| 1 | // Copyright 2005 Google Inc. All Rights Reserved. | 
|---|
| 2 |  | 
|---|
| 3 | #include "s2.h" | 
|---|
| 4 |  | 
|---|
| 5 | // #include "base/commandlineflags.h" | 
|---|
| 6 | #include "base/integral_types.h" | 
|---|
| 7 | #include "base/logging.h" | 
|---|
| 8 | #include "util/math/matrix3x3-inl.h" | 
|---|
| 9 | #include "util/math/vector2-inl.h" | 
|---|
| 10 |  | 
|---|
| 11 | // Define storage for header file constants (the values are not needed | 
|---|
| 12 | // here for integral constants). | 
|---|
| 13 | int const S2::kMaxCellLevel; | 
|---|
| 14 | int const S2::kSwapMask; | 
|---|
| 15 | int const S2::kInvertMask; | 
|---|
| 16 | double const S2::kMaxDetError = 0.8e-15;  // 14 * (2**-54) | 
|---|
| 17 |  | 
|---|
| 18 | COMPILE_ASSERT(S2::kSwapMask == 0x01 && S2::kInvertMask == 0x02, | 
|---|
| 19 | masks_changed); | 
|---|
| 20 |  | 
|---|
| 21 | // DEFINE_bool(s2debug, DEBUG_MODE, "Enable debugging checks in s2 code"); | 
|---|
| 22 | bool const S2::debug = DEBUG_MODE; | 
|---|
| 23 |  | 
|---|
| 24 | static const uint32 MIX32 = 0x12b9b0a1UL; | 
|---|
| 25 | #include<hash_set> | 
|---|
| 26 | namespace __gnu_cxx { | 
|---|
| 27 |  | 
|---|
| 28 |  | 
|---|
| 29 |  | 
|---|
| 30 | // The hash function due to Bob Jenkins (see | 
|---|
| 31 | // http://burtleburtle.net/bob/hash/index.html). | 
|---|
| 32 | static inline void mix(uint32& a, uint32& b, uint32& c) {     // 32bit version | 
|---|
| 33 | a -= b; a -= c; a ^= (c>>13); | 
|---|
| 34 | b -= c; b -= a; b ^= (a<<8); | 
|---|
| 35 | c -= a; c -= b; c ^= (b>>13); | 
|---|
| 36 | a -= b; a -= c; a ^= (c>>12); | 
|---|
| 37 | b -= c; b -= a; b ^= (a<<16); | 
|---|
| 38 | c -= a; c -= b; c ^= (b>>5); | 
|---|
| 39 | a -= b; a -= c; a ^= (c>>3); | 
|---|
| 40 | b -= c; b -= a; b ^= (a<<10); | 
|---|
| 41 | c -= a; c -= b; c ^= (b>>15); | 
|---|
| 42 | } | 
|---|
| 43 |  | 
|---|
| 44 | inline uint32 CollapseZero(uint32 bits) { | 
|---|
| 45 | // IEEE 754 has two representations for zero, positive zero and negative | 
|---|
| 46 | // zero.  These two values compare as equal, and therefore we need them to | 
|---|
| 47 | // hash to the same value. | 
|---|
| 48 | // | 
|---|
| 49 | // We handle this by simply clearing the top bit of every 32-bit value, | 
|---|
| 50 | // which clears the sign bit on both big-endian and little-endian | 
|---|
| 51 | // architectures.  This creates some additional hash collisions between | 
|---|
| 52 | // points that differ only in the sign of their components, but this is | 
|---|
| 53 | // rarely a problem with real data. | 
|---|
| 54 | // | 
|---|
| 55 | // The obvious alternative is to explicitly map all occurrences of positive | 
|---|
| 56 | // zero to negative zero (or vice versa), but this is more expensive and | 
|---|
| 57 | // makes the average case slower. | 
|---|
| 58 | // | 
|---|
| 59 | // We also mask off the low-bit because we've seen differences in | 
|---|
| 60 | // some floating point operations (specifically 'fcos' on i386) | 
|---|
| 61 | // between different implementations of the same architecure | 
|---|
| 62 | // (e.g. 'Xeon 5345' vs. 'Opteron 270').  It's unknown how many bits | 
|---|
| 63 | // of mask are sufficient to cover real world cases, but the intent | 
|---|
| 64 | // is to be as conservative as possible in discarding bits. | 
|---|
| 65 |  | 
|---|
| 66 | return bits & 0x7ffffffe; | 
|---|
| 67 | } | 
|---|
| 68 |  | 
|---|
| 69 | size_t hash<S2Point>::operator()(S2Point const& p) const { | 
|---|
| 70 | // This function is significantly faster than calling HashTo32(). | 
|---|
| 71 | uint32 const* data = reinterpret_cast<uint32 const*>(p.Data()); | 
|---|
| 72 | DCHECK_EQ((6 * sizeof(*data)), sizeof(p)); | 
|---|
| 73 |  | 
|---|
| 74 | // We call CollapseZero() on every 32-bit chunk to avoid having endian | 
|---|
| 75 | // dependencies. | 
|---|
| 76 | uint32 a = CollapseZero(data[0]); | 
|---|
| 77 | uint32 b = CollapseZero(data[1]); | 
|---|
| 78 | uint32 c = CollapseZero(data[2]) + 0x12b9b0a1UL;  // An arbitrary number | 
|---|
| 79 | mix(a, b, c); | 
|---|
| 80 | a += CollapseZero(data[3]); | 
|---|
| 81 | b += CollapseZero(data[4]); | 
|---|
| 82 | c += CollapseZero(data[5]); | 
|---|
| 83 | mix(a, b, c); | 
|---|
| 84 | return c; | 
|---|
| 85 | } | 
|---|
| 86 |  | 
|---|
| 87 |  | 
|---|
| 88 | }  // namespace __gnu_cxx | 
|---|
| 89 |  | 
|---|
| 90 |  | 
|---|
| 91 | bool S2::IsUnitLength(S2Point const& p) { | 
|---|
| 92 |  | 
|---|
| 93 | return fabs(p.Norm2() - 1) <= 1e-15; | 
|---|
| 94 | } | 
|---|
| 95 |  | 
|---|
| 96 | S2Point S2::Ortho(S2Point const& a) { | 
|---|
| 97 | #ifdef S2_TEST_DEGENERACIES | 
|---|
| 98 | // Vector3::Ortho() always returns a point on the X-Y, Y-Z, or X-Z planes. | 
|---|
| 99 | // This leads to many more degenerate cases in polygon operations. | 
|---|
| 100 | return a.Ortho(); | 
|---|
| 101 | #else | 
|---|
| 102 | int k = a.LargestAbsComponent() - 1; | 
|---|
| 103 | if (k < 0) k = 2; | 
|---|
| 104 | S2Point temp(0.012, 0.0053, 0.00457); | 
|---|
| 105 | temp[k] = 1; | 
|---|
| 106 | return a.CrossProd(temp).Normalize(); | 
|---|
| 107 | #endif | 
|---|
| 108 | } | 
|---|
| 109 |  | 
|---|
| 110 | void S2::GetFrame(S2Point const& z, Matrix3x3_d* m) { | 
|---|
| 111 | DCHECK(IsUnitLength(z)); | 
|---|
| 112 | m->SetCol(2, z); | 
|---|
| 113 | m->SetCol(1, Ortho(z)); | 
|---|
| 114 | m->SetCol(0, m->Col(1).CrossProd(z));  // Already unit-length. | 
|---|
| 115 | } | 
|---|
| 116 |  | 
|---|
| 117 | S2Point S2::ToFrame(Matrix3x3_d const& m, S2Point const& p) { | 
|---|
| 118 | // The inverse of an orthonormal matrix is its transpose. | 
|---|
| 119 | return m.Transpose() * p; | 
