1 | /* |
2 | * jchuff.c |
3 | * |
4 | * Copyright (C) 1991-1997, Thomas G. Lane. |
5 | * This file is part of the Independent JPEG Group's software. |
6 | * For conditions of distribution and use, see the accompanying README file. |
7 | * |
8 | * This file contains Huffman entropy encoding routines. |
9 | * |
10 | * Much of the complexity here has to do with supporting output suspension. |
11 | * If the data destination module demands suspension, we want to be able to |
12 | * back up to the start of the current MCU. To do this, we copy state |
13 | * variables into local working storage, and update them back to the |
14 | * permanent JPEG objects only upon successful completion of an MCU. |
15 | */ |
16 | |
17 | #define JPEG_INTERNALS |
18 | #include "jinclude.h" |
19 | #include "jpeglib.h" |
20 | #include "jchuff.h" /* Declarations shared with jcphuff.c */ |
21 | |
22 | |
23 | /* Expanded entropy encoder object for Huffman encoding. |
24 | * |
25 | * The savable_state subrecord contains fields that change within an MCU, |
26 | * but must not be updated permanently until we complete the MCU. |
27 | */ |
28 | |
29 | typedef struct { |
30 | INT32 put_buffer; /* current bit-accumulation buffer */ |
31 | int put_bits; /* # of bits now in it */ |
32 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
33 | } savable_state; |
34 | |
35 | /* This macro is to work around compilers with missing or broken |
36 | * structure assignment. You'll need to fix this code if you have |
37 | * such a compiler and you change MAX_COMPS_IN_SCAN. |
38 | */ |
39 | |
40 | #ifndef NO_STRUCT_ASSIGN |
41 | #define ASSIGN_STATE(dest,src) ((dest) = (src)) |
42 | #else |
43 | #if MAX_COMPS_IN_SCAN == 4 |
44 | #define ASSIGN_STATE(dest,src) \ |
45 | ((dest).put_buffer = (src).put_buffer, \ |
46 | (dest).put_bits = (src).put_bits, \ |
47 | (dest).last_dc_val[0] = (src).last_dc_val[0], \ |
48 | (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
49 | (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
50 | (dest).last_dc_val[3] = (src).last_dc_val[3]) |
51 | #endif |
52 | #endif |
53 | |
54 | |
55 | typedef struct { |
56 | struct jpeg_entropy_encoder pub; /* public fields */ |
57 | |
58 | savable_state saved; /* Bit buffer & DC state at start of MCU */ |
59 | |
60 | /* These fields are NOT loaded into local working state. */ |
61 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
62 | int next_restart_num; /* next restart number to write (0-7) */ |
63 | |
64 | /* Pointers to derived tables (these workspaces have image lifespan) */ |
65 | c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; |
66 | c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; |
67 | |
68 | #ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */ |
69 | long * dc_count_ptrs[NUM_HUFF_TBLS]; |
70 | long * ac_count_ptrs[NUM_HUFF_TBLS]; |
71 | #endif |
72 | } huff_entropy_encoder; |
73 | |
74 | typedef huff_entropy_encoder * huff_entropy_ptr; |
75 | |
76 | /* Working state while writing an MCU. |
77 | * This struct contains all the fields that are needed by subroutines. |
78 | */ |
79 | |
80 | typedef struct { |
81 | JOCTET * next_output_byte; /* => next byte to write in buffer */ |
82 | size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
83 | savable_state cur; /* Current bit buffer & DC state */ |
84 | j_compress_ptr cinfo; /* dump_buffer needs access to this */ |
85 | } working_state; |
86 | |
87 | |
88 | /* Forward declarations */ |
89 | METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo, |
90 | JBLOCKROW *MCU_data)); |
91 | METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo)); |
92 | #ifdef ENTROPY_OPT_SUPPORTED |
93 | METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo, |
94 | JBLOCKROW *MCU_data)); |
95 | METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo)); |
96 | #endif |
97 | |
98 | |
99 | /* |
100 | * Initialize for a Huffman-compressed scan. |
101 | * If gather_statistics is TRUE, we do not output anything during the scan, |
102 | * just count the Huffman symbols used and generate Huffman code tables. |
103 | */ |
104 | |
105 | METHODDEF(void) |
106 | start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) |
107 | { |
108 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
109 | int ci, dctbl, actbl; |
110 | jpeg_component_info * compptr; |
111 | |
112 | if (gather_statistics) { |
113 | #ifdef ENTROPY_OPT_SUPPORTED |
114 | entropy->pub.encode_mcu = encode_mcu_gather; |
115 | entropy->pub.finish_pass = finish_pass_gather; |
116 | #else |
117 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
118 | #endif |
119 | } else { |
120 | entropy->pub.encode_mcu = encode_mcu_huff; |
