1 | // Copyright 2005 Google Inc. All Rights Reserved. |
2 | |
3 | #ifndef UTIL_GEOMETRY_S2_H_ |
4 | #define UTIL_GEOMETRY_S2_H_ |
5 | |
6 | #include <algorithm> |
7 | using std::min; |
8 | using std::max; |
9 | using std::swap; |
10 | using std::reverse; |
11 | |
12 | #include <hash_map> |
13 | using __gnu_cxx::hash_map; |
14 | // To have template struct hash<T> defined |
15 | #include "base/basictypes.h" |
16 | #include "base/logging.h" |
17 | #include "base/macros.h" |
18 | #include "base/port.h" // for HASH_NAMESPACE_DECLARATION_START |
19 | #include "util/math/vector3-inl.h" |
20 | #include "util/math/matrix3x3.h" |
21 | |
22 | // An S2Point represents a point on the unit sphere as a 3D vector. Usually |
23 | // points are normalized to be unit length, but some methods do not require |
24 | // this. See util/math/vector3-inl.h for the methods available. Among other |
25 | // things, there are overloaded operators that make it convenient to write |
26 | // arithmetic expressions (e.g. (1-x)*p1 + x*p2). |
27 | typedef Vector3_d S2Point; |
28 | |
29 | #include<hash_set> |
30 | namespace __gnu_cxx { |
31 | |
32 | |
33 | template<> struct hash<S2Point> { |
34 | size_t operator()(S2Point const& p) const; |
35 | }; |
36 | |
37 | |
38 | } // namespace __gnu_cxx |
39 | |
40 | |
41 | // The S2 class is simply a namespace for constants and static utility |
42 | // functions related to spherical geometry, such as area calculations and edge |
43 | // intersection tests. The name "S2" is derived from the mathematical symbol |
44 | // for the two-dimensional unit sphere (note that the "2" refers to the |
45 | // dimension of the surface, not the space it is embedded in). |
46 | // |
47 | // This class also defines a framework for decomposing the unit sphere into a |
48 | // hierarchy of "cells". Each cell is a quadrilateral bounded by four |
49 | // geodesics. The top level of the hierarchy is obtained by projecting the |
50 | // six faces of a cube onto the unit sphere, and lower levels are obtained by |
51 | // subdividing each cell into four children recursively. |
52 | // |
53 | // This class specifies the details of how the cube faces are projected onto |
54 | // the unit sphere. This includes getting the face ordering and orientation |
55 | // correct so that sequentially increasing cell ids follow a continuous |
56 | // space-filling curve over the entire sphere, and defining the |
57 | // transformation from cell-space to cube-space in order to make the cells |
58 | // more uniform in size. |
59 | // |
60 | // This file also contains documentation of the various coordinate systems |
61 | // and conventions used. |
62 | // |
63 | // This class is not thread-safe for loops and objects that use loops. |
64 | // |
65 | class S2 { |
66 | public: |
67 | static const bool debug; |
68 | // Return a unique "origin" on the sphere for operations that need a fixed |
69 | // reference point. In particular, this is the "point at infinity" used for |
70 | // point-in-polygon testing (by counting the number of edge crossings). |
71 | // |
72 | // It should *not* be a point that is commonly used in edge tests in order |
73 | // to avoid triggering code to handle degenerate cases. (This rules out the |
74 | // north and south poles.) It should also not be on the boundary of any |
75 | // low-level S2Cell for the same reason. |
76 | inline static S2Point Origin(); |
77 | |
78 | // Return true if the given point is approximately unit length |
79 | // (this is mainly useful for assertions). |
80 | static bool IsUnitLength(S2Point const& p); |
81 | |
82 | // Return a unit-length vector that is orthogonal to "a". Satisfies |
83 | // Ortho(-a) = -Ortho(a) for all a. |
84 | static S2Point Ortho(S2Point const& a); |
85 | |
86 | // Given a point "z" on the unit sphere, extend this into a right-handed |
87 | // coordinate frame of unit-length column vectors m = (x,y,z). Note that |
88 | // the vectors (x,y) are an orthonormal frame for the tangent space at "z", |
89 | // while "z" itself is an orthonormal frame for the normal space at "z". |
90 | static void GetFrame(S2Point const& z, Matrix3x3_d* m); |
91 | |
92 | // Given an orthonormal basis "m" of column vectors and a point "p", return |
93 | // the coordinates of "p" with respect to the basis "m". The resulting |
94 | // point "q" satisfies the identity (m * q == p). |
95 | static S2Point ToFrame(Matrix3x3_d const& m, S2Point const& p); |
96 | |
97 | // Given an orthonormal basis "m" of column vectors and a point "q" with |
98 | // respect to that basis, return the equivalent point "p" with respect to |
99 | // the standard axis-aligned basis. The result satisfies (p == m * q). |
100 | static S2Point FromFrame(Matrix3x3_d const& m, S2Point const& q); |
101 | |
102 | // the coordinates of "p" with respect to the basis "m". The resulting |
103 | // point "r" satisfies the identity (m * r == p). |
104 | |
105 | // Return true if two points are within the given distance of each other |
106 | // (this is mainly useful for testing). |
107 | static bool ApproxEquals(S2Point const& a, S2Point const& b, |
108 | double max_error = 1e-15); |
109 | |
110 | // Return a vector "c" that is orthogonal to the given unit-length vectors |
