1 | // Copyright 2007, Google Inc. |
2 | // All rights reserved. |
3 | // |
4 | // Redistribution and use in source and binary forms, with or without |
5 | // modification, are permitted provided that the following conditions are |
6 | // met: |
7 | // |
8 | // * Redistributions of source code must retain the above copyright |
9 | // notice, this list of conditions and the following disclaimer. |
10 | // * Redistributions in binary form must reproduce the above |
11 | // copyright notice, this list of conditions and the following disclaimer |
12 | // in the documentation and/or other materials provided with the |
13 | // distribution. |
14 | // * Neither the name of Google Inc. nor the names of its |
15 | // contributors may be used to endorse or promote products derived from |
16 | // this software without specific prior written permission. |
17 | // |
18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | // |
30 | // Author: wan@google.com (Zhanyong Wan) |
31 | |
32 | // Google Test - The Google C++ Testing Framework |
33 | // |
34 | // This file implements a universal value printer that can print a |
35 | // value of any type T: |
36 | // |
37 | // void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr); |
38 | // |
39 | // A user can teach this function how to print a class type T by |
40 | // defining either operator<<() or PrintTo() in the namespace that |
41 | // defines T. More specifically, the FIRST defined function in the |
42 | // following list will be used (assuming T is defined in namespace |
43 | // foo): |
44 | // |
45 | // 1. foo::PrintTo(const T&, ostream*) |
46 | // 2. operator<<(ostream&, const T&) defined in either foo or the |
47 | // global namespace. |
48 | // |
49 | // If none of the above is defined, it will print the debug string of |
50 | // the value if it is a protocol buffer, or print the raw bytes in the |
51 | // value otherwise. |
52 | // |
53 | // To aid debugging: when T is a reference type, the address of the |
54 | // value is also printed; when T is a (const) char pointer, both the |
55 | // pointer value and the NUL-terminated string it points to are |
56 | // printed. |
57 | // |
58 | // We also provide some convenient wrappers: |
59 | // |
60 | // // Prints a value to a string. For a (const or not) char |
61 | // // pointer, the NUL-terminated string (but not the pointer) is |
62 | // // printed. |
63 | // std::string ::testing::PrintToString(const T& value); |
64 | // |
65 | // // Prints a value tersely: for a reference type, the referenced |
66 | // // value (but not the address) is printed; for a (const or not) char |
67 | // // pointer, the NUL-terminated string (but not the pointer) is |
68 | // // printed. |
69 | // void ::testing::internal::UniversalTersePrint(const T& value, ostream*); |
70 | // |
71 | // // Prints value using the type inferred by the compiler. The difference |
72 | // // from UniversalTersePrint() is that this function prints both the |
73 | // // pointer and the NUL-terminated string for a (const or not) char pointer. |
74 | // void ::testing::internal::UniversalPrint(const T& value, ostream*); |
75 | // |
76 | // // Prints the fields of a tuple tersely to a string vector, one |
77 | // // element for each field. Tuple support must be enabled in |
78 | // // gtest-port.h. |
79 | // std::vector<string> UniversalTersePrintTupleFieldsToStrings( |
80 | // const Tuple& value); |
81 | // |
82 | // Known limitation: |
83 | // |
84 | // The print primitives print the elements of an STL-style container |
85 | // using the compiler-inferred type of *iter where iter is a |
86 | // const_iterator of the container. When const_iterator is an input |
87 | // iterator but not a forward iterator, this inferred type may not |
88 | // match value_type, and the print output may be incorrect. In |
89 | // practice, this is rarely a problem as for most containers |
90 | // const_iterator is a forward iterator. We'll fix this if there's an |
91 | // actual need for it. Note that this fix cannot rely on value_type |
92 | // being defined as many user-defined container types don't have |
93 | // value_type. |
94 | |
95 | #ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ |
96 | #define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ |
97 | |
98 | #include <ostream> // NOLINT |
99 | #include <sstream> |
100 | #include <string> |
101 | #include <utility> |
102 | #include <vector> |
103 | #include "gtest/internal/gtest-port.h" |
104 | #include "gtest/internal/gtest-internal.h" |
105 | |
106 | #if GTEST_HAS_STD_TUPLE_ |
107 | # include <tuple> |
108 | #endif |
109 | |
110 | namespace testing { |
111 | |
112 | // Definitions in the 'internal' and 'internal2' name spaces are |
113 | // subject to change without notice. DO NOT USE THEM IN USER CODE! |
114 | namespace internal2 { |
115 | |
116 | // Prints the given number of bytes in the given object to the given |
117 | // ostream. |
118 | GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes, |
119 | size_t count, |
120 | ::std::ostream* os); |
121 | |
122 | // For selecting which printer to use when a given type has neither << |
123 | // nor PrintTo(). |
124 | enum TypeKind { |
125 | kProtobuf, // a protobuf type |
