| 1 | // Copyright 2005 Google Inc. All Rights Reserved. |
| 2 | |
| 3 | #include "s2.h" |
| 4 | |
| 5 | // #include "base/commandlineflags.h" |
| 6 | #include "base/integral_types.h" |
| 7 | #include "base/logging.h" |
| 8 | #include "util/math/matrix3x3-inl.h" |
| 9 | #include "util/math/vector2-inl.h" |
| 10 | |
| 11 | // Define storage for header file constants (the values are not needed |
| 12 | // here for integral constants). |
| 13 | int const S2::kMaxCellLevel; |
| 14 | int const S2::kSwapMask; |
| 15 | int const S2::kInvertMask; |
| 16 | double const S2::kMaxDetError = 0.8e-15; // 14 * (2**-54) |
| 17 | |
| 18 | COMPILE_ASSERT(S2::kSwapMask == 0x01 && S2::kInvertMask == 0x02, |
| 19 | masks_changed); |
| 20 | |
| 21 | // DEFINE_bool(s2debug, DEBUG_MODE, "Enable debugging checks in s2 code"); |
| 22 | bool const S2::debug = DEBUG_MODE; |
| 23 | |
| 24 | static const uint32 MIX32 = 0x12b9b0a1UL; |
| 25 | #include<hash_set> |
| 26 | namespace __gnu_cxx { |
| 27 | |
| 28 | |
| 29 | |
| 30 | // The hash function due to Bob Jenkins (see |
| 31 | // http://burtleburtle.net/bob/hash/index.html). |
| 32 | static inline void mix(uint32& a, uint32& b, uint32& c) { // 32bit version |
| 33 | a -= b; a -= c; a ^= (c>>13); |
| 34 | b -= c; b -= a; b ^= (a<<8); |
| 35 | c -= a; c -= b; c ^= (b>>13); |
| 36 | a -= b; a -= c; a ^= (c>>12); |
| 37 | b -= c; b -= a; b ^= (a<<16); |
| 38 | c -= a; c -= b; c ^= (b>>5); |
| 39 | a -= b; a -= c; a ^= (c>>3); |
| 40 | b -= c; b -= a; b ^= (a<<10); |
| 41 | c -= a; c -= b; c ^= (b>>15); |
| 42 | } |
| 43 | |
| 44 | inline uint32 CollapseZero(uint32 bits) { |
| 45 | // IEEE 754 has two representations for zero, positive zero and negative |
| 46 | // zero. These two values compare as equal, and therefore we need them to |
| 47 | // hash to the same value. |
| 48 | // |
| 49 | // We handle this by simply clearing the top bit of every 32-bit value, |
| 50 | // which clears the sign bit on both big-endian and little-endian |
| 51 | // architectures. This creates some additional hash collisions between |
| 52 | // points that differ only in the sign of their components, but this is |
| 53 | // rarely a problem with real data. |
| 54 | // |
| 55 | // The obvious alternative is to explicitly map all occurrences of positive |
| 56 | // zero to negative zero (or vice versa), but this is more expensive and |
| 57 | // makes the average case slower. |
| 58 | // |
| 59 | // We also mask off the low-bit because we've seen differences in |
| 60 | // some floating point operations (specifically 'fcos' on i386) |
| 61 | // between different implementations of the same architecure |
| 62 | // (e.g. 'Xeon 5345' vs. 'Opteron 270'). It's unknown how many bits |
| 63 | // of mask are sufficient to cover real world cases, but the intent |
| 64 | // is to be as conservative as possible in discarding bits. |
| 65 | |
| 66 | return bits & 0x7ffffffe; |
| 67 | } |
| 68 | |
| 69 | size_t hash<S2Point>::operator()(S2Point const& p) const { |
| 70 | // This function is significantly faster than calling HashTo32(). |
| 71 | uint32 const* data = reinterpret_cast<uint32 const*>(p.Data()); |
| 72 | DCHECK_EQ((6 * sizeof(*data)), sizeof(p)); |
| 73 | |
| 74 | // We call CollapseZero() on every 32-bit chunk to avoid having endian |
| 75 | // dependencies. |
| 76 | uint32 a = CollapseZero(data[0]); |
| 77 | uint32 b = CollapseZero(data[1]); |
| 78 | uint32 c = CollapseZero(data[2]) + 0x12b9b0a1UL; // An arbitrary number |
| 79 | mix(a, b, c); |
| 80 | a += CollapseZero(data[3]); |
| 81 | b += CollapseZero(data[4]); |
| 82 | c += CollapseZero(data[5]); |
| 83 | mix(a, b, c); |
| 84 | return c; |
| 85 | } |
| 86 | |
| 87 | |
| 88 | } // namespace __gnu_cxx |
| 89 | |
| 90 | |
| 91 | bool S2::IsUnitLength(S2Point const& p) { |
| 92 | |
| 93 | return fabs(p.Norm2() - 1) <= 1e-15; |
| 94 | } |
| 95 | |
| 96 | S2Point S2::Ortho(S2Point const& a) { |
| 97 | #ifdef S2_TEST_DEGENERACIES |
| 98 | // Vector3::Ortho() always returns a point on the X-Y, Y-Z, or X-Z planes. |
| 99 | // This leads to many more degenerate cases in polygon operations. |
| 100 | return a.Ortho(); |
| 101 | #else |
| 102 | int k = a.LargestAbsComponent() - 1; |
| 103 | if (k < 0) k = 2; |
| 104 | S2Point temp(0.012, 0.0053, 0.00457); |
| 105 | temp[k] = 1; |
| 106 | return a.CrossProd(temp).Normalize(); |
| 107 | #endif |
| 108 | } |
| 109 | |
| 110 | void S2::GetFrame(S2Point const& z, Matrix3x3_d* m) { |
| 111 | DCHECK(IsUnitLength(z)); |
| 112 | m->SetCol(2, z); |
| 113 | m->SetCol(1, Ortho(z)); |
| 114 | m->SetCol(0, m->Col(1).CrossProd(z)); // Already unit-length. |
| 115 | } |
| 116 | |
| 117 | S2Point S2::ToFrame(Matrix3x3_d const& m, S2Point const& p) { |
| 118 | // The inverse of an orthonormal matrix is its transpose. |
| 119 | return m.Transpose() * p; |
| 120 | } |
| 121 | |
