| 1 | // |
| 2 | // Copyright (C) 1999-2005 Google, Inc. |
| 3 | // |
| 4 | |
| 5 | #include "strutil.h" |
| 6 | |
| 7 | #include <ctype.h> |
| 8 | #include <errno.h> |
| 9 | #include <float.h> // for DBL_DIG and FLT_DIG |
| 10 | #include <math.h> // for HUGE_VAL |
| 11 | #include <pthread.h> // for gmtime_r (on Windows) |
| 12 | #include <stdarg.h> |
| 13 | #include <stdlib.h> |
| 14 | #include <stdio.h> |
| 15 | #include <string.h> |
| 16 | #include <time.h> // for FastTimeToBuffer() |
| 17 | |
| 18 | #include <algorithm> |
| 19 | using std::min; |
| 20 | using std::max; |
| 21 | using std::swap; |
| 22 | using std::reverse; |
| 23 | |
| 24 | #include <hash_map> |
| 25 | using __gnu_cxx::hash_map; |
| 26 | |
| 27 | #include <hash_set> |
| 28 | using __gnu_cxx::hash_set; |
| 29 | |
| 30 | #include <iterator> |
| 31 | #include <limits> |
| 32 | using std::numeric_limits; |
| 33 | |
| 34 | #include <set> |
| 35 | using std::set; |
| 36 | using std::multiset; |
| 37 | |
| 38 | #include <string> |
| 39 | using std::string; |
| 40 | |
| 41 | #include <vector> |
| 42 | using std::vector; |
| 43 | |
| 44 | |
| 45 | #include "base/logging.h" |
| 46 | #include "base/scoped_ptr.h" |
| 47 | //#include "strutil-inl.h" |
| 48 | //#include "third_party/utf/utf.h" // for runetochar |
| 49 | //#include "util/gtl/stl_util-inl.h" // for string_as_array |
| 50 | //#include "util/hash/hash.h" |
| 51 | #include "split.h" |
| 52 | |
| 53 | #ifdef OS_WINDOWS |
| 54 | #include <pthread.h> // for gmtime_r |
| 55 | #ifdef min // windows.h defines this to something silly |
| 56 | #undef min |
| 57 | #endif |
| 58 | #endif |
| 59 | |
| 60 | // ---------------------------------------------------------------------- |
| 61 | // FpToString() |
| 62 | // FloatToString() |
| 63 | // IntToString() |
| 64 | // Convert various types to their string representation. These |
| 65 | // all do the obvious, trivial thing. |
| 66 | // ---------------------------------------------------------------------- |
| 67 | |
| 68 | string FpToString(Fprint fp) { |
| 69 | char buf[17]; |
| 70 | snprintf(buf, sizeof(buf), "%016llx" , fp); |
| 71 | return string(buf); |
| 72 | } |
| 73 | |
| 74 | string FloatToString(float f, const char* format) { |
| 75 | char buf[80]; |
| 76 | snprintf(buf, sizeof(buf), format, f); |
| 77 | return string(buf); |
| 78 | } |
| 79 | |
| 80 | string IntToString(int i, const char* format) { |
| 81 | char buf[80]; |
| 82 | snprintf(buf, sizeof(buf), format, i); |
| 83 | return string(buf); |
| 84 | } |
| 85 | |
| 86 | string Int64ToString(int64 i64, const char* format) { |
| 87 | char buf[80]; |
| 88 | snprintf(buf, sizeof(buf), format, i64); |
| 89 | return string(buf); |
| 90 | } |
| 91 | |
| 92 | string UInt64ToString(uint64 ui64, const char* format) { |
| 93 | char buf[80]; |
| 94 | snprintf(buf, sizeof(buf), format, ui64); |
| 95 | return string(buf); |
| 96 | } |
| 97 | |
| 98 | // Default arguments |
| 99 | string FloatToString(float f) { return FloatToString(f, "%7f" ); } |
| 100 | string IntToString(int i) { return IntToString(i, "%7d" ); } |
| 101 | string Int64ToString(int64 i64) { |
| 102 | return Int64ToString(i64, "%7" GG_LL_FORMAT "d" ); |
| 103 | } |