|---|
| 120 | } | 
|---|
| 121 |  | 
|---|
| 122 | S2Point S2::FromFrame(Matrix3x3_d const& m, S2Point const& q) { | 
|---|
| 123 | return m * q; | 
|---|
| 124 | } | 
|---|
| 125 |  | 
|---|
| 126 | bool S2::ApproxEquals(S2Point const& a, S2Point const& b, double max_error) { | 
|---|
| 127 | return a.Angle(b) <= max_error; | 
|---|
| 128 | } | 
|---|
| 129 |  | 
|---|
| 130 | S2Point S2::RobustCrossProd(S2Point const& a, S2Point const& b) { | 
|---|
| 131 | // The direction of a.CrossProd(b) becomes unstable as (a + b) or (a - b) | 
|---|
| 132 | // approaches zero.  This leads to situations where a.CrossProd(b) is not | 
|---|
| 133 | // very orthogonal to "a" and/or "b".  We could fix this using Gram-Schmidt, | 
|---|
| 134 | // but we also want b.RobustCrossProd(a) == -a.RobustCrossProd(b). | 
|---|
| 135 | // | 
|---|
| 136 | // The easiest fix is to just compute the cross product of (b+a) and (b-a). | 
|---|
| 137 | // Mathematically, this cross product is exactly twice the cross product of | 
|---|
| 138 | // "a" and "b", but it has the numerical advantage that (b+a) and (b-a) | 
|---|
| 139 | // are always perpendicular (since "a" and "b" are unit length).  This | 
|---|
| 140 | // yields a result that is nearly orthogonal to both "a" and "b" even if | 
|---|
| 141 | // these two values differ only in the lowest bit of one component. | 
|---|
| 142 |  | 
|---|
| 143 | DCHECK(IsUnitLength(a)); | 
|---|
| 144 | DCHECK(IsUnitLength(b)); | 
|---|
| 145 | S2Point x = (b + a).CrossProd(b - a); | 
|---|
| 146 | if (x != S2Point(0, 0, 0)) return x; | 
|---|
| 147 |  | 
|---|
| 148 | // The only result that makes sense mathematically is to return zero, but | 
|---|
| 149 | // we find it more convenient to return an arbitrary orthogonal vector. | 
|---|
| 150 | return Ortho(a); | 
|---|
| 151 | } | 
|---|
| 152 |  | 
|---|
| 153 | bool S2::SimpleCCW(S2Point const& a, S2Point const& b, S2Point const& c) { | 
|---|
| 154 | // We compute the signed volume of the parallelepiped ABC.  The usual | 
|---|
| 155 | // formula for this is (AxB).C, but we compute it here using (CxA).B | 
|---|
| 156 | // in order to ensure that ABC and CBA are not both CCW.  This follows | 
|---|
| 157 | // from the following identities (which are true numerically, not just | 
|---|
| 158 | // mathematically): | 
|---|
| 159 | // | 
|---|
| 160 | //     (1) x.CrossProd(y) == -(y.CrossProd(x)) | 
|---|
| 161 | //     (2) (-x).DotProd(y) == -(x.DotProd(y)) | 
|---|
| 162 |  | 
|---|
| 163 | return c.CrossProd(a).DotProd(b) > 0; | 
|---|
| 164 | } | 
|---|
| 165 |  | 
|---|
| 166 | int S2::RobustCCW(S2Point const& a, S2Point const& b, S2Point const& c) { | 
|---|
| 167 | // We don't need RobustCrossProd() here because RobustCCW() does its own | 
|---|
| 168 | // error estimation and calls ExpensiveCCW() if there is any uncertainty | 
|---|
| 169 | // about the result. | 
|---|
| 170 | return RobustCCW(a, b, c, a.CrossProd(b)); | 
|---|
| 171 | } | 
|---|
| 172 |  | 
|---|
| 173 | // Below we define two versions of ExpensiveCCW().  The first version uses | 
|---|
| 174 | // arbitrary-precision arithmetic (MPFloat) and the "simulation of simplicity" | 
|---|
| 175 | // technique.  It is completely robust (i.e., it returns consistent results | 
|---|
| 176 | // for all possible inputs).  The second version uses normal double-precision | 
|---|
| 177 | // arithmetic.  It is numerically stable and handles many degeneracies well, | 
|---|
| 178 | // but it is not perfectly robust.  It exists mainly for testing purposes, so | 
|---|
| 179 | // that we can verify that certain tests actually require the more advanced | 
|---|
| 180 | // techniques implemented by the first version. | 
|---|
| 181 |  | 
|---|
| 182 | #define SIMULATION_OF_SIMPLICITY | 
|---|
| 183 | #ifdef SIMULATION_OF_SIMPLICITY | 
|---|
| 184 |  | 
|---|
| 185 | // Below we define a floating-point type with enough precision so that it can | 
|---|
| 186 | // represent the exact determinant of any 3x3 matrix of floating-point | 
|---|
| 187 | // numbers.  We support two options: MPFloat (which is based on MPFR and is | 
|---|
| 188 | // therefore subject to an LGPL license) and ExactFloat (which is based on the | 
|---|
| 189 | // OpenSSL Bignum library and therefore has a permissive BSD-style license). | 
|---|
| 190 |  | 
|---|
| 191 | #ifdef S2_USE_EXACTFLOAT | 
|---|
| 192 |  | 
|---|
| 193 | // ExactFloat only supports exact calculations with floating-point numbers. | 
|---|
| 194 | #include "util/math/exactfloat/exactfloat.h" | 
|---|
| 195 |  | 
|---|
| 196 | #else  // S2_USE_EXACTFLOAT | 
|---|
| 197 |  | 
|---|
| 198 | // MPFloat requires a "maximum precision" to be specified. | 
|---|
| 199 | // | 
|---|
| 200 | // To figure out how much precision we need, first observe that any double | 
|---|
| 201 | // precision number can be represented as an integer by multiplying it by | 
|---|
| 202 | // 2**1074.  This is because the minimum exponent is -1022, and denormalized | 
|---|
| 203 | // numbers have 52 bits after the leading "0".  On the other hand, the largest | 
|---|
| 204 | // double precision value has the form 1.x * (2**1023), which is a 1024-bit | 
|---|
| 205 | // integer.  Therefore any double precision value can be represented as a | 
|---|
| 206 | // (1074 + 1024) = 2098 bit integer. | 
|---|
| 207 | // | 
|---|
| 208 | // A 3x3 determinant is computed by adding together 6 values, each of which is | 
|---|
| 209 | // the product of 3 of the input values.  When an m-bit integer is multiplied | 
|---|
| 210 | // by an n-bit integer, the result has at most (m+n) bits.  When "k" m-bit | 
|---|