126 | kConvertibleToInteger, // a type implicitly convertible to BiggestInt |
127 | // (e.g. a named or unnamed enum type) |
128 | kOtherType // anything else |
129 | }; |
130 | |
131 | // TypeWithoutFormatter<T, kTypeKind>::PrintValue(value, os) is called |
132 | // by the universal printer to print a value of type T when neither |
133 | // operator<< nor PrintTo() is defined for T, where kTypeKind is the |
134 | // "kind" of T as defined by enum TypeKind. |
135 | template <typename T, TypeKind kTypeKind> |
136 | class TypeWithoutFormatter { |
137 | public: |
138 | // This default version is called when kTypeKind is kOtherType. |
139 | static void PrintValue(const T& value, ::std::ostream* os) { |
140 | PrintBytesInObjectTo(reinterpret_cast<const unsigned char*>(&value), |
141 | sizeof(value), os); |
142 | } |
143 | }; |
144 | |
145 | // We print a protobuf using its ShortDebugString() when the string |
146 | // doesn't exceed this many characters; otherwise we print it using |
147 | // DebugString() for better readability. |
148 | const size_t kProtobufOneLinerMaxLength = 50; |
149 | |
150 | template <typename T> |
151 | class TypeWithoutFormatter<T, kProtobuf> { |
152 | public: |
153 | static void PrintValue(const T& value, ::std::ostream* os) { |
154 | const ::testing::internal::string short_str = value.ShortDebugString(); |
155 | const ::testing::internal::string pretty_str = |
156 | short_str.length() <= kProtobufOneLinerMaxLength ? |
157 | short_str : ("\n" + value.DebugString()); |
158 | *os << ("<" + pretty_str + ">" ); |
159 | } |
160 | }; |
161 | |
162 | template <typename T> |
163 | class TypeWithoutFormatter<T, kConvertibleToInteger> { |
164 | public: |
165 | // Since T has no << operator or PrintTo() but can be implicitly |
166 | // converted to BiggestInt, we print it as a BiggestInt. |
167 | // |
168 | // Most likely T is an enum type (either named or unnamed), in which |
169 | // case printing it as an integer is the desired behavior. In case |
170 | // T is not an enum, printing it as an integer is the best we can do |
171 | // given that it has no user-defined printer. |
172 | static void PrintValue(const T& value, ::std::ostream* os) { |
173 | const internal::BiggestInt kBigInt = value; |
174 | *os << kBigInt; |
175 | } |
176 | }; |
177 | |
178 | // Prints the given value to the given ostream. If the value is a |
179 | // protocol message, its debug string is printed; if it's an enum or |
180 | // of a type implicitly convertible to BiggestInt, it's printed as an |
181 | // integer; otherwise the bytes in the value are printed. This is |
182 | // what UniversalPrinter<T>::Print() does when it knows nothing about |
183 | // type T and T has neither << operator nor PrintTo(). |
184 | // |
185 | // A user can override this behavior for a class type Foo by defining |
186 | // a << operator in the namespace where Foo is defined. |
187 | // |
188 | // We put this operator in namespace 'internal2' instead of 'internal' |
189 | // to simplify the implementation, as much code in 'internal' needs to |
190 | // use << in STL, which would conflict with our own << were it defined |
191 | // in 'internal'. |
192 | // |
193 | // Note that this operator<< takes a generic std::basic_ostream<Char, |
194 | // CharTraits> type instead of the more restricted std::ostream. If |
195 | // we define it to take an std::ostream instead, we'll get an |
196 | // "ambiguous overloads" compiler error when trying to print a type |
197 | // Foo that supports streaming to std::basic_ostream<Char, |
198 | // CharTraits>, as the compiler cannot tell whether |
199 | // operator<<(std::ostream&, const T&) or |
200 | // operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more |
201 | // specific. |
202 | template <typename Char, typename CharTraits, typename T> |
203 | ::std::basic_ostream<Char, CharTraits>& operator<<( |
204 | ::std::basic_ostream<Char, CharTraits>& os, const T& x) { |
205 | TypeWithoutFormatter<T, |
206 | (internal::IsAProtocolMessage<T>::value ? kProtobuf : |
207 | internal::ImplicitlyConvertible<const T&, internal::BiggestInt>::value ? |
208 | kConvertibleToInteger : kOtherType)>::PrintValue(x, &os); |
209 | return os; |
210 | } |
211 | |
212 | } // namespace internal2 |
213 | } // namespace testing |
214 | |
215 | // This namespace MUST NOT BE NESTED IN ::testing, or the name look-up |
216 | // magic needed for implementing UniversalPrinter won't work. |
217 | namespace testing_internal { |
218 | |
219 | // Used to print a value that is not an STL-style container when the |
220 | // user doesn't define PrintTo() for it. |
221 | template <typename T> |
222 | void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) { |
223 | // With the following statement, during unqualified name lookup, |
224 | // testing::internal2::operator<< appears as if it was declared in |
225 | // the nearest enclosing namespace that contains both |
226 | // ::testing_internal and ::testing::internal2, i.e. the global |
227 | // namespace. For more details, refer to the C++ Standard section |
228 | // 7.3.4-1 [namespace.udir]. This allows us to fall back onto |
229 | // testing::internal2::operator<< in case T doesn't come with a << |
