1 | // Copyright 2009 Google Inc. All Rights Reserved. |
2 | // |
3 | // ExactFloat is a multiple-precision floating point type based on the OpenSSL |
4 | // Bignum library. It has the same interface as the built-in "float" and |
5 | // "double" types, but only supports the subset of operators and intrinsics |
6 | // where it is possible to compute the result exactly. So for example, |
7 | // ExactFloat supports addition and multiplication but not division (since in |
8 | // general, the quotient of two floating-point numbers cannot be represented |
9 | // exactly). Exact arithmetic is useful for geometric algorithms, especially |
10 | // for disambiguating cases where ordinary double-precision arithmetic yields |
11 | // an uncertain result. |
12 | // |
13 | // ExactFloat is a subset of the faster and more capable MPFloat class (which |
14 | // is based on the GNU MPFR library). The main reason to use this class |
15 | // rather than MPFloat is that it is subject to a BSD-style license rather |
16 | // than the much restrictive LGPL license. |
17 | // |
18 | // It has the following features: |
19 | // |
20 | // - ExactFloat uses the same syntax as the built-in "float" and "double" |
21 | // types, for example: x += 4 + fabs(2*y*y - z*z). There are a few |
22 | // differences (see below), but the syntax is compatible enough so that |
23 | // ExactFloat can be used as a template argument to templatized classes |
24 | // such as Vector2, VectorN, Matrix3x3, etc. |
25 | // |
26 | // - Results are not rounded; instead, precision is increased so that the |
27 | // result can be represented exactly. An inexact result is returned only |
28 | // in the case of underflow or overflow (yielding signed zero or infinity |
29 | // respectively), or if the maximum allowed precision is exceeded (yielding |
30 | // NaN). ExactFloat uses IEEE 754-2008 rules for handling infinities, NaN, |
31 | // rounding to integers, etc. |
32 | // |
33 | // - ExactFloat only supports calculations where the result can be |
34 | // represented exactly. Therefore it supports intrinsics such as fabs() |
35 | // but not transcendentals such as sin(), sqrt(), etc. |
36 | // |
37 | // Syntax Compatibility with "float" and "double" |
38 | // ---------------------------------------------- |
39 | // |
40 | // ExactFloat supports a subset of the operators and intrinsics for the |
41 | // built-in "double" type. (Thus it supports fabs() but not fabsf(), for |
42 | // example.) The syntax is different only in the following cases: |
43 | // |
44 | // - Casts and implicit conversions to built-in types (including "bool") are |
45 | // not supported. So for example, the following will not compile: |
46 | // |
47 | // ExactFloat x = 7.5; |
48 | // double y = x; // ERROR: use x.ToDouble() instead |
49 | // long z = x; // ERROR: use x.ToDouble() or lround(trunc(x)) |
50 | // q = static_cast<int>(x); // ERROR: use x.ToDouble() or lround(trunc(x)) |
51 | // if (x) { ... } // ERROR: use (x != 0) instead |
52 | // |
53 | // - The glibc floating-point classification macros (fpclassify, isfinite, |
54 | // isnormal, isnan, isinf) are not supported. Instead there are |
55 | // zero-argument methods: |
56 | // |
57 | // ExactFloat x; |
58 | // if (isnan(x)) { ... } // ERROR: use (x.is_nan()) instead |
59 | // if (isinf(x)) { ... } // ERROR: use (x.is_inf()) instead |
60 | // |
61 | // Using ExactFloat with Vector3, etc. |
62 | // ----------------------------------- |
63 | // |
64 | // ExactFloat can be used with templatized classes such as Vector2 and Vector3 |
65 | // (see "util/math/vector3-inl.h"), with the following limitations: |
66 | // |
67 | // - Cast() can be used to convert other vector types to an ExactFloat vector |
68 | // type, but not the other way around. This is because there are no |
69 | // implicit conversions from ExactFloat to built-in types. You can work |
70 | // around this by calling an explicit conversion method such as |
71 | // ToDouble(). For example: |
72 | // |
73 | // typedef Vector3<ExactFloat> Vector3_xf; |
74 | // Vector3_xf x; |
75 | // Vector3_d y; |
76 | // x = Vector3_xf::Cast(y); // This works. |
