1 | // Copyright 2005, Google Inc. |
2 | // All rights reserved. |
3 | // |
4 | // Redistribution and use in source and binary forms, with or without |
5 | // modification, are permitted provided that the following conditions are |
6 | // met: |
7 | // |
8 | // * Redistributions of source code must retain the above copyright |
9 | // notice, this list of conditions and the following disclaimer. |
10 | // * Redistributions in binary form must reproduce the above |
11 | // copyright notice, this list of conditions and the following disclaimer |
12 | // in the documentation and/or other materials provided with the |
13 | // distribution. |
14 | // * Neither the name of Google Inc. nor the names of its |
15 | // contributors may be used to endorse or promote products derived from |
16 | // this software without specific prior written permission. |
17 | // |
18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | // |
30 | // Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee) |
31 | // |
32 | // The Google C++ Testing Framework (Google Test) |
33 | // |
34 | // This header file declares functions and macros used internally by |
35 | // Google Test. They are subject to change without notice. |
36 | |
37 | #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ |
38 | #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ |
39 | |
40 | #include "gtest/internal/gtest-port.h" |
41 | |
42 | #if GTEST_OS_LINUX |
43 | # include <stdlib.h> |
44 | # include <sys/types.h> |
45 | # include <sys/wait.h> |
46 | # include <unistd.h> |
47 | #endif // GTEST_OS_LINUX |
48 | |
49 | #if GTEST_HAS_EXCEPTIONS |
50 | # include <stdexcept> |
51 | #endif |
52 | |
53 | #include <ctype.h> |
54 | #include <float.h> |
55 | #include <string.h> |
56 | #include <iomanip> |
57 | #include <limits> |
58 | #include <map> |
59 | #include <set> |
60 | #include <string> |
61 | #include <vector> |
62 | |
63 | #include "gtest/gtest-message.h" |
64 | #include "gtest/internal/gtest-string.h" |
65 | #include "gtest/internal/gtest-filepath.h" |
66 | #include "gtest/internal/gtest-type-util.h" |
67 | |
68 | // Due to C++ preprocessor weirdness, we need double indirection to |
69 | // concatenate two tokens when one of them is __LINE__. Writing |
70 | // |
71 | // foo ## __LINE__ |
72 | // |
73 | // will result in the token foo__LINE__, instead of foo followed by |
74 | // the current line number. For more details, see |
75 | // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6 |
76 | #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar) |
77 | #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar |
78 | |
79 | class ProtocolMessage; |
80 | namespace proto2 { class Message; } |
81 | |
82 | namespace testing { |
83 | |
84 | // Forward declarations. |
85 | |
86 | class AssertionResult; // Result of an assertion. |
87 | class Message; // Represents a failure message. |
88 | class Test; // Represents a test. |
89 | class TestInfo; // Information about a test. |
90 | class TestPartResult; // Result of a test part. |
91 | class UnitTest; // A collection of test cases. |
92 | |
93 | template <typename T> |
94 | ::std::string PrintToString(const T& value); |
95 | |
96 | namespace internal { |
97 | |
98 | struct TraceInfo; // Information about a trace point. |
99 | class ScopedTrace; // Implements scoped trace. |
100 | class TestInfoImpl; // Opaque implementation of TestInfo |
101 | class UnitTestImpl; // Opaque implementation of UnitTest |
102 | |
103 | // The text used in failure messages to indicate the start of the |
104 | // stack trace. |
105 | GTEST_API_ extern const char kStackTraceMarker[]; |
106 | |
107 | // Two overloaded helpers for checking at compile time whether an |
108 | // expression is a null pointer literal (i.e. NULL or any 0-valued |
109 | // compile-time integral constant). Their return values have |
110 | // different sizes, so we can use sizeof() to test which version is |
111 | // picked by the compiler. These helpers have no implementations, as |
112 | // we only need their signatures. |
113 | // |
114 | // Given IsNullLiteralHelper(x), the compiler will pick the first |
115 | // version if x can be implicitly converted to Secret*, and pick the |
116 | // second version otherwise. Since Secret is a secret and incomplete |
117 | // type, the only expression a user can write that has type Secret* is |
118 | // a null pointer literal. Therefore, we know that x is a null |
119 | // pointer literal if and only if the first version is picked by the |
120 | // compiler. |
121 | char IsNullLiteralHelper(Secret* p); |
122 | char (&IsNullLiteralHelper(...))[2]; // NOLINT |
123 | |
124 | // A compile-time bool constant that is true if and only if x is a |
125 | // null pointer literal (i.e. NULL or any 0-valued compile-time |
126 | // integral constant). |
127 | #ifdef GTEST_ELLIPSIS_NEEDS_POD_ |
128 | // We lose support for NULL detection where the compiler doesn't like |
129 | // passing non-POD classes through ellipsis (...). |
130 | # define GTEST_IS_NULL_LITERAL_(x) false |
131 | #else |
132 | # define GTEST_IS_NULL_LITERAL_(x) \ |
133 | (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1) |
134 | #endif // GTEST_ELLIPSIS_NEEDS_POD_ |
135 | |
136 | // Appends the user-supplied message to the Google-Test-generated message. |
137 | GTEST_API_ std::string AppendUserMessage( |
138 | const std::string& gtest_msg, const Message& user_msg); |
139 | |
140 | #if GTEST_HAS_EXCEPTIONS |
141 | |
142 | // This exception is thrown by (and only by) a failed Google Test |
143 | // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions |
144 | // are enabled). We derive it from std::runtime_error, which is for |
145 | // errors presumably detectable only at run time. Since |
146 | // std::runtime_error inherits from std::exception, many testing |
147 | // frameworks know how to extract and print the message inside it. |
148 | class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error { |
149 | public: |
150 | explicit GoogleTestFailureException(const TestPartResult& failure); |
151 | }; |
152 | |
153 | #endif // GTEST_HAS_EXCEPTIONS |
154 | |
155 | // A helper class for creating scoped traces in user programs. |
156 | class GTEST_API_ ScopedTrace { |
157 | public: |
158 | // The c'tor pushes the given source file location and message onto |
159 | // a trace stack maintained by Google Test. |
160 | ScopedTrace(const char* file, int line, const Message& message); |
161 | |
162 | // The d'tor pops the info pushed by the c'tor. |
163 | // |
164 | // Note that the d'tor is not virtual in order to be efficient. |
