1 | // Copyright 2017 The Abseil Authors. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | // |
15 | // ----------------------------------------------------------------------------- |
16 | // File: time.h |
17 | // ----------------------------------------------------------------------------- |
18 | // |
19 | // This header file defines abstractions for computing with absolute points |
20 | // in time, durations of time, and formatting and parsing time within a given |
21 | // time zone. The following abstractions are defined: |
22 | // |
23 | // * `absl::Time` defines an absolute, specific instance in time |
24 | // * `absl::Duration` defines a signed, fixed-length span of time |
25 | // * `absl::TimeZone` defines geopolitical time zone regions (as collected |
26 | // within the IANA Time Zone database (https://www.iana.org/time-zones)). |
27 | // |
28 | // Note: Absolute times are distinct from civil times, which refer to the |
29 | // human-scale time commonly represented by `YYYY-MM-DD hh:mm:ss`. The mapping |
30 | // between absolute and civil times can be specified by use of time zones |
31 | // (`absl::TimeZone` within this API). That is: |
32 | // |
33 | // Civil Time = F(Absolute Time, Time Zone) |
34 | // Absolute Time = G(Civil Time, Time Zone) |
35 | // |
36 | // See civil_time.h for abstractions related to constructing and manipulating |
37 | // civil time. |
38 | // |
39 | // Example: |
40 | // |
41 | // absl::TimeZone nyc; |
42 | // // LoadTimeZone() may fail so it's always better to check for success. |
43 | // if (!absl::LoadTimeZone("America/New_York", &nyc)) { |
44 | // // handle error case |
45 | // } |
46 | // |
47 | // // My flight leaves NYC on Jan 2, 2017 at 03:04:05 |
48 | // absl::CivilSecond cs(2017, 1, 2, 3, 4, 5); |
49 | // absl::Time takeoff = absl::FromCivil(cs, nyc); |
50 | // |
51 | // absl::Duration flight_duration = absl::Hours(21) + absl::Minutes(35); |
52 | // absl::Time landing = takeoff + flight_duration; |
53 | // |
54 | // absl::TimeZone syd; |
55 | // if (!absl::LoadTimeZone("Australia/Sydney", &syd)) { |
56 | // // handle error case |
57 | // } |
58 | // std::string s = absl::FormatTime( |
59 | // "My flight will land in Sydney on %Y-%m-%d at %H:%M:%S", |
60 | // landing, syd); |
61 | |
62 | #ifndef ABSL_TIME_TIME_H_ |
63 | #define ABSL_TIME_TIME_H_ |
64 | |
65 | #if !defined(_MSC_VER) |
66 | #include <sys/time.h> |
67 | #else |
68 | // We don't include `winsock2.h` because it drags in `windows.h` and friends, |
69 | // and they define conflicting macros like OPAQUE, ERROR, and more. This has the |
70 | // potential to break Abseil users. |
71 | // |
72 | // Instead we only forward declare `timeval` and require Windows users include |
73 | // `winsock2.h` themselves. This is both inconsistent and troublesome, but so is |
74 | // including 'windows.h' so we are picking the lesser of two evils here. |
75 | struct timeval; |
76 | #endif |
77 | #include <chrono> // NOLINT(build/c++11) |
78 | #include <cmath> |
79 | #include <cstdint> |
80 | #include <ctime> |
81 | #include <ostream> |
82 | #include <string> |
83 | #include <type_traits> |
84 | #include <utility> |
85 | |
86 | #include "absl/strings/string_view.h" |
87 | #include "absl/time/civil_time.h" |
88 | #include "absl/time/internal/cctz/include/cctz/time_zone.h" |
89 | |
90 | namespace absl { |
91 | |
92 | class Duration; // Defined below |
93 | class Time; // Defined below |
94 | class TimeZone; // Defined below |
95 | |
96 | namespace time_internal { |
97 | int64_t IDivDuration(bool satq, Duration num, Duration den, Duration* rem); |
98 | constexpr Time FromUnixDuration(Duration d); |
99 | constexpr Duration ToUnixDuration(Time t); |
100 | constexpr int64_t GetRepHi(Duration d); |
101 | constexpr uint32_t GetRepLo(Duration d); |
102 | constexpr Duration MakeDuration(int64_t hi, uint32_t lo); |
103 | constexpr Duration MakeDuration(int64_t hi, int64_t lo); |
104 | inline Duration MakePosDoubleDuration(double n); |
105 | constexpr int64_t kTicksPerNanosecond = 4; |
106 | constexpr int64_t kTicksPerSecond = 1000 * 1000 * 1000 * kTicksPerNanosecond; |
107 | template <std::intmax_t N> |
108 | constexpr Duration FromInt64(int64_t v, std::ratio<1, N>); |
109 | constexpr Duration FromInt64(int64_t v, std::ratio<60>); |
110 | constexpr Duration FromInt64(int64_t v, std::ratio<3600>); |
111 | template <typename T> |
112 | using EnableIfIntegral = typename std::enable_if< |
113 | std::is_integral<T>::value || std::is_enum<T>::value, int>::type; |
114 | template <typename T> |
115 | using EnableIfFloat = |
116 | typename std::enable_if<std::is_floating_point<T>::value, int>::type; |
117 | } // namespace time_internal |
118 | |
119 | // Duration |
120 | // |
121 | // The `absl::Duration` class represents a signed, fixed-length span of time. |
122 | // A `Duration` is generated using a unit-specific factory function, or is |
123 | // the result of subtracting one `absl::Time` from another. Durations behave |
124 | // like unit-safe integers and they support all the natural integer-like |
125 | // arithmetic operations. Arithmetic overflows and saturates at +/- infinity. |
126 | // `Duration` should be passed by value rather than const reference. |
127 | // |
128 | // Factory functions `Nanoseconds()`, `Microseconds()`, `Milliseconds()`, |
129 | // `Seconds()`, `Minutes()`, `Hours()` and `InfiniteDuration()` allow for |
130 | // creation of constexpr `Duration` values |
131 | // |
132 | // Examples: |
133 | // |
134 | // constexpr absl::Duration ten_ns = absl::Nanoseconds(10); |
135 | // constexpr absl::Duration min = absl::Minutes(1); |
136 | // constexpr absl::Duration hour = absl::Hours(1); |
137 | // absl::Duration dur = 60 * min; // dur == hour |
138 | // absl::Duration half_sec = absl::Milliseconds(500); |
139 | // absl::Duration quarter_sec = 0.25 * absl::Seconds(1); |
140 | // |
141 | // `Duration` values can be easily converted to an integral number of units |
142 | // using the division operator. |
143 | // |
144 | // Example: |
145 | // |
146 | // constexpr absl::Duration dur = absl::Milliseconds(1500); |
147 | // int64_t ns = dur / absl::Nanoseconds(1); // ns == 1500000000 |
148 | // int64_t ms = dur / absl::Milliseconds(1); // ms == 1500 |
149 | // int64_t sec = dur / absl::Seconds(1); // sec == 1 (subseconds truncated) |
150 | // int64_t min = dur / absl::Minutes(1); // min == 0 |
151 | // |
152 | // See the `IDivDuration()` and `FDivDuration()` functions below for details on |
153 | // how to access the fractional parts of the quotient. |
154 | // |
155 | // Alternatively, conversions can be performed using helpers such as |
156 | // `ToInt64Microseconds()` and `ToDoubleSeconds()`. |
157 | class Duration { |
158 | public: |
159 | // Value semantics. |
160 | constexpr Duration() : rep_hi_(0), rep_lo_(0) {} // zero-length duration |
161 | |
162 | // Copyable. |
163 | #if !defined(__clang__) && defined(_MSC_VER) && _MSC_VER < 1910 |
164 | // Explicitly defining the constexpr copy constructor avoids an MSVC bug. |
165 | constexpr Duration(const Duration& d) |
166 | : rep_hi_(d.rep_hi_), rep_lo_(d.rep_lo_) {} |
167 | #else |
168 | constexpr Duration(const Duration& d) = default; |
169 | #endif |
170 | Duration& operator=(const Duration& d) = default; |
171 | |
172 | // Compound assignment operators. |
173 | Duration& operator+=(Duration d); |
174 | Duration& operator-=(Duration d); |
175 | Duration& operator*=(int64_t r); |
176 | Duration& operator*=(double r); |
177 | Duration& operator/=(int64_t r); |
178 | Duration& operator/=(double r); |
179 | Duration& operator%=(Duration rhs); |
180 | |
181 | // Overloads that forward to either the int64_t or double overloads above. |
182 | template <typename T> |
183 | Duration& operator*=(T r) { |
184 | int64_t x = r; |
185 | return *this *= x; |
186 | } |
187 | template <typename T> |
188 | Duration& operator/=(T r) { |
189 | int64_t x = r; |
190 | return *this /= x; |
191 | } |
192 | Duration& operator*=(float r) { return *this *= static_cast<double>(r); } |
193 | Duration& operator/=(float r) { return *this /= static_cast<double>(r); } |
194 | |
195 | template <typename H> |
196 | friend H AbslHashValue(H h, Duration d) { |
197 | return H::combine(std::move(h), d.rep_hi_, d.rep_lo_); |
198 | } |
199 | |
200 | private: |
201 | friend constexpr int64_t time_internal::GetRepHi(Duration d); |
202 | friend constexpr uint32_t time_internal::GetRepLo(Duration d); |
203 | friend constexpr Duration time_internal::MakeDuration(int64_t hi, |
204 | uint32_t lo); |
205 | constexpr Duration(int64_t hi, uint32_t lo) : rep_hi_(hi), rep_lo_(lo) {} |
206 | int64_t rep_hi_; |
207 | uint32_t rep_lo_; |