230 | // operator. |
231 | // |
232 | // We cannot write 'using ::testing::internal2::operator<<;', which |
233 | // gcc 3.3 fails to compile due to a compiler bug. |
234 | using namespace ::testing::internal2; // NOLINT |
235 | |
236 | // Assuming T is defined in namespace foo, in the next statement, |
237 | // the compiler will consider all of: |
238 | // |
239 | // 1. foo::operator<< (thanks to Koenig look-up), |
240 | // 2. ::operator<< (as the current namespace is enclosed in ::), |
241 | // 3. testing::internal2::operator<< (thanks to the using statement above). |
242 | // |
243 | // The operator<< whose type matches T best will be picked. |
244 | // |
245 | // We deliberately allow #2 to be a candidate, as sometimes it's |
246 | // impossible to define #1 (e.g. when foo is ::std, defining |
247 | // anything in it is undefined behavior unless you are a compiler |
248 | // vendor.). |
249 | *os << value; |
250 | } |
251 | |
252 | } // namespace testing_internal |
253 | |
254 | namespace testing { |
255 | namespace internal { |
256 | |
257 | // FormatForComparison<ToPrint, OtherOperand>::Format(value) formats a |
258 | // value of type ToPrint that is an operand of a comparison assertion |
259 | // (e.g. ASSERT_EQ). OtherOperand is the type of the other operand in |
260 | // the comparison, and is used to help determine the best way to |
261 | // format the value. In particular, when the value is a C string |
262 | // (char pointer) and the other operand is an STL string object, we |
263 | // want to format the C string as a string, since we know it is |
264 | // compared by value with the string object. If the value is a char |
265 | // pointer but the other operand is not an STL string object, we don't |
266 | // know whether the pointer is supposed to point to a NUL-terminated |
267 | // string, and thus want to print it as a pointer to be safe. |
268 | // |
269 | // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. |
270 | |
271 | // The default case. |
272 | template <typename ToPrint, typename OtherOperand> |
273 | class FormatForComparison { |
274 | public: |
275 | static ::std::string Format(const ToPrint& value) { |
276 | return ::testing::PrintToString(value); |
277 | } |
278 | }; |
279 | |
280 | // Array. |
281 | template <typename ToPrint, size_t N, typename OtherOperand> |
282 | class FormatForComparison<ToPrint[N], OtherOperand> { |
283 | public: |
284 | static ::std::string Format(const ToPrint* value) { |
285 | return FormatForComparison<const ToPrint*, OtherOperand>::Format(value); |
286 | } |
287 | }; |
288 | |
289 | // By default, print C string as pointers to be safe, as we don't know |
290 | // whether they actually point to a NUL-terminated string. |
291 | |
292 | #define GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(CharType) \ |
293 | template <typename OtherOperand> \ |
294 | class FormatForComparison<CharType*, OtherOperand> { \ |
295 | public: \ |
296 | static ::std::string Format(CharType* value) { \ |
297 | return ::testing::PrintToString(static_cast<const void*>(value)); \ |
298 | } \ |
299 | } |
300 | |
301 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char); |
302 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char); |
303 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(wchar_t); |
304 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const wchar_t); |
305 | |
306 | #undef GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_ |
307 | |
308 | // If a C string is compared with an STL string object, we know it's meant |
309 | // to point to a NUL-terminated string, and thus can print it as a string. |
310 | |
311 | #define GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(CharType, OtherStringType) \ |
312 | template <> \ |
313 | class FormatForComparison<CharType*, OtherStringType> { \ |
314 | public: \ |
315 | static ::std::string Format(CharType* value) { \ |
316 | return ::testing::PrintToString(value); \ |
317 | } \ |
318 | } |
319 | |
320 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::std::string); |
321 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::std::string); |
322 | |
323 | #if GTEST_HAS_GLOBAL_STRING |
324 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::string); |
325 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::string); |
326 | #endif |
327 | |
328 | #if GTEST_HAS_GLOBAL_WSTRING |
329 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::wstring); |
330 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::wstring); |
331 | #endif |
332 | |
333 | #if GTEST_HAS_STD_WSTRING |
334 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::std::wstring); |
335 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::std::wstring); |
336 | #endif |
337 | |
338 | #undef GTEST_IMPL_FORMAT_C_STRING_AS_STRING_ |
339 | |
340 | // Formats a comparison assertion (e.g. ASSERT_EQ, EXPECT_LT, and etc) |
341 | // operand to be used in a failure message. The type (but not value) |
342 | // of the other operand may affect the format. This allows us to |
343 | // print a char* as a raw pointer when it is compared against another |
344 | // char* or void*, and print it as a C string when it is compared |