| 104 | string UInt64ToString(uint64 ui64) { |
| 105 | return UInt64ToString(ui64, "%7" GG_LL_FORMAT "u" ); |
| 106 | } |
| 107 | |
| 108 | // ---------------------------------------------------------------------- |
| 109 | // FastIntToBuffer() |
| 110 | // FastInt64ToBuffer() |
| 111 | // FastHexToBuffer() |
| 112 | // FastHex64ToBuffer() |
| 113 | // FastHex32ToBuffer() |
| 114 | // FastTimeToBuffer() |
| 115 | // These are intended for speed. FastHexToBuffer() assumes the |
| 116 | // integer is non-negative. FastHexToBuffer() puts output in |
| 117 | // hex rather than decimal. FastTimeToBuffer() puts the output |
| 118 | // into RFC822 format. If time is 0, uses the current time. |
| 119 | // |
| 120 | // FastHex64ToBuffer() puts a 64-bit unsigned value in hex-format, |
| 121 | // padded to exactly 16 bytes (plus one byte for '\0') |
| 122 | // |
| 123 | // FastHex32ToBuffer() puts a 32-bit unsigned value in hex-format, |
| 124 | // padded to exactly 8 bytes (plus one byte for '\0') |
| 125 | // |
| 126 | // All functions take the output buffer as an arg. FastInt() |
| 127 | // uses at most 22 bytes, FastTime() uses exactly 30 bytes. |
| 128 | // They all return a pointer to the beginning of the output, |
| 129 | // which may not be the beginning of the input buffer. (Though |
| 130 | // for FastTimeToBuffer(), we guarantee that it is.) |
| 131 | // ---------------------------------------------------------------------- |
| 132 | |
| 133 | char *FastInt64ToBuffer(int64 i, char* buffer) { |
| 134 | FastInt64ToBufferLeft(i, buffer); |
| 135 | return buffer; |
| 136 | } |
| 137 | |
| 138 | // Offset into buffer where FastInt32ToBuffer places the end of string |
| 139 | // null character. Also used by FastInt32ToBufferLeft |
| 140 | static const int kFastInt32ToBufferOffset = 11; |
| 141 | |
| 142 | // Copied from http://gears.googlecode.com/svn-history/r395/trunk/gears/base/common/string16.cc |
| 143 | char *FastInt32ToBuffer(int32 i, char* buffer) { |
| 144 | // We could collapse the positive and negative sections, but that |
| 145 | // would be slightly slower for positive numbers... |
| 146 | // 12 bytes is enough to store -2**32, -4294967296. |
| 147 | char* p = buffer + kFastInt32ToBufferOffset; |
| 148 | *p-- = '\0'; |
| 149 | if (i >= 0) { |
| 150 | do { |
| 151 | *p-- = '0' + i % 10; |
| 152 | i /= 10; |
| 153 | } while (i > 0); |
| 154 | return p + 1; |
| 155 | } else { |
| 156 | // On different platforms, % and / have different behaviors for |
| 157 | // negative numbers, so we need to jump through hoops to make sure |
| 158 | // we don't divide negative numbers. |
| 159 | if (i > -10) { |
| 160 | i = -i; |
| 161 | *p-- = '0' + i; |
| 162 | *p = '-'; |
| 163 | return p; |
| 164 | } else { |
| 165 | // Make sure we aren't at MIN_INT, in which case we can't say i = -i |
| 166 | i = i + 10; |
| 167 | i = -i; |
| 168 | *p-- = '0' + i % 10; |
| 169 | // Undo what we did a moment ago |
| 170 | i = i / 10 + 1; |
| 171 | do { |
| 172 | *p-- = '0' + i % 10; |
| 173 | i /= 10; |
| 174 | } while (i > 0); |
| 175 | *p = '-'; |
| 176 | return p; |
| 177 | } |
| 178 | } |
| 179 | } |
| 180 | |
| 181 | char *FastHexToBuffer(int i, char* buffer) { |