208 | }; |
209 | |
210 | // Relational Operators |
211 | constexpr bool operator<(Duration lhs, Duration rhs); |
212 | constexpr bool operator>(Duration lhs, Duration rhs) { return rhs < lhs; } |
213 | constexpr bool operator>=(Duration lhs, Duration rhs) { return !(lhs < rhs); } |
214 | constexpr bool operator<=(Duration lhs, Duration rhs) { return !(rhs < lhs); } |
215 | constexpr bool operator==(Duration lhs, Duration rhs); |
216 | constexpr bool operator!=(Duration lhs, Duration rhs) { return !(lhs == rhs); } |
217 | |
218 | // Additive Operators |
219 | constexpr Duration operator-(Duration d); |
220 | inline Duration operator+(Duration lhs, Duration rhs) { return lhs += rhs; } |
221 | inline Duration operator-(Duration lhs, Duration rhs) { return lhs -= rhs; } |
222 | |
223 | // Multiplicative Operators |
224 | template <typename T> |
225 | Duration operator*(Duration lhs, T rhs) { |
226 | return lhs *= rhs; |
227 | } |
228 | template <typename T> |
229 | Duration operator*(T lhs, Duration rhs) { |
230 | return rhs *= lhs; |
231 | } |
232 | template <typename T> |
233 | Duration operator/(Duration lhs, T rhs) { |
234 | return lhs /= rhs; |
235 | } |
236 | inline int64_t operator/(Duration lhs, Duration rhs) { |
237 | return time_internal::IDivDuration(true, lhs, rhs, |
238 | &lhs); // trunc towards zero |
239 | } |
240 | inline Duration operator%(Duration lhs, Duration rhs) { return lhs %= rhs; } |
241 | |
242 | // IDivDuration() |
243 | // |
244 | // Divides a numerator `Duration` by a denominator `Duration`, returning the |
245 | // quotient and remainder. The remainder always has the same sign as the |
246 | // numerator. The returned quotient and remainder respect the identity: |
247 | // |
248 | // numerator = denominator * quotient + remainder |
249 | // |
250 | // Returned quotients are capped to the range of `int64_t`, with the difference |
251 | // spilling into the remainder to uphold the above identity. This means that the |
252 | // remainder returned could differ from the remainder returned by |
253 | // `Duration::operator%` for huge quotients. |
254 | // |
255 | // See also the notes on `InfiniteDuration()` below regarding the behavior of |
256 | // division involving zero and infinite durations. |
257 | // |
258 | // Example: |
259 | // |
260 | // constexpr absl::Duration a = |
261 | // absl::Seconds(std::numeric_limits<int64_t>::max()); // big |
262 | // constexpr absl::Duration b = absl::Nanoseconds(1); // small |
263 | // |
264 | // absl::Duration rem = a % b; |
265 | // // rem == absl::ZeroDuration() |
266 | // |
267 | // // Here, q would overflow int64_t, so rem accounts for the difference. |
268 | // int64_t q = absl::IDivDuration(a, b, &rem); |
269 | // // q == std::numeric_limits<int64_t>::max(), rem == a - b * q |
270 | inline int64_t IDivDuration(Duration num, Duration den, Duration* rem) { |
271 | return time_internal::IDivDuration(true, num, den, |
272 | rem); // trunc towards zero |
273 | } |
274 | |
275 | // FDivDuration() |
276 | // |
277 | // Divides a `Duration` numerator into a fractional number of units of a |
278 | // `Duration` denominator. |
279 | // |
280 | // See also the notes on `InfiniteDuration()` below regarding the behavior of |
281 | // division involving zero and infinite durations. |
282 | // |
283 | // Example: |
284 | // |
285 | // double d = absl::FDivDuration(absl::Milliseconds(1500), absl::Seconds(1)); |
286 | // // d == 1.5 |
287 | double FDivDuration(Duration num, Duration den); |
288 | |
289 | // ZeroDuration() |
290 | // |
291 | // Returns a zero-length duration. This function behaves just like the default |
292 | // constructor, but the name helps make the semantics clear at call sites. |
293 | constexpr Duration ZeroDuration() { return Duration(); } |
294 | |
295 | // AbsDuration() |
296 | // |
297 | // Returns the absolute value of a duration. |
298 | inline Duration AbsDuration(Duration d) { |
299 | return (d < ZeroDuration()) ? -d : d; |
300 | } |
301 | |
302 | // Trunc() |
303 | // |
304 | // Truncates a duration (toward zero) to a multiple of a non-zero unit. |
305 | // |
306 | // Example: |
307 | // |
308 | // absl::Duration d = absl::Nanoseconds(123456789); |
309 | // absl::Duration a = absl::Trunc(d, absl::Microseconds(1)); // 123456us |
310 | Duration Trunc(Duration d, Duration unit); |
311 | |
312 | // Floor() |
313 | // |
314 | // Floors a duration using the passed duration unit to its largest value not |
315 | // greater than the duration. |
316 | // |
317 | // Example: |
318 | // |
319 | // absl::Duration d = absl::Nanoseconds(123456789); |
320 | // absl::Duration b = absl::Floor(d, absl::Microseconds(1)); // 123456us |
321 | Duration Floor(Duration d, Duration unit); |
322 | |
323 | // Ceil() |
324 | // |
325 | // Returns the ceiling of a duration using the passed duration unit to its |
326 | // smallest value not less than the duration. |
327 | // |
328 | // Example: |
329 | // |
330 | // absl::Duration d = absl::Nanoseconds(123456789); |
331 | // absl::Duration c = absl::Ceil(d, absl::Microseconds(1)); // 123457us |
332 | Duration Ceil(Duration d, Duration unit); |
333 | |
334 | // InfiniteDuration() |
335 | // |
336 | // Returns an infinite `Duration`. To get a `Duration` representing negative |
337 | // infinity, use `-InfiniteDuration()`. |
338 | // |
339 | // Duration arithmetic overflows to +/- infinity and saturates. In general, |
340 | // arithmetic with `Duration` infinities is similar to IEEE 754 infinities |
341 | // except where IEEE 754 NaN would be involved, in which case +/- |
342 | // `InfiniteDuration()` is used in place of a "nan" Duration. |
343 | // |
344 | // Examples: |
345 | // |
346 | // constexpr absl::Duration inf = absl::InfiniteDuration(); |
347 | // const absl::Duration d = ... any finite duration ... |
348 | // |
349 | // inf == inf + inf |
350 | // inf == inf + d |
351 | // inf == inf - inf |
352 | // -inf == d - inf |
353 | // |
354 | // inf == d * 1e100 |
355 | // inf == inf / 2 |
356 | // 0 == d / inf |
357 | // INT64_MAX == inf / d |
358 | // |
359 | // d < inf |
360 | // -inf < d |
361 | // |
362 | // // Division by zero returns infinity, or INT64_MIN/MAX where appropriate. |
363 | // inf == d / 0 |
364 | // INT64_MAX == d / absl::ZeroDuration() |
365 | // |
366 | // The examples involving the `/` operator above also apply to `IDivDuration()` |
367 | // and `FDivDuration()`. |
368 | constexpr Duration InfiniteDuration(); |
369 | |
370 | // Nanoseconds() |
371 | // Microseconds() |
372 | // Milliseconds() |
373 | // Seconds() |
374 | // Minutes() |
375 | // Hours() |
376 | // |
377 | // Factory functions for constructing `Duration` values from an integral number |
378 | // of the unit indicated by the factory function's name. |
379 | // |
380 | // Note: no "Days()" factory function exists because "a day" is ambiguous. |
381 | // Civil days are not always 24 hours long, and a 24-hour duration often does |
382 | // not correspond with a civil day. If a 24-hour duration is needed, use |
383 | // `absl::Hours(24)`. (If you actually want a civil day, use absl::CivilDay |
384 | // from civil_time.h.) |
385 | // |
386 | // Example: |
387 | // |
388 | // absl::Duration a = absl::Seconds(60); |
389 | // absl::Duration b = absl::Minutes(1); // b == a |
390 | constexpr Duration Nanoseconds(int64_t n); |
391 | constexpr Duration Microseconds(int64_t n); |
392 | constexpr Duration Milliseconds(int64_t n); |
393 | constexpr Duration Seconds(int64_t n); |
394 | constexpr Duration Minutes(int64_t n); |
395 | constexpr Duration Hours(int64_t n); |
396 | |
397 | // Factory overloads for constructing `Duration` values from a floating-point |
398 | // number of the unit indicated by the factory function's name. These functions |
399 | // exist for convenience, but they are not as efficient as the integral |
400 | // factories, which should be preferred. |
401 | // |
402 | // Example: |
403 | // |
404 | // auto a = absl::Seconds(1.5); // OK |
405 | // auto b = absl::Milliseconds(1500); // BETTER |
406 | template <typename T, time_internal::EnableIfFloat<T> = 0> |
407 | Duration Nanoseconds(T n) { |
408 | return n * Nanoseconds(1); |
409 | } |
410 | template <typename T, time_internal::EnableIfFloat<T> = 0> |
411 | Duration Microseconds(T n) { |
412 | return n * Microseconds(1); |
413 | } |
414 | template <typename T, time_internal::EnableIfFloat<T> = 0> |
415 | Duration Milliseconds(T n) { |
416 | return n * Milliseconds(1); |
417 | } |
418 | template <typename T, time_internal::EnableIfFloat<T> = 0> |
419 | Duration Seconds(T n) { |
420 | if (n >= 0) { // Note: `NaN >= 0` is false. |