77 | // y = Vector3_d::Cast(x); // This doesn't. |
78 | // y = Vector3_d(x[0].ToDouble(), x[1].ToDouble(), x[2].ToDouble()); // OK |
79 | // |
80 | // - IsNaN() is not supported because it calls isnan(), which is defined as a |
81 | // macro in <math.h> and therefore can't easily be overrided. |
82 | // |
83 | // Precision Semantics |
84 | // ------------------- |
85 | // |
86 | // Unlike MPFloat, ExactFloat does not allow a maximum precision to be |
87 | // specified (it is always unbounded). Therefore it does not have any of the |
88 | // corresponding constructors. |
89 | // |
90 | // The current precision of an ExactFloat (i.e., the number of bits in its |
91 | // mantissa) is returned by prec(). The precision is increased as necessary |
92 | // so that the result of every operation can be represented exactly. |
93 | |
94 | #ifndef UTIL_MATH_EXACTFLOAT_EXACTFLOAT_H_ |
95 | #define UTIL_MATH_EXACTFLOAT_EXACTFLOAT_H_ |
96 | |
97 | #include <math.h> |
98 | #include <limits.h> |
99 | #include <iostream> |
100 | using std::ostream; |
101 | using std::cout; |
102 | using std::endl; |
103 | |
104 | #include <string> |
105 | using std::string; |
106 | |
107 | #include "base/logging.h" |
108 | #include "base/integral_types.h" |
109 | |
110 | namespace bn { |
111 | #include "bn/bn.h" |
112 | } |
113 | |
114 | using namespace bn; |
115 | |
116 | class ExactFloat { |
117 | public: |
118 | // The following limits are imposed by OpenSSL. |
119 | |
120 | // The maximum exponent supported. If a value has an exponent larger than |
121 | // this, it is replaced by infinity (with the appropriate sign). |
122 | static const int kMaxExp = 200*1000*1000; // About 10**(60 million) |
123 | |
124 | // The minimum exponent supported. If a value has an exponent less than |
125 | // this, it is replaced by zero (with the appropriate sign). |
126 | static const int kMinExp = -kMaxExp; // About 10**(-60 million) |
127 | |
128 | // The maximum number of mantissa bits supported. If a value has more |
129 | // mantissa bits than this, it is replaced with NaN. (It is expected that |
130 | // users of this class will never want this much precision.) |
131 | static const int kMaxPrec = 64 << 20; // About 20 million digits |
132 | |
133 | // Rounding modes. kRoundTiesToEven and kRoundTiesAwayFromZero both round |
134 | // to the nearest representable value unless two values are equally close. |
135 | // In that case kRoundTiesToEven rounds to the nearest even value, while |
136 | // kRoundTiesAwayFromZero always rounds away from zero. |
137 | enum RoundingMode { |
138 | kRoundTiesToEven, |
139 | kRoundTiesAwayFromZero, |
140 | kRoundTowardZero, |
141 | kRoundAwayFromZero, |
142 | kRoundTowardPositive, |
143 | kRoundTowardNegative |
144 | }; |
145 | |
146 | ///////////////////////////////////////////////////////////////////////////// |
147 | // Constructors |
148 | |
149 | // The default constructor initializes the value to zero. (The initial |
150 | // value must be zero rather than NaN for compatibility with the built-in |
151 | // float types.) |
152 | inline ExactFloat(); |
153 | |
154 | // Construct an ExactFloat from a "double". The constructor is implicit so |
155 | // that this class can be used as a replacement for "float" or "double" in |
156 | // templatized libraries. (With an explicit constructor, code such as |
157 | // "ExactFloat f = 2.5;" would not compile.) All double-precision values are |
158 | // supported, including denormalized numbers, infinities, and NaNs. |
159 | ExactFloat(double v); |
160 | |
161 | // Construct an ExactFloat from an "int". Note that in general, ints are |
162 | // automatically converted to doubles and so would be handled by the |
163 | // constructor above. However, the particular argument (0) is ambiguous; the |
164 | // compiler doesn't know whether to treat it as a "double" or "NULL" |
165 | // (invoking the const char* constructor below). |
166 | // |
167 | // We do not provide constructors for "unsigned", "long", "unsigned long", |
168 | // "long long", or "unsigned long long", since these types are not typically |
169 | // used in floating-point calculations and it is safer to require them to be |