| 211 | // integers are added together, the result has at most m + ceil(log2(k)) bits. | 
|---|
| 212 | // Therefore the determinant of any 3x3 matrix can be represented exactly | 
|---|
| 213 | // using no more than (3*2098)+3 = 6297 bits. | 
|---|
| 214 | // | 
|---|
| 215 | // Note that MPFloat only uses as much precision as required to compute the | 
|---|
| 216 | // exact result, and that typically far fewer bits of precision are used.  The | 
|---|
| 217 | // worst-case estimate above is only achieved for a matrix where every row | 
|---|
| 218 | // contains both the maximum and minimum possible double precision values | 
|---|
| 219 | // (i.e. approximately 1e308 and 1e-323).  For randomly chosen unit-length | 
|---|
| 220 | // vectors, the average case uses only about 200 bits of precision. | 
|---|
| 221 |  | 
|---|
| 222 | // The maximum precision must be at least (6297 + 1) so that we can assert | 
|---|
| 223 | // that the result of the determinant calculation is exact (by checking that | 
|---|
| 224 | // the actual precision of the result is less than the maximum precision | 
|---|
| 225 | // specified). | 
|---|
| 226 |  | 
|---|
| 227 | #include "util/math/mpfloat/mpfloat.h" | 
|---|
| 228 | typedef MPFloat<6300> ExactFloat; | 
|---|
| 229 |  | 
|---|
| 230 | #endif  // S2_USE_EXACTFLOAT | 
|---|
| 231 |  | 
|---|
| 232 | typedef Vector3<ExactFloat> Vector3_xf; | 
|---|
| 233 |  | 
|---|
| 234 | // The following function returns the sign of the determinant of three points | 
|---|
| 235 | // A, B, C under a model where every possible S2Point is slightly perturbed by | 
|---|
| 236 | // a unique infinitesmal amount such that no three perturbed points are | 
|---|
| 237 | // collinear and no four points are coplanar.  The perturbations are so small | 
|---|
| 238 | // that they do not change the sign of any determinant that was non-zero | 
|---|
| 239 | // before the perturbations, and therefore can be safely ignored unless the | 
|---|
| 240 | // determinant of three points is exactly zero (using multiple-precision | 
|---|
| 241 | // arithmetic). | 
|---|
| 242 | // | 
|---|
| 243 | // Since the symbolic perturbation of a given point is fixed (i.e., the | 
|---|
| 244 | // perturbation is the same for all calls to this method and does not depend | 
|---|
| 245 | // on the other two arguments), the results of this method are always | 
|---|
| 246 | // self-consistent.  It will never return results that would correspond to an | 
|---|
| 247 | // "impossible" configuration of non-degenerate points. | 
|---|
| 248 | // | 
|---|
| 249 | // Requirements: | 
|---|
| 250 | //   The 3x3 determinant of A, B, C must be exactly zero. | 
|---|
| 251 | //   The points must be distinct, with A < B < C in lexicographic order. | 
|---|
| 252 | // | 
|---|
| 253 | // Returns: | 
|---|
| 254 | //   +1 or -1 according to the sign of the determinant after the symbolic | 
|---|
| 255 | // perturbations are taken into account. | 
|---|
| 256 | // | 
|---|
| 257 | // Reference: | 
|---|
| 258 | //   "Simulation of Simplicity" (Edelsbrunner and Muecke, ACM Transactions on | 
|---|
| 259 | //   Graphics, 1990). | 
|---|
| 260 | // | 
|---|
| 261 | static int SymbolicallyPerturbedCCW( | 
|---|
| 262 | Vector3_xf const& a, Vector3_xf const& b, | 
|---|
| 263 | Vector3_xf const& c, Vector3_xf const& b_cross_c) { | 
|---|
| 264 | // This method requires that the points are sorted in lexicographically | 
|---|
| 265 | // increasing order.  This is because every possible S2Point has its own | 
|---|
| 266 | // symbolic perturbation such that if A < B then the symbolic perturbation | 
|---|
| 267 | // for A is much larger than the perturbation for B. | 
|---|
| 268 | // | 
|---|
| 269 | // Alternatively, we could sort the points in this method and keep track of | 
|---|
| 270 | // the sign of the permutation, but it is more efficient to do this before | 
|---|
| 271 | // converting the inputs to the multi-precision representation, and this | 
|---|
| 272 | // also lets us re-use the result of the cross product B x C. | 
|---|
| 273 | DCHECK(a < b && b < c); | 
|---|
| 274 |  | 
|---|
| 275 | // Every input coordinate x[i] is assigned a symbolic perturbation dx[i]. | 
|---|
| 276 | // We then compute the sign of the determinant of the perturbed points, | 
|---|
| 277 | // i.e. | 
|---|
| 278 | //               | a[0]+da[0]  a[1]+da[1]  a[2]+da[2] | | 
|---|
| 279 | //               | b[0]+db[0]  b[1]+db[1]  b[2]+db[2] | | 
|---|
| 280 | //               | c[0]+dc[0]  c[1]+dc[1]  c[2]+dc[2] | | 
|---|
| 281 | // | 
|---|
| 282 | // The perturbations are chosen such that | 
|---|
| 283 | // | 
|---|
| 284 | //   da[2] > da[1] > da[0] > db[2] > db[1] > db[0] > dc[2] > dc[1] > dc[0] | 
|---|
| 285 | // | 
|---|
| 286 | // where each perturbation is so much smaller than the previous one that we | 
|---|
| 287 | // don't even need to consider it unless the coefficients of all previous | 
|---|
| 288 | // perturbations are zero.  In fact, it is so small that we don't need to | 
|---|
| 289 | // consider it unless the coefficient of all products of the previous | 
|---|
| 290 | // perturbations are zero.  For example, we don't need to consider the | 
|---|
| 291 | // coefficient of db[1] unless the coefficient of db[2]*da[0] is zero. | 
|---|
| 292 | // | 
|---|
| 293 | // The follow code simply enumerates the coefficients of the perturbations | 
|---|
| 294 | // (and products of perturbations) that appear in the determinant above, in | 
|---|
| 295 | // order of decreasing perturbation magnitude.  The first non-zero | 
|---|
| 296 | // coefficient determines the sign of the result.  The easiest way to | 