165 | // Don't inherit from ScopedTrace! |
166 | ~ScopedTrace(); |
167 | |
168 | private: |
169 | GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace); |
170 | } GTEST_ATTRIBUTE_UNUSED_; // A ScopedTrace object does its job in its |
171 | // c'tor and d'tor. Therefore it doesn't |
172 | // need to be used otherwise. |
173 | |
174 | namespace edit_distance { |
175 | // Returns the optimal edits to go from 'left' to 'right'. |
176 | // All edits cost the same, with replace having lower priority than |
177 | // add/remove. |
178 | // Simple implementation of the Wagner–Fischer algorithm. |
179 | // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm |
180 | enum EditType { kMatch, kAdd, kRemove, kReplace }; |
181 | GTEST_API_ std::vector<EditType> CalculateOptimalEdits( |
182 | const std::vector<size_t>& left, const std::vector<size_t>& right); |
183 | |
184 | // Same as above, but the input is represented as strings. |
185 | GTEST_API_ std::vector<EditType> CalculateOptimalEdits( |
186 | const std::vector<std::string>& left, |
187 | const std::vector<std::string>& right); |
188 | |
189 | // Create a diff of the input strings in Unified diff format. |
190 | GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left, |
191 | const std::vector<std::string>& right, |
192 | size_t context = 2); |
193 | |
194 | } // namespace edit_distance |
195 | |
196 | // Calculate the diff between 'left' and 'right' and return it in unified diff |
197 | // format. |
198 | // If not null, stores in 'total_line_count' the total number of lines found |
199 | // in left + right. |
200 | GTEST_API_ std::string DiffStrings(const std::string& left, |
201 | const std::string& right, |
202 | size_t* total_line_count); |
203 | |
204 | // Constructs and returns the message for an equality assertion |
205 | // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. |
206 | // |
207 | // The first four parameters are the expressions used in the assertion |
208 | // and their values, as strings. For example, for ASSERT_EQ(foo, bar) |
209 | // where foo is 5 and bar is 6, we have: |
210 | // |
211 | // expected_expression: "foo" |
212 | // actual_expression: "bar" |
213 | // expected_value: "5" |
214 | // actual_value: "6" |
215 | // |
216 | // The ignoring_case parameter is true iff the assertion is a |
217 | // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will |
218 | // be inserted into the message. |
219 | GTEST_API_ AssertionResult EqFailure(const char* expected_expression, |
220 | const char* actual_expression, |
221 | const std::string& expected_value, |
222 | const std::string& actual_value, |
223 | bool ignoring_case); |
224 | |
225 | // Constructs a failure message for Boolean assertions such as EXPECT_TRUE. |
226 | GTEST_API_ std::string GetBoolAssertionFailureMessage( |
227 | const AssertionResult& assertion_result, |
228 | const char* expression_text, |
229 | const char* actual_predicate_value, |
230 | const char* expected_predicate_value); |
231 | |
232 | // This template class represents an IEEE floating-point number |
233 | // (either single-precision or double-precision, depending on the |
234 | // template parameters). |
235 | // |
236 | // The purpose of this class is to do more sophisticated number |
237 | // comparison. (Due to round-off error, etc, it's very unlikely that |
238 | // two floating-points will be equal exactly. Hence a naive |
239 | // comparison by the == operation often doesn't work.) |
240 | // |
241 | // Format of IEEE floating-point: |
242 | // |
243 | // The most-significant bit being the leftmost, an IEEE |
244 | // floating-point looks like |
245 | // |
246 | // sign_bit exponent_bits fraction_bits |
247 | // |
248 | // Here, sign_bit is a single bit that designates the sign of the |
249 | // number. |
250 | // |
251 | // For float, there are 8 exponent bits and 23 fraction bits. |
252 | // |
253 | // For double, there are 11 exponent bits and 52 fraction bits. |
254 | // |
255 | // More details can be found at |
256 | // http://en.wikipedia.org/wiki/IEEE_floating-point_standard. |
257 | // |
258 | // Template parameter: |
259 | // |
260 | // RawType: the raw floating-point type (either float or double) |
261 | template <typename RawType> |
262 | class FloatingPoint { |
263 | public: |
264 | // Defines the unsigned integer type that has the same size as the |
265 | // floating point number. |
266 | typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits; |
267 | |
268 | // Constants. |
269 | |
270 | // # of bits in a number. |
271 | static const size_t kBitCount = 8*sizeof(RawType); |
272 | |
273 | // # of fraction bits in a number. |
274 | static const size_t kFractionBitCount = |
275 | std::numeric_limits<RawType>::digits - 1; |
276 | |
277 | // # of exponent bits in a number. |
278 | static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount; |
279 | |
280 | // The mask for the sign bit. |
281 | static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1); |
282 | |
283 | // The mask for the fraction bits. |
284 | static const Bits kFractionBitMask = |
285 | ~static_cast<Bits>(0) >> (kExponentBitCount + 1); |
286 | |
287 | // The mask for the exponent bits. |
288 | static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask); |
289 | |
290 | // How many ULP's (Units in the Last Place) we want to tolerate when |
291 | // comparing two numbers. The larger the value, the more error we |
292 | // allow. A 0 value means that two numbers must be exactly the same |
293 | // to be considered equal. |
294 | // |
295 | // The maximum error of a single floating-point operation is 0.5 |
296 | // units in the last place. On Intel CPU's, all floating-point |
297 | // calculations are done with 80-bit precision, while double has 64 |
298 | // bits. Therefore, 4 should be enough for ordinary use. |
299 | // |
300 | // See the following article for more details on ULP: |
301 | // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ |
302 | static const size_t kMaxUlps = 4; |
303 | |
304 | // Constructs a FloatingPoint from a raw floating-point number. |
305 | // |
306 | // On an Intel CPU, passing a non-normalized NAN (Not a Number) |
307 | // around may change its bits, although the new value is guaranteed |
308 | // to be also a NAN. Therefore, don't expect this constructor to |
309 | // preserve the bits in x when x is a NAN. |
310 | explicit FloatingPoint(const RawType& x) { u_.value_ = x; } |
311 | |
312 | // Static methods |
313 | |
314 | // Reinterprets a bit pattern as a floating-point number. |
315 | // |
316 | // This function is needed to test the AlmostEquals() method. |