170 | // explicitly cast. |
171 | ExactFloat(int v); |
172 | |
173 | // Construct an ExactFloat from a string (such as "1.2e50"). Requires that |
174 | // the value is exactly representable as a floating-point number (so for |
175 | // example, "0.125" is allowed but "0.1" is not). |
176 | explicit ExactFloat(const char* s) { Unimplemented(); } |
177 | |
178 | // Copy constructor. |
179 | ExactFloat(const ExactFloat& b); |
180 | |
181 | // The destructor is not virtual for efficiency reasons. Therefore no |
182 | // subclass should declare additional fields that require destruction. |
183 | inline ~ExactFloat(); |
184 | |
185 | ///////////////////////////////////////////////////////////////////// |
186 | // Constants |
187 | // |
188 | // As an alternative to the constants below, you can also just use the |
189 | // constants defined in <math.h>, for example: |
190 | // |
191 | // ExactFloat x = NAN, y = -INFINITY; |
192 | |
193 | // Return an ExactFloat equal to positive zero (if sign >= 0) or |
194 | // negative zero (if sign < 0). |
195 | static ExactFloat SignedZero(int sign); |
196 | |
197 | // Return an ExactFloat equal to positive infinity (if sign >= 0) or |
198 | // negative infinity (if sign < 0). |
199 | static ExactFloat Infinity(int sign); |
200 | |
201 | // Return an ExactFloat that is NaN (Not-a-Number). |
202 | static ExactFloat NaN(); |
203 | |
204 | ///////////////////////////////////////////////////////////////////////////// |
205 | // Accessor Methods |
206 | |
207 | // Return the maximum precision of the ExactFloat. This method exists only |
208 | // for compatibility with MPFloat. |
209 | int max_prec() const { return kMaxPrec; } |
210 | |
211 | // Return the actual precision of this ExactFloat (the current number of |
212 | // bits in its mantissa). Returns 0 for non-normal numbers such as NaN. |
213 | int prec() const; |
214 | |
215 | // Return the exponent of this ExactFloat given that the mantissa is in the |
216 | // range [0.5, 1). It is an error to call this method if the value is zero, |
217 | // infinity, or NaN. |
218 | int exp() const; |
219 | |
220 | // Set the value of the ExactFloat to +0 (if sign >= 0) or -0 (if sign < 0). |
221 | void set_zero(int sign); |
222 | |
223 | // Set the value of the ExactFloat to positive infinity (if sign >= 0) or |
224 | // negative infinity (if sign < 0). |
225 | void set_inf(int sign); |
226 | |
227 | // Set the value of the ExactFloat to NaN (Not-a-Number). |
228 | void set_nan(); |
229 | |
230 | // Unfortunately, isinf(x), isnan(x), isnormal(x), and isfinite(x) are |
231 | // defined as macros in <math.h>. Therefore we can't easily extend them |
232 | // here. Instead we provide methods with underscores in their names that do |
233 | // the same thing: x.is_inf(), etc. |
234 | // |
235 | // These macros are not implemented: signbit(x), fpclassify(x). |
236 | |
237 | // Return true if this value is zero (including negative zero). |
238 | inline bool is_zero() const; |
239 | |
240 | // Return true if this value is infinity (positive or negative). |
241 | inline bool is_inf() const; |
242 | |
243 | // Return true if this value is NaN (Not-a-Number). |
244 | inline bool is_nan() const; |
245 | |
246 | // Return true if this value is a normal floating-point number. Non-normal |
247 | // values (zero, infinity, and NaN) often need to be handled separately |
248 | // because they are represented using special exponent values and their |
249 | // mantissa is not defined. |
250 | inline bool is_normal() const; |
251 | |
252 | // Return true if this value is a normal floating-point number or zero, |
253 | // i.e. it is not infinity or NaN. |
254 | inline bool is_finite() const; |
255 | |
256 | // Return true if the sign bit is set (this includes negative zero). |
257 | inline bool sign_bit() const; |
258 | |
259 | // Return +1 if this ExactFloat is positive, -1 if it is negative, and 0 |
260 | // if it is zero or NaN. Note that unlike sign_bit(), sgn() returns 0 for |
261 | // both positive and negative zero. |
262 | inline int sgn() const; |
263 | |
264 | ///////////////////////////////////////////////////////////////////////////// |