421 | if (n >= (std::numeric_limits<int64_t>::max)()) return InfiniteDuration(); |
422 | return time_internal::MakePosDoubleDuration(n); |
423 | } else { |
424 | if (std::isnan(n)) |
425 | return std::signbit(n) ? -InfiniteDuration() : InfiniteDuration(); |
426 | if (n <= (std::numeric_limits<int64_t>::min)()) return -InfiniteDuration(); |
427 | return -time_internal::MakePosDoubleDuration(-n); |
428 | } |
429 | } |
430 | template <typename T, time_internal::EnableIfFloat<T> = 0> |
431 | Duration Minutes(T n) { |
432 | return n * Minutes(1); |
433 | } |
434 | template <typename T, time_internal::EnableIfFloat<T> = 0> |
435 | Duration Hours(T n) { |
436 | return n * Hours(1); |
437 | } |
438 | |
439 | // ToInt64Nanoseconds() |
440 | // ToInt64Microseconds() |
441 | // ToInt64Milliseconds() |
442 | // ToInt64Seconds() |
443 | // ToInt64Minutes() |
444 | // ToInt64Hours() |
445 | // |
446 | // Helper functions that convert a Duration to an integral count of the |
447 | // indicated unit. These functions are shorthand for the `IDivDuration()` |
448 | // function above; see its documentation for details about overflow, etc. |
449 | // |
450 | // Example: |
451 | // |
452 | // absl::Duration d = absl::Milliseconds(1500); |
453 | // int64_t isec = absl::ToInt64Seconds(d); // isec == 1 |
454 | int64_t ToInt64Nanoseconds(Duration d); |
455 | int64_t ToInt64Microseconds(Duration d); |
456 | int64_t ToInt64Milliseconds(Duration d); |
457 | int64_t ToInt64Seconds(Duration d); |
458 | int64_t ToInt64Minutes(Duration d); |
459 | int64_t ToInt64Hours(Duration d); |
460 | |
461 | // ToDoubleNanoSeconds() |
462 | // ToDoubleMicroseconds() |
463 | // ToDoubleMilliseconds() |
464 | // ToDoubleSeconds() |
465 | // ToDoubleMinutes() |
466 | // ToDoubleHours() |
467 | // |
468 | // Helper functions that convert a Duration to a floating point count of the |
469 | // indicated unit. These functions are shorthand for the `FDivDuration()` |
470 | // function above; see its documentation for details about overflow, etc. |
471 | // |
472 | // Example: |
473 | // |
474 | // absl::Duration d = absl::Milliseconds(1500); |
475 | // double dsec = absl::ToDoubleSeconds(d); // dsec == 1.5 |
476 | double ToDoubleNanoseconds(Duration d); |
477 | double ToDoubleMicroseconds(Duration d); |
478 | double ToDoubleMilliseconds(Duration d); |
479 | double ToDoubleSeconds(Duration d); |
480 | double ToDoubleMinutes(Duration d); |
481 | double ToDoubleHours(Duration d); |
482 | |
483 | // FromChrono() |
484 | // |
485 | // Converts any of the pre-defined std::chrono durations to an absl::Duration. |
486 | // |
487 | // Example: |
488 | // |
489 | // std::chrono::milliseconds ms(123); |
490 | // absl::Duration d = absl::FromChrono(ms); |
491 | constexpr Duration FromChrono(const std::chrono::nanoseconds& d); |
492 | constexpr Duration FromChrono(const std::chrono::microseconds& d); |
493 | constexpr Duration FromChrono(const std::chrono::milliseconds& d); |
494 | constexpr Duration FromChrono(const std::chrono::seconds& d); |
495 | constexpr Duration FromChrono(const std::chrono::minutes& d); |
496 | constexpr Duration FromChrono(const std::chrono::hours& d); |
497 | |
498 | // ToChronoNanoseconds() |
499 | // ToChronoMicroseconds() |
500 | // ToChronoMilliseconds() |
501 | // ToChronoSeconds() |
502 | // ToChronoMinutes() |
503 | // ToChronoHours() |
504 | // |
505 | // Converts an absl::Duration to any of the pre-defined std::chrono durations. |
506 | // If overflow would occur, the returned value will saturate at the min/max |
507 | // chrono duration value instead. |
508 | // |
509 | // Example: |
510 | // |
511 | // absl::Duration d = absl::Microseconds(123); |
512 | // auto x = absl::ToChronoMicroseconds(d); |
513 | // auto y = absl::ToChronoNanoseconds(d); // x == y |
514 | // auto z = absl::ToChronoSeconds(absl::InfiniteDuration()); |
515 | // // z == std::chrono::seconds::max() |
516 | std::chrono::nanoseconds ToChronoNanoseconds(Duration d); |
517 | std::chrono::microseconds ToChronoMicroseconds(Duration d); |
518 | std::chrono::milliseconds ToChronoMilliseconds(Duration d); |
519 | std::chrono::seconds ToChronoSeconds(Duration d); |
520 | std::chrono::minutes ToChronoMinutes(Duration d); |
521 | std::chrono::hours ToChronoHours(Duration d); |
522 | |
523 | // FormatDuration() |
524 | // |
525 | // Returns a string representing the duration in the form "72h3m0.5s". |
526 | // Returns "inf" or "-inf" for +/- `InfiniteDuration()`. |
527 | std::string FormatDuration(Duration d); |
528 | |
529 | // Output stream operator. |
530 | inline std::ostream& operator<<(std::ostream& os, Duration d) { |
531 | return os << FormatDuration(d); |
532 | } |
533 | |
534 | // ParseDuration() |
535 | // |
536 | // Parses a duration string consisting of a possibly signed sequence of |
537 | // decimal numbers, each with an optional fractional part and a unit |
538 | // suffix. The valid suffixes are "ns", "us" "ms", "s", "m", and "h". |
539 | // Simple examples include "300ms", "-1.5h", and "2h45m". Parses "0" as |
540 | // `ZeroDuration()`. Parses "inf" and "-inf" as +/- `InfiniteDuration()`. |
541 | bool ParseDuration(const std::string& dur_string, Duration* d); |
542 | |
543 | // Support for flag values of type Duration. Duration flags must be specified |
544 | // in a format that is valid input for absl::ParseDuration(). |
545 | bool ParseFlag(const std::string& text, Duration* dst, std::string* error); |
546 | std::string UnparseFlag(Duration d); |
547 | |
548 | // Time |
549 | // |
550 | // An `absl::Time` represents a specific instant in time. Arithmetic operators |
551 | // are provided for naturally expressing time calculations. Instances are |
552 | // created using `absl::Now()` and the `absl::From*()` factory functions that |
553 | // accept the gamut of other time representations. Formatting and parsing |
554 | // functions are provided for conversion to and from strings. `absl::Time` |
555 | // should be passed by value rather than const reference. |
556 | // |
557 | // `absl::Time` assumes there are 60 seconds in a minute, which means the |
558 | // underlying time scales must be "smeared" to eliminate leap seconds. |
559 | // See https://developers.google.com/time/smear. |
560 | // |
561 | // Even though `absl::Time` supports a wide range of timestamps, exercise |
562 | // caution when using values in the distant past. `absl::Time` uses the |
563 | // Proleptic Gregorian calendar, which extends the Gregorian calendar backward |
564 | // to dates before its introduction in 1582. |
565 | // See https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar |
566 | // for more information. Use the ICU calendar classes to convert a date in |
567 | // some other calendar (http://userguide.icu-project.org/datetime/calendar). |
568 | // |
569 | // Similarly, standardized time zones are a reasonably recent innovation, with |
570 | // the Greenwich prime meridian being established in 1884. The TZ database |
571 | // itself does not profess accurate offsets for timestamps prior to 1970. The |
572 | // breakdown of future timestamps is subject to the whim of regional |
573 | // governments. |
574 | // |
575 | // The `absl::Time` class represents an instant in time as a count of clock |
576 | // ticks of some granularity (resolution) from some starting point (epoch). |
577 | // |
578 | // `absl::Time` uses a resolution that is high enough to avoid loss in |
579 | // precision, and a range that is wide enough to avoid overflow, when |
580 | // converting between tick counts in most Google time scales (i.e., resolution |
581 | // of at least one nanosecond, and range +/-100 billion years). Conversions |
582 | // between the time scales are performed by truncating (towards negative |
583 | // infinity) to the nearest representable point. |
584 | // |
585 | // Examples: |
586 | // |
587 | // absl::Time t1 = ...; |
588 | // absl::Time t2 = t1 + absl::Minutes(2); |
589 | // absl::Duration d = t2 - t1; // == absl::Minutes(2) |
590 | // |
591 | class Time { |
592 | public: |
593 | // Value semantics. |
594 | |
595 | // Returns the Unix epoch. However, those reading your code may not know |
596 | // or expect the Unix epoch as the default value, so make your code more |
597 | // readable by explicitly initializing all instances before use. |
598 | // |
599 | // Example: |
600 | // absl::Time t = absl::UnixEpoch(); |
601 | // absl::Time t = absl::Now(); |
602 | // absl::Time t = absl::TimeFromTimeval(tv); |
603 | // absl::Time t = absl::InfinitePast(); |
604 | constexpr Time() = default; |
605 | |
606 | // Copyable. |
607 | constexpr Time(const Time& t) = default; |
608 | Time& operator=(const Time& t) = default; |