121 | entropy->pub.finish_pass = finish_pass_huff; |
122 | } |
123 | |
124 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
125 | compptr = cinfo->cur_comp_info[ci]; |
126 | dctbl = compptr->dc_tbl_no; |
127 | actbl = compptr->ac_tbl_no; |
128 | if (gather_statistics) { |
129 | #ifdef ENTROPY_OPT_SUPPORTED |
130 | /* Check for invalid table indexes */ |
131 | /* (make_c_derived_tbl does this in the other path) */ |
132 | if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS) |
133 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); |
134 | if (actbl < 0 || actbl >= NUM_HUFF_TBLS) |
135 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl); |
136 | /* Allocate and zero the statistics tables */ |
137 | /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
138 | if (entropy->dc_count_ptrs[dctbl] == NULL) |
139 | entropy->dc_count_ptrs[dctbl] = (long *) |
140 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
141 | 257 * SIZEOF(long)); |
142 | MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long)); |
143 | if (entropy->ac_count_ptrs[actbl] == NULL) |
144 | entropy->ac_count_ptrs[actbl] = (long *) |
145 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
146 | 257 * SIZEOF(long)); |
147 | MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long)); |
148 | #endif |
149 | } else { |
150 | /* Compute derived values for Huffman tables */ |
151 | /* We may do this more than once for a table, but it's not expensive */ |
152 | jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl, |
153 | & entropy->dc_derived_tbls[dctbl]); |
154 | jpeg_make_c_derived_tbl(cinfo, FALSE, actbl, |
155 | & entropy->ac_derived_tbls[actbl]); |
156 | } |
157 | /* Initialize DC predictions to 0 */ |
158 | entropy->saved.last_dc_val[ci] = 0; |
159 | } |
160 | |
161 | /* Initialize bit buffer to empty */ |
162 | entropy->saved.put_buffer = 0; |
163 | entropy->saved.put_bits = 0; |
164 | |
165 | /* Initialize restart stuff */ |
166 | entropy->restarts_to_go = cinfo->restart_interval; |
167 | entropy->next_restart_num = 0; |
168 | } |
169 | |
170 | |
171 | /* |
172 | * Compute the derived values for a Huffman table. |
173 | * This routine also performs some validation checks on the table. |
174 | * |
175 | * Note this is also used by jcphuff.c. |
176 | */ |
177 | |
178 | GLOBAL(void) |
179 | jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, |
180 | c_derived_tbl ** pdtbl) |
181 | { |
182 | JHUFF_TBL *htbl; |
183 | c_derived_tbl *dtbl; |
184 | int p, i, l, lastp, si, maxsymbol; |
185 | char huffsize[257]; |
186 | unsigned int huffcode[257]; |
187 | unsigned int code; |
188 | |
189 | /* Note that huffsize[] and huffcode[] are filled in code-length order, |
190 | * paralleling the order of the symbols themselves in htbl->huffval[]. |
191 | */ |
192 | |
193 | /* Find the input Huffman table */ |
194 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
195 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
196 | htbl = |
197 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
198 | if (htbl == NULL) |
199 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
200 | |
201 | /* Allocate a workspace if we haven't already done so. */ |
202 | if (*pdtbl == NULL) |
203 | *pdtbl = (c_derived_tbl *) |
204 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
205 | SIZEOF(c_derived_tbl)); |
206 | dtbl = *pdtbl; |
207 | |
208 | /* Figure C.1: make table of Huffman code length for each symbol */ |
209 | |
210 | p = 0; |
211 | for (l = 1; l <= 16; l++) { |
212 | i = (int) htbl->bits[l]; |
213 | if (i < 0 || p + i > 256) /* protect against table overrun */ |
214 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
215 | while (i--) |
216 | huffsize[p++] = (char) l; |
217 | } |
218 | huffsize[p] = 0; |
219 | lastp = p; |
220 | |
221 | /* Figure C.2: generate the codes themselves */ |
222 | /* We also validate that the counts represent a legal Huffman code tree. */ |
223 | |
224 | code = 0; |
225 | si = huffsize[0]; |
226 | p = 0; |
227 | while (huffsize[p]) { |
228 | while (((int) huffsize[p]) == si) { |
229 | huffcode[p++] = code; |
230 | code++; |
231 | } |
232 | /* code is now 1 more than the last code used for codelength si; but |
233 | * it must still fit in si bits, since no code is allowed to be all ones. |
234 | */ |
235 | if (((INT32) code) >= (((INT32) 1) << si)) |
236 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
237 | code <<= 1; |
238 | si++; |
239 | } |
240 | |
241 | /* Figure C.3: generate encoding tables */ |
242 | /* These are code and size indexed by symbol value */ |
243 | |
244 | /* Set all codeless symbols to have code length 0; |
245 | * this lets us detect duplicate VAL entries here, and later |