| 122 | S2Point S2::FromFrame(Matrix3x3_d const& m, S2Point const& q) { |
| 123 | return m * q; |
| 124 | } |
| 125 | |
| 126 | bool S2::ApproxEquals(S2Point const& a, S2Point const& b, double max_error) { |
| 127 | return a.Angle(b) <= max_error; |
| 128 | } |
| 129 | |
| 130 | S2Point S2::RobustCrossProd(S2Point const& a, S2Point const& b) { |
| 131 | // The direction of a.CrossProd(b) becomes unstable as (a + b) or (a - b) |
| 132 | // approaches zero. This leads to situations where a.CrossProd(b) is not |
| 133 | // very orthogonal to "a" and/or "b". We could fix this using Gram-Schmidt, |
| 134 | // but we also want b.RobustCrossProd(a) == -a.RobustCrossProd(b). |
| 135 | // |
| 136 | // The easiest fix is to just compute the cross product of (b+a) and (b-a). |
| 137 | // Mathematically, this cross product is exactly twice the cross product of |
| 138 | // "a" and "b", but it has the numerical advantage that (b+a) and (b-a) |
| 139 | // are always perpendicular (since "a" and "b" are unit length). This |
| 140 | // yields a result that is nearly orthogonal to both "a" and "b" even if |
| 141 | // these two values differ only in the lowest bit of one component. |
| 142 | |
| 143 | DCHECK(IsUnitLength(a)); |
| 144 | DCHECK(IsUnitLength(b)); |
| 145 | S2Point x = (b + a).CrossProd(b - a); |
| 146 | if (x != S2Point(0, 0, 0)) return x; |
| 147 | |
| 148 | // The only result that makes sense mathematically is to return zero, but |
| 149 | // we find it more convenient to return an arbitrary orthogonal vector. |
| 150 | return Ortho(a); |
| 151 | } |
| 152 | |
| 153 | bool S2::SimpleCCW(S2Point const& a, S2Point const& b, S2Point const& c) { |
| 154 | // We compute the signed volume of the parallelepiped ABC. The usual |
| 155 | // formula for this is (AxB).C, but we compute it here using (CxA).B |
| 156 | // in order to ensure that ABC and CBA are not both CCW. This follows |
| 157 | // from the following identities (which are true numerically, not just |
| 158 | // mathematically): |
| 159 | // |
| 160 | // (1) x.CrossProd(y) == -(y.CrossProd(x)) |
| 161 | // (2) (-x).DotProd(y) == -(x.DotProd(y)) |
| 162 | |
| 163 | return c.CrossProd(a).DotProd(b) > 0; |
| 164 | } |
| 165 | |
| 166 | int S2::RobustCCW(S2Point const& a, S2Point const& b, S2Point const& c) { |
| 167 | // We don't need RobustCrossProd() here because RobustCCW() does its own |
| 168 | // error estimation and calls ExpensiveCCW() if there is any uncertainty |
| 169 | // about the result. |
| 170 | return RobustCCW(a, b, c, a.CrossProd(b)); |
| 171 | } |
| 172 | |
| 173 | // Below we define two versions of ExpensiveCCW(). The first version uses |
| 174 | // arbitrary-precision arithmetic (MPFloat) and the "simulation of simplicity" |
| 175 | // technique. It is completely robust (i.e., it returns consistent results |
| 176 | // for all possible inputs). The second version uses normal double-precision |
| 177 | // arithmetic. It is numerically stable and handles many degeneracies well, |
| 178 | // but it is not perfectly robust. It exists mainly for testing purposes, so |
| 179 | // that we can verify that certain tests actually require the more advanced |
| 180 | // techniques implemented by the first version. |
| 181 | |
| 182 | #define SIMULATION_OF_SIMPLICITY |
| 183 | #ifdef SIMULATION_OF_SIMPLICITY |
| 184 | |
| 185 | // Below we define a floating-point type with enough precision so that it can |
| 186 | // represent the exact determinant of any 3x3 matrix of floating-point |
| 187 | // numbers. We support two options: MPFloat (which is based on MPFR and is |
| 188 | // therefore subject to an LGPL license) and ExactFloat (which is based on the |
| 189 | // OpenSSL Bignum library and therefore has a permissive BSD-style license). |
| 190 | |
| 191 | #ifdef S2_USE_EXACTFLOAT |
| 192 | |
| 193 | // ExactFloat only supports exact calculations with floating-point numbers. |
| 194 | #include "util/math/exactfloat/exactfloat.h" |
| 195 | |
| 196 | #else // S2_USE_EXACTFLOAT |
| 197 | |
| 198 | // MPFloat requires a "maximum precision" to be specified. |
| 199 | // |
| 200 | // To figure out how much precision we need, first observe that any double |
| 201 | // precision number can be represented as an integer by multiplying it by |
| 202 | // 2**1074. This is because the minimum exponent is -1022, and denormalized |
| 203 | // numbers have 52 bits after the leading "0". On the other hand, the largest |
| 204 | // double precision value has the form 1.x * (2**1023), which is a 1024-bit |
| 205 | // integer. Therefore any double precision value can be represented as a |
| 206 | // (1074 + 1024) = 2098 bit integer. |
| 207 | // |
| 208 | // A 3x3 determinant is computed by adding together 6 values, each of which is |
| 209 | // the product of 3 of the input values. When an m-bit integer is multiplied |