609 | |
610 | // Assignment operators. |
611 | Time& operator+=(Duration d) { |
612 | rep_ += d; |
613 | return *this; |
614 | } |
615 | Time& operator-=(Duration d) { |
616 | rep_ -= d; |
617 | return *this; |
618 | } |
619 | |
620 | // Time::Breakdown |
621 | // |
622 | // The calendar and wall-clock (aka "civil time") components of an |
623 | // `absl::Time` in a certain `absl::TimeZone`. This struct is not |
624 | // intended to represent an instant in time. So, rather than passing |
625 | // a `Time::Breakdown` to a function, pass an `absl::Time` and an |
626 | // `absl::TimeZone`. |
627 | // |
628 | // Deprecated. Use `absl::TimeZone::CivilInfo`. |
629 | struct |
630 | Breakdown { |
631 | int64_t year; // year (e.g., 2013) |
632 | int month; // month of year [1:12] |
633 | int day; // day of month [1:31] |
634 | int hour; // hour of day [0:23] |
635 | int minute; // minute of hour [0:59] |
636 | int second; // second of minute [0:59] |
637 | Duration subsecond; // [Seconds(0):Seconds(1)) if finite |
638 | int weekday; // 1==Mon, ..., 7=Sun |
639 | int yearday; // day of year [1:366] |
640 | |
641 | // Note: The following fields exist for backward compatibility |
642 | // with older APIs. Accessing these fields directly is a sign of |
643 | // imprudent logic in the calling code. Modern time-related code |
644 | // should only access this data indirectly by way of FormatTime(). |
645 | // These fields are undefined for InfiniteFuture() and InfinitePast(). |
646 | int offset; // seconds east of UTC |
647 | bool is_dst; // is offset non-standard? |
648 | const char* zone_abbr; // time-zone abbreviation (e.g., "PST") |
649 | }; |
650 | |
651 | // Time::In() |
652 | // |
653 | // Returns the breakdown of this instant in the given TimeZone. |
654 | // |
655 | // Deprecated. Use `absl::TimeZone::At(Time)`. |
656 | Breakdown In(TimeZone tz) const; |
657 | |
658 | template <typename H> |
659 | friend H AbslHashValue(H h, Time t) { |
660 | return H::combine(std::move(h), t.rep_); |
661 | } |
662 | |
663 | private: |
664 | friend constexpr Time time_internal::FromUnixDuration(Duration d); |
665 | friend constexpr Duration time_internal::ToUnixDuration(Time t); |
666 | friend constexpr bool operator<(Time lhs, Time rhs); |
667 | friend constexpr bool operator==(Time lhs, Time rhs); |
668 | friend Duration operator-(Time lhs, Time rhs); |
669 | friend constexpr Time UniversalEpoch(); |
670 | friend constexpr Time InfiniteFuture(); |
671 | friend constexpr Time InfinitePast(); |
672 | constexpr explicit Time(Duration rep) : rep_(rep) {} |
673 | Duration rep_; |
674 | }; |
675 | |
676 | // Relational Operators |
677 | constexpr bool operator<(Time lhs, Time rhs) { return lhs.rep_ < rhs.rep_; } |
678 | constexpr bool operator>(Time lhs, Time rhs) { return rhs < lhs; } |
679 | constexpr bool operator>=(Time lhs, Time rhs) { return !(lhs < rhs); } |
680 | constexpr bool operator<=(Time lhs, Time rhs) { return !(rhs < lhs); } |
681 | constexpr bool operator==(Time lhs, Time rhs) { return lhs.rep_ == rhs.rep_; } |
682 | constexpr bool operator!=(Time lhs, Time rhs) { return !(lhs == rhs); } |
683 | |
684 | // Additive Operators |
685 | inline Time operator+(Time lhs, Duration rhs) { return lhs += rhs; } |
686 | inline Time operator+(Duration lhs, Time rhs) { return rhs += lhs; } |
687 | inline Time operator-(Time lhs, Duration rhs) { return lhs -= rhs; } |
688 | inline Duration operator-(Time lhs, Time rhs) { return lhs.rep_ - rhs.rep_; } |
689 | |
690 | // UnixEpoch() |
691 | // |
692 | // Returns the `absl::Time` representing "1970-01-01 00:00:00.0 +0000". |
693 | constexpr Time UnixEpoch() { return Time(); } |
694 | |
695 | // UniversalEpoch() |
696 | // |
697 | // Returns the `absl::Time` representing "0001-01-01 00:00:00.0 +0000", the |
698 | // epoch of the ICU Universal Time Scale. |
699 | constexpr Time UniversalEpoch() { |
700 | // 719162 is the number of days from 0001-01-01 to 1970-01-01, |
701 | // assuming the Gregorian calendar. |
702 | return Time(time_internal::MakeDuration(-24 * 719162 * int64_t{3600}, 0U)); |
703 | } |
704 | |
705 | // InfiniteFuture() |
706 | // |
707 | // Returns an `absl::Time` that is infinitely far in the future. |
708 | constexpr Time InfiniteFuture() { |
709 | return Time( |
710 | time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(), ~0U)); |
711 | } |
712 | |
713 | // InfinitePast() |
714 | // |
715 | // Returns an `absl::Time` that is infinitely far in the past. |
716 | constexpr Time InfinitePast() { |
717 | return Time( |
718 | time_internal::MakeDuration((std::numeric_limits<int64_t>::min)(), ~0U)); |
719 | } |
720 | |
721 | // FromUnixNanos() |
722 | // FromUnixMicros() |
723 | // FromUnixMillis() |
724 | // FromUnixSeconds() |
725 | // FromTimeT() |
726 | // FromUDate() |
727 | // FromUniversal() |
728 | // |
729 | // Creates an `absl::Time` from a variety of other representations. |
730 | constexpr Time FromUnixNanos(int64_t ns); |
731 | constexpr Time FromUnixMicros(int64_t us); |
732 | constexpr Time FromUnixMillis(int64_t ms); |
733 | constexpr Time FromUnixSeconds(int64_t s); |
734 | constexpr Time FromTimeT(time_t t); |
735 | Time FromUDate(double udate); |
736 | Time FromUniversal(int64_t universal); |
737 | |
738 | // ToUnixNanos() |
739 | // ToUnixMicros() |
740 | // ToUnixMillis() |
741 | // ToUnixSeconds() |
742 | // ToTimeT() |
743 | // ToUDate() |
744 | // ToUniversal() |
745 | // |
746 | // Converts an `absl::Time` to a variety of other representations. Note that |
747 | // these operations round down toward negative infinity where necessary to |
748 | // adjust to the resolution of the result type. Beware of possible time_t |
749 | // over/underflow in ToTime{T,val,spec}() on 32-bit platforms. |
750 | int64_t ToUnixNanos(Time t); |
751 | int64_t ToUnixMicros(Time t); |
752 | int64_t ToUnixMillis(Time t); |
753 | int64_t ToUnixSeconds(Time t); |
754 | time_t ToTimeT(Time t); |
755 | double ToUDate(Time t); |
756 | int64_t ToUniversal(Time t); |
757 | |
758 | // DurationFromTimespec() |
759 | // DurationFromTimeval() |
760 | // ToTimespec() |
761 | // ToTimeval() |
762 | // TimeFromTimespec() |
763 | // TimeFromTimeval() |
764 | // ToTimespec() |
765 | // ToTimeval() |
766 | // |
767 | // Some APIs use a timespec or a timeval as a Duration (e.g., nanosleep(2) |
768 | // and select(2)), while others use them as a Time (e.g. clock_gettime(2) |
769 | // and gettimeofday(2)), so conversion functions are provided for both cases. |
770 | // The "to timespec/val" direction is easily handled via overloading, but |
771 | // for "from timespec/val" the desired type is part of the function name. |
772 | Duration DurationFromTimespec(timespec ts); |
773 | Duration DurationFromTimeval(timeval tv); |
774 | timespec ToTimespec(Duration d); |
775 | timeval ToTimeval(Duration d); |
776 | Time TimeFromTimespec(timespec ts); |
777 | Time TimeFromTimeval(timeval tv); |
778 | timespec ToTimespec(Time t); |
779 | timeval ToTimeval(Time t); |
780 | |
781 | // FromChrono() |
782 | // |
783 | // Converts a std::chrono::system_clock::time_point to an absl::Time. |
784 | // |
785 | // Example: |
786 | // |
787 | // auto tp = std::chrono::system_clock::from_time_t(123); |
788 | // absl::Time t = absl::FromChrono(tp); |
789 | // // t == absl::FromTimeT(123) |
790 | Time FromChrono(const std::chrono::system_clock::time_point& tp); |
791 | |
792 | // ToChronoTime() |
793 | // |
794 | // Converts an absl::Time to a std::chrono::system_clock::time_point. If |
795 | // overflow would occur, the returned value will saturate at the min/max time |
796 | // point value instead. |
797 | // |
798 | // Example: |
799 | // |
800 | // absl::Time t = absl::FromTimeT(123); |
801 | // auto tp = absl::ToChronoTime(t); |
802 | // // tp == std::chrono::system_clock::from_time_t(123); |
803 | std::chrono::system_clock::time_point ToChronoTime(Time); |
804 | |
805 | // Support for flag values of type Time. Time flags must be specified in a |
806 | // format that matches absl::RFC3339_full. For example: |
807 | // |
808 | // --start_time=2016-01-02T03:04:05.678+08:00 |
809 | // |
810 | // Note: A UTC offset (or 'Z' indicating a zero-offset from UTC) is required. |
811 | // |
812 | // Additionally, if you'd like to specify a time as a count of |
813 | // seconds/milliseconds/etc from the Unix epoch, use an absl::Duration flag |
814 | // and add that duration to absl::UnixEpoch() to get an absl::Time. |
815 | bool ParseFlag(const std::string& text, Time* t, std::string* error); |
816 | std::string UnparseFlag(Time t); |
817 | |
818 | // TimeZone |
819 | // |
820 | // The `absl::TimeZone` is an opaque, small, value-type class representing a |