111 | // "a" and "b". This function is similar to a.CrossProd(b) except that it |
112 | // does a better job of ensuring orthogonality when "a" is nearly parallel |
113 | // to "b", and it returns a non-zero result even when a == b or a == -b. |
114 | // |
115 | // It satisfies the following properties (RCP == RobustCrossProd): |
116 | // |
117 | // (1) RCP(a,b) != 0 for all a, b |
118 | // (2) RCP(b,a) == -RCP(a,b) unless a == b or a == -b |
119 | // (3) RCP(-a,b) == -RCP(a,b) unless a == b or a == -b |
120 | // (4) RCP(a,-b) == -RCP(a,b) unless a == b or a == -b |
121 | static S2Point RobustCrossProd(S2Point const& a, S2Point const& b); |
122 | |
123 | // Return true if the points A, B, C are strictly counterclockwise. Return |
124 | // false if the points are clockwise or collinear (i.e. if they are all |
125 | // contained on some great circle). |
126 | // |
127 | // Due to numerical errors, situations may arise that are mathematically |
128 | // impossible, e.g. ABC may be considered strictly CCW while BCA is not. |
129 | // However, the implementation guarantees the following: |
130 | // |
131 | // If SimpleCCW(a,b,c), then !SimpleCCW(c,b,a) for all a,b,c. |
132 | static bool SimpleCCW(S2Point const& a, S2Point const& b, S2Point const& c); |
133 | |
134 | // Returns +1 if the points A, B, C are counterclockwise, -1 if the points |
135 | // are clockwise, and 0 if any two points are the same. This function is |
136 | // essentially like taking the sign of the determinant of ABC, except that |
137 | // it has additional logic to make sure that the above properties hold even |
138 | // when the three points are coplanar, and to deal with the limitations of |
139 | // floating-point arithmetic. |
140 | // |
141 | // RobustCCW satisfies the following conditions: |
142 | // |
143 | // (1) RobustCCW(a,b,c) == 0 if and only if a == b, b == c, or c == a |
144 | // (2) RobustCCW(b,c,a) == RobustCCW(a,b,c) for all a,b,c |
145 | // (3) RobustCCW(c,b,a) == -RobustCCW(a,b,c) for all a,b,c |
146 | // |
147 | // In other words: |
148 | // |
149 | // (1) The result is zero if and only if two points are the same. |
150 | // (2) Rotating the order of the arguments does not affect the result. |
151 | // (3) Exchanging any two arguments inverts the result. |
152 | // |
153 | // On the other hand, note that it is not true in general that |
154 | // RobustCCW(-a,b,c) == -RobustCCW(a,b,c), or any similar identities |
155 | // involving antipodal points. |
156 | static int RobustCCW(S2Point const& a, S2Point const& b, S2Point const& c); |
157 | |
158 | // A more efficient version of RobustCCW that allows the precomputed |
159 | // cross-product of A and B to be specified. (Unlike the 3 argument |
160 | // version this method is also inlined.) |
161 | inline static int RobustCCW(S2Point const& a, S2Point const& b, |
162 | S2Point const& c, S2Point const& a_cross_b); |
163 | |
164 | // This version of RobustCCW returns +1 if the points are definitely CCW, |
165 | // -1 if they are definitely CW, and 0 if two points are identical or the |
166 | // result is uncertain. Uncertain certain cases can be resolved, if |
167 | // desired, by calling ExpensiveCCW. |
168 | // |
169 | // The purpose of this method is to allow additional cheap tests to be done, |
170 | // where possible, in order to avoid calling ExpensiveCCW unnecessarily. |
171 | inline static int TriageCCW(S2Point const& a, S2Point const& b, |
172 | S2Point const& c, S2Point const& a_cross_b); |
173 | |
174 | // This function is invoked by RobustCCW() if the sign of the determinant is |
175 | // uncertain. It always returns a non-zero result unless two of the input |
176 | // points are the same. It uses a combination of multiple-precision |
177 | // arithmetic and symbolic perturbations to ensure that its results are |
178 | // always self-consistent (cf. Simulation of Simplicity, Edelsbrunner and |
179 | // Muecke). The basic idea is to assign an infinitesmal symbolic |
180 | // perturbation to every possible S2Point such that no three S2Points are |
181 | // collinear and no four S2Points are coplanar. These perturbations are so |
182 | // small that they do not affect the sign of any determinant that was |
183 | // non-zero before the perturbations. |
184 | // |
185 | // Unlike RobustCCW(), this method does not require the input points to be |
186 | // normalized. |
187 | static int ExpensiveCCW(S2Point const& a, S2Point const& b, |
188 | S2Point const& c); |
189 | |
190 | // Given 4 points on the unit sphere, return true if the edges OA, OB, and |
191 | // OC are encountered in that order while sweeping CCW around the point O. |
192 | // You can think of this as testing whether A <= B <= C with respect to the |
193 | // CCW ordering around O that starts at A, or equivalently, whether B is |
194 | // contained in the range of angles (inclusive) that starts at A and extends |
195 | // CCW to C. Properties: |
196 | // |
197 | // (1) If OrderedCCW(a,b,c,o) && OrderedCCW(b,a,c,o), then a == b |
198 | // (2) If OrderedCCW(a,b,c,o) && OrderedCCW(a,c,b,o), then b == c |
199 | // (3) If OrderedCCW(a,b,c,o) && OrderedCCW(c,b,a,o), then a == b == c |
200 | // (4) If a == b or b == c, then OrderedCCW(a,b,c,o) is true |
201 | // (5) Otherwise if a == c, then OrderedCCW(a,b,c,o) is false |