265 | // Conversion Methods |
266 | // |
267 | // Note that some conversions are defined as functions further below, |
268 | // e.g. to convert to an integer you can use lround(), llrint(), etc. |
269 | |
270 | // Round to double precision. Note that since doubles have a much smaller |
271 | // exponent range than ExactFloats, very small values may be rounded to |
272 | // (positive or negative) zero, and very large values may be rounded to |
273 | // infinity. |
274 | // |
275 | // It is very important to make this a named method rather than an implicit |
276 | // conversion, because otherwise there would be a silent loss of precision |
277 | // whenever some desired operator or function happens not to be implemented. |
278 | // For example, if fabs() were not implemented and "x" and "y" were |
279 | // ExactFloats, then x = fabs(y) would silently convert "y" to a "double", |
280 | // take its absolute value, and convert it back to an ExactFloat. |
281 | double ToDouble() const; |
282 | |
283 | // Return a human-readable string such that if two values with the same |
284 | // precision are different, then their string representations are different. |
285 | // The format is similar to printf("%g"), except that the number of |
286 | // significant digits depends on the precision (with a minimum of 10). |
287 | // Trailing zeros are stripped (just like "%g"). |
288 | // |
289 | // Note that if two values have different precisions, they may have the same |
290 | // ToString() value even though their values are slightly different. If you |
291 | // need to distinguish such values, use ToUniqueString() intead. |
292 | string ToString() const; |
293 | |
294 | // Return a string formatted according to printf("%Ng") where N is the given |
295 | // maximum number of significant digits. |
296 | string ToStringWithMaxDigits(int max_digits) const; |
297 | |
298 | // Return a human-readable string such that if two ExactFloats have different |
299 | // values, then their string representations are always different. This |
300 | // method is useful for debugging. The string has the form "value<prec>", |
301 | // where "prec" is the actual precision of the ExactFloat (e.g., "0.215<50>"). |
302 | string ToUniqueString() const; |
303 | |
304 | // Return an upper bound on the number of significant digits required to |
305 | // distinguish any two floating-point numbers with the given precision when |
306 | // they are formatted as decimal strings in exponential format. |
307 | static int NumSignificantDigitsForPrec(int prec); |
308 | |
309 | // Output the ExactFloat in human-readable format, e.g. for logging. |
310 | friend ostream& operator<<(ostream& o, ExactFloat const& f) { |
311 | return o << f.ToString(); |
312 | } |
313 | |
314 | ///////////////////////////////////////////////////////////////////////////// |
315 | // Other Methods |
316 | |
317 | // Round the ExactFloat so that its mantissa has at most "max_prec" bits |
318 | // using the given rounding mode. Requires "max_prec" to be at least 2 |
319 | // (since kRoundTiesToEven doesn't make sense with fewer bits than this). |
320 | ExactFloat RoundToMaxPrec(int max_prec, RoundingMode mode) const; |
321 | |
322 | ///////////////////////////////////////////////////////////////////////////// |
323 | // Operators |
324 | |
325 | // Assignment operator. |
326 | ExactFloat& operator=(const ExactFloat& b); |
327 | |
328 | // Unary plus. |
329 | ExactFloat operator+() const { return *this; } |
330 | |
331 | // Unary minus. |
332 | ExactFloat operator-() const; |
333 | |
334 | // Addition. |
335 | friend ExactFloat operator+(const ExactFloat& a, const ExactFloat& b); |
336 | |
337 | // Subtraction. |
338 | friend ExactFloat operator-(const ExactFloat& a, const ExactFloat& b); |
339 | |
340 | // Multiplication. |
341 | friend ExactFloat operator*(const ExactFloat& a, const ExactFloat& b); |
342 | |
343 | // Division is not implemented because the result cannot be represented |
344 | // exactly in general. Doing this properly would require extending all the |
345 | // operations to support rounding to a specified precision. |
346 | |
347 | // Arithmetic assignment operators (+=, -=, *=). |