821 | // geo-political region within which particular rules are used for converting |
822 | // between absolute and civil times (see https://git.io/v59Ly). `absl::TimeZone` |
823 | // values are named using the TZ identifiers from the IANA Time Zone Database, |
824 | // such as "America/Los_Angeles" or "Australia/Sydney". `absl::TimeZone` values |
825 | // are created from factory functions such as `absl::LoadTimeZone()`. Note: |
826 | // strings like "PST" and "EDT" are not valid TZ identifiers. Prefer to pass by |
827 | // value rather than const reference. |
828 | // |
829 | // For more on the fundamental concepts of time zones, absolute times, and civil |
830 | // times, see https://github.com/google/cctz#fundamental-concepts |
831 | // |
832 | // Examples: |
833 | // |
834 | // absl::TimeZone utc = absl::UTCTimeZone(); |
835 | // absl::TimeZone pst = absl::FixedTimeZone(-8 * 60 * 60); |
836 | // absl::TimeZone loc = absl::LocalTimeZone(); |
837 | // absl::TimeZone lax; |
838 | // if (!absl::LoadTimeZone("America/Los_Angeles", &lax)) { |
839 | // // handle error case |
840 | // } |
841 | // |
842 | // See also: |
843 | // - https://github.com/google/cctz |
844 | // - https://www.iana.org/time-zones |
845 | // - https://en.wikipedia.org/wiki/Zoneinfo |
846 | class TimeZone { |
847 | public: |
848 | explicit TimeZone(time_internal::cctz::time_zone tz) : cz_(tz) {} |
849 | TimeZone() = default; // UTC, but prefer UTCTimeZone() to be explicit. |
850 | |
851 | // Copyable. |
852 | TimeZone(const TimeZone&) = default; |
853 | TimeZone& operator=(const TimeZone&) = default; |
854 | |
855 | explicit operator time_internal::cctz::time_zone() const { return cz_; } |
856 | |
857 | std::string name() const { return cz_.name(); } |
858 | |
859 | // TimeZone::CivilInfo |
860 | // |
861 | // Information about the civil time corresponding to an absolute time. |
862 | // This struct is not intended to represent an instant in time. So, rather |
863 | // than passing a `TimeZone::CivilInfo` to a function, pass an `absl::Time` |
864 | // and an `absl::TimeZone`. |
865 | struct CivilInfo { |
866 | CivilSecond cs; |
867 | Duration subsecond; |
868 | |
869 | // Note: The following fields exist for backward compatibility |
870 | // with older APIs. Accessing these fields directly is a sign of |
871 | // imprudent logic in the calling code. Modern time-related code |
872 | // should only access this data indirectly by way of FormatTime(). |
873 | // These fields are undefined for InfiniteFuture() and InfinitePast(). |
874 | int offset; // seconds east of UTC |
875 | bool is_dst; // is offset non-standard? |
876 | const char* zone_abbr; // time-zone abbreviation (e.g., "PST") |
877 | }; |
878 | |
879 | // TimeZone::At(Time) |
880 | // |
881 | // Returns the civil time for this TimeZone at a certain `absl::Time`. |
882 | // If the input time is infinite, the output civil second will be set to |
883 | // CivilSecond::max() or min(), and the subsecond will be infinite. |
884 | // |
885 | // Example: |
886 | // |
887 | // const auto epoch = lax.At(absl::UnixEpoch()); |
888 | // // epoch.cs == 1969-12-31 16:00:00 |
889 | // // epoch.subsecond == absl::ZeroDuration() |
890 | // // epoch.offset == -28800 |
891 | // // epoch.is_dst == false |
892 | // // epoch.abbr == "PST" |
893 | CivilInfo At(Time t) const; |
894 | |
895 | // TimeZone::TimeInfo |
896 | // |
897 | // Information about the absolute times corresponding to a civil time. |
898 | // (Subseconds must be handled separately.) |
899 | // |
900 | // It is possible for a caller to pass a civil-time value that does |
901 | // not represent an actual or unique instant in time (due to a shift |
902 | // in UTC offset in the TimeZone, which results in a discontinuity in |
903 | // the civil-time components). For example, a daylight-saving-time |
904 | // transition skips or repeats civil times---in the United States, |
905 | // March 13, 2011 02:15 never occurred, while November 6, 2011 01:15 |
906 | // occurred twice---so requests for such times are not well-defined. |
907 | // To account for these possibilities, `absl::TimeZone::TimeInfo` is |
908 | // richer than just a single `absl::Time`. |
909 | struct TimeInfo { |
910 | enum CivilKind { |
911 | UNIQUE, // the civil time was singular (pre == trans == post) |
912 | SKIPPED, // the civil time did not exist (pre >= trans > post) |
913 | REPEATED, // the civil time was ambiguous (pre < trans <= post) |
914 | } kind; |
915 | Time pre; // time calculated using the pre-transition offset |
916 | Time trans; // when the civil-time discontinuity occurred |
917 | Time post; // time calculated using the post-transition offset |
918 | }; |
919 | |
920 | // TimeZone::At(CivilSecond) |
921 | // |
922 | // Returns an `absl::TimeInfo` containing the absolute time(s) for this |
923 | // TimeZone at an `absl::CivilSecond`. When the civil time is skipped or |
924 | // repeated, returns times calculated using the pre-transition and post- |
925 | // transition UTC offsets, plus the transition time itself. |
926 | // |
927 | // Examples: |
928 | // |
929 | // // A unique civil time |
930 | // const auto jan01 = lax.At(absl::CivilSecond(2011, 1, 1, 0, 0, 0)); |
931 | // // jan01.kind == TimeZone::TimeInfo::UNIQUE |
932 | // // jan01.pre is 2011-01-01 00:00:00 -0800 |
933 | // // jan01.trans is 2011-01-01 00:00:00 -0800 |
934 | // // jan01.post is 2011-01-01 00:00:00 -0800 |
935 | // |
936 | // // A Spring DST transition, when there is a gap in civil time |
937 | // const auto mar13 = lax.At(absl::CivilSecond(2011, 3, 13, 2, 15, 0)); |
938 | // // mar13.kind == TimeZone::TimeInfo::SKIPPED |
939 | // // mar13.pre is 2011-03-13 03:15:00 -0700 |
940 | // // mar13.trans is 2011-03-13 03:00:00 -0700 |
941 | // // mar13.post is 2011-03-13 01:15:00 -0800 |
942 | // |
943 | // // A Fall DST transition, when civil times are repeated |
944 | // const auto nov06 = lax.At(absl::CivilSecond(2011, 11, 6, 1, 15, 0)); |
945 | // // nov06.kind == TimeZone::TimeInfo::REPEATED |
946 | // // nov06.pre is 2011-11-06 01:15:00 -0700 |
947 | // // nov06.trans is 2011-11-06 01:00:00 -0800 |
948 | // // nov06.post is 2011-11-06 01:15:00 -0800 |
949 | TimeInfo At(CivilSecond ct) const; |
950 | |
951 | // TimeZone::NextTransition() |
952 | // TimeZone::PrevTransition() |
953 | // |
954 | // Finds the time of the next/previous offset change in this time zone. |
955 | // |
956 | // By definition, `NextTransition(t, &trans)` returns false when `t` is |
957 | // `InfiniteFuture()`, and `PrevTransition(t, &trans)` returns false |
958 | // when `t` is `InfinitePast()`. If the zone has no transitions, the |
959 | // result will also be false no matter what the argument. |
960 | // |
961 | // Otherwise, when `t` is `InfinitePast()`, `NextTransition(t, &trans)` |
962 | // returns true and sets `trans` to the first recorded transition. Chains |
963 | // of calls to `NextTransition()/PrevTransition()` will eventually return |
964 | // false, but it is unspecified exactly when `NextTransition(t, &trans)` |
965 | // jumps to false, or what time is set by `PrevTransition(t, &trans)` for |
966 | // a very distant `t`. |
967 | // |
968 | // Note: Enumeration of time-zone transitions is for informational purposes |
969 | // only. Modern time-related code should not care about when offset changes |
970 | // occur. |
971 | // |
972 | // Example: |
973 | // absl::TimeZone nyc; |
974 | // if (!absl::LoadTimeZone("America/New_York", &nyc)) { ... } |
975 | // const auto now = absl::Now(); |
976 | // auto t = absl::InfinitePast(); |
977 | // absl::TimeZone::CivilTransition trans; |
978 | // while (t <= now && nyc.NextTransition(t, &trans)) { |
979 | // // transition: trans.from -> trans.to |
980 | // t = nyc.At(trans.to).trans; |
981 | // } |
982 | struct CivilTransition { |
983 | CivilSecond from; // the civil time we jump from |
984 | CivilSecond to; // the civil time we jump to |
985 | }; |
986 | bool NextTransition(Time t, CivilTransition* trans) const; |
987 | bool PrevTransition(Time t, CivilTransition* trans) const; |
988 | |
989 | template <typename H> |
990 | friend H AbslHashValue(H h, TimeZone tz) { |
991 | return H::combine(std::move(h), tz.cz_); |
992 | } |
993 | |
994 | private: |
995 | friend bool operator==(TimeZone a, TimeZone b) { return a.cz_ == b.cz_; } |
996 | friend bool operator!=(TimeZone a, TimeZone b) { return a.cz_ != b.cz_; } |
997 | friend std::ostream& operator<<(std::ostream& os, TimeZone tz) { |
998 | return os << tz.name(); |
999 | } |
1000 | |
1001 | time_internal::cctz::time_zone cz_; |
1002 | }; |
1003 | |
1004 | // LoadTimeZone() |
1005 | // |