202 | static bool OrderedCCW(S2Point const& a, S2Point const& b, S2Point const& c, |
203 | S2Point const& o); |
204 | |
205 | // Return the interior angle at the vertex B in the triangle ABC. The |
206 | // return value is always in the range [0, Pi]. The points do not need to |
207 | // be normalized. Ensures that Angle(a,b,c) == Angle(c,b,a) for all a,b,c. |
208 | // |
209 | // The angle is undefined if A or C is diametrically opposite from B, and |
210 | // becomes numerically unstable as the length of edge AB or BC approaches |
211 | // 180 degrees. |
212 | static double Angle(S2Point const& a, S2Point const& b, S2Point const& c); |
213 | |
214 | // Return the exterior angle at the vertex B in the triangle ABC. The |
215 | // return value is positive if ABC is counterclockwise and negative |
216 | // otherwise. If you imagine an ant walking from A to B to C, this is the |
217 | // angle that the ant turns at vertex B (positive = left, negative = right). |
218 | // Ensures that TurnAngle(a,b,c) == -TurnAngle(c,b,a) for all a,b,c. |
219 | static double TurnAngle(S2Point const& a, S2Point const& b, S2Point const& c); |
220 | |
221 | // Return the area of triangle ABC. The method used is about twice as |
222 | // expensive as Girard's formula, but it is numerically stable for both |
223 | // large and very small triangles. All points should be unit length. |
224 | // The area is always positive. |
225 | // |
226 | // The triangle area is undefined if it contains two antipodal points, and |
227 | // becomes numerically unstable as the length of any edge approaches 180 |
228 | // degrees. |
229 | static double Area(S2Point const& a, S2Point const& b, S2Point const& c); |
230 | |
231 | // Return the area of the triangle computed using Girard's formula. All |
232 | // points should be unit length. This is slightly faster than the Area() |
233 | // method above but is not accurate for very small triangles. |
234 | static double GirardArea(S2Point const& a, S2Point const& b, |
235 | S2Point const& c); |
236 | |
237 | // Like Area(), but returns a positive value for counterclockwise triangles |
238 | // and a negative value otherwise. |
239 | static double SignedArea(S2Point const& a, S2Point const& b, |
240 | S2Point const& c); |
241 | |
242 | // About centroids: |
243 | // ---------------- |
244 | // |
245 | // There are several notions of the "centroid" of a triangle. First, there |
246 | // // is the planar centroid, which is simply the centroid of the ordinary |
247 | // (non-spherical) triangle defined by the three vertices. Second, there is |
248 | // the surface centroid, which is defined as the intersection of the three |
249 | // medians of the spherical triangle. It is possible to show that this |
250 | // point is simply the planar centroid projected to the surface of the |
251 | // sphere. Finally, there is the true centroid (mass centroid), which is |
252 | // defined as the area integral over the spherical triangle of (x,y,z) |
253 | // divided by the triangle area. This is the point that the triangle would |
254 | // rotate around if it was spinning in empty space. |
255 | // |
256 | // The best centroid for most purposes is the true centroid. Unlike the |
257 | // planar and surface centroids, the true centroid behaves linearly as |
258 | // regions are added or subtracted. That is, if you split a triangle into |
259 | // pieces and compute the average of their centroids (weighted by triangle |
260 | // area), the result equals the centroid of the original triangle. This is |
261 | // not true of the other centroids. |
262 | // |
263 | // Also note that the surface centroid may be nowhere near the intuitive |
264 | // "center" of a spherical triangle. For example, consider the triangle |
265 | // with vertices A=(1,eps,0), B=(0,0,1), C=(-1,eps,0) (a quarter-sphere). |
266 | // The surface centroid of this triangle is at S=(0, 2*eps, 1), which is |
267 | // within a distance of 2*eps of the vertex B. Note that the median from A |
268 | // (the segment connecting A to the midpoint of BC) passes through S, since |
269 | // this is the shortest path connecting the two endpoints. On the other |
270 | // hand, the true centroid is at M=(0, 0.5, 0.5), which when projected onto |
271 | // the surface is a much more reasonable interpretation of the "center" of |
272 | // this triangle. |
273 | |
274 | // Return the centroid of the planar triangle ABC. This can be normalized |
275 | // to unit length to obtain the "surface centroid" of the corresponding |
276 | // spherical triangle, i.e. the intersection of the three medians. However, |
277 | // note that for large spherical triangles the surface centroid may be |
278 | // nowhere near the intuitive "center" (see example above). |
279 | static S2Point PlanarCentroid(S2Point const& a, S2Point const& b, |
280 | S2Point const& c); |
281 | |
282 | // Returns the true centroid of the spherical triangle ABC multiplied by the |
283 | // signed area of spherical triangle ABC. The reasons for multiplying by |
284 | // the signed area are (1) this is the quantity that needs to be summed to |
285 | // compute the centroid of a union or difference of triangles, and (2) it's |
286 | // actually easier to calculate this way. |