317 | static RawType ReinterpretBits(const Bits bits) { |
318 | FloatingPoint fp(0); |
319 | fp.u_.bits_ = bits; |
320 | return fp.u_.value_; |
321 | } |
322 | |
323 | // Returns the floating-point number that represent positive infinity. |
324 | static RawType Infinity() { |
325 | return ReinterpretBits(kExponentBitMask); |
326 | } |
327 | |
328 | // Returns the maximum representable finite floating-point number. |
329 | static RawType Max(); |
330 | |
331 | // Non-static methods |
332 | |
333 | // Returns the bits that represents this number. |
334 | const Bits &bits() const { return u_.bits_; } |
335 | |
336 | // Returns the exponent bits of this number. |
337 | Bits exponent_bits() const { return kExponentBitMask & u_.bits_; } |
338 | |
339 | // Returns the fraction bits of this number. |
340 | Bits fraction_bits() const { return kFractionBitMask & u_.bits_; } |
341 | |
342 | // Returns the sign bit of this number. |
343 | Bits sign_bit() const { return kSignBitMask & u_.bits_; } |
344 | |
345 | // Returns true iff this is NAN (not a number). |
346 | bool is_nan() const { |
347 | // It's a NAN if the exponent bits are all ones and the fraction |
348 | // bits are not entirely zeros. |
349 | return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0); |
350 | } |
351 | |
352 | // Returns true iff this number is at most kMaxUlps ULP's away from |
353 | // rhs. In particular, this function: |
354 | // |
355 | // - returns false if either number is (or both are) NAN. |
356 | // - treats really large numbers as almost equal to infinity. |
357 | // - thinks +0.0 and -0.0 are 0 DLP's apart. |
358 | bool AlmostEquals(const FloatingPoint& rhs) const { |
359 | // The IEEE standard says that any comparison operation involving |
360 | // a NAN must return false. |
361 | if (is_nan() || rhs.is_nan()) return false; |
362 | |
363 | return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) |
364 | <= kMaxUlps; |
365 | } |
366 | |
367 | private: |
368 | // The data type used to store the actual floating-point number. |
369 | union FloatingPointUnion { |
370 | RawType value_; // The raw floating-point number. |
371 | Bits bits_; // The bits that represent the number. |
372 | }; |
373 | |
374 | // Converts an integer from the sign-and-magnitude representation to |
375 | // the biased representation. More precisely, let N be 2 to the |
376 | // power of (kBitCount - 1), an integer x is represented by the |
377 | // unsigned number x + N. |
378 | // |
379 | // For instance, |
380 | // |
381 | // -N + 1 (the most negative number representable using |
382 | // sign-and-magnitude) is represented by 1; |
383 | // 0 is represented by N; and |
384 | // N - 1 (the biggest number representable using |
385 | // sign-and-magnitude) is represented by 2N - 1. |
386 | // |
387 | // Read http://en.wikipedia.org/wiki/Signed_number_representations |
388 | // for more details on signed number representations. |
389 | static Bits SignAndMagnitudeToBiased(const Bits &sam) { |
390 | if (kSignBitMask & sam) { |
391 | // sam represents a negative number. |
392 | return ~sam + 1; |
393 | } else { |
394 | // sam represents a positive number. |
395 | return kSignBitMask | sam; |
396 | } |
397 | } |
398 | |
399 | // Given two numbers in the sign-and-magnitude representation, |
400 | // returns the distance between them as an unsigned number. |
401 | static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1, |
402 | const Bits &sam2) { |
403 | const Bits biased1 = SignAndMagnitudeToBiased(sam1); |
404 | const Bits biased2 = SignAndMagnitudeToBiased(sam2); |
405 | return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1); |
406 | } |
407 | |
408 | FloatingPointUnion u_; |
409 | }; |
410 | |
411 | // We cannot use std::numeric_limits<T>::max() as it clashes with the max() |
412 | // macro defined by <windows.h>. |
413 | template <> |
414 | inline float FloatingPoint<float>::Max() { return FLT_MAX; } |
415 | template <> |
416 | inline double FloatingPoint<double>::Max() { return DBL_MAX; } |
417 | |
418 | // Typedefs the instances of the FloatingPoint template class that we |
419 | // care to use. |
420 | typedef FloatingPoint<float> Float; |
421 | typedef FloatingPoint<double> Double; |
422 | |
423 | // In order to catch the mistake of putting tests that use different |
424 | // test fixture classes in the same test case, we need to assign |
425 | // unique IDs to fixture classes and compare them. The TypeId type is |
426 | // used to hold such IDs. The user should treat TypeId as an opaque |
427 | // type: the only operation allowed on TypeId values is to compare |
428 | // them for equality using the == operator. |
429 | typedef const void* TypeId; |
430 | |
431 | template <typename T> |
432 | class TypeIdHelper { |
433 | public: |
434 | // dummy_ must not have a const type. Otherwise an overly eager |
435 | // compiler (e.g. MSVC 7.1 & 8.0) may try to merge |
436 | // TypeIdHelper<T>::dummy_ for different Ts as an "optimization". |
437 | static bool dummy_; |
438 | }; |
439 | |
440 | template <typename T> |
441 | bool TypeIdHelper<T>::dummy_ = false; |
442 | |
443 | // GetTypeId<T>() returns the ID of type T. Different values will be |
444 | // returned for different types. Calling the function twice with the |
445 | // same type argument is guaranteed to return the same ID. |
446 | template <typename T> |
447 | TypeId GetTypeId() { |
448 | // The compiler is required to allocate a different |
449 | // TypeIdHelper<T>::dummy_ variable for each T used to instantiate |
450 | // the template. Therefore, the address of dummy_ is guaranteed to |
451 | // be unique. |
452 | return &(TypeIdHelper<T>::dummy_); |
453 | } |
454 | |
455 | // Returns the type ID of ::testing::Test. Always call this instead |
456 | // of GetTypeId< ::testing::Test>() to get the type ID of |
457 | // ::testing::Test, as the latter may give the wrong result due to a |
458 | // suspected linker bug when compiling Google Test as a Mac OS X |
459 | // framework. |
460 | GTEST_API_ TypeId GetTestTypeId(); |
461 | |
462 | // Defines the abstract factory interface that creates instances |
463 | // of a Test object. |
464 | class TestFactoryBase { |
465 | public: |
466 | virtual ~TestFactoryBase() {} |
467 | |
468 | // Creates a test instance to run. The instance is both created and destroyed |
469 | // within TestInfoImpl::Run() |
470 | virtual Test* CreateTest() = 0; |
471 | |
472 | protected: |
473 | TestFactoryBase() {} |
474 | |
475 | private: |
476 | GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase); |
477 | }; |
478 | |