|---|
| 297 | // enumerate the coefficients in the correct order is to pretend that each | 
|---|
| 298 | // perturbation is some tiny value "eps" raised to a power of two: | 
|---|
| 299 | // | 
|---|
| 300 | // eps**    1      2      4      8     16     32     64     128    256 | 
|---|
| 301 | //        da[2]  da[1]  da[0]  db[2]  db[1]  db[0]  dc[2]  dc[1]  dc[0] | 
|---|
| 302 | // | 
|---|
| 303 | // Essentially we can then just count in binary and test the corresponding | 
|---|
| 304 | // subset of perturbations at each step.  So for example, we must test the | 
|---|
| 305 | // coefficient of db[2]*da[0] before db[1] because eps**12 > eps**16. | 
|---|
| 306 | // | 
|---|
| 307 | // Of course, not all products of these perturbations appear in the | 
|---|
| 308 | // determinant above, since the determinant only contains the products of | 
|---|
| 309 | // elements in distinct rows and columns.  Thus we don't need to consider | 
|---|
| 310 | // da[2]*da[1], db[1]*da[1], etc.  Furthermore, sometimes different pairs of | 
|---|
| 311 | // perturbations have the same coefficient in the determinant; for example, | 
|---|
| 312 | // da[1]*db[0] and db[1]*da[0] have the same coefficient (c[2]).  Therefore | 
|---|
| 313 | // we only need to test this coefficient the first time we encounter it in | 
|---|
| 314 | // the binary order above (which will be db[1]*da[0]). | 
|---|
| 315 | // | 
|---|
| 316 | // The sequence of tests below also appears in Table 4-ii of the paper | 
|---|
| 317 | // referenced above, if you just want to look it up, with the following | 
|---|
| 318 | // translations: [a,b,c] -> [i,j,k] and [0,1,2] -> [1,2,3].  Also note that | 
|---|
| 319 | // some of the signs are different because the opposite cross product is | 
|---|
| 320 | // used (e.g., B x C rather than C x B). | 
|---|
| 321 |  | 
|---|
| 322 | int det_sign = b_cross_c[2].sgn();           // da[2] | 
|---|
| 323 | if (det_sign != 0) return det_sign; | 
|---|
| 324 | det_sign = b_cross_c[1].sgn();               // da[1] | 
|---|
| 325 | if (det_sign != 0) return det_sign; | 
|---|
| 326 | det_sign = b_cross_c[0].sgn();               // da[0] | 
|---|
| 327 | if (det_sign != 0) return det_sign; | 
|---|
| 328 |  | 
|---|
| 329 | det_sign = (c[0]*a[1] - c[1]*a[0]).sgn();    // db[2] | 
|---|
| 330 | if (det_sign != 0) return det_sign; | 
|---|
| 331 | det_sign = c[0].sgn();                       // db[2] * da[1] | 
|---|
| 332 | if (det_sign != 0) return det_sign; | 
|---|
| 333 | det_sign = -(c[1].sgn());                    // db[2] * da[0] | 
|---|
| 334 | if (det_sign != 0) return det_sign; | 
|---|
| 335 | det_sign = (c[2]*a[0] - c[0]*a[2]).sgn();    // db[1] | 
|---|
| 336 | if (det_sign != 0) return det_sign; | 
|---|
| 337 | det_sign = c[2].sgn();                       // db[1] * da[0] | 
|---|
| 338 | if (det_sign != 0) return det_sign; | 
|---|
| 339 | // The following test is listed in the paper, but it is redundant because | 
|---|
| 340 | // the previous tests guarantee that C == (0, 0, 0). | 
|---|
| 341 | DCHECK_EQ(0, (c[1]*a[2] - c[2]*a[1]).sgn()); // db[0] | 
|---|
| 342 |  | 
|---|
| 343 | det_sign = (a[0]*b[1] - a[1]*b[0]).sgn();    // dc[2] | 
|---|
| 344 | if (det_sign != 0) return det_sign; | 
|---|
| 345 | det_sign = -(b[0].sgn());                    // dc[2] * da[1] | 
|---|
| 346 | if (det_sign != 0) return det_sign; | 
|---|
| 347 | det_sign = b[1].sgn();                       // dc[2] * da[0] | 
|---|
| 348 | if (det_sign != 0) return det_sign; | 
|---|
| 349 | det_sign = a[0].sgn();                       // dc[2] * db[1] | 
|---|
| 350 | if (det_sign != 0) return det_sign; | 
|---|
| 351 | return 1;                                    // dc[2] * db[1] * da[0] | 
|---|
| 352 | } | 
|---|
| 353 |  | 
|---|
| 354 | int S2::ExpensiveCCW(S2Point const& a, S2Point const& b, S2Point const& c) { | 
|---|
| 355 | // Return zero if and only if two points are the same.  This ensures (1). | 
|---|
| 356 | if (a == b || b == c || c == a) return 0; | 
|---|
| 357 |  | 
|---|
| 358 | // Sort the three points in lexicographic order, keeping track of the sign | 
|---|
| 359 | // of the permutation.  (Each exchange inverts the sign of the determinant.) | 
|---|
| 360 | int perm_sign = 1; | 
|---|
| 361 | S2Point pa = a, pb = b, pc = c; | 
|---|
| 362 | if (pa > pb) { swap(pa, pb); perm_sign = -perm_sign; } | 
|---|
| 363 | if (pb > pc) { swap(pb, pc); perm_sign = -perm_sign; } | 
|---|
| 364 | if (pa > pb) { swap(pa, pb); perm_sign = -perm_sign; } | 
|---|
| 365 | DCHECK(pa < pb && pb < pc); | 
|---|
| 366 |  | 
|---|
| 367 | // Construct multiple-precision versions of the sorted points and compute | 
|---|
| 368 | // their exact 3x3 determinant. | 
|---|
| 369 | Vector3_xf xa = Vector3_xf::Cast(pa); | 
|---|
| 370 | Vector3_xf xb = Vector3_xf::Cast(pb); | 
|---|
| 371 | Vector3_xf xc = Vector3_xf::Cast(pc); | 
|---|
| 372 | Vector3_xf xb_cross_xc = xb.CrossProd(xc); | 
|---|
| 373 | ExactFloat det = xa.DotProd(xb_cross_xc); | 
|---|
| 374 |  | 
|---|
| 375 | // The precision of ExactFloat is high enough that the result should always | 
|---|
| 376 | // be exact (no rounding was performed). | 
|---|
| 377 | DCHECK(!det.is_nan()); | 
|---|
| 378 | DCHECK_LT(det.prec(), det.max_prec()); | 
|---|
| 379 |  | 
|---|
| 380 | // If the exact determinant is non-zero, we're done. | 
|---|
| 381 | int det_sign = det.sgn(); | 
|---|
| 382 | if (det_sign == 0) { | 
|---|
| 383 | // Otherwise, we need to resort to symbolic perturbations to resolve the | 
|---|
| 384 | // sign of the determinant. | 
|---|
| 385 | det_sign = SymbolicallyPerturbedCCW(xa, xb, xc, xb_cross_xc); | 