287 | static S2Point TrueCentroid(S2Point const& a, S2Point const& b, |
288 | S2Point const& c); |
289 | |
290 | ////////////////////////// S2Cell Decomposition ///////////////////////// |
291 | // |
292 | // The following methods define the cube-to-sphere projection used by |
293 | // the S2Cell decomposition. |
294 | // |
295 | // In the process of converting a latitude-longitude pair to a 64-bit cell |
296 | // id, the following coordinate systems are used: |
297 | // |
298 | // (id) |
299 | // An S2CellId is a 64-bit encoding of a face and a Hilbert curve position |
300 | // on that face. The Hilbert curve position implicitly encodes both the |
301 | // position of a cell and its subdivision level (see s2cellid.h). |
302 | // |
303 | // (face, i, j) |
304 | // Leaf-cell coordinates. "i" and "j" are integers in the range |
305 | // [0,(2**30)-1] that identify a particular leaf cell on the given face. |
306 | // The (i, j) coordinate system is right-handed on each face, and the |
307 | // faces are oriented such that Hilbert curves connect continuously from |
308 | // one face to the next. |
309 | // |
310 | // (face, s, t) |
311 | // Cell-space coordinates. "s" and "t" are real numbers in the range |
312 | // [0,1] that identify a point on the given face. For example, the point |
313 | // (s, t) = (0.5, 0.5) corresponds to the center of the top-level face |
314 | // cell. This point is also a vertex of exactly four cells at each |
315 | // subdivision level greater than zero. |
316 | // |
317 | // (face, si, ti) |
318 | // Discrete cell-space coordinates. These are obtained by multiplying |
319 | // "s" and "t" by 2**31 and rounding to the nearest unsigned integer. |
320 | // Discrete coordinates lie in the range [0,2**31]. This coordinate |
321 | // system can represent the edge and center positions of all cells with |
322 | // no loss of precision (including non-leaf cells). |
323 | // |
324 | // (face, u, v) |
325 | // Cube-space coordinates. To make the cells at each level more uniform |
326 | // in size after they are projected onto the sphere, we apply apply a |
327 | // nonlinear transformation of the form u=f(s), v=f(t). The (u, v) |
328 | // coordinates after this transformation give the actual coordinates on |
329 | // the cube face (modulo some 90 degree rotations) before it is projected |
330 | // onto the unit sphere. |
331 | // |
332 | // (x, y, z) |
333 | // Direction vector (S2Point). Direction vectors are not necessarily unit |
334 | // length, and are often chosen to be points on the biunit cube |
335 | // [-1,+1]x[-1,+1]x[-1,+1]. They can be be normalized to obtain the |
336 | // corresponding point on the unit sphere. |
337 | // |
338 | // (lat, lng) |
339 | // Latitude and longitude (S2LatLng). Latitudes must be between -90 and |
340 | // 90 degrees inclusive, and longitudes must be between -180 and 180 |
341 | // degrees inclusive. |
342 | // |
343 | // Note that the (i, j), (s, t), (si, ti), and (u, v) coordinate systems are |
344 | // right-handed on all six faces. |
345 | |
346 | // This is the number of levels needed to specify a leaf cell. This |
347 | // constant is defined here so that the S2::Metric class can be |
348 | // implemented without including s2cellid.h. |
349 | static int const kMaxCellLevel = 30; |
350 | |
351 | // Convert an s or t value to the corresponding u or v value. This is |
352 | // a non-linear transformation from [-1,1] to [-1,1] that attempts to |
353 | // make the cell sizes more uniform. |
354 | inline static double STtoUV(double s); |
355 | |
356 | // The inverse of the STtoUV transformation. Note that it is not always |
357 | // true that UVtoST(STtoUV(x)) == x due to numerical errors. |
358 | inline static double UVtoST(double u); |
359 | |
360 | // Convert (face, u, v) coordinates to a direction vector (not |
361 | // necessarily unit length). |
362 | inline static S2Point FaceUVtoXYZ(int face, double u, double v); |
363 | |
364 | // If the dot product of p with the given face normal is positive, |
365 | // set the corresponding u and v values (which may lie outside the range |
366 | // [-1,1]) and return true. Otherwise return false. |
367 | inline static bool FaceXYZtoUV(int face, S2Point const& p, |
368 | double* pu, double* pv); |
369 | |
370 | // Convert a direction vector (not necessarily unit length) to |
371 | // (face, u, v) coordinates. |
372 | inline static int XYZtoFaceUV(S2Point const& p, double* pu, double* pv); |
373 | |
374 | // Return the right-handed normal (not necessarily unit length) for an |
375 | // edge in the direction of the positive v-axis at the given u-value on |
376 | // the given face. (This vector is perpendicular to the plane through |
377 | // the sphere origin that contains the given edge.) |
378 | inline static S2Point GetUNorm(int face, double u); |
379 | |
380 | // Return the right-handed normal (not necessarily unit length) for an |
381 | // edge in the direction of the positive u-axis at the given v-value on |
382 | // the given face. |
383 | inline static S2Point GetVNorm(int face, double v); |
384 | |
385 | // Return the unit-length normal, u-axis, or v-axis for the given face. |
386 | inline static S2Point GetNorm(int face); |
387 | inline static S2Point GetUAxis(int face); |