479 | // This class provides implementation of TeastFactoryBase interface. |
480 | // It is used in TEST and TEST_F macros. |
481 | template <class TestClass> |
482 | class TestFactoryImpl : public TestFactoryBase { |
483 | public: |
484 | virtual Test* CreateTest() { return new TestClass; } |
485 | }; |
486 | |
487 | #if GTEST_OS_WINDOWS |
488 | |
489 | // Predicate-formatters for implementing the HRESULT checking macros |
490 | // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED} |
491 | // We pass a long instead of HRESULT to avoid causing an |
492 | // include dependency for the HRESULT type. |
493 | GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr, |
494 | long hr); // NOLINT |
495 | GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr, |
496 | long hr); // NOLINT |
497 | |
498 | #endif // GTEST_OS_WINDOWS |
499 | |
500 | // Types of SetUpTestCase() and TearDownTestCase() functions. |
501 | typedef void (*SetUpTestCaseFunc)(); |
502 | typedef void (*TearDownTestCaseFunc)(); |
503 | |
504 | struct CodeLocation { |
505 | CodeLocation(const string& a_file, int a_line) : file(a_file), line(a_line) {} |
506 | |
507 | string file; |
508 | int line; |
509 | }; |
510 | |
511 | // Creates a new TestInfo object and registers it with Google Test; |
512 | // returns the created object. |
513 | // |
514 | // Arguments: |
515 | // |
516 | // test_case_name: name of the test case |
517 | // name: name of the test |
518 | // type_param the name of the test's type parameter, or NULL if |
519 | // this is not a typed or a type-parameterized test. |
520 | // value_param text representation of the test's value parameter, |
521 | // or NULL if this is not a type-parameterized test. |
522 | // code_location: code location where the test is defined |
523 | // fixture_class_id: ID of the test fixture class |
524 | // set_up_tc: pointer to the function that sets up the test case |
525 | // tear_down_tc: pointer to the function that tears down the test case |
526 | // factory: pointer to the factory that creates a test object. |
527 | // The newly created TestInfo instance will assume |
528 | // ownership of the factory object. |
529 | GTEST_API_ TestInfo* MakeAndRegisterTestInfo( |
530 | const char* test_case_name, |
531 | const char* name, |
532 | const char* type_param, |
533 | const char* value_param, |
534 | CodeLocation code_location, |
535 | TypeId fixture_class_id, |
536 | SetUpTestCaseFunc set_up_tc, |
537 | TearDownTestCaseFunc tear_down_tc, |
538 | TestFactoryBase* factory); |
539 | |
540 | // If *pstr starts with the given prefix, modifies *pstr to be right |
541 | // past the prefix and returns true; otherwise leaves *pstr unchanged |
542 | // and returns false. None of pstr, *pstr, and prefix can be NULL. |
543 | GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr); |
544 | |
545 | #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P |
546 | |
547 | // State of the definition of a type-parameterized test case. |
548 | class GTEST_API_ TypedTestCasePState { |
549 | public: |
550 | TypedTestCasePState() : registered_(false) {} |
551 | |
552 | // Adds the given test name to defined_test_names_ and return true |
553 | // if the test case hasn't been registered; otherwise aborts the |
554 | // program. |
555 | bool AddTestName(const char* file, int line, const char* case_name, |
556 | const char* test_name) { |
557 | if (registered_) { |
558 | fprintf(stderr, "%s Test %s must be defined before " |
559 | "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n" , |
560 | FormatFileLocation(file, line).c_str(), test_name, case_name); |
561 | fflush(stderr); |
562 | posix::Abort(); |
563 | } |
564 | registered_tests_.insert( |
565 | ::std::make_pair(test_name, CodeLocation(file, line))); |
566 | return true; |
567 | } |
568 | |
569 | bool TestExists(const std::string& test_name) const { |
570 | return registered_tests_.count(test_name) > 0; |
571 | } |
572 | |
573 | const CodeLocation& GetCodeLocation(const std::string& test_name) const { |
574 | RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name); |
575 | GTEST_CHECK_(it != registered_tests_.end()); |
576 | return it->second; |
577 | } |
578 | |
579 | // Verifies that registered_tests match the test names in |
580 | // defined_test_names_; returns registered_tests if successful, or |
581 | // aborts the program otherwise. |
582 | const char* VerifyRegisteredTestNames( |
583 | const char* file, int line, const char* registered_tests); |
584 | |
585 | private: |
586 | typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap; |
587 | |
588 | bool registered_; |
589 | RegisteredTestsMap registered_tests_; |
590 | }; |
591 | |
592 | // Skips to the first non-space char after the first comma in 'str'; |
593 | // returns NULL if no comma is found in 'str'. |
594 | inline const char* SkipComma(const char* str) { |
595 | const char* comma = strchr(str, ','); |
596 | if (comma == NULL) { |
597 | return NULL; |
598 | } |
599 | while (IsSpace(*(++comma))) {} |
600 | return comma; |
601 | } |
602 | |
603 | // Returns the prefix of 'str' before the first comma in it; returns |
604 | // the entire string if it contains no comma. |
605 | inline std::string GetPrefixUntilComma(const char* str) { |
606 | const char* comma = strchr(str, ','); |
607 | return comma == NULL ? str : std::string(str, comma); |
608 | } |
609 | |
610 | // Splits a given string on a given delimiter, populating a given |
611 | // vector with the fields. |
612 | void SplitString(const ::std::string& str, char delimiter, |
613 | ::std::vector< ::std::string>* dest); |
614 | |
615 | // TypeParameterizedTest<Fixture, TestSel, Types>::Register() |
616 | // registers a list of type-parameterized tests with Google Test. The |
617 | // return value is insignificant - we just need to return something |
618 | // such that we can call this function in a namespace scope. |
619 | // |
620 | // Implementation note: The GTEST_TEMPLATE_ macro declares a template |
621 | // template parameter. It's defined in gtest-type-util.h. |
622 | template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types> |
623 | class TypeParameterizedTest { |
624 | public: |
625 | // 'index' is the index of the test in the type list 'Types' |
626 | // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase, |
627 | // Types). Valid values for 'index' are [0, N - 1] where N is the |
628 | // length of Types. |
629 | static bool Register(const char* prefix, |
630 | CodeLocation code_location, |
631 | const char* case_name, const char* test_names, |
632 | int index) { |
633 | typedef typename Types::Head Type; |