| 182 | CHECK(i >= 0) << "FastHexToBuffer() wants non-negative integers, not " << i; |
| 183 | |
| 184 | static const char *hexdigits = "0123456789abcdef" ; |
| 185 | char *p = buffer + 21; |
| 186 | *p-- = '\0'; |
| 187 | do { |
| 188 | *p-- = hexdigits[i & 15]; // mod by 16 |
| 189 | i >>= 4; // divide by 16 |
| 190 | } while (i > 0); |
| 191 | return p + 1; |
| 192 | } |
| 193 | |
| 194 | char *InternalFastHexToBuffer(uint64 value, char* buffer, int num_byte) { |
| 195 | static const char *hexdigits = "0123456789abcdef" ; |
| 196 | buffer[num_byte] = '\0'; |
| 197 | for (int i = num_byte - 1; i >= 0; i--) { |
| 198 | buffer[i] = hexdigits[uint32(value) & 0xf]; |
| 199 | value >>= 4; |
| 200 | } |
| 201 | return buffer; |
| 202 | } |
| 203 | |
| 204 | char *FastHex64ToBuffer(uint64 value, char* buffer) { |
| 205 | return InternalFastHexToBuffer(value, buffer, 16); |
| 206 | } |
| 207 | |
| 208 | char *FastHex32ToBuffer(uint32 value, char* buffer) { |
| 209 | return InternalFastHexToBuffer(value, buffer, 8); |
| 210 | } |
| 211 | |
| 212 | // Several converters use this table to reduce |
| 213 | // division and modulo operations. |
| 214 | static const char two_ASCII_digits[100][2] = { |
| 215 | {'0','0'}, {'0','1'}, {'0','2'}, {'0','3'}, {'0','4'}, |
| 216 | {'0','5'}, {'0','6'}, {'0','7'}, {'0','8'}, {'0','9'}, |
| 217 | {'1','0'}, {'1','1'}, {'1','2'}, {'1','3'}, {'1','4'}, |
| 218 | {'1','5'}, {'1','6'}, {'1','7'}, {'1','8'}, {'1','9'}, |
| 219 | {'2','0'}, {'2','1'}, {'2','2'}, {'2','3'}, {'2','4'}, |
| 220 | {'2','5'}, {'2','6'}, {'2','7'}, {'2','8'}, {'2','9'}, |
| 221 | {'3','0'}, {'3','1'}, {'3','2'}, {'3','3'}, {'3','4'}, |
| 222 | {'3','5'}, {'3','6'}, {'3','7'}, {'3','8'}, {'3','9'}, |
| 223 | {'4','0'}, {'4','1'}, {'4','2'}, {'4','3'}, {'4','4'}, |
| 224 | {'4','5'}, {'4','6'}, {'4','7'}, {'4','8'}, {'4','9'}, |
| 225 | {'5','0'}, {'5','1'}, {'5','2'}, {'5','3'}, {'5','4'}, |
| 226 | {'5','5'}, {'5','6'}, {'5','7'}, {'5','8'}, {'5','9'}, |
| 227 | {'6','0'}, {'6','1'}, {'6','2'}, {'6','3'}, {'6','4'}, |
| 228 | {'6','5'}, {'6','6'}, {'6','7'}, {'6','8'}, {'6','9'}, |
| 229 | {'7','0'}, {'7','1'}, {'7','2'}, {'7','3'}, {'7','4'}, |
| 230 | {'7','5'}, {'7','6'}, {'7','7'}, {'7','8'}, {'7','9'}, |
| 231 | {'8','0'}, {'8','1'}, {'8','2'}, {'8','3'}, {'8','4'}, |
| 232 | {'8','5'}, {'8','6'}, {'8','7'}, {'8','8'}, {'8','9'}, |
| 233 | {'9','0'}, {'9','1'}, {'9','2'}, {'9','3'}, {'9','4'}, |
| 234 | {'9','5'}, {'9','6'}, {'9','7'}, {'9','8'}, {'9','9'} |
| 235 | }; |
| 236 | |
| 237 | char* FastUInt32ToBufferLeft(uint32 u, char* buffer) { |
| 238 | int digits; |
| 239 | const char *ASCII_digits = NULL; |
| 240 | // The idea of this implementation is to trim the number of divides to as few |
| 241 | // as possible by using multiplication and subtraction rather than mod (%), |
| 242 | // and by outputting two digits at a time rather than one. |
| 243 | // The huge-number case is first, in the hopes that the compiler will output |
| 244 | // that case in one branch-free block of code, and only output conditional |
| 245 | // branches into it from below. |
| 246 | if (u >= 1000000000) { // >= 1,000,000,000 |