388 | inline static S2Point GetVAxis(int face); |
389 | |
390 | //////////////////////////////////////////////////////////////////////// |
391 | // The canonical Hilbert traversal order looks like an inverted 'U': |
392 | // the subcells are visited in the order (0,0), (0,1), (1,1), (1,0). |
393 | // The following tables encode the traversal order for various |
394 | // orientations of the Hilbert curve (axes swapped and/or directions |
395 | // of the axes reversed). |
396 | |
397 | // Together these flags define a cell orientation. If 'kSwapMask' |
398 | // is true, then canonical traversal order is flipped around the |
399 | // diagonal (i.e. i and j are swapped with each other). If |
400 | // 'kInvertMask' is true, then the traversal order is rotated by 180 |
401 | // degrees (i.e. the bits of i and j are inverted, or equivalently, |
402 | // the axis directions are reversed). |
403 | static int const kSwapMask = 0x01; |
404 | static int const kInvertMask = 0x02; |
405 | |
406 | // kIJtoPos[orientation][ij] -> pos |
407 | // |
408 | // Given a cell orientation and the (i,j)-index of a subcell (0=(0,0), |
409 | // 1=(0,1), 2=(1,0), 3=(1,1)), return the order in which this subcell is |
410 | // visited by the Hilbert curve (a position in the range [0..3]). |
411 | static int const kIJtoPos[4][4]; |
412 | |
413 | // kPosToIJ[orientation][pos] -> ij |
414 | // |
415 | // Return the (i,j) index of the subcell at the given position 'pos' in the |
416 | // Hilbert curve traversal order with the given orientation. This is the |
417 | // inverse of the previous table: |
418 | // |
419 | // kPosToIJ[r][kIJtoPos[r][ij]] == ij |
420 | static int const kPosToIJ[4][4]; |
421 | |
422 | // kPosToOrientation[pos] -> orientation_modifier |
423 | // |
424 | // Return a modifier indicating how the orientation of the child subcell |
425 | // with the given traversal position [0..3] is related to the orientation |
426 | // of the parent cell. The modifier should be XOR-ed with the parent |
427 | // orientation to obtain the curve orientation in the child. |
428 | static int const kPosToOrientation[4]; |
429 | |
430 | ////////////////////////// S2Cell Metrics ////////////////////////////// |
431 | // |
432 | // The following are various constants that describe the shapes and sizes of |
433 | // cells. They are useful for deciding which cell level to use in order to |
434 | // satisfy a given condition (e.g. that cell vertices must be no further |
435 | // than "x" apart). All of the raw constants are differential quantities; |
436 | // you can use the GetValue(level) method to compute the corresponding length |
437 | // or area on the unit sphere for cells at a given level. The minimum and |
438 | // maximum bounds are valid for cells at all levels, but they may be |
439 | // somewhat conservative for very large cells (e.g. face cells). |
440 | |
441 | // Defines a cell metric of the given dimension (1 == length, 2 == area). |
442 | template <int dim> class Metric { |
443 | public: |
444 | explicit Metric(double deriv) : deriv_(deriv) {} |
445 | |
446 | // The "deriv" value of a metric is a derivative, and must be multiplied by |
447 | // a length or area in (s,t)-space to get a useful value. |
448 | double deriv() const { return deriv_; } |
449 | |
450 | // Return the value of a metric for cells at the given level. The value is |
451 | // either a length or an area on the unit sphere, depending on the |
452 | // particular metric. |
453 | double GetValue(int level) const { return ldexp(deriv_, - dim * level); } |
454 | |
455 | // Return the level at which the metric has approximately the given |
456 | // value. For example, S2::kAvgEdge.GetClosestLevel(0.1) returns the |
457 | // level at which the average cell edge length is approximately 0.1. |
458 | // The return value is always a valid level. |
459 | int GetClosestLevel(double value) const; |
460 | |
461 | // Return the minimum level such that the metric is at most the given |
462 | // value, or S2CellId::kMaxLevel if there is no such level. For example, |
463 | // S2::kMaxDiag.GetMinLevel(0.1) returns the minimum level such that all |
464 | // cell diagonal lengths are 0.1 or smaller. The return value is always a |
465 | // valid level. |
466 | int GetMinLevel(double value) const; |
467 | |
468 | // Return the maximum level such that the metric is at least the given |
469 | // value, or zero if there is no such level. For example, |
470 | // S2::kMinWidth.GetMaxLevel(0.1) returns the maximum level such that all |
471 | // cells have a minimum width of 0.1 or larger. The return value is |
472 | // always a valid level. |
473 | int GetMaxLevel(double value) const; |
474 | |
475 | private: |
476 | double const deriv_; |
477 | DISALLOW_EVIL_CONSTRUCTORS(Metric); |
478 | }; |
479 | typedef Metric<1> LengthMetric; |
480 | typedef Metric<2> AreaMetric; |
481 | |
482 | // Each cell is bounded by four planes passing through its four edges and |
483 | // the center of the sphere. These metrics relate to the angle between each |
484 | // pair of opposite bounding planes, or equivalently, between the planes |
485 | // corresponding to two different s-values or two different t-values. For |
486 | // example, the maximum angle between opposite bounding planes for a cell at |