345 | // against an std::string object, for example. |
346 | // |
347 | // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. |
348 | template <typename T1, typename T2> |
349 | std::string FormatForComparisonFailureMessage( |
350 | const T1& value, const T2& /* other_operand */) { |
351 | return FormatForComparison<T1, T2>::Format(value); |
352 | } |
353 | |
354 | // UniversalPrinter<T>::Print(value, ostream_ptr) prints the given |
355 | // value to the given ostream. The caller must ensure that |
356 | // 'ostream_ptr' is not NULL, or the behavior is undefined. |
357 | // |
358 | // We define UniversalPrinter as a class template (as opposed to a |
359 | // function template), as we need to partially specialize it for |
360 | // reference types, which cannot be done with function templates. |
361 | template <typename T> |
362 | class UniversalPrinter; |
363 | |
364 | template <typename T> |
365 | void UniversalPrint(const T& value, ::std::ostream* os); |
366 | |
367 | // Used to print an STL-style container when the user doesn't define |
368 | // a PrintTo() for it. |
369 | template <typename C> |
370 | void DefaultPrintTo(IsContainer /* dummy */, |
371 | false_type /* is not a pointer */, |
372 | const C& container, ::std::ostream* os) { |
373 | const size_t kMaxCount = 32; // The maximum number of elements to print. |
374 | *os << '{'; |
375 | size_t count = 0; |
376 | for (typename C::const_iterator it = container.begin(); |
377 | it != container.end(); ++it, ++count) { |
378 | if (count > 0) { |
379 | *os << ','; |
380 | if (count == kMaxCount) { // Enough has been printed. |
381 | *os << " ..." ; |
382 | break; |
383 | } |
384 | } |
385 | *os << ' '; |
386 | // We cannot call PrintTo(*it, os) here as PrintTo() doesn't |
387 | // handle *it being a native array. |
388 | internal::UniversalPrint(*it, os); |
389 | } |
390 | |
391 | if (count > 0) { |
392 | *os << ' '; |
393 | } |
394 | *os << '}'; |
395 | } |
396 | |
397 | // Used to print a pointer that is neither a char pointer nor a member |
398 | // pointer, when the user doesn't define PrintTo() for it. (A member |
399 | // variable pointer or member function pointer doesn't really point to |
400 | // a location in the address space. Their representation is |
401 | // implementation-defined. Therefore they will be printed as raw |
402 | // bytes.) |
403 | template <typename T> |
404 | void DefaultPrintTo(IsNotContainer /* dummy */, |
405 | true_type /* is a pointer */, |
406 | T* p, ::std::ostream* os) { |
407 | if (p == NULL) { |
408 | *os << "NULL" ; |
409 | } else { |
410 | // C++ doesn't allow casting from a function pointer to any object |
411 | // pointer. |
412 | // |
413 | // IsTrue() silences warnings: "Condition is always true", |
414 | // "unreachable code". |
415 | if (IsTrue(ImplicitlyConvertible<T*, const void*>::value)) { |
416 | // T is not a function type. We just call << to print p, |
417 | // relying on ADL to pick up user-defined << for their pointer |
418 | // types, if any. |
419 | *os << p; |
420 | } else { |
421 | // T is a function type, so '*os << p' doesn't do what we want |
422 | // (it just prints p as bool). We want to print p as a const |
423 | // void*. However, we cannot cast it to const void* directly, |
424 | // even using reinterpret_cast, as earlier versions of gcc |
425 | // (e.g. 3.4.5) cannot compile the cast when p is a function |
426 | // pointer. Casting to UInt64 first solves the problem. |
427 | *os << reinterpret_cast<const void*>( |
428 | reinterpret_cast<internal::UInt64>(p)); |
429 | } |
430 | } |
431 | } |
432 | |
433 | // Used to print a non-container, non-pointer value when the user |
434 | // doesn't define PrintTo() for it. |
435 | template <typename T> |
436 | void DefaultPrintTo(IsNotContainer /* dummy */, |
437 | false_type /* is not a pointer */, |
438 | const T& value, ::std::ostream* os) { |
439 | ::testing_internal::DefaultPrintNonContainerTo(value, os); |
440 | } |
441 | |
442 | // Prints the given value using the << operator if it has one; |
443 | // otherwise prints the bytes in it. This is what |
444 | // UniversalPrinter<T>::Print() does when PrintTo() is not specialized |
445 | // or overloaded for type T. |
446 | // |
447 | // A user can override this behavior for a class type Foo by defining |
448 | // an overload of PrintTo() in the namespace where Foo is defined. We |
449 | // give the user this option as sometimes defining a << operator for |
450 | // Foo is not desirable (e.g. the coding style may prevent doing it, |
451 | // or there is already a << operator but it doesn't do what the user |
452 | // wants). |
453 | template <typename T> |
454 | void PrintTo(const T& value, ::std::ostream* os) { |
455 | // DefaultPrintTo() is overloaded. The type of its first two |
456 | // arguments determine which version will be picked. If T is an |
457 | // STL-style container, the version for container will be called; if |
458 | // T is a pointer, the pointer version will be called; otherwise the |
459 | // generic version will be called. |
460 | // |
461 | // Note that we check for container types here, prior to we check |
462 | // for protocol message types in our operator<<. The rationale is: |
463 | // |