1006 | // Loads the named zone. May perform I/O on the initial load of the named |
1007 | // zone. If the name is invalid, or some other kind of error occurs, returns |
1008 | // `false` and `*tz` is set to the UTC time zone. |
1009 | inline bool LoadTimeZone(const std::string& name, TimeZone* tz) { |
1010 | if (name == "localtime" ) { |
1011 | *tz = TimeZone(time_internal::cctz::local_time_zone()); |
1012 | return true; |
1013 | } |
1014 | time_internal::cctz::time_zone cz; |
1015 | const bool b = time_internal::cctz::load_time_zone(name, &cz); |
1016 | *tz = TimeZone(cz); |
1017 | return b; |
1018 | } |
1019 | |
1020 | // FixedTimeZone() |
1021 | // |
1022 | // Returns a TimeZone that is a fixed offset (seconds east) from UTC. |
1023 | // Note: If the absolute value of the offset is greater than 24 hours |
1024 | // you'll get UTC (i.e., no offset) instead. |
1025 | inline TimeZone FixedTimeZone(int seconds) { |
1026 | return TimeZone( |
1027 | time_internal::cctz::fixed_time_zone(std::chrono::seconds(seconds))); |
1028 | } |
1029 | |
1030 | // UTCTimeZone() |
1031 | // |
1032 | // Convenience method returning the UTC time zone. |
1033 | inline TimeZone UTCTimeZone() { |
1034 | return TimeZone(time_internal::cctz::utc_time_zone()); |
1035 | } |
1036 | |
1037 | // LocalTimeZone() |
1038 | // |
1039 | // Convenience method returning the local time zone, or UTC if there is |
1040 | // no configured local zone. Warning: Be wary of using LocalTimeZone(), |
1041 | // and particularly so in a server process, as the zone configured for the |
1042 | // local machine should be irrelevant. Prefer an explicit zone name. |
1043 | inline TimeZone LocalTimeZone() { |
1044 | return TimeZone(time_internal::cctz::local_time_zone()); |
1045 | } |
1046 | |
1047 | // ToCivilSecond() |
1048 | // ToCivilMinute() |
1049 | // ToCivilHour() |
1050 | // ToCivilDay() |
1051 | // ToCivilMonth() |
1052 | // ToCivilYear() |
1053 | // |
1054 | // Helpers for TimeZone::At(Time) to return particularly aligned civil times. |
1055 | // |
1056 | // Example: |
1057 | // |
1058 | // absl::Time t = ...; |
1059 | // absl::TimeZone tz = ...; |
1060 | // const auto cd = absl::ToCivilDay(t, tz); |
1061 | inline CivilSecond ToCivilSecond(Time t, TimeZone tz) { |
1062 | return tz.At(t).cs; // already a CivilSecond |
1063 | } |
1064 | inline CivilMinute ToCivilMinute(Time t, TimeZone tz) { |
1065 | return CivilMinute(tz.At(t).cs); |
1066 | } |
1067 | inline CivilHour ToCivilHour(Time t, TimeZone tz) { |
1068 | return CivilHour(tz.At(t).cs); |
1069 | } |
1070 | inline CivilDay ToCivilDay(Time t, TimeZone tz) { |
1071 | return CivilDay(tz.At(t).cs); |
1072 | } |
1073 | inline CivilMonth ToCivilMonth(Time t, TimeZone tz) { |
1074 | return CivilMonth(tz.At(t).cs); |
1075 | } |
1076 | inline CivilYear ToCivilYear(Time t, TimeZone tz) { |
1077 | return CivilYear(tz.At(t).cs); |
1078 | } |
1079 | |
1080 | // FromCivil() |
1081 | // |
1082 | // Helper for TimeZone::At(CivilSecond) that provides "order-preserving |
1083 | // semantics." If the civil time maps to a unique time, that time is |
1084 | // returned. If the civil time is repeated in the given time zone, the |
1085 | // time using the pre-transition offset is returned. Otherwise, the |
1086 | // civil time is skipped in the given time zone, and the transition time |
1087 | // is returned. This means that for any two civil times, ct1 and ct2, |
1088 | // (ct1 < ct2) => (FromCivil(ct1) <= FromCivil(ct2)), the equal case |
1089 | // being when two non-existent civil times map to the same transition time. |
1090 | // |
1091 | // Note: Accepts civil times of any alignment. |
1092 | inline Time FromCivil(CivilSecond ct, TimeZone tz) { |
1093 | const auto ti = tz.At(ct); |
1094 | if (ti.kind == TimeZone::TimeInfo::SKIPPED) return ti.trans; |
1095 | return ti.pre; |
1096 | } |
1097 | |
1098 | // TimeConversion |
1099 | // |
1100 | // An `absl::TimeConversion` represents the conversion of year, month, day, |
1101 | // hour, minute, and second values (i.e., a civil time), in a particular |
1102 | // `absl::TimeZone`, to a time instant (an absolute time), as returned by |
1103 | // `absl::ConvertDateTime()`. Lecacy version of `absl::TimeZone::TimeInfo`. |
1104 | // |
1105 | // Deprecated. Use `absl::TimeZone::TimeInfo`. |
1106 | struct |
1107 | TimeConversion { |
1108 | Time pre; // time calculated using the pre-transition offset |
1109 | Time trans; // when the civil-time discontinuity occurred |
1110 | Time post; // time calculated using the post-transition offset |
1111 | |
1112 | enum Kind { |
1113 | UNIQUE, // the civil time was singular (pre == trans == post) |
1114 | SKIPPED, // the civil time did not exist |
1115 | REPEATED, // the civil time was ambiguous |
1116 | }; |
1117 | Kind kind; |
1118 | |
1119 | bool normalized; // input values were outside their valid ranges |
1120 | }; |
1121 | |
1122 | // ConvertDateTime() |
1123 | // |
1124 | // Legacy version of `absl::TimeZone::At(absl::CivilSecond)` that takes |
1125 | // the civil time as six, separate values (YMDHMS). |
1126 | // |
1127 | // The input month, day, hour, minute, and second values can be outside |
1128 | // of their valid ranges, in which case they will be "normalized" during |
1129 | // the conversion. |
1130 | // |
1131 | // Example: |
1132 | // |
1133 | // // "October 32" normalizes to "November 1". |
1134 | // absl::TimeConversion tc = |
1135 | // absl::ConvertDateTime(2013, 10, 32, 8, 30, 0, lax); |
1136 | // // tc.kind == TimeConversion::UNIQUE && tc.normalized == true |
1137 | // // absl::ToCivilDay(tc.pre, tz).month() == 11 |
1138 | // // absl::ToCivilDay(tc.pre, tz).day() == 1 |
1139 | // |
1140 | // Deprecated. Use `absl::TimeZone::At(CivilSecond)`. |
1141 | TimeConversion ConvertDateTime(int64_t year, int mon, int day, int hour, |
1142 | int min, int sec, TimeZone tz); |
1143 | |
1144 | // FromDateTime() |
1145 | // |
1146 | // A convenience wrapper for `absl::ConvertDateTime()` that simply returns |
1147 | // the "pre" `absl::Time`. That is, the unique result, or the instant that |
1148 | // is correct using the pre-transition offset (as if the transition never |
1149 | // happened). |
1150 | // |
1151 | // Example: |
1152 | // |
1153 | // absl::Time t = absl::FromDateTime(2017, 9, 26, 9, 30, 0, lax); |
1154 | // // t = 2017-09-26 09:30:00 -0700 |
1155 | // |
1156 | // Deprecated. Use `absl::FromCivil(CivilSecond, TimeZone)`. Note that the |
1157 | // behavior of `FromCivil()` differs from `FromDateTime()` for skipped civil |
1158 | // times. If you care about that see `absl::TimeZone::At(absl::CivilSecond)`. |
1159 | inline Time FromDateTime(int64_t year, int mon, int day, int hour, |
1160 | int min, int sec, TimeZone tz) { |
1161 | return ConvertDateTime(year, mon, day, hour, min, sec, tz).pre; |
1162 | } |
1163 | |
1164 | // FromTM() |
1165 | // |
1166 | // Converts the `tm_year`, `tm_mon`, `tm_mday`, `tm_hour`, `tm_min`, and |
1167 | // `tm_sec` fields to an `absl::Time` using the given time zone. See ctime(3) |
1168 | // for a description of the expected values of the tm fields. If the indicated |
1169 | // time instant is not unique (see `absl::TimeZone::At(absl::CivilSecond)` |
1170 | // above), the `tm_isdst` field is consulted to select the desired instant |
1171 | // (`tm_isdst` > 0 means DST, `tm_isdst` == 0 means no DST, `tm_isdst` < 0 |
1172 | // means use the post-transition offset). |
1173 | Time FromTM(const struct tm& tm, TimeZone tz); |
1174 | |
1175 | // ToTM() |
1176 | // |
1177 | // Converts the given `absl::Time` to a struct tm using the given time zone. |
1178 | // See ctime(3) for a description of the values of the tm fields. |
1179 | struct tm ToTM(Time t, TimeZone tz); |
1180 | |
1181 | // RFC3339_full |
1182 | // RFC3339_sec |
1183 | // |
1184 | // FormatTime()/ParseTime() format specifiers for RFC3339 date/time strings, |
1185 | // with trailing zeros trimmed or with fractional seconds omitted altogether. |
1186 | // |
1187 | // Note that RFC3339_sec[] matches an ISO 8601 extended format for date and |
1188 | // time with UTC offset. Also note the use of "%Y": RFC3339 mandates that |
1189 | // years have exactly four digits, but we allow them to take their natural |
1190 | // width. |
1191 | extern const char RFC3339_full[]; // %Y-%m-%dT%H:%M:%E*S%Ez |
1192 | extern const char RFC3339_sec[]; // %Y-%m-%dT%H:%M:%S%Ez |
1193 | |
1194 | // RFC1123_full |
1195 | // RFC1123_no_wday |
1196 | // |
1197 | // FormatTime()/ParseTime() format specifiers for RFC1123 date/time strings. |
1198 | extern const char RFC1123_full[]; // %a, %d %b %E4Y %H:%M:%S %z |
1199 | extern const char RFC1123_no_wday[]; // %d %b %E4Y %H:%M:%S %z |