487 | // level k is kMaxAngleSpan.GetValue(k), and the average angle span for all |
488 | // cells at level k is approximately kAvgAngleSpan.GetValue(k). |
489 | static LengthMetric const kMinAngleSpan; |
490 | static LengthMetric const kMaxAngleSpan; |
491 | static LengthMetric const kAvgAngleSpan; |
492 | |
493 | // The width of geometric figure is defined as the distance between two |
494 | // parallel bounding lines in a given direction. For cells, the minimum |
495 | // width is always attained between two opposite edges, and the maximum |
496 | // width is attained between two opposite vertices. However, for our |
497 | // purposes we redefine the width of a cell as the perpendicular distance |
498 | // between a pair of opposite edges. A cell therefore has two widths, one |
499 | // in each direction. The minimum width according to this definition agrees |
500 | // with the classic geometric one, but the maximum width is different. (The |
501 | // maximum geometric width corresponds to kMaxDiag defined below.) |
502 | // |
503 | // For a cell at level k, the distance between opposite edges is at least |
504 | // kMinWidth.GetValue(k) and at most kMaxWidth.GetValue(k). The average |
505 | // width in both directions for all cells at level k is approximately |
506 | // kAvgWidth.GetValue(k). |
507 | // |
508 | // The width is useful for bounding the minimum or maximum distance from a |
509 | // point on one edge of a cell to the closest point on the opposite edge. |
510 | // For example, this is useful when "growing" regions by a fixed distance. |
511 | static LengthMetric const kMinWidth; |
512 | static LengthMetric const kMaxWidth; |
513 | static LengthMetric const kAvgWidth; |
514 | |
515 | // The minimum edge length of any cell at level k is at least |
516 | // kMinEdge.GetValue(k), and the maximum is at most kMaxEdge.GetValue(k). |
517 | // The average edge length is approximately kAvgEdge.GetValue(k). |
518 | // |
519 | // The edge length metrics can also be used to bound the minimum, maximum, |
520 | // or average distance from the center of one cell to the center of one of |
521 | // its edge neighbors. In particular, it can be used to bound the distance |
522 | // between adjacent cell centers along the space-filling Hilbert curve for |
523 | // cells at any given level. |
524 | static LengthMetric const kMinEdge; |
525 | static LengthMetric const kMaxEdge; |
526 | static LengthMetric const kAvgEdge; |
527 | |
528 | // The minimum diagonal length of any cell at level k is at least |
529 | // kMinDiag.GetValue(k), and the maximum is at most kMaxDiag.GetValue(k). |
530 | // The average diagonal length is approximately kAvgDiag.GetValue(k). |
531 | // |
532 | // The maximum diagonal also happens to be the maximum diameter of any cell, |
533 | // and also the maximum geometric width (see the discussion above). So for |
534 | // example, the distance from an arbitrary point to the closest cell center |
535 | // at a given level is at most half the maximum diagonal length. |
536 | static LengthMetric const kMinDiag; |
537 | static LengthMetric const kMaxDiag; |
538 | static LengthMetric const kAvgDiag; |
539 | |
540 | // The minimum area of any cell at level k is at least kMinArea.GetValue(k), |
541 | // and the maximum is at most kMaxArea.GetValue(k). The average area of all |
542 | // cells at level k is exactly kAvgArea.GetValue(k). |
543 | static AreaMetric const kMinArea; |
544 | static AreaMetric const kMaxArea; |
545 | static AreaMetric const kAvgArea; |
546 | |
547 | // This is the maximum edge aspect ratio over all cells at any level, where |
548 | // the edge aspect ratio of a cell is defined as the ratio of its longest |
549 | // edge length to its shortest edge length. |
550 | static double const kMaxEdgeAspect; |
551 | |
552 | // This is the maximum diagonal aspect ratio over all cells at any level, |
553 | // where the diagonal aspect ratio of a cell is defined as the ratio of its |
554 | // longest diagonal length to its shortest diagonal length. |
555 | static double const kMaxDiagAspect; |
556 | |
557 | private: |
558 | // Given a *valid* face for the given point p (meaning that dot product |
559 | // of p with the face normal is positive), return the corresponding |
560 | // u and v values (which may lie outside the range [-1,1]). |
561 | inline static void ValidFaceXYZtoUV(int face, S2Point const& p, |
562 | double* pu, double* pv); |
563 | |
564 | // The value below is the maximum error in computing the determinant |
565 | // a.CrossProd(b).DotProd(c). To derive this, observe that computing the |
566 | // determinant in this way requires 14 multiplications and additions. Since |
567 | // all three points are normalized, none of the intermediate results in this |
568 | // calculation exceed 1.0 in magnitude. The maximum rounding error for an |
569 | // operation whose result magnitude does not exceed 1.0 (before rounding) is |
570 | // 2**-54 (i.e., half of the difference between 1.0 and the next |
571 | // representable value below 1.0). Therefore, the total error in computing |
572 | // the determinant does not exceed 14 * (2**-54). |
573 | // |
574 | // The C++ standard requires to initialize kMaxDetError outside of |