| 247 | digits = u / 100000000; // 100,000,000 |
| 248 | ASCII_digits = two_ASCII_digits[digits]; |
| 249 | buffer[0] = ASCII_digits[0]; |
| 250 | buffer[1] = ASCII_digits[1]; |
| 251 | buffer += 2; |
| 252 | sublt100_000_000: |
| 253 | u -= digits * 100000000; // 100,000,000 |
| 254 | lt100_000_000: |
| 255 | digits = u / 1000000; // 1,000,000 |
| 256 | ASCII_digits = two_ASCII_digits[digits]; |
| 257 | buffer[0] = ASCII_digits[0]; |
| 258 | buffer[1] = ASCII_digits[1]; |
| 259 | buffer += 2; |
| 260 | sublt1_000_000: |
| 261 | u -= digits * 1000000; // 1,000,000 |
| 262 | lt1_000_000: |
| 263 | digits = u / 10000; // 10,000 |
| 264 | ASCII_digits = two_ASCII_digits[digits]; |
| 265 | buffer[0] = ASCII_digits[0]; |
| 266 | buffer[1] = ASCII_digits[1]; |
| 267 | buffer += 2; |
| 268 | sublt10_000: |
| 269 | u -= digits * 10000; // 10,000 |
| 270 | lt10_000: |
| 271 | digits = u / 100; |
| 272 | ASCII_digits = two_ASCII_digits[digits]; |
| 273 | buffer[0] = ASCII_digits[0]; |
| 274 | buffer[1] = ASCII_digits[1]; |
| 275 | buffer += 2; |
| 276 | sublt100: |
| 277 | u -= digits * 100; |
| 278 | lt100: |
| 279 | digits = u; |
| 280 | ASCII_digits = two_ASCII_digits[digits]; |
| 281 | buffer[0] = ASCII_digits[0]; |
| 282 | buffer[1] = ASCII_digits[1]; |
| 283 | buffer += 2; |
| 284 | done: |
| 285 | *buffer = 0; |
| 286 | return buffer; |
| 287 | } |
| 288 | |
| 289 | if (u < 100) { |
| 290 | digits = u; |
| 291 | if (u >= 10) goto lt100; |
| 292 | *buffer++ = '0' + digits; |
| 293 | goto done; |
| 294 | } |
| 295 | if (u < 10000) { // 10,000 |
| 296 | if (u >= 1000) goto lt10_000; |
| 297 | digits = u / 100; |
| 298 | *buffer++ = '0' + digits; |
| 299 | goto sublt100; |
| 300 | } |
| 301 | if (u < 1000000) { // 1,000,000 |
| 302 | if (u >= 100000) goto lt1_000_000; |
| 303 | digits = u / 10000; // 10,000 |
| 304 | *buffer++ = '0' + digits; |
| 305 | goto sublt10_000; |
| 306 | } |
| 307 | if (u < 100000000) { // 100,000,000 |
| 308 | if (u >= 10000000) goto lt100_000_000; |
| 309 | digits = u / 1000000; // 1,000,000 |
| 310 | *buffer++ = '0' + digits; |
| 311 | goto sublt1_000_000; |
| 312 | } |
| 313 | // we already know that u < 1,000,000,000 |
| 314 | digits = u / 100000000; // 100,000,000 |
| 315 | *buffer++ = '0' + digits; |
| 316 | goto sublt100_000_000; |
| 317 | } |
| 318 | |
| 319 | char* FastUInt64ToBufferLeft(uint64 u64, char* buffer) { |
| 320 | int digits; |
| 321 | const char *ASCII_digits = NULL; |
| 322 | |
| 323 | uint32 u = static_cast<uint32>(u64); |
| 324 | if (u == u64) return FastUInt32ToBufferLeft(u, buffer); |
| 325 | |
| 326 | uint64 top_11_digits = u64 / 1000000000; |
| 327 | buffer = FastUInt64ToBufferLeft(top_11_digits, buffer); |
| 328 | u = u64 - (top_11_digits * 1000000000); |
| 329 | |
| 330 | digits = u / 10000000; // 10,000,000 |
| 331 | DCHECK_LT(digits, 100); |
| 332 | ASCII_digits = two_ASCII_digits[digits]; |
| 333 | buffer[0] = ASCII_digits[0]; |
| 334 | buffer[1] = ASCII_digits[1]; |
| 335 | buffer += 2; |
| 336 | u -= digits * 10000000; // 10,000,000 |
| 337 | digits = u / 100000; // 100,000 |
| 338 | ASCII_digits = two_ASCII_digits[digits]; |
| 339 | buffer[0] = ASCII_digits[0]; |
| 340 | buffer[1] = ASCII_digits[1]; |