1200 | |
1201 | // FormatTime() |
1202 | // |
1203 | // Formats the given `absl::Time` in the `absl::TimeZone` according to the |
1204 | // provided format string. Uses strftime()-like formatting options, with |
1205 | // the following extensions: |
1206 | // |
1207 | // - %Ez - RFC3339-compatible numeric UTC offset (+hh:mm or -hh:mm) |
1208 | // - %E*z - Full-resolution numeric UTC offset (+hh:mm:ss or -hh:mm:ss) |
1209 | // - %E#S - Seconds with # digits of fractional precision |
1210 | // - %E*S - Seconds with full fractional precision (a literal '*') |
1211 | // - %E#f - Fractional seconds with # digits of precision |
1212 | // - %E*f - Fractional seconds with full precision (a literal '*') |
1213 | // - %E4Y - Four-character years (-999 ... -001, 0000, 0001 ... 9999) |
1214 | // |
1215 | // Note that %E0S behaves like %S, and %E0f produces no characters. In |
1216 | // contrast %E*f always produces at least one digit, which may be '0'. |
1217 | // |
1218 | // Note that %Y produces as many characters as it takes to fully render the |
1219 | // year. A year outside of [-999:9999] when formatted with %E4Y will produce |
1220 | // more than four characters, just like %Y. |
1221 | // |
1222 | // We recommend that format strings include the UTC offset (%z, %Ez, or %E*z) |
1223 | // so that the result uniquely identifies a time instant. |
1224 | // |
1225 | // Example: |
1226 | // |
1227 | // absl::CivilSecond cs(2013, 1, 2, 3, 4, 5); |
1228 | // absl::Time t = absl::FromCivil(cs, lax); |
1229 | // std::string f = absl::FormatTime("%H:%M:%S", t, lax); // "03:04:05" |
1230 | // f = absl::FormatTime("%H:%M:%E3S", t, lax); // "03:04:05.000" |
1231 | // |
1232 | // Note: If the given `absl::Time` is `absl::InfiniteFuture()`, the returned |
1233 | // string will be exactly "infinite-future". If the given `absl::Time` is |
1234 | // `absl::InfinitePast()`, the returned string will be exactly "infinite-past". |
1235 | // In both cases the given format string and `absl::TimeZone` are ignored. |
1236 | // |
1237 | std::string FormatTime(const std::string& format, Time t, TimeZone tz); |
1238 | |
1239 | // Convenience functions that format the given time using the RFC3339_full |
1240 | // format. The first overload uses the provided TimeZone, while the second |
1241 | // uses LocalTimeZone(). |
1242 | std::string FormatTime(Time t, TimeZone tz); |
1243 | std::string FormatTime(Time t); |
1244 | |
1245 | // Output stream operator. |
1246 | inline std::ostream& operator<<(std::ostream& os, Time t) { |
1247 | return os << FormatTime(t); |
1248 | } |
1249 | |
1250 | // ParseTime() |
1251 | // |
1252 | // Parses an input string according to the provided format string and |
1253 | // returns the corresponding `absl::Time`. Uses strftime()-like formatting |
1254 | // options, with the same extensions as FormatTime(), but with the |
1255 | // exceptions that %E#S is interpreted as %E*S, and %E#f as %E*f. %Ez |
1256 | // and %E*z also accept the same inputs. |
1257 | // |
1258 | // %Y consumes as many numeric characters as it can, so the matching data |
1259 | // should always be terminated with a non-numeric. %E4Y always consumes |
1260 | // exactly four characters, including any sign. |
1261 | // |
1262 | // Unspecified fields are taken from the default date and time of ... |
1263 | // |
1264 | // "1970-01-01 00:00:00.0 +0000" |
1265 | // |
1266 | // For example, parsing a string of "15:45" (%H:%M) will return an absl::Time |
1267 | // that represents "1970-01-01 15:45:00.0 +0000". |
1268 | // |
1269 | // Note that since ParseTime() returns time instants, it makes the most sense |
1270 | // to parse fully-specified date/time strings that include a UTC offset (%z, |
1271 | // %Ez, or %E*z). |
1272 | // |
1273 | // Note also that `absl::ParseTime()` only heeds the fields year, month, day, |
1274 | // hour, minute, (fractional) second, and UTC offset. Other fields, like |
1275 | // weekday (%a or %A), while parsed for syntactic validity, are ignored |
1276 | // in the conversion. |
1277 | // |
1278 | // Date and time fields that are out-of-range will be treated as errors |
1279 | // rather than normalizing them like `absl::CivilSecond` does. For example, |
1280 | // it is an error to parse the date "Oct 32, 2013" because 32 is out of range. |
1281 | // |
1282 | // A leap second of ":60" is normalized to ":00" of the following minute |
1283 | // with fractional seconds discarded. The following table shows how the |
1284 | // given seconds and subseconds will be parsed: |
1285 | // |
1286 | // "59.x" -> 59.x // exact |
1287 | // "60.x" -> 00.0 // normalized |
1288 | // "00.x" -> 00.x // exact |
1289 | // |
1290 | // Errors are indicated by returning false and assigning an error message |
1291 | // to the "err" out param if it is non-null. |
1292 | // |
1293 | // Note: If the input string is exactly "infinite-future", the returned |
1294 | // `absl::Time` will be `absl::InfiniteFuture()` and `true` will be returned. |
1295 | // If the input string is "infinite-past", the returned `absl::Time` will be |
1296 | // `absl::InfinitePast()` and `true` will be returned. |
1297 | // |
1298 | bool ParseTime(const std::string& format, const std::string& input, Time* time, |
1299 | std::string* err); |
1300 | |
1301 | // Like ParseTime() above, but if the format string does not contain a UTC |
1302 | // offset specification (%z/%Ez/%E*z) then the input is interpreted in the |
1303 | // given TimeZone. This means that the input, by itself, does not identify a |
1304 | // unique instant. Being time-zone dependent, it also admits the possibility |
1305 | // of ambiguity or non-existence, in which case the "pre" time (as defined |
1306 | // by TimeZone::TimeInfo) is returned. For these reasons we recommend that |
1307 | // all date/time strings include a UTC offset so they're context independent. |
1308 | bool ParseTime(const std::string& format, const std::string& input, TimeZone tz, |
1309 | Time* time, std::string* err); |
1310 | |
1311 | // ============================================================================ |
1312 | // Implementation Details Follow |
1313 | // ============================================================================ |
1314 | |
1315 | namespace time_internal { |
1316 | |
1317 | // Creates a Duration with a given representation. |
1318 | // REQUIRES: hi,lo is a valid representation of a Duration as specified |
1319 | // in time/duration.cc. |
1320 | constexpr Duration MakeDuration(int64_t hi, uint32_t lo = 0) { |
1321 | return Duration(hi, lo); |
1322 | } |
1323 | |
1324 | constexpr Duration MakeDuration(int64_t hi, int64_t lo) { |
1325 | return MakeDuration(hi, static_cast<uint32_t>(lo)); |
1326 | } |
1327 | |
1328 | // Make a Duration value from a floating-point number, as long as that number |
1329 | // is in the range [ 0 .. numeric_limits<int64_t>::max ), that is, as long as |
1330 | // it's positive and can be converted to int64_t without risk of UB. |
1331 | inline Duration MakePosDoubleDuration(double n) { |
1332 | const int64_t int_secs = static_cast<int64_t>(n); |
1333 | const uint32_t ticks = |
1334 | static_cast<uint32_t>((n - int_secs) * kTicksPerSecond + 0.5); |
1335 | return ticks < kTicksPerSecond |
1336 | ? MakeDuration(int_secs, ticks) |
1337 | : MakeDuration(int_secs + 1, ticks - kTicksPerSecond); |
1338 | } |
1339 | |
1340 | // Creates a normalized Duration from an almost-normalized (sec,ticks) |
1341 | // pair. sec may be positive or negative. ticks must be in the range |
1342 | // -kTicksPerSecond < *ticks < kTicksPerSecond. If ticks is negative it |
1343 | // will be normalized to a positive value in the resulting Duration. |
1344 | constexpr Duration MakeNormalizedDuration(int64_t sec, int64_t ticks) { |
1345 | return (ticks < 0) ? MakeDuration(sec - 1, ticks + kTicksPerSecond) |
1346 | : MakeDuration(sec, ticks); |
1347 | } |
1348 | |
1349 | // Provide access to the Duration representation. |
1350 | constexpr int64_t GetRepHi(Duration d) { return d.rep_hi_; } |
1351 | constexpr uint32_t GetRepLo(Duration d) { return d.rep_lo_; } |
1352 | |
1353 | // Returns true iff d is positive or negative infinity. |
1354 | constexpr bool IsInfiniteDuration(Duration d) { return GetRepLo(d) == ~0U; } |
1355 | |
1356 | // Returns an infinite Duration with the opposite sign. |
1357 | // REQUIRES: IsInfiniteDuration(d) |
1358 | constexpr Duration OppositeInfinity(Duration d) { |
1359 | return GetRepHi(d) < 0 |
1360 | ? MakeDuration((std::numeric_limits<int64_t>::max)(), ~0U) |
1361 | : MakeDuration((std::numeric_limits<int64_t>::min)(), ~0U); |
1362 | } |
1363 | |
1364 | // Returns (-n)-1 (equivalently -(n+1)) without avoidable overflow. |