575 | // the class definition, even though GCC doesn't enforce it. |
576 | static double const kMaxDetError; |
577 | |
578 | DISALLOW_IMPLICIT_CONSTRUCTORS(S2); // Contains only static methods. |
579 | }; |
580 | |
581 | // Uncomment the following line for testing purposes only. It greatly |
582 | // increases the number of degenerate cases that need to be handled using |
583 | // ExpensiveCCW(). |
584 | // #define S2_TEST_DEGENERACIES |
585 | |
586 | inline S2Point S2::Origin() { |
587 | #ifdef S2_TEST_DEGENERACIES |
588 | return S2Point(0, 0, 1); // This makes polygon operations much slower. |
589 | #else |
590 | return S2Point(0.00457, 1, 0.0321).Normalize(); |
591 | #endif |
592 | } |
593 | |
594 | inline int S2::TriageCCW(S2Point const& a, S2Point const& b, |
595 | S2Point const& c, S2Point const& a_cross_b) { |
596 | DCHECK(IsUnitLength(a)); |
597 | DCHECK(IsUnitLength(b)); |
598 | DCHECK(IsUnitLength(c)); |
599 | double det = a_cross_b.DotProd(c); |
600 | |
601 | // Double-check borderline cases in debug mode. |
602 | DCHECK(fabs(det) < kMaxDetError || |
603 | fabs(det) > 100 * kMaxDetError || |
604 | det * ExpensiveCCW(a, b, c) > 0); |
605 | |
606 | if (det > kMaxDetError) return 1; |
607 | if (det < -kMaxDetError) return -1; |
608 | return 0; |
609 | } |
610 | |
611 | inline int S2::RobustCCW(S2Point const& a, S2Point const& b, |
612 | S2Point const& c, S2Point const& a_cross_b) { |
613 | int ccw = TriageCCW(a, b, c, a_cross_b); |
614 | if (ccw == 0) ccw = ExpensiveCCW(a, b, c); |
615 | return ccw; |
616 | } |
617 | |
618 | // We have implemented three different projections from cell-space (s,t) to |
619 | // cube-space (u,v): linear, quadratic, and tangent. They have the following |
620 | // tradeoffs: |
621 | // |
622 | // Linear - This is the fastest transformation, but also produces the least |
623 | // uniform cell sizes. Cell areas vary by a factor of about 5.2, with the |
624 | // largest cells at the center of each face and the smallest cells in |
625 | // the corners. |
626 | // |
627 | // Tangent - Transforming the coordinates via atan() makes the cell sizes |
628 | // more uniform. The areas vary by a maximum ratio of 1.4 as opposed to a |
629 | // maximum ratio of 5.2. However, each call to atan() is about as expensive |
630 | // as all of the other calculations combined when converting from points to |
631 | // cell ids, i.e. it reduces performance by a factor of 3. |
632 | // |
633 | // Quadratic - This is an approximation of the tangent projection that |
634 | // is much faster and produces cells that are almost as uniform in size. |
635 | // It is about 3 times faster than the tangent projection for converting |
636 | // cell ids to points or vice versa. Cell areas vary by a maximum ratio of |
637 | // about 2.1. |
638 | // |
639 | // Here is a table comparing the cell uniformity using each projection. "Area |
640 | // ratio" is the maximum ratio over all subdivision levels of the largest cell |
641 | // area to the smallest cell area at that level, "edge ratio" is the maximum |
642 | // ratio of the longest edge of any cell to the shortest edge of any cell at |
643 | // the same level, and "diag ratio" is the ratio of the longest diagonal of |
644 | // any cell to the shortest diagonal of any cell at the same level. "ToPoint" |
645 | // and "FromPoint" are the times in microseconds required to convert cell ids |
646 | // to and from points (unit vectors) respectively. "ToPointRaw" is the time |
647 | // to convert to a non-unit-length vector, which is all that is needed for |
648 | // some purposes. |
649 | // |
650 | // Area Edge Diag ToPointRaw ToPoint FromPoint |
651 | // Ratio Ratio Ratio (microseconds) |
652 | // ------------------------------------------------------------------- |
653 | // Linear: 5.200 2.117 2.959 0.020 0.087 0.085 |
654 | // Tangent: 1.414 1.414 1.704 0.237 0.299 0.258 |
655 | // Quadratic: 2.082 1.802 1.932 0.033 0.096 0.108 |
656 | // |
657 | // The worst-case cell aspect ratios are about the same with all three |
658 | // projections. The maximum ratio of the longest edge to the shortest edge |
659 | // within the same cell is about 1.4 and the maximum ratio of the diagonals |
660 | // within the same cell is about 1.7. |
661 | // |
662 | // This data was produced using s2cell_unittest and s2cellid_unittest. |
663 | |
664 | #define S2_LINEAR_PROJECTION 0 |
665 | #define S2_TAN_PROJECTION 1 |
666 | #define S2_QUADRATIC_PROJECTION 2 |
667 | |
668 | #define S2_PROJECTION S2_QUADRATIC_PROJECTION |
669 | |
670 | #if S2_PROJECTION == S2_LINEAR_PROJECTION |
671 | |
672 | inline double S2::STtoUV(double s) { |
673 | return 2 * s - 1; |
674 | } |
675 | |
676 | inline double S2::UVtoST(double u) { |
677 | return 0.5 * (u + 1); |
678 | } |
679 | |
680 | #elif S2_PROJECTION == S2_TAN_PROJECTION |
681 | |
682 | inline double S2::STtoUV(double s) { |
683 | // Unfortunately, tan(M_PI_4) is slightly less than 1.0. This isn't due to |
684 | // a flaw in the implementation of tan(), it's because the derivative of |
685 | // tan(x) at x=pi/4 is 2, and it happens that the two adjacent floating |
686 | // point numbers on either side of the infinite-precision value of pi/4 have |
687 | // tangents that are slightly below and slightly above 1.0 when rounded to |