464 | // For protocol messages, we want to give people a chance to |
465 | // override Google Mock's format by defining a PrintTo() or |
466 | // operator<<. For STL containers, other formats can be |
467 | // incompatible with Google Mock's format for the container |
468 | // elements; therefore we check for container types here to ensure |
469 | // that our format is used. |
470 | // |
471 | // The second argument of DefaultPrintTo() is needed to bypass a bug |
472 | // in Symbian's C++ compiler that prevents it from picking the right |
473 | // overload between: |
474 | // |
475 | // PrintTo(const T& x, ...); |
476 | // PrintTo(T* x, ...); |
477 | DefaultPrintTo(IsContainerTest<T>(0), is_pointer<T>(), value, os); |
478 | } |
479 | |
480 | // The following list of PrintTo() overloads tells |
481 | // UniversalPrinter<T>::Print() how to print standard types (built-in |
482 | // types, strings, plain arrays, and pointers). |
483 | |
484 | // Overloads for various char types. |
485 | GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os); |
486 | GTEST_API_ void PrintTo(signed char c, ::std::ostream* os); |
487 | inline void PrintTo(char c, ::std::ostream* os) { |
488 | // When printing a plain char, we always treat it as unsigned. This |
489 | // way, the output won't be affected by whether the compiler thinks |
490 | // char is signed or not. |
491 | PrintTo(static_cast<unsigned char>(c), os); |
492 | } |
493 | |
494 | // Overloads for other simple built-in types. |
495 | inline void PrintTo(bool x, ::std::ostream* os) { |
496 | *os << (x ? "true" : "false" ); |
497 | } |
498 | |
499 | // Overload for wchar_t type. |
500 | // Prints a wchar_t as a symbol if it is printable or as its internal |
501 | // code otherwise and also as its decimal code (except for L'\0'). |
502 | // The L'\0' char is printed as "L'\\0'". The decimal code is printed |
503 | // as signed integer when wchar_t is implemented by the compiler |
504 | // as a signed type and is printed as an unsigned integer when wchar_t |
505 | // is implemented as an unsigned type. |
506 | GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os); |
507 | |
508 | // Overloads for C strings. |
509 | GTEST_API_ void PrintTo(const char* s, ::std::ostream* os); |
510 | inline void PrintTo(char* s, ::std::ostream* os) { |
511 | PrintTo(ImplicitCast_<const char*>(s), os); |
512 | } |
513 | |
514 | // signed/unsigned char is often used for representing binary data, so |
515 | // we print pointers to it as void* to be safe. |
516 | inline void PrintTo(const signed char* s, ::std::ostream* os) { |
517 | PrintTo(ImplicitCast_<const void*>(s), os); |
518 | } |
519 | inline void PrintTo(signed char* s, ::std::ostream* os) { |
520 | PrintTo(ImplicitCast_<const void*>(s), os); |
521 | } |
522 | inline void PrintTo(const unsigned char* s, ::std::ostream* os) { |
523 | PrintTo(ImplicitCast_<const void*>(s), os); |
524 | } |
525 | inline void PrintTo(unsigned char* s, ::std::ostream* os) { |
526 | PrintTo(ImplicitCast_<const void*>(s), os); |
527 | } |
528 | |
529 | // MSVC can be configured to define wchar_t as a typedef of unsigned |
530 | // short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native |
531 | // type. When wchar_t is a typedef, defining an overload for const |
532 | // wchar_t* would cause unsigned short* be printed as a wide string, |
533 | // possibly causing invalid memory accesses. |
534 | #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) |
535 | // Overloads for wide C strings |
536 | GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os); |
537 | inline void PrintTo(wchar_t* s, ::std::ostream* os) { |
538 | PrintTo(ImplicitCast_<const wchar_t*>(s), os); |
539 | } |
540 | #endif |
541 | |
542 | // Overload for C arrays. Multi-dimensional arrays are printed |
543 | // properly. |
544 | |
545 | // Prints the given number of elements in an array, without printing |
546 | // the curly braces. |
547 | template <typename T> |
548 | void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) { |
549 | UniversalPrint(a[0], os); |
550 | for (size_t i = 1; i != count; i++) { |
551 | *os << ", " ; |
552 | UniversalPrint(a[i], os); |
553 | } |
554 | } |
555 | |
556 | // Overloads for ::string and ::std::string. |
557 | #if GTEST_HAS_GLOBAL_STRING |
558 | GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os); |
559 | inline void PrintTo(const ::string& s, ::std::ostream* os) { |
560 | PrintStringTo(s, os); |
561 | } |
562 | #endif // GTEST_HAS_GLOBAL_STRING |
563 | |
564 | GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os); |
565 | inline void PrintTo(const ::std::string& s, ::std::ostream* os) { |
566 | PrintStringTo(s, os); |
567 | } |
568 | |
569 | // Overloads for ::wstring and ::std::wstring. |
570 | #if GTEST_HAS_GLOBAL_WSTRING |
571 | GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os); |
572 | inline void PrintTo(const ::wstring& s, ::std::ostream* os) { |
573 | PrintWideStringTo(s, os); |
574 | } |
575 | #endif // GTEST_HAS_GLOBAL_WSTRING |
576 | |
577 | #if GTEST_HAS_STD_WSTRING |
578 | GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os); |
579 | inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) { |
580 | PrintWideStringTo(s, os); |