| 210 | // by an n-bit integer, the result has at most (m+n) bits. When "k" m-bit |
| 211 | // integers are added together, the result has at most m + ceil(log2(k)) bits. |
| 212 | // Therefore the determinant of any 3x3 matrix can be represented exactly |
| 213 | // using no more than (3*2098)+3 = 6297 bits. |
| 214 | // |
| 215 | // Note that MPFloat only uses as much precision as required to compute the |
| 216 | // exact result, and that typically far fewer bits of precision are used. The |
| 217 | // worst-case estimate above is only achieved for a matrix where every row |
| 218 | // contains both the maximum and minimum possible double precision values |
| 219 | // (i.e. approximately 1e308 and 1e-323). For randomly chosen unit-length |
| 220 | // vectors, the average case uses only about 200 bits of precision. |
| 221 | |
| 222 | // The maximum precision must be at least (6297 + 1) so that we can assert |
| 223 | // that the result of the determinant calculation is exact (by checking that |
| 224 | // the actual precision of the result is less than the maximum precision |
| 225 | // specified). |
| 226 | |
| 227 | #include "util/math/mpfloat/mpfloat.h" |
| 228 | typedef MPFloat<6300> ExactFloat; |
| 229 | |
| 230 | #endif // S2_USE_EXACTFLOAT |
| 231 | |
| 232 | typedef Vector3<ExactFloat> Vector3_xf; |
| 233 | |
| 234 | // The following function returns the sign of the determinant of three points |
| 235 | // A, B, C under a model where every possible S2Point is slightly perturbed by |
| 236 | // a unique infinitesmal amount such that no three perturbed points are |
| 237 | // collinear and no four points are coplanar. The perturbations are so small |
| 238 | // that they do not change the sign of any determinant that was non-zero |
| 239 | // before the perturbations, and therefore can be safely ignored unless the |
| 240 | // determinant of three points is exactly zero (using multiple-precision |
| 241 | // arithmetic). |
| 242 | // |
| 243 | // Since the symbolic perturbation of a given point is fixed (i.e., the |
| 244 | // perturbation is the same for all calls to this method and does not depend |
| 245 | // on the other two arguments), the results of this method are always |
| 246 | // self-consistent. It will never return results that would correspond to an |
| 247 | // "impossible" configuration of non-degenerate points. |
| 248 | // |
| 249 | // Requirements: |
| 250 | // The 3x3 determinant of A, B, C must be exactly zero. |
| 251 | // The points must be distinct, with A < B < C in lexicographic order. |
| 252 | // |
| 253 | // Returns: |
| 254 | // +1 or -1 according to the sign of the determinant after the symbolic |
| 255 | // perturbations are taken into account. |
| 256 | // |
| 257 | // Reference: |
| 258 | // "Simulation of Simplicity" (Edelsbrunner and Muecke, ACM Transactions on |
| 259 | // Graphics, 1990). |
| 260 | // |
| 261 | static int SymbolicallyPerturbedCCW( |
| 262 | Vector3_xf const& a, Vector3_xf const& b, |
| 263 | Vector3_xf const& c, Vector3_xf const& b_cross_c) { |
| 264 | // This method requires that the points are sorted in lexicographically |
| 265 | // increasing order. This is because every possible S2Point has its own |
| 266 | // symbolic perturbation such that if A < B then the symbolic perturbation |
| 267 | // for A is much larger than the perturbation for B. |
| 268 | // |
| 269 | // Alternatively, we could sort the points in this method and keep track of |
| 270 | // the sign of the permutation, but it is more efficient to do this before |
| 271 | // converting the inputs to the multi-precision representation, and this |
| 272 | // also lets us re-use the result of the cross product B x C. |
| 273 | DCHECK(a < b && b < c); |
| 274 | |
| 275 | // Every input coordinate x[i] is assigned a symbolic perturbation dx[i]. |
| 276 | // We then compute the sign of the determinant of the perturbed points, |
| 277 | // i.e. |
| 278 | // | a[0]+da[0] a[1]+da[1] a[2]+da[2] | |
| 279 | // | b[0]+db[0] b[1]+db[1] b[2]+db[2] | |
| 280 | // | c[0]+dc[0] c[1]+dc[1] c[2]+dc[2] | |
| 281 | // |
| 282 | // The perturbations are chosen such that |
| 283 | // |
| 284 | // da[2] > da[1] > da[0] > db[2] > db[1] > db[0] > dc[2] > dc[1] > dc[0] |
| 285 | // |
| 286 | // where each perturbation is so much smaller than the previous one that we |
| 287 | // don't even need to consider it unless the coefficients of all previous |
| 288 | // perturbations are zero. In fact, it is so small that we don't need to |
| 289 | // consider it unless the coefficient of all products of the previous |
| 290 | // perturbations are zero. For example, we don't need to consider the |
| 291 | // coefficient of db[1] unless the coefficient of db[2]*da[0] is zero. |
| 292 | // |
| 293 | // The follow code simply enumerates the coefficients of the perturbations |