634 | typedef Fixture<Type> FixtureClass; |
635 | typedef typename GTEST_BIND_(TestSel, Type) TestClass; |
636 | |
637 | // First, registers the first type-parameterized test in the type |
638 | // list. |
639 | MakeAndRegisterTestInfo( |
640 | (std::string(prefix) + (prefix[0] == '\0' ? "" : "/" ) + case_name + "/" |
641 | + StreamableToString(index)).c_str(), |
642 | StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(), |
643 | GetTypeName<Type>().c_str(), |
644 | NULL, // No value parameter. |
645 | code_location, |
646 | GetTypeId<FixtureClass>(), |
647 | TestClass::SetUpTestCase, |
648 | TestClass::TearDownTestCase, |
649 | new TestFactoryImpl<TestClass>); |
650 | |
651 | // Next, recurses (at compile time) with the tail of the type list. |
652 | return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail> |
653 | ::Register(prefix, code_location, case_name, test_names, index + 1); |
654 | } |
655 | }; |
656 | |
657 | // The base case for the compile time recursion. |
658 | template <GTEST_TEMPLATE_ Fixture, class TestSel> |
659 | class TypeParameterizedTest<Fixture, TestSel, Types0> { |
660 | public: |
661 | static bool Register(const char* /*prefix*/, CodeLocation, |
662 | const char* /*case_name*/, const char* /*test_names*/, |
663 | int /*index*/) { |
664 | return true; |
665 | } |
666 | }; |
667 | |
668 | // TypeParameterizedTestCase<Fixture, Tests, Types>::Register() |
669 | // registers *all combinations* of 'Tests' and 'Types' with Google |
670 | // Test. The return value is insignificant - we just need to return |
671 | // something such that we can call this function in a namespace scope. |
672 | template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types> |
673 | class TypeParameterizedTestCase { |
674 | public: |
675 | static bool Register(const char* prefix, CodeLocation code_location, |
676 | const TypedTestCasePState* state, |
677 | const char* case_name, const char* test_names) { |
678 | std::string test_name = StripTrailingSpaces( |
679 | GetPrefixUntilComma(test_names)); |
680 | if (!state->TestExists(test_name)) { |
681 | fprintf(stderr, "Failed to get code location for test %s.%s at %s." , |
682 | case_name, test_name.c_str(), |
683 | FormatFileLocation(code_location.file.c_str(), |
684 | code_location.line).c_str()); |
685 | fflush(stderr); |
686 | posix::Abort(); |
687 | } |
688 | const CodeLocation& test_location = state->GetCodeLocation(test_name); |
689 | |
690 | typedef typename Tests::Head Head; |
691 | |
692 | // First, register the first test in 'Test' for each type in 'Types'. |
693 | TypeParameterizedTest<Fixture, Head, Types>::Register( |
694 | prefix, test_location, case_name, test_names, 0); |
695 | |
696 | // Next, recurses (at compile time) with the tail of the test list. |
697 | return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types> |
698 | ::Register(prefix, code_location, state, |
699 | case_name, SkipComma(test_names)); |
700 | } |
701 | }; |
702 | |
703 | // The base case for the compile time recursion. |
704 | template <GTEST_TEMPLATE_ Fixture, typename Types> |
705 | class TypeParameterizedTestCase<Fixture, Templates0, Types> { |
706 | public: |
707 | static bool Register(const char* /*prefix*/, CodeLocation, |
708 | const TypedTestCasePState* /*state*/, |
709 | const char* /*case_name*/, const char* /*test_names*/) { |
710 | return true; |
711 | } |
712 | }; |
713 | |
714 | #endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P |
715 | |
716 | // Returns the current OS stack trace as an std::string. |
717 | // |
718 | // The maximum number of stack frames to be included is specified by |
719 | // the gtest_stack_trace_depth flag. The skip_count parameter |
720 | // specifies the number of top frames to be skipped, which doesn't |
721 | // count against the number of frames to be included. |
722 | // |
723 | // For example, if Foo() calls Bar(), which in turn calls |
724 | // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in |
725 | // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. |
726 | GTEST_API_ std::string GetCurrentOsStackTraceExceptTop( |
727 | UnitTest* unit_test, int skip_count); |
728 | |
729 | // Helpers for suppressing warnings on unreachable code or constant |
730 | // condition. |
731 | |
732 | // Always returns true. |
733 | GTEST_API_ bool AlwaysTrue(); |
734 | |
735 | // Always returns false. |
736 | inline bool AlwaysFalse() { return !AlwaysTrue(); } |
737 | |
738 | // Helper for suppressing false warning from Clang on a const char* |
739 | // variable declared in a conditional expression always being NULL in |
740 | // the else branch. |
741 | struct GTEST_API_ ConstCharPtr { |
742 | ConstCharPtr(const char* str) : value(str) {} |
743 | operator bool() const { return true; } |
744 | const char* value; |
745 | }; |
746 | |
747 | // A simple Linear Congruential Generator for generating random |
748 | // numbers with a uniform distribution. Unlike rand() and srand(), it |
749 | // doesn't use global state (and therefore can't interfere with user |
750 | // code). Unlike rand_r(), it's portable. An LCG isn't very random, |
751 | // but it's good enough for our purposes. |
752 | class GTEST_API_ Random { |
753 | public: |
754 | static const UInt32 kMaxRange = 1u << 31; |
755 | |
756 | explicit Random(UInt32 seed) : state_(seed) {} |
757 | |
758 | void Reseed(UInt32 seed) { state_ = seed; } |
759 | |
760 | // Generates a random number from [0, range). Crashes if 'range' is |
761 | // 0 or greater than kMaxRange. |
762 | UInt32 Generate(UInt32 range); |
763 | |
764 | private: |
765 | UInt32 state_; |
766 | GTEST_DISALLOW_COPY_AND_ASSIGN_(Random); |
767 | }; |
768 | |
769 | // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a |
770 | // compiler error iff T1 and T2 are different types. |
771 | template <typename T1, typename T2> |
772 | struct CompileAssertTypesEqual; |
773 | |
774 | template <typename T> |
775 | struct CompileAssertTypesEqual<T, T> { |
776 | }; |
777 | |
778 | // Removes the reference from a type if it is a reference type, |
779 | // otherwise leaves it unchanged. This is the same as |
780 | // tr1::remove_reference, which is not widely available yet. |
781 | template <typename T> |
782 | struct RemoveReference { typedef T type; }; // NOLINT |
783 | template <typename T> |
784 | struct RemoveReference<T&> { typedef T type; }; // NOLINT |
785 | |
786 | // A handy wrapper around RemoveReference that works when the argument |
787 | // T depends on template parameters. |
788 | #define GTEST_REMOVE_REFERENCE_(T) \ |
789 | typename ::testing::internal::RemoveReference<T>::type |