581 | } |
582 | #endif // GTEST_HAS_STD_WSTRING |
583 | |
584 | #if GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_ |
585 | // Helper function for printing a tuple. T must be instantiated with |
586 | // a tuple type. |
587 | template <typename T> |
588 | void PrintTupleTo(const T& t, ::std::ostream* os); |
589 | #endif // GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_ |
590 | |
591 | #if GTEST_HAS_TR1_TUPLE |
592 | // Overload for ::std::tr1::tuple. Needed for printing function arguments, |
593 | // which are packed as tuples. |
594 | |
595 | // Overloaded PrintTo() for tuples of various arities. We support |
596 | // tuples of up-to 10 fields. The following implementation works |
597 | // regardless of whether tr1::tuple is implemented using the |
598 | // non-standard variadic template feature or not. |
599 | |
600 | inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) { |
601 | PrintTupleTo(t, os); |
602 | } |
603 | |
604 | template <typename T1> |
605 | void PrintTo(const ::std::tr1::tuple<T1>& t, ::std::ostream* os) { |
606 | PrintTupleTo(t, os); |
607 | } |
608 | |
609 | template <typename T1, typename T2> |
610 | void PrintTo(const ::std::tr1::tuple<T1, T2>& t, ::std::ostream* os) { |
611 | PrintTupleTo(t, os); |
612 | } |
613 | |
614 | template <typename T1, typename T2, typename T3> |
615 | void PrintTo(const ::std::tr1::tuple<T1, T2, T3>& t, ::std::ostream* os) { |
616 | PrintTupleTo(t, os); |
617 | } |
618 | |
619 | template <typename T1, typename T2, typename T3, typename T4> |
620 | void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4>& t, ::std::ostream* os) { |
621 | PrintTupleTo(t, os); |
622 | } |
623 | |
624 | template <typename T1, typename T2, typename T3, typename T4, typename T5> |
625 | void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5>& t, |
626 | ::std::ostream* os) { |
627 | PrintTupleTo(t, os); |
628 | } |
629 | |
630 | template <typename T1, typename T2, typename T3, typename T4, typename T5, |
631 | typename T6> |
632 | void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6>& t, |
633 | ::std::ostream* os) { |
634 | PrintTupleTo(t, os); |
635 | } |
636 | |
637 | template <typename T1, typename T2, typename T3, typename T4, typename T5, |
638 | typename T6, typename T7> |
639 | void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7>& t, |
640 | ::std::ostream* os) { |
641 | PrintTupleTo(t, os); |
642 | } |
643 | |
644 | template <typename T1, typename T2, typename T3, typename T4, typename T5, |
645 | typename T6, typename T7, typename T8> |
646 | void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8>& t, |
647 | ::std::ostream* os) { |
648 | PrintTupleTo(t, os); |
649 | } |
650 | |
651 | template <typename T1, typename T2, typename T3, typename T4, typename T5, |
652 | typename T6, typename T7, typename T8, typename T9> |
653 | void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>& t, |
654 | ::std::ostream* os) { |
655 | PrintTupleTo(t, os); |
656 | } |
657 | |
658 | template <typename T1, typename T2, typename T3, typename T4, typename T5, |
659 | typename T6, typename T7, typename T8, typename T9, typename T10> |
660 | void PrintTo( |
661 | const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& t, |
662 | ::std::ostream* os) { |
663 | PrintTupleTo(t, os); |
664 | } |
665 | #endif // GTEST_HAS_TR1_TUPLE |
666 | |
667 | #if GTEST_HAS_STD_TUPLE_ |
668 | template <typename... Types> |
669 | void PrintTo(const ::std::tuple<Types...>& t, ::std::ostream* os) { |
670 | PrintTupleTo(t, os); |
671 | } |
672 | #endif // GTEST_HAS_STD_TUPLE_ |
673 | |
674 | // Overload for std::pair. |
675 | template <typename T1, typename T2> |
676 | void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) { |
677 | *os << '('; |
678 | // We cannot use UniversalPrint(value.first, os) here, as T1 may be |
679 | // a reference type. The same for printing value.second. |
680 | UniversalPrinter<T1>::Print(value.first, os); |
681 | *os << ", " ; |
682 | UniversalPrinter<T2>::Print(value.second, os); |
683 | *os << ')'; |
684 | } |
685 | |
686 | // Implements printing a non-reference type T by letting the compiler |
687 | // pick the right overload of PrintTo() for T. |
688 | template <typename T> |
689 | class UniversalPrinter { |
690 | public: |
691 | // MSVC warns about adding const to a function type, so we want to |
692 | // disable the warning. |
693 | GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180) |
694 | |
695 | // Note: we deliberately don't call this PrintTo(), as that name |
696 | // conflicts with ::testing::internal::PrintTo in the body of the |
697 | // function. |
698 | static void Print(const T& value, ::std::ostream* os) { |
699 | // By default, ::testing::internal::PrintTo() is used for printing |
700 | // the value. |
701 | // |
702 | // Thanks to Koenig look-up, if T is a class and has its own |
703 | // PrintTo() function defined in its namespace, that function will |
704 | // be visible here. Since it is more specific than the generic ones |
705 | // in ::testing::internal, it will be picked by the compiler in the |
706 | // following statement - exactly what we want. |
707 | PrintTo(value, os); |
708 | } |
709 | |