| 294 | // (and products of perturbations) that appear in the determinant above, in |
| 295 | // order of decreasing perturbation magnitude. The first non-zero |
| 296 | // coefficient determines the sign of the result. The easiest way to |
| 297 | // enumerate the coefficients in the correct order is to pretend that each |
| 298 | // perturbation is some tiny value "eps" raised to a power of two: |
| 299 | // |
| 300 | // eps** 1 2 4 8 16 32 64 128 256 |
| 301 | // da[2] da[1] da[0] db[2] db[1] db[0] dc[2] dc[1] dc[0] |
| 302 | // |
| 303 | // Essentially we can then just count in binary and test the corresponding |
| 304 | // subset of perturbations at each step. So for example, we must test the |
| 305 | // coefficient of db[2]*da[0] before db[1] because eps**12 > eps**16. |
| 306 | // |
| 307 | // Of course, not all products of these perturbations appear in the |
| 308 | // determinant above, since the determinant only contains the products of |
| 309 | // elements in distinct rows and columns. Thus we don't need to consider |
| 310 | // da[2]*da[1], db[1]*da[1], etc. Furthermore, sometimes different pairs of |
| 311 | // perturbations have the same coefficient in the determinant; for example, |
| 312 | // da[1]*db[0] and db[1]*da[0] have the same coefficient (c[2]). Therefore |
| 313 | // we only need to test this coefficient the first time we encounter it in |
| 314 | // the binary order above (which will be db[1]*da[0]). |
| 315 | // |
| 316 | // The sequence of tests below also appears in Table 4-ii of the paper |
| 317 | // referenced above, if you just want to look it up, with the following |
| 318 | // translations: [a,b,c] -> [i,j,k] and [0,1,2] -> [1,2,3]. Also note that |
| 319 | // some of the signs are different because the opposite cross product is |
| 320 | // used (e.g., B x C rather than C x B). |
| 321 | |
| 322 | int det_sign = b_cross_c[2].sgn(); // da[2] |
| 323 | if (det_sign != 0) return det_sign; |
| 324 | det_sign = b_cross_c[1].sgn(); // da[1] |
| 325 | if (det_sign != 0) return det_sign; |
| 326 | det_sign = b_cross_c[0].sgn(); // da[0] |
| 327 | if (det_sign != 0) return det_sign; |
| 328 | |
| 329 | det_sign = (c[0]*a[1] - c[1]*a[0]).sgn(); // db[2] |
| 330 | if (det_sign != 0) return det_sign; |
| 331 | det_sign = c[0].sgn(); // db[2] * da[1] |
| 332 | if (det_sign != 0) return det_sign; |
| 333 | det_sign = -(c[1].sgn()); // db[2] * da[0] |
| 334 | if (det_sign != 0) return det_sign; |
| 335 | det_sign = (c[2]*a[0] - c[0]*a[2]).sgn(); // db[1] |
| 336 | if (det_sign != 0) return det_sign; |
| 337 | det_sign = c[2].sgn(); // db[1] * da[0] |
| 338 | if (det_sign != 0) return det_sign; |
| 339 | // The following test is listed in the paper, but it is redundant because |
| 340 | // the previous tests guarantee that C == (0, 0, 0). |
| 341 | DCHECK_EQ(0, (c[1]*a[2] - c[2]*a[1]).sgn()); // db[0] |
| 342 | |
| 343 | det_sign = (a[0]*b[1] - a[1]*b[0]).sgn(); // dc[2] |
| 344 | if (det_sign != 0) return det_sign; |
| 345 | det_sign = -(b[0].sgn()); // dc[2] * da[1] |
| 346 | if (det_sign != 0) return det_sign; |
| 347 | det_sign = b[1].sgn(); // dc[2] * da[0] |
| 348 | if (det_sign != 0) return det_sign; |
| 349 | det_sign = a[0].sgn(); // dc[2] * db[1] |
| 350 | if (det_sign != 0) return det_sign; |
| 351 | return 1; // dc[2] * db[1] * da[0] |
| 352 | } |
| 353 | |
| 354 | int S2::ExpensiveCCW(S2Point const& a, S2Point const& b, S2Point const& c) { |
| 355 | // Return zero if and only if two points are the same. This ensures (1). |
| 356 | if (a == b || b == c || c == a) return 0; |
| 357 | |
| 358 | // Sort the three points in lexicographic order, keeping track of the sign |
| 359 | // of the permutation. (Each exchange inverts the sign of the determinant.) |
| 360 | int perm_sign = 1; |
| 361 | S2Point pa = a, pb = b, pc = c; |
| 362 | if (pa > pb) { swap(pa, pb); perm_sign = -perm_sign; } |
| 363 | if (pb > pc) { swap(pb, pc); perm_sign = -perm_sign; } |
| 364 | if (pa > pb) { swap(pa, pb); perm_sign = -perm_sign; } |
| 365 | DCHECK(pa < pb && pb < pc); |
| 366 | |
| 367 | // Construct multiple-precision versions of the sorted points and compute |
| 368 | // their exact 3x3 determinant. |
| 369 | Vector3_xf xa = Vector3_xf::Cast(pa); |
| 370 | Vector3_xf xb = Vector3_xf::Cast(pb); |
| 371 | Vector3_xf xc = Vector3_xf::Cast(pc); |
| 372 | Vector3_xf xb_cross_xc = xb.CrossProd(xc); |
| 373 | ExactFloat det = xa.DotProd(xb_cross_xc); |
| 374 | |
| 375 | // The precision of ExactFloat is high enough that the result should always |
| 376 | // be exact (no rounding was performed). |
| 377 | DCHECK(!det.is_nan()); |
| 378 | DCHECK_LT(det.prec(), det.max_prec()); |
| 379 | |
| 380 | // If the exact determinant is non-zero, we're done. |
| 381 | int det_sign = det.sgn(); |
| 382 | if (det_sign == 0) { |
| 383 | // Otherwise, we need to resort to symbolic perturbations to resolve the |
