>(method)), |
946 | arg_(object) {} |
947 | |
948 | template <typename T> |
949 | inline Condition::Condition(const T *object, |
950 | bool (absl::internal::identity<T>::type::*method)() |
951 | const) |
952 | : eval_(&CastAndCallMethod<T>), |
953 | function_(nullptr), |
954 | method_(reinterpret_cast<InternalMethodType>(method)), |
955 | arg_(reinterpret_cast<void *>(const_cast<T *>(object))) {} |
956 | |
957 | // Register a hook for profiling support. |
958 | // |
959 | // The function pointer registered here will be called whenever a mutex is |
960 | // contended. The callback is given the absl/base/cycleclock.h timestamp when |
961 | // waiting began. |
962 | // |
963 | // Calls to this function do not race or block, but there is no ordering |
964 | // guaranteed between calls to this function and call to the provided hook. |
965 | // In particular, the previously registered hook may still be called for some |
966 | // time after this function returns. |
967 | void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp)); |
968 | |
969 | // Register a hook for Mutex tracing. |
970 | // |
971 | // The function pointer registered here will be called whenever a mutex is |
972 | // contended. The callback is given an opaque handle to the contended mutex, |
973 | // an event name, and the number of wait cycles (as measured by |
974 | // //absl/base/internal/cycleclock.h, and which may not be real |
975 | // "cycle" counts.) |
976 | // |
977 | // The only event name currently sent is "slow release". |
978 | // |
979 | // This has the same memory ordering concerns as RegisterMutexProfiler() above. |
980 | void (void (*fn)(const char *msg, const void *obj, |
981 | int64_t wait_cycles)); |
982 | |
983 | // TODO(gfalcon): Combine RegisterMutexProfiler() and RegisterMutexTracer() |
984 | // into a single interface, since they are only ever called in pairs. |
985 | |
986 | // Register a hook for CondVar tracing. |
987 | // |
988 | // The function pointer registered here will be called here on various CondVar |
989 | // events. The callback is given an opaque handle to the CondVar object and |
990 | // a string identifying the event. This is thread-safe, but only a single |
991 | // tracer can be registered. |
992 | // |
993 | // Events that can be sent are "Wait", "Unwait", "Signal wakeup", and |
994 | // "SignalAll wakeup". |
995 | // |
996 | // This has the same memory ordering concerns as RegisterMutexProfiler() above. |
997 | void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv)); |
998 | |
999 | // Register a hook for symbolizing stack traces in deadlock detector reports. |
1000 | // |
1001 | // 'pc' is the program counter being symbolized, 'out' is the buffer to write |
1002 | // into, and 'out_size' is the size of the buffer. This function can return |
1003 | // false if symbolizing failed, or true if a null-terminated symbol was written |
1004 | // to 'out.' |
1005 | // |
1006 | // This has the same memory ordering concerns as RegisterMutexProfiler() above. |
1007 | // |
1008 | // DEPRECATED: The default symbolizer function is absl::Symbolize() and the |
1009 | // ability to register a different hook for symbolizing stack traces will be |
1010 | // removed on or after 2023-05-01. |
1011 | ABSL_DEPRECATED("absl::RegisterSymbolizer() is deprecated and will be removed " |
1012 | "on or after 2023-05-01" ) |
1013 | void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size)); |
1014 | |
1015 | // EnableMutexInvariantDebugging() |
1016 | // |
1017 | // Enable or disable global support for Mutex invariant debugging. If enabled, |
1018 | // then invariant predicates can be registered per-Mutex for debug checking. |
1019 | // See Mutex::EnableInvariantDebugging(). |
1020 | void EnableMutexInvariantDebugging(bool enabled); |
1021 | |
1022 | // When in debug mode, and when the feature has been enabled globally, the |
1023 | // implementation will keep track of lock ordering and complain (or optionally |
1024 | // crash) if a cycle is detected in the acquired-before graph. |
1025 | |
1026 | // Possible modes of operation for the deadlock detector in debug mode. |
1027 | enum class OnDeadlockCycle { |
1028 | kIgnore, // Neither report on nor attempt to track cycles in lock ordering |
1029 | kReport, // Report lock cycles to stderr when detected |
1030 | kAbort, // Report lock cycles to stderr when detected, then abort |
1031 | }; |
1032 | |
1033 | // SetMutexDeadlockDetectionMode() |
1034 | // |
1035 | // Enable or disable global support for detection of potential deadlocks |
1036 | // due to Mutex lock ordering inversions. When set to 'kIgnore', tracking of |
1037 | // lock ordering is disabled. Otherwise, in debug builds, a lock ordering graph |
1038 | // will be maintained internally, and detected cycles will be reported in |
1039 | // the manner chosen here. |
1040 | void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode); |
1041 | |
1042 | } // namespace absl |
1043 | |
1044 | // In some build configurations we pass --detect-odr-violations to the |
1045 | // gold linker. This causes it to flag weak symbol overrides as ODR |
1046 | // violations. Because ODR only applies to C++ and not C, |
1047 | // --detect-odr-violations ignores symbols not mangled with C++ names. |
1048 | // By changing our extension points to be extern "C", we dodge this |
1049 | // check. |
1050 | extern "C" { |
1051 | void AbslInternalMutexYield(); |
1052 | } // extern "C" |
1053 | |
1054 | #endif // ABSL_SYNCHRONIZATION_MUTEX_H_ |
1055 | |