348 | ExactFloat& operator+=(const ExactFloat& b) { return (*this = *this + b); } |
349 | ExactFloat& operator-=(const ExactFloat& b) { return (*this = *this - b); } |
350 | ExactFloat& operator*=(const ExactFloat& b) { return (*this = *this * b); } |
351 | |
352 | // Comparison operators (==, !=, <, <=, >, >=). |
353 | friend bool operator==(const ExactFloat& a, const ExactFloat& b); |
354 | friend bool operator<(const ExactFloat& a, const ExactFloat& b); |
355 | // These don't need to be friends but are declared here for completeness. |
356 | inline friend bool operator!=(const ExactFloat& a, const ExactFloat& b); |
357 | inline friend bool operator<=(const ExactFloat& a, const ExactFloat& b); |
358 | inline friend bool operator>(const ExactFloat& a, const ExactFloat& b); |
359 | inline friend bool operator>=(const ExactFloat& a, const ExactFloat& b); |
360 | |
361 | ///////////////////////////////////////////////////////////////////// |
362 | // Math Intrinsics |
363 | // |
364 | // The math intrinsics currently supported by ExactFloat are listed below. |
365 | // Except as noted, they behave identically to the usual glibc intrinsics |
366 | // except that they have greater precision. See the man pages for more |
367 | // information. |
368 | |
369 | //////// Miscellaneous simple arithmetic functions. |
370 | |
371 | // Absolute value. |
372 | friend ExactFloat fabs(const ExactFloat& a); |
373 | |
374 | // Maximum of two values. |
375 | friend ExactFloat fmax(const ExactFloat& a, const ExactFloat& b); |
376 | |
377 | // Minimum of two values. |
378 | friend ExactFloat fmin(const ExactFloat& a, const ExactFloat& b); |
379 | |
380 | // Positive difference: max(a - b, 0). |
381 | friend ExactFloat fdim(const ExactFloat& a, const ExactFloat& b); |
382 | |
383 | //////// Integer rounding functions that return ExactFloat values. |
384 | |
385 | // Round up to the nearest integer. |
386 | friend ExactFloat ceil(const ExactFloat& a); |
387 | |
388 | // Round down to the nearest integer. |
389 | friend ExactFloat floor(const ExactFloat& a); |
390 | |
391 | // Round to the nearest integer not larger in absolute value. |
392 | // For example: f(-1.9) = -1, f(2.9) = 2. |
393 | friend ExactFloat trunc(const ExactFloat& a); |
394 | |
395 | // Round to the nearest integer, rounding halfway cases away from zero. |
396 | // For example: f(-0.5) = -1, f(0.5) = 1, f(1.5) = 2, f(2.5) = 3. |
397 | friend ExactFloat round(const ExactFloat& a); |
398 | |
399 | // Round to the nearest integer, rounding halfway cases to an even integer. |
400 | // For example: f(-0.5) = 0, f(0.5) = 0, f(1.5) = 2, f(2.5) = 2. |
401 | friend ExactFloat rint(const ExactFloat& a); |
402 | |
403 | // A synonym for rint(). |
404 | friend ExactFloat nearbyint(const ExactFloat& a) { return rint(a); } |
405 | |
406 | //////// Integer rounding functions that return C++ integer types. |
407 | |
408 | // Like rint(), but rounds to the nearest "long" value. Returns the |
409 | // minimum/maximum possible integer if the value is out of range. |
410 | friend long lrint(const ExactFloat& a); |
411 | |
412 | // Like rint(), but rounds to the nearest "long long" value. Returns the |
413 | // minimum/maximum possible integer if the value is out of range. |
414 | friend long long llrint(const ExactFloat& a); |
415 | |
416 | // Like round(), but rounds to the nearest "long" value. Returns the |
417 | // minimum/maximum possible integer if the value is out of range. |
418 | friend long lround(const ExactFloat& a); |
419 | |
420 | // Like round(), but rounds to the nearest "long long" value. Returns the |
421 | // minimum/maximum possible integer if the value is out of range. |
422 | friend long long llround(const ExactFloat& a); |
423 | |
424 | //////// Remainder functions. |
425 | |
426 | // The remainder of dividing "a" by "b", where the quotient is rounded toward |
427 | // zero to the nearest integer. Similar to (a - trunc(a / b) * b). |
428 | friend ExactFloat fmod(const ExactFloat& a, const ExactFloat& b) { |
429 | // Note that it is possible to implement this operation exactly, it just |
430 | // hasn't been done. |
431 | return Unimplemented(); |