790 | |
791 | // Removes const from a type if it is a const type, otherwise leaves |
792 | // it unchanged. This is the same as tr1::remove_const, which is not |
793 | // widely available yet. |
794 | template <typename T> |
795 | struct RemoveConst { typedef T type; }; // NOLINT |
796 | template <typename T> |
797 | struct RemoveConst<const T> { typedef T type; }; // NOLINT |
798 | |
799 | // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above |
800 | // definition to fail to remove the const in 'const int[3]' and 'const |
801 | // char[3][4]'. The following specialization works around the bug. |
802 | template <typename T, size_t N> |
803 | struct RemoveConst<const T[N]> { |
804 | typedef typename RemoveConst<T>::type type[N]; |
805 | }; |
806 | |
807 | #if defined(_MSC_VER) && _MSC_VER < 1400 |
808 | // This is the only specialization that allows VC++ 7.1 to remove const in |
809 | // 'const int[3] and 'const int[3][4]'. However, it causes trouble with GCC |
810 | // and thus needs to be conditionally compiled. |
811 | template <typename T, size_t N> |
812 | struct RemoveConst<T[N]> { |
813 | typedef typename RemoveConst<T>::type type[N]; |
814 | }; |
815 | #endif |
816 | |
817 | // A handy wrapper around RemoveConst that works when the argument |
818 | // T depends on template parameters. |
819 | #define GTEST_REMOVE_CONST_(T) \ |
820 | typename ::testing::internal::RemoveConst<T>::type |
821 | |
822 | // Turns const U&, U&, const U, and U all into U. |
823 | #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \ |
824 | GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T)) |
825 | |
826 | // Adds reference to a type if it is not a reference type, |
827 | // otherwise leaves it unchanged. This is the same as |
828 | // tr1::add_reference, which is not widely available yet. |
829 | template <typename T> |
830 | struct AddReference { typedef T& type; }; // NOLINT |
831 | template <typename T> |
832 | struct AddReference<T&> { typedef T& type; }; // NOLINT |
833 | |
834 | // A handy wrapper around AddReference that works when the argument T |
835 | // depends on template parameters. |
836 | #define GTEST_ADD_REFERENCE_(T) \ |
837 | typename ::testing::internal::AddReference<T>::type |
838 | |
839 | // Adds a reference to const on top of T as necessary. For example, |
840 | // it transforms |
841 | // |
842 | // char ==> const char& |
843 | // const char ==> const char& |
844 | // char& ==> const char& |
845 | // const char& ==> const char& |
846 | // |
847 | // The argument T must depend on some template parameters. |
848 | #define GTEST_REFERENCE_TO_CONST_(T) \ |
849 | GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T)) |
850 | |
851 | // ImplicitlyConvertible<From, To>::value is a compile-time bool |
852 | // constant that's true iff type From can be implicitly converted to |
853 | // type To. |
854 | template <typename From, typename To> |
855 | class ImplicitlyConvertible { |
856 | private: |
857 | // We need the following helper functions only for their types. |
858 | // They have no implementations. |
859 | |
860 | // MakeFrom() is an expression whose type is From. We cannot simply |
861 | // use From(), as the type From may not have a public default |
862 | // constructor. |
863 | static typename AddReference<From>::type MakeFrom(); |
864 | |
865 | // These two functions are overloaded. Given an expression |
866 | // Helper(x), the compiler will pick the first version if x can be |
867 | // implicitly converted to type To; otherwise it will pick the |
868 | // second version. |
869 | // |
870 | // The first version returns a value of size 1, and the second |
871 | // version returns a value of size 2. Therefore, by checking the |
872 | // size of Helper(x), which can be done at compile time, we can tell |
873 | // which version of Helper() is used, and hence whether x can be |
874 | // implicitly converted to type To. |
875 | static char Helper(To); |
876 | static char (&Helper(...))[2]; // NOLINT |
877 | |
878 | // We have to put the 'public' section after the 'private' section, |
879 | // or MSVC refuses to compile the code. |
880 | public: |
881 | #if defined(__BORLANDC__) |
882 | // C++Builder cannot use member overload resolution during template |
883 | // instantiation. The simplest workaround is to use its C++0x type traits |
884 | // functions (C++Builder 2009 and above only). |
885 | static const bool value = __is_convertible(From, To); |
886 | #else |
887 | // MSVC warns about implicitly converting from double to int for |
888 | // possible loss of data, so we need to temporarily disable the |
889 | // warning. |
890 | GTEST_DISABLE_MSC_WARNINGS_PUSH_(4244) |
891 | static const bool value = |
892 | sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1; |
893 | GTEST_DISABLE_MSC_WARNINGS_POP_() |
894 | #endif // __BORLANDC__ |
895 | }; |
896 | template <typename From, typename To> |
897 | const bool ImplicitlyConvertible<From, To>::value; |
898 | |
899 | // IsAProtocolMessage<T>::value is a compile-time bool constant that's |
900 | // true iff T is type ProtocolMessage, proto2::Message, or a subclass |
901 | // of those. |
902 | template <typename T> |
903 | struct IsAProtocolMessage |
904 | : public bool_constant< |
905 | ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value || |
906 | ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> { |
907 | }; |
908 | |
909 | // When the compiler sees expression IsContainerTest<C>(0), if C is an |
910 | // STL-style container class, the first overload of IsContainerTest |
911 | // will be viable (since both C::iterator* and C::const_iterator* are |
912 | // valid types and NULL can be implicitly converted to them). It will |
913 | // be picked over the second overload as 'int' is a perfect match for |
914 | // the type of argument 0. If C::iterator or C::const_iterator is not |
915 | // a valid type, the first overload is not viable, and the second |
916 | // overload will be picked. Therefore, we can determine whether C is |
917 | // a container class by checking the type of IsContainerTest<C>(0). |
918 | // The value of the expression is insignificant. |
919 | // |
920 | // Note that we look for both C::iterator and C::const_iterator. The |
921 | // reason is that C++ injects the name of a class as a member of the |
922 | // class itself (e.g. you can refer to class iterator as either |
923 | // 'iterator' or 'iterator::iterator'). If we look for C::iterator |
924 | // only, for example, we would mistakenly think that a class named |
925 | // iterator is an STL container. |
926 | // |