710 | GTEST_DISABLE_MSC_WARNINGS_POP_() |
711 | }; |
712 | |
713 | // UniversalPrintArray(begin, len, os) prints an array of 'len' |
714 | // elements, starting at address 'begin'. |
715 | template <typename T> |
716 | void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) { |
717 | if (len == 0) { |
718 | *os << "{}" ; |
719 | } else { |
720 | *os << "{ " ; |
721 | const size_t kThreshold = 18; |
722 | const size_t kChunkSize = 8; |
723 | // If the array has more than kThreshold elements, we'll have to |
724 | // omit some details by printing only the first and the last |
725 | // kChunkSize elements. |
726 | // TODO(wan@google.com): let the user control the threshold using a flag. |
727 | if (len <= kThreshold) { |
728 | PrintRawArrayTo(begin, len, os); |
729 | } else { |
730 | PrintRawArrayTo(begin, kChunkSize, os); |
731 | *os << ", ..., " ; |
732 | PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os); |
733 | } |
734 | *os << " }" ; |
735 | } |
736 | } |
737 | // This overload prints a (const) char array compactly. |
738 | GTEST_API_ void UniversalPrintArray( |
739 | const char* begin, size_t len, ::std::ostream* os); |
740 | |
741 | // This overload prints a (const) wchar_t array compactly. |
742 | GTEST_API_ void UniversalPrintArray( |
743 | const wchar_t* begin, size_t len, ::std::ostream* os); |
744 | |
745 | // Implements printing an array type T[N]. |
746 | template <typename T, size_t N> |
747 | class UniversalPrinter<T[N]> { |
748 | public: |
749 | // Prints the given array, omitting some elements when there are too |
750 | // many. |
751 | static void Print(const T (&a)[N], ::std::ostream* os) { |
752 | UniversalPrintArray(a, N, os); |
753 | } |
754 | }; |
755 | |
756 | // Implements printing a reference type T&. |
757 | template <typename T> |
758 | class UniversalPrinter<T&> { |
759 | public: |
760 | // MSVC warns about adding const to a function type, so we want to |
761 | // disable the warning. |
762 | GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180) |
763 | |
764 | static void Print(const T& value, ::std::ostream* os) { |
765 | // Prints the address of the value. We use reinterpret_cast here |
766 | // as static_cast doesn't compile when T is a function type. |
767 | *os << "@" << reinterpret_cast<const void*>(&value) << " " ; |
768 | |
769 | // Then prints the value itself. |
770 | UniversalPrint(value, os); |
771 | } |
772 | |
773 | GTEST_DISABLE_MSC_WARNINGS_POP_() |
774 | }; |
775 | |
776 | // Prints a value tersely: for a reference type, the referenced value |
777 | // (but not the address) is printed; for a (const) char pointer, the |
778 | // NUL-terminated string (but not the pointer) is printed. |
779 | |
780 | template <typename T> |
781 | class UniversalTersePrinter { |
782 | public: |
783 | static void Print(const T& value, ::std::ostream* os) { |
784 | UniversalPrint(value, os); |
785 | } |
786 | }; |
787 | template <typename T> |
788 | class UniversalTersePrinter<T&> { |
789 | public: |
790 | static void Print(const T& value, ::std::ostream* os) { |
791 | UniversalPrint(value, os); |
792 | } |
793 | }; |
794 | template <typename T, size_t N> |
795 | class UniversalTersePrinter<T[N]> { |
796 | public: |
797 | static void Print(const T (&value)[N], ::std::ostream* os) { |
798 | UniversalPrinter<T[N]>::Print(value, os); |
799 | } |
800 | }; |
801 | template <> |
802 | class UniversalTersePrinter<const char*> { |
803 | public: |
804 | static void Print(const char* str, ::std::ostream* os) { |
805 | if (str == NULL) { |
806 | *os << "NULL" ; |
807 | } else { |
808 | UniversalPrint(string(str), os); |
809 | } |
810 | } |
811 | }; |
812 | template <> |
813 | class UniversalTersePrinter<char*> { |
814 | public: |
815 | static void Print(char* str, ::std::ostream* os) { |
816 | UniversalTersePrinter<const char*>::Print(str, os); |
817 | } |
818 | }; |
819 | |
820 | #if GTEST_HAS_STD_WSTRING |
821 | template <> |
822 | class UniversalTersePrinter<const wchar_t*> { |
823 | public: |
824 | static void Print(const wchar_t* str, ::std::ostream* os) { |
825 | if (str == NULL) { |
826 | *os << "NULL" ; |
827 | } else { |
828 | UniversalPrint(::std::wstring(str), os); |
829 | } |
830 | } |
831 | }; |
832 | #endif |
833 | |
834 | template <> |
835 | class UniversalTersePrinter<wchar_t*> { |
836 | public: |
837 | static void Print(wchar_t* str, ::std::ostream* os) { |
838 | UniversalTersePrinter<const wchar_t*>::Print(str, os); |
839 | } |
840 | }; |
841 | |
842 | template <typename T> |
843 | void UniversalTersePrint(const T& value, ::std::ostream* os) { |
844 | UniversalTersePrinter<T>::Print(value, os); |
845 | } |
846 | |
847 | // Prints a value using the type inferred by the compiler. The |
848 | // difference between this and UniversalTersePrint() is that for a |
849 | // (const) char pointer, this prints both the pointer and the |
850 | // NUL-terminated string. |
851 | template <typename T> |
852 | void UniversalPrint(const T& value, ::std::ostream* os) { |
853 | // A workarond for the bug in VC++ 7.1 that prevents us from instantiating |
854 | // UniversalPrinter with T directly. |
855 | typedef T T1; |
856 | UniversalPrinter<T1>::Print(value, os); |
857 | } |
858 | |