| 384 | // sign of the determinant. |
| 385 | det_sign = SymbolicallyPerturbedCCW(xa, xb, xc, xb_cross_xc); |
| 386 | } |
| 387 | DCHECK(det_sign != 0); |
| 388 | return perm_sign * det_sign; |
| 389 | } |
| 390 | |
| 391 | #else // SIMULATION_OF_SIMPLICITY |
| 392 | |
| 393 | static inline int PlanarCCW(Vector2_d const& a, Vector2_d const& b) { |
| 394 | // Return +1 if the edge AB is CCW around the origin, etc. |
| 395 | double sab = (a.DotProd(b) > 0) ? -1 : 1; |
| 396 | Vector2_d vab = a + sab * b; |
| 397 | double da = a.Norm2(); |
| 398 | double db = b.Norm2(); |
| 399 | double sign; |
| 400 | if (da < db || (da == db && a < b)) { |
| 401 | sign = a.CrossProd(vab) * sab; |
| 402 | } else { |
| 403 | sign = vab.CrossProd(b); |
| 404 | } |
| 405 | if (sign > 0) return 1; |
| 406 | if (sign < 0) return -1; |
| 407 | return 0; |
| 408 | } |
| 409 | |
| 410 | static inline int PlanarOrderedCCW(Vector2_d const& a, Vector2_d const& b, |
| 411 | Vector2_d const& c) { |
| 412 | int sum = 0; |
| 413 | sum += PlanarCCW(a, b); |
| 414 | sum += PlanarCCW(b, c); |
| 415 | sum += PlanarCCW(c, a); |
| 416 | if (sum > 0) return 1; |
| 417 | if (sum < 0) return -1; |
| 418 | return 0; |
| 419 | } |
| 420 | |
| 421 | int S2::ExpensiveCCW(S2Point const& a, S2Point const& b, S2Point const& c) { |
| 422 | // Return zero if and only if two points are the same. This ensures (1). |
| 423 | if (a == b || b == c || c == a) return 0; |
| 424 | |
| 425 | // Now compute the determinant in a stable way. Since all three points are |
| 426 | // unit length and we know that the determinant is very close to zero, this |
| 427 | // means that points are very nearly collinear. Furthermore, the most common |
| 428 | // situation is where two points are nearly identical or nearly antipodal. |
| 429 | // To get the best accuracy in this situation, it is important to |
| 430 | // immediately reduce the magnitude of the arguments by computing either |
| 431 | // A+B or A-B for each pair of points. Note that even if A and B differ |
| 432 | // only in their low bits, A-B can be computed very accurately. On the |
| 433 | // other hand we can't accurately represent an arbitrary linear combination |
| 434 | // of two vectors as would be required for Gaussian elimination. The code |
| 435 | // below chooses the vertex opposite the longest edge as the "origin" for |
| 436 | // the calculation, and computes the different vectors to the other two |
| 437 | // vertices. This minimizes the sum of the lengths of these vectors. |
| 438 | // |
| 439 | // This implementation is very stable numerically, but it still does not |
| 440 | // return consistent results in all cases. For example, if three points are |
| 441 | // spaced far apart from each other along a great circle, the sign of the |
| 442 | // result will basically be random (although it will still satisfy the |
| 443 | // conditions documented in the header file). The only way to return |
| 444 | // consistent results in all cases is to compute the result using |
| 445 | // multiple-precision arithmetic. I considered using the Gnu MP library, |
| 446 | // but this would be very expensive (up to 2000 bits of precision may be |
| 447 | // needed to store the intermediate results) and seems like overkill for |
| 448 | // this problem. The MP library is apparently also quite particular about |
| 449 | // compilers and compilation options and would be a pain to maintain. |
| 450 | |
| 451 | // We want to handle the case of nearby points and nearly antipodal points |
| 452 | // accurately, so determine whether A+B or A-B is smaller in each case. |
| 453 | double sab = (a.DotProd(b) > 0) ? -1 : 1; |
| 454 | double sbc = (b.DotProd(c) > 0) ? -1 : 1; |
| 455 | double sca = (c.DotProd(a) > 0) ? -1 : 1; |
| 456 | S2Point vab = a + sab * b; |
| 457 | S2Point vbc = b + sbc * c; |
| 458 | S2Point vca = c + sca * a; |
| 459 | double dab = vab.Norm2(); |
| 460 | double dbc = vbc.Norm2(); |
| 461 | double dca = vca.Norm2(); |
| 462 | |
| 463 | // Sort the difference vectors to find the longest edge, and use the |
| 464 | // opposite vertex as the origin. If two difference vectors are the same |
| 465 | // length, we break ties deterministically to ensure that the symmetry |
| 466 | // properties guaranteed in the header file will be true. |
| 467 | double sign; |
| 468 | if (dca < dbc || (dca == dbc && a < b)) { |
| 469 | if (dab < dbc || (dab == dbc && a < c)) { |
| 470 | // The "sab" factor converts A +/- B into B +/- A. |
| 471 | sign = vab.CrossProd(vca).DotProd(a) * sab; // BC is longest edge |
| 472 | } else { |
| 473 | sign = vca.CrossProd(vbc).DotProd(c) * sca; // AB is longest edge |
| 474 | } |
| 475 | } else { |
| 476 | if (dab < dca || (dab == dca && b < c)) { |
| 477 | sign = vbc.CrossProd(vab).DotProd(b) * sbc; // CA is longest edge |
| 478 | } else { |