| 341 | buffer += 2; |
| 342 | u -= digits * 100000; // 100,000 |
| 343 | digits = u / 1000; // 1,000 |
| 344 | ASCII_digits = two_ASCII_digits[digits]; |
| 345 | buffer[0] = ASCII_digits[0]; |
| 346 | buffer[1] = ASCII_digits[1]; |
| 347 | buffer += 2; |
| 348 | u -= digits * 1000; // 1,000 |
| 349 | digits = u / 10; |
| 350 | ASCII_digits = two_ASCII_digits[digits]; |
| 351 | buffer[0] = ASCII_digits[0]; |
| 352 | buffer[1] = ASCII_digits[1]; |
| 353 | buffer += 2; |
| 354 | u -= digits * 10; |
| 355 | digits = u; |
| 356 | *buffer++ = '0' + digits; |
| 357 | *buffer = 0; |
| 358 | return buffer; |
| 359 | } |
| 360 | |
| 361 | char* FastInt64ToBufferLeft(int64 i, char* buffer) { |
| 362 | uint64 u = i; |
| 363 | if (i < 0) { |
| 364 | *buffer++ = '-'; |
| 365 | u = -i; |
| 366 | } |
| 367 | return FastUInt64ToBufferLeft(u, buffer); |
| 368 | } |
| 369 | |
| 370 | static inline void PutTwoDigits(int i, char* p) { |
| 371 | DCHECK_GE(i, 0); |
| 372 | DCHECK_LT(i, 100); |
| 373 | p[0] = two_ASCII_digits[i][0]; |
| 374 | p[1] = two_ASCII_digits[i][1]; |
| 375 | } |
| 376 | |
| 377 | char* FastTimeToBuffer(time_t s, char* buffer) { |
| 378 | if (s == 0) { |
| 379 | time(&s); |
| 380 | } |
| 381 | |
| 382 | struct tm tm; |
| 383 | if (gmtime_r(&s, &tm) == NULL) { |
| 384 | // Error message must fit in 30-char buffer. |
| 385 | memcpy(buffer, "Invalid:" , sizeof("Invalid:" )); |
| 386 | FastInt64ToBufferLeft(s, buffer+strlen(buffer)); |
| 387 | return buffer; |
| 388 | } |
| 389 | |
| 390 | // strftime format: "%a, %d %b %Y %H:%M:%S GMT", |
| 391 | // but strftime does locale stuff which we do not want |
| 392 | // plus strftime takes > 10x the time of hard code |
| 393 | |
| 394 | const char* weekday_name = "Xxx" ; |
| 395 | switch (tm.tm_wday) { |
| 396 | default: { DCHECK(false); } break; |
| 397 | case 0: weekday_name = "Sun" ; break; |
| 398 | case 1: weekday_name = "Mon" ; break; |
| 399 | case 2: weekday_name = "Tue" ; break; |
| 400 | case 3: weekday_name = "Wed" ; break; |
| 401 | case 4: weekday_name = "Thu" ; break; |
| 402 | case 5: weekday_name = "Fri" ; break; |
| 403 | case 6: weekday_name = "Sat" ; break; |
| 404 | } |
| 405 | |
| 406 | const char* month_name = "Xxx" ; |
| 407 | switch (tm.tm_mon) { |
| 408 | default: { DCHECK(false); } break; |
| 409 | case 0: month_name = "Jan" ; break; |
| 410 | case 1: month_name = "Feb" ; break; |
| 411 | case 2: month_name = "Mar" ; break; |
| 412 | case 3: month_name = "Apr" ; break; |
| 413 | case 4: month_name = "May" ; break; |
| 414 | case 5: month_name = "Jun" ; break; |
| 415 | case 6: month_name = "Jul" ; break; |
| 416 | case 7: month_name = "Aug" ; break; |
| 417 | case 8: month_name = "Sep" ; break; |
| 418 | case 9: month_name = "Oct" ; break; |
| 419 | case 10: month_name = "Nov" ; break; |
| 420 | case 11: month_name = "Dec" ; break; |
| 421 | } |
| 422 | |
| 423 | // Write out the buffer. |
| 424 | |
| 425 | memcpy(buffer+0, weekday_name, 3); |
| 426 | buffer[3] = ','; |
| 427 | buffer[4] = ' '; |
| 428 | |
| 429 | PutTwoDigits(tm.tm_mday, buffer+5); |
| 430 | buffer[7] = ' '; |
| 431 | |
| 432 | memcpy(buffer+8, month_name, 3); |
| 433 | buffer[11] = ' '; |
| 434 | |