859 | typedef ::std::vector<string> Strings; |
860 | |
861 | // TuplePolicy<TupleT> must provide: |
862 | // - tuple_size |
863 | // size of tuple TupleT. |
864 | // - get<size_t I>(const TupleT& t) |
865 | // static function extracting element I of tuple TupleT. |
866 | // - tuple_element<size_t I>::type |
867 | // type of element I of tuple TupleT. |
868 | template <typename TupleT> |
869 | struct TuplePolicy; |
870 | |
871 | #if GTEST_HAS_TR1_TUPLE |
872 | template <typename TupleT> |
873 | struct TuplePolicy { |
874 | typedef TupleT Tuple; |
875 | static const size_t tuple_size = ::std::tr1::tuple_size<Tuple>::value; |
876 | |
877 | template <size_t I> |
878 | struct tuple_element : ::std::tr1::tuple_element<I, Tuple> {}; |
879 | |
880 | template <size_t I> |
881 | static typename AddReference< |
882 | const typename ::std::tr1::tuple_element<I, Tuple>::type>::type get( |
883 | const Tuple& tuple) { |
884 | return ::std::tr1::get<I>(tuple); |
885 | } |
886 | }; |
887 | template <typename TupleT> |
888 | const size_t TuplePolicy<TupleT>::tuple_size; |
889 | #endif // GTEST_HAS_TR1_TUPLE |
890 | |
891 | #if GTEST_HAS_STD_TUPLE_ |
892 | template <typename... Types> |
893 | struct TuplePolicy< ::std::tuple<Types...> > { |
894 | typedef ::std::tuple<Types...> Tuple; |
895 | static const size_t tuple_size = ::std::tuple_size<Tuple>::value; |
896 | |
897 | template <size_t I> |
898 | struct tuple_element : ::std::tuple_element<I, Tuple> {}; |
899 | |
900 | template <size_t I> |
901 | static const typename ::std::tuple_element<I, Tuple>::type& get( |
902 | const Tuple& tuple) { |
903 | return ::std::get<I>(tuple); |
904 | } |
905 | }; |
906 | template <typename... Types> |
907 | const size_t TuplePolicy< ::std::tuple<Types...> >::tuple_size; |
908 | #endif // GTEST_HAS_STD_TUPLE_ |
909 | |
910 | #if GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_ |
911 | // This helper template allows PrintTo() for tuples and |
912 | // UniversalTersePrintTupleFieldsToStrings() to be defined by |
913 | // induction on the number of tuple fields. The idea is that |
914 | // TuplePrefixPrinter<N>::PrintPrefixTo(t, os) prints the first N |
915 | // fields in tuple t, and can be defined in terms of |
916 | // TuplePrefixPrinter<N - 1>. |
917 | // |
918 | // The inductive case. |
919 | template <size_t N> |
920 | struct TuplePrefixPrinter { |
921 | // Prints the first N fields of a tuple. |
922 | template <typename Tuple> |
923 | static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) { |
924 | TuplePrefixPrinter<N - 1>::PrintPrefixTo(t, os); |
925 | GTEST_INTENTIONAL_CONST_COND_PUSH_() |
926 | if (N > 1) { |
927 | GTEST_INTENTIONAL_CONST_COND_POP_() |
928 | *os << ", " ; |
929 | } |
930 | UniversalPrinter< |
931 | typename TuplePolicy<Tuple>::template tuple_element<N - 1>::type> |
932 | ::Print(TuplePolicy<Tuple>::template get<N - 1>(t), os); |
933 | } |
934 | |
935 | // Tersely prints the first N fields of a tuple to a string vector, |
936 | // one element for each field. |
937 | template <typename Tuple> |
938 | static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) { |
939 | TuplePrefixPrinter<N - 1>::TersePrintPrefixToStrings(t, strings); |
940 | ::std::stringstream ss; |
941 | UniversalTersePrint(TuplePolicy<Tuple>::template get<N - 1>(t), &ss); |
942 | strings->push_back(ss.str()); |
943 | } |
944 | }; |
945 | |
946 | // Base case. |
947 | template <> |
948 | struct TuplePrefixPrinter<0> { |
949 | template <typename Tuple> |
950 | static void PrintPrefixTo(const Tuple&, ::std::ostream*) {} |
951 | |
952 | template <typename Tuple> |
953 | static void TersePrintPrefixToStrings(const Tuple&, Strings*) {} |
954 | }; |
955 | |
956 | // Helper function for printing a tuple. |
957 | // Tuple must be either std::tr1::tuple or std::tuple type. |
958 | template <typename Tuple> |
959 | void PrintTupleTo(const Tuple& t, ::std::ostream* os) { |
960 | *os << "(" ; |
961 | TuplePrefixPrinter<TuplePolicy<Tuple>::tuple_size>::PrintPrefixTo(t, os); |
962 | *os << ")" ; |
963 | } |
964 | |
965 | // Prints the fields of a tuple tersely to a string vector, one |
966 | // element for each field. See the comment before |
967 | // UniversalTersePrint() for how we define "tersely". |
968 | template <typename Tuple> |
969 | Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) { |
970 | Strings result; |
971 | TuplePrefixPrinter<TuplePolicy<Tuple>::tuple_size>:: |
972 | TersePrintPrefixToStrings(value, &result); |
973 | return result; |
974 | } |
975 | #endif // GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_ |
976 | |
977 | } // namespace internal |
978 | |
979 | template <typename T> |
980 | ::std::string PrintToString(const T& value) { |
981 | ::std::stringstream ss; |
982 | internal::UniversalTersePrinter<T>::Print(value, &ss); |
983 | return ss.str(); |
984 | } |
985 | |
986 | } // namespace testing |
987 | |
988 | // Include any custom printer added by the local installation. |
989 | // We must include this header at the end to make sure it can use the |
990 | // declarations from this file. |
991 | #include "gtest/internal/custom/gtest-printers.h" |
992 | |
993 | #endif // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ |
994 | |