|---|
| 386 | } | 
|---|
| 387 | DCHECK(det_sign != 0); | 
|---|
| 388 | return perm_sign * det_sign; | 
|---|
| 389 | } | 
|---|
| 390 |  | 
|---|
| 391 | #else  // SIMULATION_OF_SIMPLICITY | 
|---|
| 392 |  | 
|---|
| 393 | static inline int PlanarCCW(Vector2_d const& a, Vector2_d const& b) { | 
|---|
| 394 | // Return +1 if the edge AB is CCW around the origin, etc. | 
|---|
| 395 | double sab = (a.DotProd(b) > 0) ? -1 : 1; | 
|---|
| 396 | Vector2_d vab = a + sab * b; | 
|---|
| 397 | double da = a.Norm2(); | 
|---|
| 398 | double db = b.Norm2(); | 
|---|
| 399 | double sign; | 
|---|
| 400 | if (da < db || (da == db && a < b)) { | 
|---|
| 401 | sign = a.CrossProd(vab) * sab; | 
|---|
| 402 | } else { | 
|---|
| 403 | sign = vab.CrossProd(b); | 
|---|
| 404 | } | 
|---|
| 405 | if (sign > 0) return 1; | 
|---|
| 406 | if (sign < 0) return -1; | 
|---|
| 407 | return 0; | 
|---|
| 408 | } | 
|---|
| 409 |  | 
|---|
| 410 | static inline int PlanarOrderedCCW(Vector2_d const& a, Vector2_d const& b, | 
|---|
| 411 | Vector2_d const& c) { | 
|---|
| 412 | int sum = 0; | 
|---|
| 413 | sum += PlanarCCW(a, b); | 
|---|
| 414 | sum += PlanarCCW(b, c); | 
|---|
| 415 | sum += PlanarCCW(c, a); | 
|---|
| 416 | if (sum > 0) return 1; | 
|---|
| 417 | if (sum < 0) return -1; | 
|---|
| 418 | return 0; | 
|---|
| 419 | } | 
|---|
| 420 |  | 
|---|
| 421 | int S2::ExpensiveCCW(S2Point const& a, S2Point const& b, S2Point const& c) { | 
|---|
| 422 | // Return zero if and only if two points are the same.  This ensures (1). | 
|---|
| 423 | if (a == b || b == c || c == a) return 0; | 
|---|
| 424 |  | 
|---|
| 425 | // Now compute the determinant in a stable way.  Since all three points are | 
|---|
| 426 | // unit length and we know that the determinant is very close to zero, this | 
|---|
| 427 | // means that points are very nearly collinear.  Furthermore, the most common | 
|---|
| 428 | // situation is where two points are nearly identical or nearly antipodal. | 
|---|
| 429 | // To get the best accuracy in this situation, it is important to | 
|---|
| 430 | // immediately reduce the magnitude of the arguments by computing either | 
|---|
| 431 | // A+B or A-B for each pair of points.  Note that even if A and B differ | 
|---|
| 432 | // only in their low bits, A-B can be computed very accurately.  On the | 
|---|
| 433 | // other hand we can't accurately represent an arbitrary linear combination | 
|---|
| 434 | // of two vectors as would be required for Gaussian elimination.  The code | 
|---|
| 435 | // below chooses the vertex opposite the longest edge as the "origin" for | 
|---|
| 436 | // the calculation, and computes the different vectors to the other two | 
|---|
| 437 | // vertices.  This minimizes the sum of the lengths of these vectors. | 
|---|
| 438 | // | 
|---|
| 439 | // This implementation is very stable numerically, but it still does not | 
|---|
| 440 | // return consistent results in all cases.  For example, if three points are | 
|---|
| 441 | // spaced far apart from each other along a great circle, the sign of the | 
|---|
| 442 | // result will basically be random (although it will still satisfy the | 
|---|
| 443 | // conditions documented in the header file).  The only way to return | 
|---|
| 444 | // consistent results in all cases is to compute the result using | 
|---|
| 445 | // multiple-precision arithmetic.  I considered using the Gnu MP library, | 
|---|
| 446 | // but this would be very expensive (up to 2000 bits of precision may be | 
|---|
| 447 | // needed to store the intermediate results) and seems like overkill for | 
|---|
| 448 | // this problem.  The MP library is apparently also quite particular about | 
|---|
| 449 | // compilers and compilation options and would be a pain to maintain. | 
|---|
| 450 |  | 
|---|
| 451 | // We want to handle the case of nearby points and nearly antipodal points | 
|---|
| 452 | // accurately, so determine whether A+B or A-B is smaller in each case. | 
|---|
| 453 | double sab = (a.DotProd(b) > 0) ? -1 : 1; | 
|---|
| 454 | double sbc = (b.DotProd(c) > 0) ? -1 : 1; | 
|---|
| 455 | double sca = (c.DotProd(a) > 0) ? -1 : 1; | 
|---|
| 456 | S2Point vab = a + sab * b; | 
|---|
| 457 | S2Point vbc = b + sbc * c; | 
|---|
| 458 | S2Point vca = c + sca * a; | 
|---|
| 459 | double dab = vab.Norm2(); | 
|---|
| 460 | double dbc = vbc.Norm2(); | 
|---|
| 461 | double dca = vca.Norm2(); | 
|---|
| 462 |  | 
|---|
| 463 | // Sort the difference vectors to find the longest edge, and use the | 
|---|
| 464 | // opposite vertex as the origin.  If two difference vectors are the same | 
|---|
| 465 | // length, we break ties deterministically to ensure that the symmetry | 
|---|
| 466 | // properties guaranteed in the header file will be true. | 
|---|
| 467 | double sign; | 
|---|
| 468 | if (dca < dbc || (dca == dbc && a < b)) { | 
|---|
| 469 | if (dab < dbc || (dab == dbc && a < c)) { | 
|---|
| 470 | // The "sab" factor converts A +/- B into B +/- A. | 
|---|
| 471 | sign = vab.CrossProd(vca).DotProd(a) * sab;  // BC is longest edge | 
|---|
| 472 | } else { | 
|---|
| 473 | sign = vca.CrossProd(vbc).DotProd(c) * sca;  // AB is longest edge | 
|---|
| 474 | } | 
|---|
| 475 | } else { | 
|---|
| 476 | if (dab < dca || (dab == dca && b < c)) { | 
|---|
| 477 | sign = vbc.CrossProd(vab).DotProd(b) * sbc;  // CA is longest edge | 
|---|
| 478 | } else { | 
|---|
| 479 | sign = vca.CrossProd(vbc).DotProd(c) * sca;  // AB is longest edge | 
|---|
| 480 | } | 
|---|
| 481 | } | 
|---|
| 482 | if (sign > 0) return 1; | 
|---|
| 483 | if (sign < 0) return -1; | 
|---|
| 484 |  | 
|---|