| 479 | sign = vca.CrossProd(vbc).DotProd(c) * sca; // AB is longest edge |
| 480 | } |
| 481 | } |
| 482 | if (sign > 0) return 1; |
| 483 | if (sign < 0) return -1; |
| 484 | |
| 485 | // The points A, B, and C are numerically indistinguishable from coplanar. |
| 486 | // This may be due to roundoff error, or the points may in fact be exactly |
| 487 | // coplanar. We handle this situation by perturbing all of the points by a |
| 488 | // vector (eps, eps**2, eps**3) where "eps" is an infinitesmally small |
| 489 | // positive number (e.g. 1 divided by a googolplex). The perturbation is |
| 490 | // done symbolically, i.e. we compute what would happen if the points were |
| 491 | // perturbed by this amount. It turns out that this is equivalent to |
| 492 | // checking whether the points are ordered CCW around the origin first in |
| 493 | // the Y-Z plane, then in the Z-X plane, and then in the X-Y plane. |
| 494 | |
| 495 | int ccw = PlanarOrderedCCW(Vector2_d(a.y(), a.z()), Vector2_d(b.y(), b.z()), |
| 496 | Vector2_d(c.y(), c.z())); |
| 497 | if (ccw == 0) { |
| 498 | ccw = PlanarOrderedCCW(Vector2_d(a.z(), a.x()), Vector2_d(b.z(), b.x()), |
| 499 | Vector2_d(c.z(), c.x())); |
| 500 | if (ccw == 0) { |
| 501 | ccw = PlanarOrderedCCW(Vector2_d(a.x(), a.y()), Vector2_d(b.x(), b.y()), |
| 502 | Vector2_d(c.x(), c.y())); |
| 503 | // There are a few cases where "ccw" may still be zero despite our best |
| 504 | // efforts. For example, two input points may be exactly proportional |
| 505 | // to each other (where both still satisfy IsNormalized()). |
| 506 | } |
| 507 | } |
| 508 | return ccw; |
| 509 | } |
| 510 | |
| 511 | #endif // SIMULATION_OF_SIMPLICITY |
| 512 | |
| 513 | double S2::Angle(S2Point const& a, S2Point const& b, S2Point const& c) { |
| 514 | return RobustCrossProd(a, b).Angle(RobustCrossProd(c, b)); |
| 515 | } |
| 516 | |
| 517 | double S2::TurnAngle(S2Point const& a, S2Point const& b, S2Point const& c) { |
| 518 | // This is a bit less efficient because we compute all 3 cross products, but |
| 519 | // it ensures that TurnAngle(a,b,c) == -TurnAngle(c,b,a) for all a,b,c. |
| 520 | double angle = RobustCrossProd(b, a).Angle(RobustCrossProd(c, b)); |
| 521 | return (RobustCCW(a, b, c) > 0) ? angle : -angle; |
| 522 | } |
| 523 | |
| 524 | double S2::Area(S2Point const& a, S2Point const& b, S2Point const& c) { |
| 525 | DCHECK(IsUnitLength(a)); |
| 526 | DCHECK(IsUnitLength(b)); |
| 527 | DCHECK(IsUnitLength(c)); |
| 528 | // This method is based on l'Huilier's theorem, |
| 529 | // |
| 530 | // tan(E/4) = sqrt(tan(s/2) tan((s-a)/2) tan((s-b)/2) tan((s-c)/2)) |
| 531 | // |
| 532 | // where E is the spherical excess of the triangle (i.e. its area), |
| 533 | // a, b, c, are the side lengths, and |
| 534 | // s is the semiperimeter (a + b + c) / 2 . |
| 535 | // |
| 536 | // The only significant source of error using l'Huilier's method is the |
| 537 | // cancellation error of the terms (s-a), (s-b), (s-c). This leads to a |
| 538 | // *relative* error of about 1e-16 * s / min(s-a, s-b, s-c). This compares |
| 539 | // to a relative error of about 1e-15 / E using Girard's formula, where E is |
| 540 | // the true area of the triangle. Girard's formula can be even worse than |
| 541 | // this for very small triangles, e.g. a triangle with a true area of 1e-30 |
| 542 | // might evaluate to 1e-5. |
| 543 | // |
| 544 | // So, we prefer l'Huilier's formula unless dmin < s * (0.1 * E), where |
| 545 | // dmin = min(s-a, s-b, s-c). This basically includes all triangles |
| 546 | // except for extremely long and skinny ones. |
| 547 | // |
| 548 | // Since we don't know E, we would like a conservative upper bound on |
| 549 | // the triangle area in terms of s and dmin. It's possible to show that |
| 550 | // E <= k1 * s * sqrt(s * dmin), where k1 = 2*sqrt(3)/Pi (about 1). |
| 551 | // Using this, it's easy to show that we should always use l'Huilier's |
| 552 | // method if dmin >= k2 * s^5, where k2 is about 1e-2. Furthermore, |
| 553 | // if dmin < k2 * s^5, the triangle area is at most k3 * s^4, where |
| 554 | // k3 is about 0.1. Since the best case error using Girard's formula |
| 555 | // is about 1e-15, this means that we shouldn't even consider it unless |
| 556 | // s >= 3e-4 or so. |
| 557 | |
| 558 | // We use volatile doubles to force the compiler to truncate all of these |
| 559 | // quantities to 64 bits. Otherwise it may compute a value of dmin > 0 |
| 560 | // simply because it chose to spill one of the intermediate values to |
| 561 | // memory but not one of the others. |
| 562 | volatile double sa = b.Angle(c); |
| 563 | volatile double sb = c.Angle(a); |
| 564 | volatile double sc = a.Angle(b); |
| 565 | volatile double s = 0.5 * (sa + sb + sc); |
| 566 | if (s >= 3e-4) { |
| 567 | // Consider whether Girard's formula might be more accurate. |