927 | // Also note that the simpler approach of overloading |
928 | // IsContainerTest(typename C::const_iterator*) and |
929 | // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++. |
930 | typedef int IsContainer; |
931 | template <class C> |
932 | IsContainer IsContainerTest(int /* dummy */, |
933 | typename C::iterator* /* it */ = NULL, |
934 | typename C::const_iterator* /* const_it */ = NULL) { |
935 | return 0; |
936 | } |
937 | |
938 | typedef char IsNotContainer; |
939 | template <class C> |
940 | IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; } |
941 | |
942 | // EnableIf<condition>::type is void when 'Cond' is true, and |
943 | // undefined when 'Cond' is false. To use SFINAE to make a function |
944 | // overload only apply when a particular expression is true, add |
945 | // "typename EnableIf<expression>::type* = 0" as the last parameter. |
946 | template<bool> struct EnableIf; |
947 | template<> struct EnableIf<true> { typedef void type; }; // NOLINT |
948 | |
949 | // Utilities for native arrays. |
950 | |
951 | // ArrayEq() compares two k-dimensional native arrays using the |
952 | // elements' operator==, where k can be any integer >= 0. When k is |
953 | // 0, ArrayEq() degenerates into comparing a single pair of values. |
954 | |
955 | template <typename T, typename U> |
956 | bool ArrayEq(const T* lhs, size_t size, const U* rhs); |
957 | |
958 | // This generic version is used when k is 0. |
959 | template <typename T, typename U> |
960 | inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; } |
961 | |
962 | // This overload is used when k >= 1. |
963 | template <typename T, typename U, size_t N> |
964 | inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) { |
965 | return internal::ArrayEq(lhs, N, rhs); |
966 | } |
967 | |
968 | // This helper reduces code bloat. If we instead put its logic inside |
969 | // the previous ArrayEq() function, arrays with different sizes would |
970 | // lead to different copies of the template code. |
971 | template <typename T, typename U> |
972 | bool ArrayEq(const T* lhs, size_t size, const U* rhs) { |
973 | for (size_t i = 0; i != size; i++) { |
974 | if (!internal::ArrayEq(lhs[i], rhs[i])) |
975 | return false; |
976 | } |
977 | return true; |
978 | } |
979 | |
980 | // Finds the first element in the iterator range [begin, end) that |
981 | // equals elem. Element may be a native array type itself. |
982 | template <typename Iter, typename Element> |
983 | Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) { |
984 | for (Iter it = begin; it != end; ++it) { |
985 | if (internal::ArrayEq(*it, elem)) |
986 | return it; |
987 | } |
988 | return end; |
989 | } |
990 | |
991 | // CopyArray() copies a k-dimensional native array using the elements' |
992 | // operator=, where k can be any integer >= 0. When k is 0, |
993 | // CopyArray() degenerates into copying a single value. |
994 | |
995 | template <typename T, typename U> |
996 | void CopyArray(const T* from, size_t size, U* to); |
997 | |
998 | // This generic version is used when k is 0. |
999 | template <typename T, typename U> |
1000 | inline void CopyArray(const T& from, U* to) { *to = from; } |
1001 | |
1002 | // This overload is used when k >= 1. |
1003 | template <typename T, typename U, size_t N> |
1004 | inline void CopyArray(const T(&from)[N], U(*to)[N]) { |
1005 | internal::CopyArray(from, N, *to); |
1006 | } |
1007 | |
1008 | // This helper reduces code bloat. If we instead put its logic inside |
1009 | // the previous CopyArray() function, arrays with different sizes |
1010 | // would lead to different copies of the template code. |
1011 | template <typename T, typename U> |
1012 | void CopyArray(const T* from, size_t size, U* to) { |
1013 | for (size_t i = 0; i != size; i++) { |
1014 | internal::CopyArray(from[i], to + i); |
1015 | } |
1016 | } |
1017 | |
1018 | // The relation between an NativeArray object (see below) and the |
1019 | // native array it represents. |
1020 | // We use 2 different structs to allow non-copyable types to be used, as long |
1021 | // as RelationToSourceReference() is passed. |
1022 | struct RelationToSourceReference {}; |
1023 | struct RelationToSourceCopy {}; |
1024 | |
1025 | // Adapts a native array to a read-only STL-style container. Instead |
1026 | // of the complete STL container concept, this adaptor only implements |
1027 | // members useful for Google Mock's container matchers. New members |
1028 | // should be added as needed. To simplify the implementation, we only |
1029 | // support Element being a raw type (i.e. having no top-level const or |
1030 | // reference modifier). It's the client's responsibility to satisfy |
1031 | // this requirement. Element can be an array type itself (hence |
1032 | // multi-dimensional arrays are supported). |
1033 | template <typename Element> |
1034 | class NativeArray { |
1035 | public: |
1036 | // STL-style container typedefs. |
1037 | typedef Element value_type; |
1038 | typedef Element* iterator; |
1039 | typedef const Element* const_iterator; |
1040 | |
1041 | // Constructs from a native array. References the source. |
1042 | NativeArray(const Element* array, size_t count, RelationToSourceReference) { |
1043 | InitRef(array, count); |
1044 | } |
1045 | |
1046 | // Constructs from a native array. Copies the source. |
1047 | NativeArray(const Element* array, size_t count, RelationToSourceCopy) { |
1048 | InitCopy(array, count); |
1049 | } |
1050 | |
1051 | // Copy constructor. |
1052 | NativeArray(const NativeArray& rhs) { |
1053 | (this->*rhs.clone_)(rhs.array_, rhs.size_); |
1054 | } |
1055 | |
1056 | ~NativeArray() { |
1057 | if (clone_ != &NativeArray::InitRef) |
1058 | delete[] array_; |
1059 | } |
1060 | |
1061 | // STL-style container methods. |
1062 | size_t size() const { return size_; } |
1063 | const_iterator begin() const { return array_; } |
1064 | const_iterator end() const { return array_ + size_; } |
1065 | bool operator==(const NativeArray& rhs) const { |
1066 | return size() == rhs.size() && |
1067 | ArrayEq(begin(), size(), rhs.begin()); |
1068 | } |
1069 | |
1070 | private: |
1071 | enum { |
1072 | kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper< |
1073 | Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value, |
1074 | }; |
1075 | |
1076 | // Initializes this object with a copy of the input. |
1077 | void InitCopy(const Element* array, size_t a_size) { |
1078 | Element* const copy = new Element[a_size]; |
1079 | CopyArray(array, a_size, copy); |
1080 | array_ = copy; |
1081 | size_ = a_size; |
1082 | clone_ = &NativeArray::InitCopy; |
1083 | } |
1084 | |