| 485 | // The points A, B, and C are numerically indistinguishable from coplanar. | 
|---|
| 486 | // This may be due to roundoff error, or the points may in fact be exactly | 
|---|
| 487 | // coplanar.  We handle this situation by perturbing all of the points by a | 
|---|
| 488 | // vector (eps, eps**2, eps**3) where "eps" is an infinitesmally small | 
|---|
| 489 | // positive number (e.g. 1 divided by a googolplex).  The perturbation is | 
|---|
| 490 | // done symbolically, i.e. we compute what would happen if the points were | 
|---|
| 491 | // perturbed by this amount.  It turns out that this is equivalent to | 
|---|
| 492 | // checking whether the points are ordered CCW around the origin first in | 
|---|
| 493 | // the Y-Z plane, then in the Z-X plane, and then in the X-Y plane. | 
|---|
| 494 |  | 
|---|
| 495 | int ccw = PlanarOrderedCCW(Vector2_d(a.y(), a.z()), Vector2_d(b.y(), b.z()), | 
|---|
| 496 | Vector2_d(c.y(), c.z())); | 
|---|
| 497 | if (ccw == 0) { | 
|---|
| 498 | ccw = PlanarOrderedCCW(Vector2_d(a.z(), a.x()), Vector2_d(b.z(), b.x()), | 
|---|
| 499 | Vector2_d(c.z(), c.x())); | 
|---|
| 500 | if (ccw == 0) { | 
|---|
| 501 | ccw = PlanarOrderedCCW(Vector2_d(a.x(), a.y()), Vector2_d(b.x(), b.y()), | 
|---|
| 502 | Vector2_d(c.x(), c.y())); | 
|---|
| 503 | // There are a few cases where "ccw" may still be zero despite our best | 
|---|
| 504 | // efforts.  For example, two input points may be exactly proportional | 
|---|
| 505 | // to each other (where both still satisfy IsNormalized()). | 
|---|
| 506 | } | 
|---|
| 507 | } | 
|---|
| 508 | return ccw; | 
|---|
| 509 | } | 
|---|
| 510 |  | 
|---|
| 511 | #endif  // SIMULATION_OF_SIMPLICITY | 
|---|
| 512 |  | 
|---|
| 513 | double S2::Angle(S2Point const& a, S2Point const& b, S2Point const& c) { | 
|---|
| 514 | return RobustCrossProd(a, b).Angle(RobustCrossProd(c, b)); | 
|---|
| 515 | } | 
|---|
| 516 |  | 
|---|
| 517 | double S2::TurnAngle(S2Point const& a, S2Point const& b, S2Point const& c) { | 
|---|
| 518 | // This is a bit less efficient because we compute all 3 cross products, but | 
|---|
| 519 | // it ensures that TurnAngle(a,b,c) == -TurnAngle(c,b,a) for all a,b,c. | 
|---|
| 520 | double angle = RobustCrossProd(b, a).Angle(RobustCrossProd(c, b)); | 
|---|
| 521 | return (RobustCCW(a, b, c) > 0) ? angle : -angle; | 
|---|
| 522 | } | 
|---|
| 523 |  | 
|---|
| 524 | double S2::Area(S2Point const& a, S2Point const& b, S2Point const& c) { | 
|---|
| 525 | DCHECK(IsUnitLength(a)); | 
|---|
| 526 | DCHECK(IsUnitLength(b)); | 
|---|
| 527 | DCHECK(IsUnitLength(c)); | 
|---|
| 528 | // This method is based on l'Huilier's theorem, | 
|---|
| 529 | // | 
|---|
| 530 | //   tan(E/4) = sqrt(tan(s/2) tan((s-a)/2) tan((s-b)/2) tan((s-c)/2)) | 
|---|
| 531 | // | 
|---|
| 532 | // where E is the spherical excess of the triangle (i.e. its area), | 
|---|
| 533 | //       a, b, c, are the side lengths, and | 
|---|
| 534 | //       s is the semiperimeter (a + b + c) / 2 . | 
|---|
| 535 | // | 
|---|
| 536 | // The only significant source of error using l'Huilier's method is the | 
|---|
| 537 | // cancellation error of the terms (s-a), (s-b), (s-c).  This leads to a | 
|---|
| 538 | // *relative* error of about 1e-16 * s / min(s-a, s-b, s-c).  This compares | 
|---|
| 539 | // to a relative error of about 1e-15 / E using Girard's formula, where E is | 
|---|
| 540 | // the true area of the triangle.  Girard's formula can be even worse than | 
|---|
| 541 | // this for very small triangles, e.g. a triangle with a true area of 1e-30 | 
|---|
| 542 | // might evaluate to 1e-5. | 
|---|
| 543 | // | 
|---|
| 544 | // So, we prefer l'Huilier's formula unless dmin < s * (0.1 * E), where | 
|---|
| 545 | // dmin = min(s-a, s-b, s-c).  This basically includes all triangles | 
|---|
| 546 | // except for extremely long and skinny ones. | 
|---|
| 547 | // | 
|---|
| 548 | // Since we don't know E, we would like a conservative upper bound on | 
|---|
| 549 | // the triangle area in terms of s and dmin.  It's possible to show that | 
|---|
| 550 | // E <= k1 * s * sqrt(s * dmin), where k1 = 2*sqrt(3)/Pi (about 1). | 
|---|
| 551 | // Using this, it's easy to show that we should always use l'Huilier's | 
|---|
| 552 | // method if dmin >= k2 * s^5, where k2 is about 1e-2.  Furthermore, | 
|---|
| 553 | // if dmin < k2 * s^5, the triangle area is at most k3 * s^4, where | 
|---|
| 554 | // k3 is about 0.1.  Since the best case error using Girard's formula | 
|---|
| 555 | // is about 1e-15, this means that we shouldn't even consider it unless | 
|---|
| 556 | // s >= 3e-4 or so. | 
|---|
| 557 |  | 
|---|
| 558 | // We use volatile doubles to force the compiler to truncate all of these | 
|---|
| 559 | // quantities to 64 bits.  Otherwise it may compute a value of dmin > 0 | 
|---|
| 560 | // simply because it chose to spill one of the intermediate values to | 
|---|
| 561 | // memory but not one of the others. | 
|---|
| 562 | volatile double sa = b.Angle(c); | 
|---|
| 563 | volatile double sb = c.Angle(a); | 
|---|
| 564 | volatile double sc = a.Angle(b); | 
|---|
| 565 | volatile double s = 0.5 * (sa + sb + sc); | 
|---|
| 566 | if (s >= 3e-4) { | 
|---|
| 567 | // Consider whether Girard's formula might be more accurate. | 
|---|
| 568 | double s2 = s * s; | 
|---|
| 569 | double dmin = s - max(sa, max(sb, sc)); | 
|---|
| 570 | if (dmin < 1e-2 * s * s2 * s2) { | 
|---|
| 571 | // This triangle is skinny enough to consider Girard's formula. | 
|---|
| 572 | double area = GirardArea(a, b, c); | 
|---|
| 573 | if (dmin < s * (0.1 * area)) return area; | 
|---|
| 574 | } | 
|---|
| 575 | } | 
|---|