| 568 | double s2 = s * s; |
| 569 | double dmin = s - max(sa, max(sb, sc)); |
| 570 | if (dmin < 1e-2 * s * s2 * s2) { |
| 571 | // This triangle is skinny enough to consider Girard's formula. |
| 572 | double area = GirardArea(a, b, c); |
| 573 | if (dmin < s * (0.1 * area)) return area; |
| 574 | } |
| 575 | } |
| 576 | // Use l'Huilier's formula. |
| 577 | return 4 * atan(sqrt(max(0.0, tan(0.5 * s) * tan(0.5 * (s - sa)) * |
| 578 | tan(0.5 * (s - sb)) * tan(0.5 * (s - sc))))); |
| 579 | } |
| 580 | |
| 581 | double S2::GirardArea(S2Point const& a, S2Point const& b, S2Point const& c) { |
| 582 | // This is equivalent to the usual Girard's formula but is slightly |
| 583 | // more accurate, faster to compute, and handles a == b == c without |
| 584 | // a special case. The use of RobustCrossProd() makes it much more |
| 585 | // accurate when two vertices are nearly identical or antipodal. |
| 586 | |
| 587 | S2Point ab = RobustCrossProd(a, b); |
| 588 | S2Point bc = RobustCrossProd(b, c); |
| 589 | S2Point ac = RobustCrossProd(a, c); |
| 590 | return max(0.0, ab.Angle(ac) - ab.Angle(bc) + bc.Angle(ac)); |
| 591 | } |
| 592 | |
| 593 | double S2::SignedArea(S2Point const& a, S2Point const& b, S2Point const& c) { |
| 594 | return Area(a, b, c) * RobustCCW(a, b, c); |
| 595 | } |
| 596 | |
| 597 | S2Point S2::PlanarCentroid(S2Point const& a, S2Point const& b, |
| 598 | S2Point const& c) { |
| 599 | return (1./3) * (a + b + c); |
| 600 | } |
| 601 | |
| 602 | S2Point S2::TrueCentroid(S2Point const& a, S2Point const& b, |
| 603 | S2Point const& c) { |
| 604 | DCHECK(IsUnitLength(a)); |
| 605 | DCHECK(IsUnitLength(b)); |
| 606 | DCHECK(IsUnitLength(c)); |
| 607 | |
| 608 | // I couldn't find any references for computing the true centroid of a |
| 609 | // spherical triangle... I have a truly marvellous demonstration of this |
| 610 | // formula which this margin is too narrow to contain :) |
| 611 | |
| 612 | // Use Angle() in order to get accurate results for small triangles. |
| 613 | double angle_a = b.Angle(c); |
| 614 | double angle_b = c.Angle(a); |
| 615 | double angle_c = a.Angle(b); |
| 616 | double ra = (angle_a == 0) ? 1 : (angle_a / sin(angle_a)); |
| 617 | double rb = (angle_b == 0) ? 1 : (angle_b / sin(angle_b)); |
| 618 | double rc = (angle_c == 0) ? 1 : (angle_c / sin(angle_c)); |
| 619 | |
| 620 | // Now compute a point M such that: |
| 621 | // |
| 622 | // [Ax Ay Az] [Mx] [ra] |
| 623 | // [Bx By Bz] [My] = 0.5 * det(A,B,C) * [rb] |
| 624 | // [Cx Cy Cz] [Mz] [rc] |
| 625 | // |
| 626 | // To improve the numerical stability we subtract the first row (A) from the |
| 627 | // other two rows; this reduces the cancellation error when A, B, and C are |
| 628 | // very close together. Then we solve it using Cramer's rule. |
| 629 | // |
| 630 | // TODO(user): This code still isn't as numerically stable as it could be. |
| 631 | // The biggest potential improvement is to compute B-A and C-A more |
| 632 | // accurately so that (B-A)x(C-A) is always inside triangle ABC. |
| 633 | S2Point x(a.x(), b.x() - a.x(), c.x() - a.x()); |
| 634 | S2Point y(a.y(), b.y() - a.y(), c.y() - a.y()); |
| 635 | S2Point z(a.z(), b.z() - a.z(), c.z() - a.z()); |
| 636 | S2Point r(ra, rb - ra, rc - ra); |
| 637 | return 0.5 * S2Point(y.CrossProd(z).DotProd(r), |
| 638 | z.CrossProd(x).DotProd(r), |
| 639 | x.CrossProd(y).DotProd(r)); |
| 640 | } |
| 641 | |
| 642 | bool S2::OrderedCCW(S2Point const& a, S2Point const& b, S2Point const& c, |
| 643 | S2Point const& o) { |
| 644 | // The last inequality below is ">" rather than ">=" so that we return true |
| 645 | // if A == B or B == C, and otherwise false if A == C. Recall that |
| 646 | // RobustCCW(x,y,z) == -RobustCCW(z,y,x) for all x,y,z. |
| 647 | |
| 648 | int sum = 0; |
| 649 | if (RobustCCW(b, o, a) >= 0) ++sum; |
| 650 | if (RobustCCW(c, o, b) >= 0) ++sum; |
| 651 | if (RobustCCW(a, o, c) > 0) ++sum; |
| 652 | return sum >= 2; |
| 653 | } |
| 654 | |
| 655 | // kIJtoPos[orientation][ij] -> pos |
| 656 | int const S2::kIJtoPos[4][4] = { |
| 657 | // (0,0) (0,1) (1,0) (1,1) |
| 658 | { 0, 1, 3, 2 }, // canonical order |
| 659 | { 0, 3, 1, 2 }, // axes swapped |
| 660 | { 2, 3, 1, 0 }, // bits inverted |
| 661 | { 2, 1, 3, 0 }, // swapped & inverted |
| 662 | }; |
| 663 | |
| 664 | // kPosToIJ[orientation][pos] -> ij |
| 665 | int const S2::kPosToIJ[4][4] = { |
| 666 | // 0 1 2 3 |
| 667 | { 0, 1, 3, 2 }, // canonical order: (0,0), (0,1), (1,1), (1,0) |
| 668 | { 0, 2, 3, 1 }, // axes swapped: (0,0), (1,0), (1,1), (0,1) |
| 669 | { 3, 2, 0, 1 }, // bits inverted: (1,1), (1,0), (0,0), (0,1) |
| 670 | { 3, 1, 0, 2 }, // swapped & inverted: (1,1), (0,1), (0,0), (1,0) |
| 671 | }; |
| 672 | |
| 673 | // kPosToOrientation[pos] -> orientation_modifier |
| 674 | int const S2::kPosToOrientation[4] = { |
| 675 | kSwapMask, |
| 676 | 0, |