432 | } |
433 | |
434 | // The remainder of dividing "a" by "b", where the quotient is rounded to the |
435 | // nearest integer, rounding halfway cases to an even integer. Similar to |
436 | // (a - rint(a / b) * b). |
437 | friend ExactFloat remainder(const ExactFloat& a, const ExactFloat& b) { |
438 | // Note that it is possible to implement this operation exactly, it just |
439 | // hasn't been done. |
440 | return Unimplemented(); |
441 | } |
442 | |
443 | // A synonym for remainder(). |
444 | friend ExactFloat drem(const ExactFloat& a, const ExactFloat& b) { |
445 | return remainder(a, b); |
446 | } |
447 | |
448 | // Break the argument "a" into integer and fractional parts, each of which |
449 | // has the same sign as "a". The fractional part is returned, and the |
450 | // integer part is stored in the output parameter "i_ptr". Both output |
451 | // values are set to have the same maximum precision as "a". |
452 | friend ExactFloat modf(const ExactFloat& a, ExactFloat* i_ptr) { |
453 | // Note that it is possible to implement this operation exactly, it just |
454 | // hasn't been done. |
455 | return Unimplemented(); |
456 | } |
457 | |
458 | //////// Floating-point manipulation functions. |
459 | |
460 | // Return an ExactFloat with the magnitude of "a" and the sign bit of "b". |
461 | // (Note that an IEEE zero can be either positive or negative.) |
462 | friend ExactFloat copysign(const ExactFloat& a, const ExactFloat& b); |
463 | |
464 | // Convert "a" to a normalized fraction in the range [0.5, 1) times a power |
465 | // of two. Return the fraction and set "exp" to the exponent. If "a" is |
466 | // zero, infinity, or NaN then return "a" and set "exp" to zero. |
467 | friend ExactFloat frexp(const ExactFloat& a, int* exp); |
468 | |
469 | // Return "a" multiplied by 2 raised to the power "exp". |
470 | friend ExactFloat ldexp(const ExactFloat& a, int exp); |
471 | |
472 | // A synonym for ldexp(). |
473 | friend ExactFloat scalbn(const ExactFloat& a, int exp) { |
474 | return ldexp(a, exp); |
475 | } |
476 | |
477 | // A version of ldexp() where "exp" is a long integer. |
478 | friend ExactFloat scalbln(const ExactFloat& a, long exp) { |
479 | return ldexp(a, exp); |
480 | } |
481 | |
482 | // Convert "a" to a normalized fraction in the range [1,2) times a power of |
483 | // two, and return the exponent value as an integer. This is equivalent to |
484 | // lrint(floor(log2(fabs(a)))) but it is computed more efficiently. Returns |
485 | // the constants documented in the man page for zero, infinity, or NaN. |
486 | friend int ilogb(const ExactFloat& a); |
487 | |
488 | // Convert "a" to a normalized fraction in the range [1,2) times a power of |
489 | // two, and return the exponent value as an ExactFloat. This is equivalent to |
490 | // floor(log2(fabs(a))) but it is computed more efficiently. |
491 | friend ExactFloat logb(const ExactFloat& a); |
492 | |
493 | protected: |
494 | // Non-normal numbers are represented using special exponent values and a |
495 | // mantissa of zero. Do not change these values; methods such as |
496 | // is_normal() make assumptions about their ordering. Non-normal numbers |
497 | // can have either a positive or negative sign (including zero and NaN). |
498 | static const int32 kExpNaN = INT_MAX; |
499 | static const int32 kExpInfinity = INT_MAX - 1; |
500 | static const int32 kExpZero = INT_MAX - 2; |
501 | |
502 | // Normal numbers are represented as (sign_ * bn_ * (2 ** bn_exp_)), where: |
503 | // - sign_ is either +1 or -1 |
504 | // - bn_ is a BIGNUM with a positive value |
505 | // - bn_exp_ is the base-2 exponent applied to bn_. |
506 | int32 sign_; |
507 | int32 bn_exp_; |
508 | BIGNUM bn_; |
509 | |
510 | // A standard IEEE "double" has a 53-bit mantissa consisting of a 52-bit |
511 | // fraction plus an implicit leading "1" bit. |
512 | static const int kDoubleMantissaBits = 53; |
513 | |
514 | // Convert an ExactFloat with no more than 53 bits in its mantissa to a |
515 | // "double". This method handles non-normal values (NaN, etc). |
516 | double ToDoubleHelper() const; |
517 | |
518 | // Round an ExactFloat so that it is a multiple of (2 ** bit_exp), using the |