| 576 | // Use l'Huilier's formula. | 
|---|
| 577 | return 4 * atan(sqrt(max(0.0, tan(0.5 * s) * tan(0.5 * (s - sa)) * | 
|---|
| 578 | tan(0.5 * (s - sb)) * tan(0.5 * (s - sc))))); | 
|---|
| 579 | } | 
|---|
| 580 |  | 
|---|
| 581 | double S2::GirardArea(S2Point const& a, S2Point const& b, S2Point const& c) { | 
|---|
| 582 | // This is equivalent to the usual Girard's formula but is slightly | 
|---|
| 583 | // more accurate, faster to compute, and handles a == b == c without | 
|---|
| 584 | // a special case.  The use of RobustCrossProd() makes it much more | 
|---|
| 585 | // accurate when two vertices are nearly identical or antipodal. | 
|---|
| 586 |  | 
|---|
| 587 | S2Point ab = RobustCrossProd(a, b); | 
|---|
| 588 | S2Point bc = RobustCrossProd(b, c); | 
|---|
| 589 | S2Point ac = RobustCrossProd(a, c); | 
|---|
| 590 | return max(0.0, ab.Angle(ac) - ab.Angle(bc) + bc.Angle(ac)); | 
|---|
| 591 | } | 
|---|
| 592 |  | 
|---|
| 593 | double S2::SignedArea(S2Point const& a, S2Point const& b, S2Point const& c) { | 
|---|
| 594 | return Area(a, b, c) * RobustCCW(a, b, c); | 
|---|
| 595 | } | 
|---|
| 596 |  | 
|---|
| 597 | S2Point S2::PlanarCentroid(S2Point const& a, S2Point const& b, | 
|---|
| 598 | S2Point const& c) { | 
|---|
| 599 | return (1./3) * (a + b + c); | 
|---|
| 600 | } | 
|---|
| 601 |  | 
|---|
| 602 | S2Point S2::TrueCentroid(S2Point const& a, S2Point const& b, | 
|---|
| 603 | S2Point const& c) { | 
|---|
| 604 | DCHECK(IsUnitLength(a)); | 
|---|
| 605 | DCHECK(IsUnitLength(b)); | 
|---|
| 606 | DCHECK(IsUnitLength(c)); | 
|---|
| 607 |  | 
|---|
| 608 | // I couldn't find any references for computing the true centroid of a | 
|---|
| 609 | // spherical triangle...  I have a truly marvellous demonstration of this | 
|---|
| 610 | // formula which this margin is too narrow to contain :) | 
|---|
| 611 |  | 
|---|
| 612 | // Use Angle() in order to get accurate results for small triangles. | 
|---|
| 613 | double angle_a = b.Angle(c); | 
|---|
| 614 | double angle_b = c.Angle(a); | 
|---|
| 615 | double angle_c = a.Angle(b); | 
|---|
| 616 | double ra = (angle_a == 0) ? 1 : (angle_a / sin(angle_a)); | 
|---|
| 617 | double rb = (angle_b == 0) ? 1 : (angle_b / sin(angle_b)); | 
|---|
| 618 | double rc = (angle_c == 0) ? 1 : (angle_c / sin(angle_c)); | 
|---|
| 619 |  | 
|---|
| 620 | // Now compute a point M such that: | 
|---|
| 621 | // | 
|---|
| 622 | //  [Ax Ay Az] [Mx]                       [ra] | 
|---|
| 623 | //  [Bx By Bz] [My]  = 0.5 * det(A,B,C) * [rb] | 
|---|
| 624 | //  [Cx Cy Cz] [Mz]                       [rc] | 
|---|
| 625 | // | 
|---|
| 626 | // To improve the numerical stability we subtract the first row (A) from the | 
|---|
| 627 | // other two rows; this reduces the cancellation error when A, B, and C are | 
|---|
| 628 | // very close together.  Then we solve it using Cramer's rule. | 
|---|
| 629 | // | 
|---|
| 630 | // TODO(user): This code still isn't as numerically stable as it could be. | 
|---|
| 631 | // The biggest potential improvement is to compute B-A and C-A more | 
|---|
| 632 | // accurately so that (B-A)x(C-A) is always inside triangle ABC. | 
|---|
| 633 | S2Point x(a.x(), b.x() - a.x(), c.x() - a.x()); | 
|---|
| 634 | S2Point y(a.y(), b.y() - a.y(), c.y() - a.y()); | 
|---|
| 635 | S2Point z(a.z(), b.z() - a.z(), c.z() - a.z()); | 
|---|
| 636 | S2Point r(ra, rb - ra, rc - ra); | 
|---|
| 637 | return 0.5 * S2Point(y.CrossProd(z).DotProd(r), | 
|---|
| 638 | z.CrossProd(x).DotProd(r), | 
|---|
| 639 | x.CrossProd(y).DotProd(r)); | 
|---|
| 640 | } | 
|---|
| 641 |  | 
|---|
| 642 | bool S2::OrderedCCW(S2Point const& a, S2Point const& b, S2Point const& c, | 
|---|
| 643 | S2Point const& o) { | 
|---|
| 644 | // The last inequality below is ">" rather than ">=" so that we return true | 
|---|
| 645 | // if A == B or B == C, and otherwise false if A == C.  Recall that | 
|---|
| 646 | // RobustCCW(x,y,z) == -RobustCCW(z,y,x) for all x,y,z. | 
|---|
| 647 |  | 
|---|
| 648 | int sum = 0; | 
|---|
| 649 | if (RobustCCW(b, o, a) >= 0) ++sum; | 
|---|
| 650 | if (RobustCCW(c, o, b) >= 0) ++sum; | 
|---|
| 651 | if (RobustCCW(a, o, c) > 0) ++sum; | 
|---|
| 652 | return sum >= 2; | 
|---|
| 653 | } | 
|---|
| 654 |  | 
|---|
| 655 | // kIJtoPos[orientation][ij] -> pos | 
|---|
| 656 | int const S2::kIJtoPos[4][4] = { | 
|---|
| 657 | // (0,0) (0,1) (1,0) (1,1) | 
|---|
| 658 | {     0,    1,    3,    2  },  // canonical order | 
|---|
| 659 | {     0,    3,    1,    2  },  // axes swapped | 
|---|
| 660 | {     2,    3,    1,    0  },  // bits inverted | 
|---|
| 661 | {     2,    1,    3,    0  },  // swapped & inverted | 
|---|
| 662 | }; | 
|---|
| 663 |  | 
|---|
| 664 | // kPosToIJ[orientation][pos] -> ij | 
|---|
| 665 | int const S2::kPosToIJ[4][4] = { | 
|---|
| 666 | // 0  1  2  3 | 
|---|
| 667 | {  0, 1, 3, 2 },    // canonical order:    (0,0), (0,1), (1,1), (1,0) | 
|---|
| 668 | {  0, 2, 3, 1 },    // axes swapped:       (0,0), (1,0), (1,1), (0,1) | 
|---|
| 669 | {  3, 2, 0, 1 },    // bits inverted:      (1,1), (1,0), (0,0), (0,1) | 
|---|
| 670 | {  3, 1, 0, 2 },    // swapped & inverted: (1,1), (0,1), (0,0), (1,0) | 
|---|
| 671 | }; | 
|---|
| 672 |  | 
|---|
| 673 | // kPosToOrientation[pos] -> orientation_modifier | 
|---|
| 674 | int const S2::kPosToOrientation[4] = { | 
|---|
| 675 | kSwapMask, | 
|---|
| 676 | 0, | 
|---|
| 677 | 0, | 
|---|
| 678 | kInvertMask + kSwapMask, | 
|---|
| 679 | }; | 
|---|
| 680 |  | 
|---|
| 681 | // All of the values below were obtained by a combination of hand analysis and | 
|---|
| 682 | // Mathematica.  In general, S2_TAN_PROJECTION produces the most uniform | 