| 435 | int32 year = tm.tm_year + 1900; |
| 436 | PutTwoDigits(year/100, buffer+12); |
| 437 | PutTwoDigits(year%100, buffer+14); |
| 438 | buffer[16] = ' '; |
| 439 | |
| 440 | PutTwoDigits(tm.tm_hour, buffer+17); |
| 441 | buffer[19] = ':'; |
| 442 | |
| 443 | PutTwoDigits(tm.tm_min, buffer+20); |
| 444 | buffer[22] = ':'; |
| 445 | |
| 446 | PutTwoDigits(tm.tm_sec, buffer+23); |
| 447 | |
| 448 | // includes ending NUL |
| 449 | memcpy(buffer+25, " GMT" , 5); |
| 450 | |
| 451 | return buffer; |
| 452 | } |
| 453 | |
| 454 | // ---------------------------------------------------------------------- |
| 455 | // ParseLeadingUInt64Value |
| 456 | // ParseLeadingInt64Value |
| 457 | // ParseLeadingHex64Value |
| 458 | // A simple parser for long long values. Returns the parsed value if a |
| 459 | // valid integer is found; else returns deflt |
| 460 | // UInt64 and Int64 cannot handle decimal numbers with leading 0s. |
| 461 | // -------------------------------------------------------------------- |
| 462 | uint64 ParseLeadingUInt64Value(const char *str, uint64 deflt) { |
| 463 | char *error = NULL; |
| 464 | const uint64 value = strtoull(str, &error, 0); |
| 465 | return (error == str) ? deflt : value; |
| 466 | } |
| 467 | |
| 468 | int64 ParseLeadingInt64Value(const char *str, int64 deflt) { |
| 469 | char *error = NULL; |
| 470 | const int64 value = strtoll(str, &error, 0); |
| 471 | return (error == str) ? deflt : value; |
| 472 | } |
| 473 | |
| 474 | uint64 ParseLeadingHex64Value(const char *str, uint64 deflt) { |
| 475 | char *error = NULL; |
| 476 | const uint64 value = strtoull(str, &error, 16); |
| 477 | return (error == str) ? deflt : value; |
| 478 | } |
| 479 | |
| 480 | // ---------------------------------------------------------------------- |
| 481 | // ParseLeadingDec64Value |
| 482 | // ParseLeadingUDec64Value |
| 483 | // A simple parser for [u]int64 values. Returns the parsed value |
| 484 | // if a valid value is found; else returns deflt |
| 485 | // The string passed in is treated as *10 based*. |
| 486 | // This can handle strings with leading 0s. |
| 487 | // -------------------------------------------------------------------- |
| 488 | |
| 489 | int64 ParseLeadingDec64Value(const char *str, int64 deflt) { |
| 490 | char *error = NULL; |
| 491 | const int64 value = strtoll(str, &error, 10); |
| 492 | return (error == str) ? deflt : value; |
| 493 | } |
| 494 | |
| 495 | uint64 ParseLeadingUDec64Value(const char *str, uint64 deflt) { |
| 496 | char *error = NULL; |
| 497 | const uint64 value = strtoull(str, &error, 10); |
| 498 | return (error == str) ? deflt : value; |
| 499 | } |
| 500 | |
| 501 | bool DictionaryParse(const string& encoded_str, |
| 502 | vector<pair<string, string> >* items) { |
| 503 | vector<string> entries; |
| 504 | SplitStringUsing(encoded_str, "," , &entries); |
| 505 | for (int i = 0; i < entries.size(); ++i) { |
| 506 | vector<string> fields; |
| 507 | SplitStringAllowEmpty(entries[i], ":" , &fields); |
| 508 | if (fields.size() != 2) // parsing error |
| 509 | return false; |
| 510 | items->push_back(make_pair(fields[0], fields[1])); |
| 511 | } |
| 512 | return true; |
| 513 | } |
| 514 | |