1365 | constexpr int64_t NegateAndSubtractOne(int64_t n) { |
1366 | // Note: Good compilers will optimize this expression to ~n when using |
1367 | // a two's-complement representation (which is required for int64_t). |
1368 | return (n < 0) ? -(n + 1) : (-n) - 1; |
1369 | } |
1370 | |
1371 | // Map between a Time and a Duration since the Unix epoch. Note that these |
1372 | // functions depend on the above mentioned choice of the Unix epoch for the |
1373 | // Time representation (and both need to be Time friends). Without this |
1374 | // knowledge, we would need to add-in/subtract-out UnixEpoch() respectively. |
1375 | constexpr Time FromUnixDuration(Duration d) { return Time(d); } |
1376 | constexpr Duration ToUnixDuration(Time t) { return t.rep_; } |
1377 | |
1378 | template <std::intmax_t N> |
1379 | constexpr Duration FromInt64(int64_t v, std::ratio<1, N>) { |
1380 | static_assert(0 < N && N <= 1000 * 1000 * 1000, "Unsupported ratio" ); |
1381 | // Subsecond ratios cannot overflow. |
1382 | return MakeNormalizedDuration( |
1383 | v / N, v % N * kTicksPerNanosecond * 1000 * 1000 * 1000 / N); |
1384 | } |
1385 | constexpr Duration FromInt64(int64_t v, std::ratio<60>) { |
1386 | return (v <= (std::numeric_limits<int64_t>::max)() / 60 && |
1387 | v >= (std::numeric_limits<int64_t>::min)() / 60) |
1388 | ? MakeDuration(v * 60) |
1389 | : v > 0 ? InfiniteDuration() : -InfiniteDuration(); |
1390 | } |
1391 | constexpr Duration FromInt64(int64_t v, std::ratio<3600>) { |
1392 | return (v <= (std::numeric_limits<int64_t>::max)() / 3600 && |
1393 | v >= (std::numeric_limits<int64_t>::min)() / 3600) |
1394 | ? MakeDuration(v * 3600) |
1395 | : v > 0 ? InfiniteDuration() : -InfiniteDuration(); |
1396 | } |
1397 | |
1398 | // IsValidRep64<T>(0) is true if the expression `int64_t{std::declval<T>()}` is |
1399 | // valid. That is, if a T can be assigned to an int64_t without narrowing. |
1400 | template <typename T> |
1401 | constexpr auto IsValidRep64(int) |
1402 | -> decltype(int64_t{std::declval<T>()}, bool()) { |
1403 | return true; |
1404 | } |
1405 | template <typename T> |
1406 | constexpr auto IsValidRep64(char) -> bool { |
1407 | return false; |
1408 | } |
1409 | |
1410 | // Converts a std::chrono::duration to an absl::Duration. |
1411 | template <typename Rep, typename Period> |
1412 | constexpr Duration FromChrono(const std::chrono::duration<Rep, Period>& d) { |
1413 | static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid" ); |
1414 | return FromInt64(int64_t{d.count()}, Period{}); |
1415 | } |
1416 | |
1417 | template <typename Ratio> |
1418 | int64_t ToInt64(Duration d, Ratio) { |
1419 | // Note: This may be used on MSVC, which may have a system_clock period of |
1420 | // std::ratio<1, 10 * 1000 * 1000> |
1421 | return ToInt64Seconds(d * Ratio::den / Ratio::num); |
1422 | } |
1423 | // Fastpath implementations for the 6 common duration units. |
1424 | inline int64_t ToInt64(Duration d, std::nano) { |
1425 | return ToInt64Nanoseconds(d); |
1426 | } |
1427 | inline int64_t ToInt64(Duration d, std::micro) { |
1428 | return ToInt64Microseconds(d); |
1429 | } |
1430 | inline int64_t ToInt64(Duration d, std::milli) { |
1431 | return ToInt64Milliseconds(d); |
1432 | } |
1433 | inline int64_t ToInt64(Duration d, std::ratio<1>) { |
1434 | return ToInt64Seconds(d); |
1435 | } |
1436 | inline int64_t ToInt64(Duration d, std::ratio<60>) { |
1437 | return ToInt64Minutes(d); |
1438 | } |
1439 | inline int64_t ToInt64(Duration d, std::ratio<3600>) { |
1440 | return ToInt64Hours(d); |
1441 | } |
1442 | |
1443 | // Converts an absl::Duration to a chrono duration of type T. |
1444 | template <typename T> |
1445 | T ToChronoDuration(Duration d) { |
1446 | using Rep = typename T::rep; |
1447 | using Period = typename T::period; |
1448 | static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid" ); |
1449 | if (time_internal::IsInfiniteDuration(d)) |
1450 | return d < ZeroDuration() ? (T::min)() : (T::max)(); |
1451 | const auto v = ToInt64(d, Period{}); |
1452 | if (v > (std::numeric_limits<Rep>::max)()) return (T::max)(); |
1453 | if (v < (std::numeric_limits<Rep>::min)()) return (T::min)(); |
1454 | return T{v}; |
1455 | } |
1456 | |
1457 | } // namespace time_internal |
1458 | |
1459 | constexpr Duration Nanoseconds(int64_t n) { |
1460 | return time_internal::FromInt64(n, std::nano{}); |
1461 | } |
1462 | constexpr Duration Microseconds(int64_t n) { |
1463 | return time_internal::FromInt64(n, std::micro{}); |
1464 | } |
1465 | constexpr Duration Milliseconds(int64_t n) { |
1466 | return time_internal::FromInt64(n, std::milli{}); |
1467 | } |
1468 | constexpr Duration Seconds(int64_t n) { |
1469 | return time_internal::FromInt64(n, std::ratio<1>{}); |
1470 | } |
1471 | constexpr Duration Minutes(int64_t n) { |
1472 | return time_internal::FromInt64(n, std::ratio<60>{}); |
1473 | } |
1474 | constexpr Duration Hours(int64_t n) { |
1475 | return time_internal::FromInt64(n, std::ratio<3600>{}); |
1476 | } |
1477 | |
1478 | constexpr bool operator<(Duration lhs, Duration rhs) { |
1479 | return time_internal::GetRepHi(lhs) != time_internal::GetRepHi(rhs) |
1480 | ? time_internal::GetRepHi(lhs) < time_internal::GetRepHi(rhs) |
1481 | : time_internal::GetRepHi(lhs) == |
1482 | (std::numeric_limits<int64_t>::min)() |
1483 | ? time_internal::GetRepLo(lhs) + 1 < |
1484 | time_internal::GetRepLo(rhs) + 1 |
1485 | : time_internal::GetRepLo(lhs) < |
1486 | time_internal::GetRepLo(rhs); |
1487 | } |
1488 | |
1489 | constexpr bool operator==(Duration lhs, Duration rhs) { |
1490 | return time_internal::GetRepHi(lhs) == time_internal::GetRepHi(rhs) && |
1491 | time_internal::GetRepLo(lhs) == time_internal::GetRepLo(rhs); |
1492 | } |
1493 | |
1494 | constexpr Duration operator-(Duration d) { |
1495 | // This is a little interesting because of the special cases. |
1496 | // |
1497 | // If rep_lo_ is zero, we have it easy; it's safe to negate rep_hi_, we're |
1498 | // dealing with an integral number of seconds, and the only special case is |
1499 | // the maximum negative finite duration, which can't be negated. |
1500 | // |
1501 | // Infinities stay infinite, and just change direction. |
1502 | // |
1503 | // Finally we're in the case where rep_lo_ is non-zero, and we can borrow |
1504 | // a second's worth of ticks and avoid overflow (as negating int64_t-min + 1 |
1505 | // is safe). |
1506 | return time_internal::GetRepLo(d) == 0 |
1507 | ? time_internal::GetRepHi(d) == |
1508 | (std::numeric_limits<int64_t>::min)() |
1509 | ? InfiniteDuration() |
1510 | : time_internal::MakeDuration(-time_internal::GetRepHi(d)) |
1511 | : time_internal::IsInfiniteDuration(d) |
1512 | ? time_internal::OppositeInfinity(d) |
1513 | : time_internal::MakeDuration( |
1514 | time_internal::NegateAndSubtractOne( |
1515 | time_internal::GetRepHi(d)), |
1516 | time_internal::kTicksPerSecond - |
1517 | time_internal::GetRepLo(d)); |
1518 | } |
1519 | |
1520 | constexpr Duration InfiniteDuration() { |
1521 | return time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(), |
1522 | ~0U); |
1523 | } |
1524 | |
1525 | constexpr Duration FromChrono(const std::chrono::nanoseconds& d) { |
1526 | return time_internal::FromChrono(d); |
1527 | } |
1528 | constexpr Duration FromChrono(const std::chrono::microseconds& d) { |
1529 | return time_internal::FromChrono(d); |
1530 | } |
1531 | constexpr Duration FromChrono(const std::chrono::milliseconds& d) { |
1532 | return time_internal::FromChrono(d); |
1533 | } |
1534 | constexpr Duration FromChrono(const std::chrono::seconds& d) { |
1535 | return time_internal::FromChrono(d); |
1536 | } |
1537 | constexpr Duration FromChrono(const std::chrono::minutes& d) { |
1538 | return time_internal::FromChrono(d); |
1539 | } |
1540 | constexpr Duration FromChrono(const std::chrono::hours& d) { |
1541 | return time_internal::FromChrono(d); |
1542 | } |
1543 | |
1544 | constexpr Time FromUnixNanos(int64_t ns) { |
1545 | return time_internal::FromUnixDuration(Nanoseconds(ns)); |
1546 | } |
1547 | |
1548 | constexpr Time FromUnixMicros(int64_t us) { |
1549 | return time_internal::FromUnixDuration(Microseconds(us)); |
1550 | } |
1551 | |
1552 | constexpr Time FromUnixMillis(int64_t ms) { |
1553 | return time_internal::FromUnixDuration(Milliseconds(ms)); |
1554 | } |
1555 | |
1556 | constexpr Time FromUnixSeconds(int64_t s) { |
1557 | return time_internal::FromUnixDuration(Seconds(s)); |
1558 | } |
1559 | |
1560 | constexpr Time FromTimeT(time_t t) { |
1561 | return time_internal::FromUnixDuration(Seconds(t)); |
1562 | } |
1563 | |
1564 | } // namespace absl |
1565 | |
1566 | #endif // ABSL_TIME_TIME_H_ |
1567 | |