519 | // given rounding mode. |
520 | ExactFloat RoundToPowerOf2(int bit_exp, RoundingMode mode) const; |
521 | |
522 | // Convert the ExactFloat to a decimal value of the form 0.ddd * (10 ** x), |
523 | // with at most "max_digits" significant digits (trailing zeros are removed). |
524 | // Set (*digits) to the ASCII digits and return the decimal exponent "x". |
525 | int GetDecimalDigits(int max_digits, string* digits) const; |
526 | |
527 | // Return a_sign * fabs(a) + b_sign * fabs(b). Used to implement addition |
528 | // and subtraction. |
529 | static ExactFloat SignedSum(int a_sign, const ExactFloat* a, |
530 | int b_sign, const ExactFloat* b); |
531 | |
532 | // Convert an ExactFloat to its canonical form. Underflow results in signed |
533 | // zero, overflow results in signed infinity, and precision overflow results |
534 | // in NaN. A zero mantissa is converted to the canonical zero value with |
535 | // the given sign; otherwise the mantissa is normalized so that its low bit |
536 | // is 1. Non-normal numbers are left unchanged. |
537 | void Canonicalize(); |
538 | |
539 | // Scale the mantissa of this ExactFloat so that it has the same bn_exp_ as |
540 | // "b", then return -1, 0, or 1 according to whether the scaled mantissa is |
541 | // less, equal, or greater than the mantissa of "b". Requires that both |
542 | // values are normal. |
543 | int ScaleAndCompare(const ExactFloat& b) const; |
544 | |
545 | // Return true if the magnitude of this ExactFloat is less than the |
546 | // magnitude of "b". Requires that neither value is NaN. |
547 | bool UnsignedLess(const ExactFloat& b) const; |
548 | |
549 | // Return an ExactFloat with the magnitude of this ExactFloat and the given |
550 | // sign. (Similar to copysign, except that the sign is given explicitly |
551 | // rather than being copied from another ExactFloat.) |
552 | inline ExactFloat CopyWithSign(int sign) const; |
553 | |
554 | // Convert an ExactFloat to an integer of type "T" using the given rounding |
555 | // mode. The type "T" must be signed. Returns the largest possible integer |
556 | // for NaN, and clamps out of range values to the largest or smallest |
557 | // possible values. |
558 | template <class T> T ToInteger(RoundingMode mode) const; |
559 | |
560 | // Log a fatal error message (used for unimplemented methods). |
561 | static ExactFloat Unimplemented(); |
562 | }; |
563 | |
564 | ///////////////////////////////////////////////////////////////////////// |
565 | // Implementation details follow: |
566 | |
567 | inline ExactFloat::ExactFloat() : sign_(1), bn_exp_(kExpZero) { |
568 | BN_init(&bn_); |
569 | } |
570 | |
571 | inline ExactFloat::~ExactFloat() { |
572 | BN_free(&bn_); |
573 | } |
574 | |
575 | inline bool ExactFloat::is_zero() const { return bn_exp_ == kExpZero; } |
576 | inline bool ExactFloat::is_inf() const { return bn_exp_ == kExpInfinity; } |
577 | inline bool ExactFloat::is_nan() const { return bn_exp_ == kExpNaN; } |
578 | inline bool ExactFloat::is_normal() const { return bn_exp_ < kExpZero; } |
579 | inline bool ExactFloat::is_finite() const { return bn_exp_ <= kExpZero; } |
580 | inline bool ExactFloat::sign_bit() const { return sign_ < 0; } |
581 | |
582 | inline int ExactFloat::sgn() const { |
583 | return (is_nan() || is_zero()) ? 0 : sign_; |
584 | } |
585 | |
586 | inline bool operator!=(const ExactFloat& a, const ExactFloat& b) { |
587 | return !(a == b); |
588 | } |
589 | |
590 | inline bool operator<=(const ExactFloat& a, const ExactFloat& b) { |
591 | // NaN is unordered compared to everything, including itself. |
592 | if (a.is_nan() || b.is_nan()) return false; |
593 | return !(b < a); |
594 | } |
595 | |
596 | inline bool operator>(const ExactFloat& a, const ExactFloat& b) { |
597 | return b < a; |
598 | } |
599 | |
600 | inline bool operator>=(const ExactFloat& a, const ExactFloat& b) { |
601 | return b <= a; |
602 | } |
603 | |
604 | inline ExactFloat ExactFloat::CopyWithSign(int sign) const { |
605 | ExactFloat r = *this; |
606 | r.sign_ = sign; |
607 | return r; |
608 | } |
609 | |
610 | #endif // UTIL_MATH_EXACTFLOAT_EXACTFLOAT_H_ |
611 | |