1 | // Copyright 2005 Google Inc. All Rights Reserved. |
2 | |
3 | #ifndef UTIL_GEOMETRY_S1ANGLE_H_ |
4 | #define UTIL_GEOMETRY_S1ANGLE_H_ |
5 | |
6 | #include <iosfwd> |
7 | using std::ostream; |
8 | // to forward declare ostream |
9 | #include <math.h> |
10 | #include "base/basictypes.h" |
11 | #include "util/math/mathutil.h" |
12 | #include "s2.h" |
13 | |
14 | class S2LatLng; |
15 | |
16 | // This class represents a one-dimensional angle (as opposed to a |
17 | // two-dimensional solid angle). It has methods for converting angles to |
18 | // or from radians, degrees, and the E5/E6/E7 representations (i.e. degrees |
19 | // multiplied by 1e5/1e6/1e7 and rounded to the nearest integer). |
20 | // |
21 | // This class has built-in support for the E5, E6, and E7 |
22 | // representations. An E5 is the measure of an angle in degrees, |
23 | // multiplied by 10**5. |
24 | // |
25 | // This class is intended to be copied by value as desired. It uses |
26 | // the default copy constructor and assignment operator. |
27 | class S1Angle { |
28 | public: |
29 | // These methods construct S1Angle objects from their measure in radians |
30 | // or degrees. |
31 | inline static S1Angle Radians(double radians); |
32 | inline static S1Angle Degrees(double degrees); |
33 | inline static S1Angle E5(int32 e5); |
34 | inline static S1Angle E6(int32 e6); |
35 | inline static S1Angle E7(int32 e7); |
36 | |
37 | // Convenience functions -- to use when args have been fixed32s in protos. |
38 | // |
39 | // The arguments are static_cast into int32, so very large unsigned values |
40 | // are treated as negative numbers. |
41 | inline static S1Angle UnsignedE6(uint32 e6); |
42 | inline static S1Angle UnsignedE7(uint32 e7); |
43 | |
44 | // The default constructor yields a zero angle. This is useful for STL |
45 | // containers and class methods with output arguments. |
46 | inline S1Angle() : radians_(0) {} |
47 | |
48 | // Return the angle between two points, which is also equal to the distance |
49 | // between these points on the unit sphere. The points do not need to be |
50 | // normalized. |
51 | S1Angle(S2Point const& x, S2Point const& y); |
52 | |
53 | // Like the constructor above, but return the angle (i.e., distance) |
54 | // between two S2LatLng points. |
55 | S1Angle(S2LatLng const& x, S2LatLng const& y); |
56 | |
57 | double radians() const { return radians_; } |
58 | double degrees() const { return radians_ * (180 / M_PI); } |
59 | |
60 | int32 e5() const { return MathUtil::FastIntRound(degrees() * 1e5); } |
61 | int32 e6() const { return MathUtil::FastIntRound(degrees() * 1e6); } |
62 | int32 e7() const { return MathUtil::FastIntRound(degrees() * 1e7); } |
63 | |
64 | // Return the absolute value of an angle. |
65 | S1Angle abs() const { return S1Angle(fabs(radians_)); } |
66 | |
67 | // Comparison operators. |
68 | friend inline bool operator==(S1Angle const& x, S1Angle const& y); |
69 | friend inline bool operator!=(S1Angle const& x, S1Angle const& y); |
70 | friend inline bool operator<(S1Angle const& x, S1Angle const& y); |
71 | friend inline bool operator>(S1Angle const& x, S1Angle const& y); |
72 | friend inline bool operator<=(S1Angle const& x, S1Angle const& y); |
73 | friend inline bool operator>=(S1Angle const& x, S1Angle const& y); |
74 | |
75 | // Simple arithmetic operators for manipulating S1Angles. |
76 | friend inline S1Angle operator-(S1Angle const& a); |
77 | friend inline S1Angle operator+(S1Angle const& a, S1Angle const& b); |
78 | friend inline S1Angle operator-(S1Angle const& a, S1Angle const& b); |
79 | friend inline S1Angle operator*(double m, S1Angle const& a); |
80 | friend inline S1Angle operator*(S1Angle const& a, double m); |
81 | friend inline S1Angle operator/(S1Angle const& a, double m); |
82 | friend inline double operator/(S1Angle const& a, S1Angle const& b); |
83 | inline S1Angle& operator+=(S1Angle const& a); |