| 677 | 0, |
| 678 | kInvertMask + kSwapMask, |
| 679 | }; |
| 680 | |
| 681 | // All of the values below were obtained by a combination of hand analysis and |
| 682 | // Mathematica. In general, S2_TAN_PROJECTION produces the most uniform |
| 683 | // shapes and sizes of cells, S2_LINEAR_PROJECTION is considerably worse, and |
| 684 | // S2_QUADRATIC_PROJECTION is somewhere in between (but generally closer to |
| 685 | // the tangent projection than the linear one). |
| 686 | |
| 687 | S2::LengthMetric const S2::kMinAngleSpan( |
| 688 | S2_PROJECTION == S2_LINEAR_PROJECTION ? 1.0 : // 1.000 |
| 689 | S2_PROJECTION == S2_TAN_PROJECTION ? M_PI / 2 : // 1.571 |
| 690 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 4. / 3 : // 1.333 |
| 691 | 0); |
| 692 | |
| 693 | S2::LengthMetric const S2::kMaxAngleSpan( |
| 694 | S2_PROJECTION == S2_LINEAR_PROJECTION ? 2 : // 2.000 |
| 695 | S2_PROJECTION == S2_TAN_PROJECTION ? M_PI / 2 : // 1.571 |
| 696 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 1.704897179199218452 : // 1.705 |
| 697 | 0); |
| 698 | |
| 699 | S2::LengthMetric const S2::kAvgAngleSpan(M_PI / 2); // 1.571 |
| 700 | // This is true for all projections. |
| 701 | |
| 702 | S2::LengthMetric const S2::kMinWidth( |
| 703 | S2_PROJECTION == S2_LINEAR_PROJECTION ? sqrt(2. / 3) : // 0.816 |
| 704 | S2_PROJECTION == S2_TAN_PROJECTION ? M_PI / (2 * sqrt(2)) : // 1.111 |
| 705 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 2 * sqrt(2) / 3 : // 0.943 |
| 706 | 0); |
| 707 | |
| 708 | S2::LengthMetric const S2::kMaxWidth(S2::kMaxAngleSpan.deriv()); |
| 709 | // This is true for all projections. |
| 710 | |
| 711 | S2::LengthMetric const S2::kAvgWidth( |
| 712 | S2_PROJECTION == S2_LINEAR_PROJECTION ? 1.411459345844456965 : // 1.411 |
| 713 | S2_PROJECTION == S2_TAN_PROJECTION ? 1.437318638925160885 : // 1.437 |
| 714 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 1.434523672886099389 : // 1.435 |
| 715 | 0); |
| 716 | |
| 717 | S2::LengthMetric const S2::kMinEdge( |
| 718 | S2_PROJECTION == S2_LINEAR_PROJECTION ? 2 * sqrt(2) / 3 : // 0.943 |
| 719 | S2_PROJECTION == S2_TAN_PROJECTION ? M_PI / (2 * sqrt(2)) : // 1.111 |
| 720 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 2 * sqrt(2) / 3 : // 0.943 |
| 721 | 0); |
| 722 | |
| 723 | S2::LengthMetric const S2::kMaxEdge(S2::kMaxAngleSpan.deriv()); |
| 724 | // This is true for all projections. |
| 725 | |
| 726 | S2::LengthMetric const S2::kAvgEdge( |
| 727 | S2_PROJECTION == S2_LINEAR_PROJECTION ? 1.440034192955603643 : // 1.440 |
| 728 | S2_PROJECTION == S2_TAN_PROJECTION ? 1.461667032546739266 : // 1.462 |
| 729 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 1.459213746386106062 : // 1.459 |
| 730 | 0); |
| 731 | |
| 732 | S2::LengthMetric const S2::kMinDiag( |
| 733 | S2_PROJECTION == S2_LINEAR_PROJECTION ? 2 * sqrt(2) / 3 : // 0.943 |
| 734 | S2_PROJECTION == S2_TAN_PROJECTION ? M_PI * sqrt(2) / 3 : // 1.481 |
| 735 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 8 * sqrt(2) / 9 : // 1.257 |
| 736 | 0); |
| 737 | |
| 738 | S2::LengthMetric const S2::kMaxDiag( |
| 739 | S2_PROJECTION == S2_LINEAR_PROJECTION ? 2 * sqrt(2) : // 2.828 |
| 740 | S2_PROJECTION == S2_TAN_PROJECTION ? M_PI * sqrt(2. / 3) : // 2.565 |
| 741 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 2.438654594434021032 : // 2.439 |
| 742 | 0); |
| 743 | |
| 744 | S2::LengthMetric const S2::kAvgDiag( |
| 745 | S2_PROJECTION == S2_LINEAR_PROJECTION ? 2.031817866418812674 : // 2.032 |
| 746 | S2_PROJECTION == S2_TAN_PROJECTION ? 2.063623197195635753 : // 2.064 |
| 747 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 2.060422738998471683 : // 2.060 |
| 748 | 0); |
| 749 | |
| 750 | S2::AreaMetric const S2::kMinArea( |
| 751 | S2_PROJECTION == S2_LINEAR_PROJECTION ? 4 / (3 * sqrt(3)) : // 0.770 |
| 752 | S2_PROJECTION == S2_TAN_PROJECTION ? (M_PI*M_PI) / (4*sqrt(2)) : // 1.745 |
| 753 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 8 * sqrt(2) / 9 : // 1.257 |
| 754 | 0); |
| 755 | |
| 756 | S2::AreaMetric const S2::kMaxArea( |
| 757 | S2_PROJECTION == S2_LINEAR_PROJECTION ? 4 : // 4.000 |
| 758 | S2_PROJECTION == S2_TAN_PROJECTION ? M_PI * M_PI / 4 : // 2.467 |
| 759 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 2.635799256963161491 : // 2.636 |
| 760 | 0); |
| 761 | |
| 762 | S2::AreaMetric const S2::kAvgArea(4 * M_PI / 6); // 2.094 |
| 763 | // This is true for all projections. |
| 764 | |
| 765 | double const S2::kMaxEdgeAspect = ( |
| 766 | S2_PROJECTION == S2_LINEAR_PROJECTION ? sqrt(2) : // 1.414 |
| 767 | S2_PROJECTION == S2_TAN_PROJECTION ? sqrt(2) : // 1.414 |
| 768 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 1.442615274452682920 : // 1.443 |
| 769 | 0); |
| 770 | |
| 771 | double const S2::kMaxDiagAspect = sqrt(3); // 1.732 |
| 772 | // This is true for all projections. |
| 773 | |