688 | // the nearest double-precision result. |
689 | |
690 | s = tan(M_PI_2 * s - M_PI_4); |
691 | return s + (1.0 / (GG_LONGLONG(1) << 53)) * s; |
692 | } |
693 | |
694 | inline double S2::UVtoST(double u) { |
695 | volatile double a = atan(u); |
696 | return (2 * M_1_PI) * (a + M_PI_4); |
697 | } |
698 | |
699 | #elif S2_PROJECTION == S2_QUADRATIC_PROJECTION |
700 | |
701 | inline double S2::STtoUV(double s) { |
702 | if (s >= 0.5) return (1/3.) * (4*s*s - 1); |
703 | else return (1/3.) * (1 - 4*(1-s)*(1-s)); |
704 | } |
705 | |
706 | inline double S2::UVtoST(double u) { |
707 | if (u >= 0) return 0.5 * sqrt(1 + 3*u); |
708 | else return 1 - 0.5 * sqrt(1 - 3*u); |
709 | } |
710 | |
711 | #else |
712 | |
713 | #error Unknown value for S2_PROJECTION |
714 | |
715 | #endif |
716 | |
717 | inline S2Point S2::FaceUVtoXYZ(int face, double u, double v) { |
718 | switch (face) { |
719 | case 0: return S2Point( 1, u, v); |
720 | case 1: return S2Point(-u, 1, v); |
721 | case 2: return S2Point(-u, -v, 1); |
722 | case 3: return S2Point(-1, -v, -u); |
723 | case 4: return S2Point( v, -1, -u); |
724 | default: return S2Point( v, u, -1); |
725 | } |
726 | } |
727 | |
728 | inline void S2::ValidFaceXYZtoUV(int face, S2Point const& p, |
729 | double* pu, double* pv) { |
730 | DCHECK_GT(p.DotProd(FaceUVtoXYZ(face, 0, 0)), 0); |
731 | switch (face) { |
732 | case 0: *pu = p[1] / p[0]; *pv = p[2] / p[0]; break; |
733 | case 1: *pu = -p[0] / p[1]; *pv = p[2] / p[1]; break; |
734 | case 2: *pu = -p[0] / p[2]; *pv = -p[1] / p[2]; break; |
735 | case 3: *pu = p[2] / p[0]; *pv = p[1] / p[0]; break; |
736 | case 4: *pu = p[2] / p[1]; *pv = -p[0] / p[1]; break; |
737 | default: *pu = -p[1] / p[2]; *pv = -p[0] / p[2]; break; |
738 | } |
739 | } |
740 | |
741 | inline int S2::XYZtoFaceUV(S2Point const& p, double* pu, double* pv) { |
742 | int face = p.LargestAbsComponent(); |
743 | if (p[face] < 0) face += 3; |
744 | ValidFaceXYZtoUV(face, p, pu, pv); |
745 | return face; |
746 | } |
747 | |
748 | inline bool S2::FaceXYZtoUV(int face, S2Point const& p, |
749 | double* pu, double* pv) { |
750 | if (face < 3) { |
751 | if (p[face] <= 0) return false; |
752 | } else { |
753 | if (p[face-3] >= 0) return false; |
754 | } |
755 | ValidFaceXYZtoUV(face, p, pu, pv); |
756 | return true; |
757 | } |
758 | |
759 | inline S2Point S2::GetUNorm(int face, double u) { |
760 | switch (face) { |
761 | case 0: return S2Point( u, -1, 0); |
762 | case 1: return S2Point( 1, u, 0); |
763 | case 2: return S2Point( 1, 0, u); |
764 | case 3: return S2Point(-u, 0, 1); |
765 | case 4: return S2Point( 0, -u, 1); |
766 | default: return S2Point( 0, -1, -u); |
767 | } |
768 | } |
769 | |
770 | inline S2Point S2::GetVNorm(int face, double v) { |
771 | switch (face) { |
772 | case 0: return S2Point(-v, 0, 1); |
773 | case 1: return S2Point( 0, -v, 1); |
774 | case 2: return S2Point( 0, -1, -v); |
775 | case 3: return S2Point( v, -1, 0); |
776 | case 4: return S2Point( 1, v, 0); |
777 | default: return S2Point( 1, 0, v); |
778 | } |
779 | } |
780 | |
781 | inline S2Point S2::GetNorm(int face) { |
782 | return S2::FaceUVtoXYZ(face, 0, 0); |
783 | } |
784 | |
785 | inline S2Point S2::GetUAxis(int face) { |
786 | switch (face) { |
787 | case 0: return S2Point( 0, 1, 0); |
788 | case 1: return S2Point(-1, 0, 0); |
789 | case 2: return S2Point(-1, 0, 0); |
790 | case 3: return S2Point( 0, 0, -1); |
791 | case 4: return S2Point( 0, 0, -1); |
792 | default: return S2Point( 0, 1, 0); |
793 | } |
794 | } |
795 | |
796 | inline S2Point S2::GetVAxis(int face) { |
797 | switch (face) { |
798 | case 0: return S2Point( 0, 0, 1); |
799 | case 1: return S2Point( 0, 0, 1); |
800 | case 2: return S2Point( 0, -1, 0); |
801 | case 3: return S2Point( 0, -1, 0); |
802 | case 4: return S2Point( 1, 0, 0); |
803 | default: return S2Point( 1, 0, 0); |
804 | } |
805 | } |
806 | |
807 | template <int dim> |
808 | int S2::Metric<dim>::GetMinLevel(double value) const { |
809 | if (value <= 0) return S2::kMaxCellLevel; |
810 | |
811 | // This code is equivalent to computing a floating-point "level" |
812 | // value and rounding up. frexp() returns a fraction in the |
813 | // range [0.5,1) and the corresponding exponent. |
814 | int level; |
815 | frexp(value / deriv_, &level); |
816 | level = max(0, min(S2::kMaxCellLevel, -((level - 1) >> (dim - 1)))); |
817 | DCHECK(level == S2::kMaxCellLevel || GetValue(level) <= value); |
818 | DCHECK(level == 0 || GetValue(level - 1) > value); |
819 | return level; |
820 | } |
821 | |
822 | template <int dim> |
823 | int S2::Metric<dim>::GetMaxLevel(double value) const { |
824 | if (value <= 0) return S2::kMaxCellLevel; |
825 | |
826 | // This code is equivalent to computing a floating-point "level" |
827 | // value and rounding down. |
828 | int level; |
829 | frexp(deriv_ / value, &level); |
830 | level = max(0, min(S2::kMaxCellLevel, (level - 1) >> (dim - 1))); |
831 | DCHECK(level == 0 || GetValue(level) >= value); |
832 | DCHECK(level == S2::kMaxCellLevel || GetValue(level + 1) < value); |
833 | return level; |
834 | } |
835 | |
836 | template <int dim> |
837 | int S2::Metric<dim>::GetClosestLevel(double value) const { |
838 | return GetMinLevel((dim == 1 ? M_SQRT2 : 2) * value); |
839 | } |
840 | |
841 | #endif // UTIL_GEOMETRY_S2_H_ |
842 | |