84 | inline S1Angle& operator-=(S1Angle const& a); |
85 | inline S1Angle& operator*=(double m); |
86 | inline S1Angle& operator/=(double m); |
87 | |
88 | // Return the angle normalized to the range (-180, 180] degrees. |
89 | S1Angle Normalized() const; |
90 | |
91 | // Normalize this angle to the range (-180, 180] degrees. |
92 | void Normalize(); |
93 | |
94 | private: |
95 | explicit S1Angle(double radians) : radians_(radians) {} |
96 | double radians_; |
97 | }; |
98 | DECLARE_POD(S1Angle); |
99 | |
100 | inline bool operator==(S1Angle const& x, S1Angle const& y) { |
101 | return x.radians() == y.radians(); |
102 | } |
103 | |
104 | inline bool operator!=(S1Angle const& x, S1Angle const& y) { |
105 | return x.radians() != y.radians(); |
106 | } |
107 | |
108 | inline bool operator<(S1Angle const& x, S1Angle const& y) { |
109 | return x.radians() < y.radians(); |
110 | } |
111 | |
112 | inline bool operator>(S1Angle const& x, S1Angle const& y) { |
113 | return x.radians() > y.radians(); |
114 | } |
115 | |
116 | inline bool operator<=(S1Angle const& x, S1Angle const& y) { |
117 | return x.radians() <= y.radians(); |
118 | } |
119 | |
120 | inline bool operator>=(S1Angle const& x, S1Angle const& y) { |
121 | return x.radians() >= y.radians(); |
122 | } |
123 | |
124 | inline S1Angle operator-(S1Angle const& a) { |
125 | return S1Angle::Radians(-a.radians()); |
126 | } |
127 | |
128 | inline S1Angle operator+(S1Angle const& a, S1Angle const& b) { |
129 | return S1Angle::Radians(a.radians() + b.radians()); |
130 | } |
131 | |
132 | inline S1Angle operator-(S1Angle const& a, S1Angle const& b) { |
133 | return S1Angle::Radians(a.radians() - b.radians()); |
134 | } |
135 | |
136 | inline S1Angle operator*(double m, S1Angle const& a) { |
137 | return S1Angle::Radians(m * a.radians()); |
138 | } |
139 | |
140 | inline S1Angle operator*(S1Angle const& a, double m) { |
141 | return S1Angle::Radians(m * a.radians()); |
142 | } |
143 | |
144 | inline S1Angle operator/(S1Angle const& a, double m) { |
145 | return S1Angle::Radians(a.radians() / m); |
146 | } |
147 | |
148 | inline double operator/(S1Angle const& a, S1Angle const& b) { |
149 | return a.radians() / b.radians(); |
150 | } |
151 | |
152 | inline S1Angle& S1Angle::operator+=(S1Angle const& a) { |
153 | radians_ += a.radians(); |
154 | return *this; |
155 | } |
156 | |
157 | inline S1Angle& S1Angle::operator-=(S1Angle const& a) { |
158 | radians_ -= a.radians(); |
159 | return *this; |
160 | } |
161 | |
162 | inline S1Angle& S1Angle::operator*=(double m) { |
163 | radians_ *= m; |
164 | return *this; |
165 | } |
166 | |
167 | inline S1Angle& S1Angle::operator/=(double m) { |
168 | radians_ /= m; |
169 | return *this; |
170 | } |
171 | |
172 | inline S1Angle S1Angle::Radians(double radians) { |
173 | return S1Angle(radians); |
174 | } |
175 | |
176 | inline S1Angle S1Angle::Degrees(double degrees) { |
177 | return S1Angle(degrees * (M_PI / 180)); |
178 | } |
179 | |
180 | inline S1Angle S1Angle::E5(int32 e5) { |
181 | // Multiplying by 1e-5 isn't quite as accurate as dividing by 1e5, |
182 | // but it's about 10 times faster and more than accurate enough. |
183 | return Degrees(e5 * 1e-5); |
184 | } |
185 | |
186 | inline S1Angle S1Angle::E6(int32 e6) { |
187 | return Degrees(e6 * 1e-6); |
188 | } |
189 | |
190 | inline S1Angle S1Angle::E7(int32 e7) { |
191 | return Degrees(e7 * 1e-7); |
192 | } |
193 | |
194 | inline S1Angle S1Angle::UnsignedE6(uint32 e6) { |
195 | return Degrees(static_cast<int32>(e6) * 1e-6); |
196 | } |
197 | |
198 | inline S1Angle S1Angle::UnsignedE7(uint32 e7) { |
199 | return Degrees(static_cast<int32>(e7) * 1e-7); |
200 | } |
201 | |
202 | // Writes the angle in degrees with 7 digits of precision after the |
203 | // decimal point, e.g. "17.3745904". |
204 | ostream& operator<<(ostream& os, S1Angle const& a); |
205 | |
206 | #endif // UTIL_GEOMETRY_S1ANGLE_H_ |
207 | |