|---|
| 683 | // shapes and sizes of cells, S2_LINEAR_PROJECTION is considerably worse, and | 
|---|
| 684 | // S2_QUADRATIC_PROJECTION is somewhere in between (but generally closer to | 
|---|
| 685 | // the tangent projection than the linear one). | 
|---|
| 686 |  | 
|---|
| 687 | S2::LengthMetric const S2::kMinAngleSpan( | 
|---|
| 688 | S2_PROJECTION == S2_LINEAR_PROJECTION ? 1.0 :                      // 1.000 | 
|---|
| 689 | S2_PROJECTION == S2_TAN_PROJECTION ? M_PI / 2 :                    // 1.571 | 
|---|
| 690 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 4. / 3 :                // 1.333 | 
|---|
| 691 | 0); | 
|---|
| 692 |  | 
|---|
| 693 | S2::LengthMetric const S2::kMaxAngleSpan( | 
|---|
| 694 | S2_PROJECTION == S2_LINEAR_PROJECTION ? 2 :                        // 2.000 | 
|---|
| 695 | S2_PROJECTION == S2_TAN_PROJECTION ? M_PI / 2 :                    // 1.571 | 
|---|
| 696 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 1.704897179199218452 :  // 1.705 | 
|---|
| 697 | 0); | 
|---|
| 698 |  | 
|---|
| 699 | S2::LengthMetric const S2::kAvgAngleSpan(M_PI / 2);                    // 1.571 | 
|---|
| 700 | // This is true for all projections. | 
|---|
| 701 |  | 
|---|
| 702 | S2::LengthMetric const S2::kMinWidth( | 
|---|
| 703 | S2_PROJECTION == S2_LINEAR_PROJECTION ? sqrt(2. / 3) :             // 0.816 | 
|---|
| 704 | S2_PROJECTION == S2_TAN_PROJECTION ? M_PI / (2 * sqrt(2)) :        // 1.111 | 
|---|
| 705 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 2 * sqrt(2) / 3 :       // 0.943 | 
|---|
| 706 | 0); | 
|---|
| 707 |  | 
|---|
| 708 | S2::LengthMetric const S2::kMaxWidth(S2::kMaxAngleSpan.deriv()); | 
|---|
| 709 | // This is true for all projections. | 
|---|
| 710 |  | 
|---|
| 711 | S2::LengthMetric const S2::kAvgWidth( | 
|---|
| 712 | S2_PROJECTION == S2_LINEAR_PROJECTION ? 1.411459345844456965 :     // 1.411 | 
|---|
| 713 | S2_PROJECTION == S2_TAN_PROJECTION ? 1.437318638925160885 :        // 1.437 | 
|---|
| 714 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 1.434523672886099389 :  // 1.435 | 
|---|
| 715 | 0); | 
|---|
| 716 |  | 
|---|
| 717 | S2::LengthMetric const S2::kMinEdge( | 
|---|
| 718 | S2_PROJECTION == S2_LINEAR_PROJECTION ? 2 * sqrt(2) / 3 :          // 0.943 | 
|---|
| 719 | S2_PROJECTION == S2_TAN_PROJECTION ? M_PI / (2 * sqrt(2)) :        // 1.111 | 
|---|
| 720 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 2 * sqrt(2) / 3 :       // 0.943 | 
|---|
| 721 | 0); | 
|---|
| 722 |  | 
|---|
| 723 | S2::LengthMetric const S2::kMaxEdge(S2::kMaxAngleSpan.deriv()); | 
|---|
| 724 | // This is true for all projections. | 
|---|
| 725 |  | 
|---|
| 726 | S2::LengthMetric const S2::kAvgEdge( | 
|---|
| 727 | S2_PROJECTION == S2_LINEAR_PROJECTION ? 1.440034192955603643 :     // 1.440 | 
|---|
| 728 | S2_PROJECTION == S2_TAN_PROJECTION ? 1.461667032546739266 :        // 1.462 | 
|---|
| 729 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 1.459213746386106062 :  // 1.459 | 
|---|
| 730 | 0); | 
|---|
| 731 |  | 
|---|
| 732 | S2::LengthMetric const S2::kMinDiag( | 
|---|
| 733 | S2_PROJECTION == S2_LINEAR_PROJECTION ? 2 * sqrt(2) / 3 :          // 0.943 | 
|---|
| 734 | S2_PROJECTION == S2_TAN_PROJECTION ? M_PI * sqrt(2) / 3 :          // 1.481 | 
|---|
| 735 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 8 * sqrt(2) / 9 :       // 1.257 | 
|---|
| 736 | 0); | 
|---|
| 737 |  | 
|---|
| 738 | S2::LengthMetric const S2::kMaxDiag( | 
|---|
| 739 | S2_PROJECTION == S2_LINEAR_PROJECTION ? 2 * sqrt(2) :              // 2.828 | 
|---|
| 740 | S2_PROJECTION == S2_TAN_PROJECTION ? M_PI * sqrt(2. / 3) :         // 2.565 | 
|---|
| 741 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 2.438654594434021032 :  // 2.439 | 
|---|
| 742 | 0); | 
|---|
| 743 |  | 
|---|
| 744 | S2::LengthMetric const S2::kAvgDiag( | 
|---|
| 745 | S2_PROJECTION == S2_LINEAR_PROJECTION ? 2.031817866418812674 :     // 2.032 | 
|---|
| 746 | S2_PROJECTION == S2_TAN_PROJECTION ? 2.063623197195635753 :        // 2.064 | 
|---|
| 747 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 2.060422738998471683 :  // 2.060 | 
|---|
| 748 | 0); | 
|---|
| 749 |  | 
|---|
| 750 | S2::AreaMetric const S2::kMinArea( | 
|---|
| 751 | S2_PROJECTION == S2_LINEAR_PROJECTION ? 4 / (3 * sqrt(3)) :        // 0.770 | 
|---|
| 752 | S2_PROJECTION == S2_TAN_PROJECTION ? (M_PI*M_PI) / (4*sqrt(2)) :   // 1.745 | 
|---|
| 753 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 8 * sqrt(2) / 9 :       // 1.257 | 
|---|
| 754 | 0); | 
|---|
| 755 |  | 
|---|
| 756 | S2::AreaMetric const S2::kMaxArea( | 
|---|
| 757 | S2_PROJECTION == S2_LINEAR_PROJECTION ? 4 :                        // 4.000 | 
|---|
| 758 | S2_PROJECTION == S2_TAN_PROJECTION ? M_PI * M_PI / 4 :             // 2.467 | 
|---|
| 759 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 2.635799256963161491 :  // 2.636 | 
|---|
| 760 | 0); | 
|---|
| 761 |  | 
|---|
| 762 | S2::AreaMetric const S2::kAvgArea(4 * M_PI / 6);                       // 2.094 | 
|---|
| 763 | // This is true for all projections. | 
|---|
| 764 |  | 
|---|
| 765 | double const S2::kMaxEdgeAspect = ( | 
|---|
| 766 | S2_PROJECTION == S2_LINEAR_PROJECTION ? sqrt(2) :                  // 1.414 | 
|---|
| 767 | S2_PROJECTION == S2_TAN_PROJECTION ?  sqrt(2) :                    // 1.414 | 
|---|
| 768 | S2_PROJECTION == S2_QUADRATIC_PROJECTION ? 1.442615274452682920 :  // 1.443 | 
|---|
| 769 | 0); | 
|---|
| 770 |  | 
|---|
| 771 | double const S2::kMaxDiagAspect = sqrt(3);                             // 1.732 | 
|---|
| 772 | // This is true for all projections. | 
|---|
| 773 |  | 
|---|