1085 | // Initializes this object with a reference of the input. |
1086 | void InitRef(const Element* array, size_t a_size) { |
1087 | array_ = array; |
1088 | size_ = a_size; |
1089 | clone_ = &NativeArray::InitRef; |
1090 | } |
1091 | |
1092 | const Element* array_; |
1093 | size_t size_; |
1094 | void (NativeArray::*clone_)(const Element*, size_t); |
1095 | |
1096 | GTEST_DISALLOW_ASSIGN_(NativeArray); |
1097 | }; |
1098 | |
1099 | } // namespace internal |
1100 | } // namespace testing |
1101 | |
1102 | #define GTEST_MESSAGE_AT_(file, line, message, result_type) \ |
1103 | ::testing::internal::AssertHelper(result_type, file, line, message) \ |
1104 | = ::testing::Message() |
1105 | |
1106 | #define GTEST_MESSAGE_(message, result_type) \ |
1107 | GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type) |
1108 | |
1109 | #define GTEST_FATAL_FAILURE_(message) \ |
1110 | return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure) |
1111 | |
1112 | #define GTEST_NONFATAL_FAILURE_(message) \ |
1113 | GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure) |
1114 | |
1115 | #define GTEST_SUCCESS_(message) \ |
1116 | GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess) |
1117 | |
1118 | // Suppresses MSVC warnings 4072 (unreachable code) for the code following |
1119 | // statement if it returns or throws (or doesn't return or throw in some |
1120 | // situations). |
1121 | #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \ |
1122 | if (::testing::internal::AlwaysTrue()) { statement; } |
1123 | |
1124 | #define GTEST_TEST_THROW_(statement, expected_exception, fail) \ |
1125 | GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
1126 | if (::testing::internal::ConstCharPtr gtest_msg = "") { \ |
1127 | bool gtest_caught_expected = false; \ |
1128 | try { \ |
1129 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ |
1130 | } \ |
1131 | catch (expected_exception const&) { \ |
1132 | gtest_caught_expected = true; \ |
1133 | } \ |
1134 | catch (...) { \ |
1135 | gtest_msg.value = \ |
1136 | "Expected: " #statement " throws an exception of type " \ |
1137 | #expected_exception ".\n Actual: it throws a different type."; \ |
1138 | goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ |
1139 | } \ |
1140 | if (!gtest_caught_expected) { \ |
1141 | gtest_msg.value = \ |
1142 | "Expected: " #statement " throws an exception of type " \ |
1143 | #expected_exception ".\n Actual: it throws nothing."; \ |
1144 | goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ |
1145 | } \ |
1146 | } else \ |
1147 | GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \ |
1148 | fail(gtest_msg.value) |
1149 | |
1150 | #define GTEST_TEST_NO_THROW_(statement, fail) \ |
1151 | GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
1152 | if (::testing::internal::AlwaysTrue()) { \ |
1153 | try { \ |
1154 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ |
1155 | } \ |
1156 | catch (...) { \ |
1157 | goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \ |
1158 | } \ |
1159 | } else \ |
1160 | GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \ |
1161 | fail("Expected: " #statement " doesn't throw an exception.\n" \ |
1162 | " Actual: it throws.") |
1163 | |
1164 | #define GTEST_TEST_ANY_THROW_(statement, fail) \ |
1165 | GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
1166 | if (::testing::internal::AlwaysTrue()) { \ |
1167 | bool gtest_caught_any = false; \ |
1168 | try { \ |
1169 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ |
1170 | } \ |
1171 | catch (...) { \ |
1172 | gtest_caught_any = true; \ |
1173 | } \ |
1174 | if (!gtest_caught_any) { \ |
1175 | goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \ |
1176 | } \ |
1177 | } else \ |
1178 | GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \ |
1179 | fail("Expected: " #statement " throws an exception.\n" \ |
1180 | " Actual: it doesn't.") |
1181 | |
1182 | |
1183 | // Implements Boolean test assertions such as EXPECT_TRUE. expression can be |
1184 | // either a boolean expression or an AssertionResult. text is a textual |
1185 | // represenation of expression as it was passed into the EXPECT_TRUE. |
1186 | #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \ |
1187 | GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
1188 | if (const ::testing::AssertionResult gtest_ar_ = \ |
1189 | ::testing::AssertionResult(expression)) \ |
1190 | ; \ |
1191 | else \ |
1192 | fail(::testing::internal::GetBoolAssertionFailureMessage(\ |
1193 | gtest_ar_, text, #actual, #expected).c_str()) |
1194 | |
1195 | #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \ |
1196 | GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
1197 | if (::testing::internal::AlwaysTrue()) { \ |
1198 | ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \ |
1199 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ |
1200 | if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \ |
1201 | goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \ |
1202 | } \ |
1203 | } else \ |
1204 | GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \ |
1205 | fail("Expected: " #statement " doesn't generate new fatal " \ |
1206 | "failures in the current thread.\n" \ |
1207 | " Actual: it does.") |
1208 | |
1209 | // Expands to the name of the class that implements the given test. |
1210 | #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \ |
1211 | test_case_name##_##test_name##_Test |
1212 | |
1213 | // Helper macro for defining tests. |
1214 | #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\ |
1215 | class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\ |
1216 | public:\ |
1217 | GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\ |
1218 | private:\ |
1219 | virtual void TestBody();\ |
1220 | static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\ |
1221 | GTEST_DISALLOW_COPY_AND_ASSIGN_(\ |
1222 | GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\ |
1223 | };\ |
1224 | \ |
1225 | ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\ |
1226 | ::test_info_ =\ |
1227 | ::testing::internal::MakeAndRegisterTestInfo(\ |
1228 | #test_case_name, #test_name, NULL, NULL, \ |
1229 | ::testing::internal::CodeLocation(__FILE__, __LINE__), \ |
1230 | (parent_id), \ |
1231 | parent_class::SetUpTestCase, \ |
1232 | parent_class::TearDownTestCase, \ |
1233 | new ::testing::internal::TestFactoryImpl<\ |
1234 | GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\ |
1235 | void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody() |
1236 | |
1237 | #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ |
1238 | |
1239 | |