246 | * allows emit_bits to detect any attempt to emit such symbols. |
247 | */ |
248 | MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); |
249 | |
250 | /* This is also a convenient place to check for out-of-range |
251 | * and duplicated VAL entries. We allow 0..255 for AC symbols |
252 | * but only 0..15 for DC. (We could constrain them further |
253 | * based on data depth and mode, but this seems enough.) |
254 | */ |
255 | maxsymbol = isDC ? 15 : 255; |
256 | |
257 | for (p = 0; p < lastp; p++) { |
258 | i = htbl->huffval[p]; |
259 | if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) |
260 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
261 | dtbl->ehufco[i] = huffcode[p]; |
262 | dtbl->ehufsi[i] = huffsize[p]; |
263 | } |
264 | } |
265 | |
266 | |
267 | /* Outputting bytes to the file */ |
268 | |
269 | /* Emit a byte, taking 'action' if must suspend. */ |
270 | #define emit_byte(state,val,action) \ |
271 | { *(state)->next_output_byte++ = (JOCTET) (val); \ |
272 | if (--(state)->free_in_buffer == 0) \ |
273 | if (! dump_buffer(state)) \ |
274 | { action; } } |
275 | |
276 | |
277 | LOCAL(boolean) |
278 | dump_buffer (working_state * state) |
279 | /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ |
280 | { |
281 | struct jpeg_destination_mgr * dest = state->cinfo->dest; |
282 | |
283 | if (! (*dest->empty_output_buffer) (state->cinfo)) |
284 | return FALSE; |
285 | /* After a successful buffer dump, must reset buffer pointers */ |
286 | state->next_output_byte = dest->next_output_byte; |
287 | state->free_in_buffer = dest->free_in_buffer; |
288 | return TRUE; |
289 | } |
290 | |
291 | |
292 | /* Outputting bits to the file */ |
293 | |
294 | /* Only the right 24 bits of put_buffer are used; the valid bits are |
295 | * left-justified in this part. At most 16 bits can be passed to emit_bits |
296 | * in one call, and we never retain more than 7 bits in put_buffer |
297 | * between calls, so 24 bits are sufficient. |
298 | */ |
299 | |
300 | INLINE |
301 | LOCAL(boolean) |
302 | emit_bits (working_state * state, unsigned int code, int size) |
303 | /* Emit some bits; return TRUE if successful, FALSE if must suspend */ |
304 | { |
305 | /* This routine is heavily used, so it's worth coding tightly. */ |
306 | register INT32 put_buffer = (INT32) code; |
307 | register int put_bits = state->cur.put_bits; |
308 | |
309 | /* if size is 0, caller used an invalid Huffman table entry */ |
310 | if (size == 0) |
311 | ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); |
312 | |
313 | put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ |
314 | |
315 | put_bits += size; /* new number of bits in buffer */ |
316 | |
317 | put_buffer <<= 24 - put_bits; /* align incoming bits */ |
318 | |
319 | put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */ |
320 | |
321 | while (put_bits >= 8) { |
322 | int c = (int) ((put_buffer >> 16) & 0xFF); |
323 | |
324 | emit_byte(state, c, return FALSE); |
325 | if (c == 0xFF) { /* need to stuff a zero byte? */ |
326 | emit_byte(state, 0, return FALSE); |
327 | } |
328 | put_buffer <<= 8; |
329 | put_bits -= 8; |
330 | } |
331 | |
332 | state->cur.put_buffer = put_buffer; /* update state variables */ |
333 | state->cur.put_bits = put_bits; |
334 | |
335 | return TRUE; |
336 | } |
337 | |
338 | |
339 | LOCAL(boolean) |
340 | flush_bits (working_state * state) |
341 | { |
342 | if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */ |
343 | return FALSE; |
344 | state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ |
345 | state->cur.put_bits = 0; |
346 | return TRUE; |
347 | } |
348 | |
349 | |
350 | /* Encode a single block's worth of coefficients */ |
351 | |
352 | LOCAL(boolean) |
353 | encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, |
354 | c_derived_tbl *dctbl, c_derived_tbl *actbl) |
355 | { |
356 | register int temp, temp2; |
357 | register int nbits; |
358 | register int k, r, i; |
359 | |
360 | /* Encode the DC coefficient difference per section F.1.2.1 */ |
361 | |
362 | temp = temp2 = block[0] - last_dc_val; |
363 | |
364 | if (temp < 0) { |
365 | temp = -temp; /* temp is abs value of input */ |
366 | /* For a negative input, want temp2 = bitwise complement of abs(input) */ |
367 | /* This code assumes we are on a two's complement machine */ |
368 | temp2--; |
369 | } |
370 | |
371 | /* Find the number of bits needed for the magnitude of the coefficient */ |
372 | nbits = 0; |
373 | while (temp) { |
374 | nbits++; |
375 | temp >>= 1; |
376 | } |
377 | /* Check for out-of-range coefficient values. |
378 | * Since we're encoding a difference, the range limit is twice as much. |
379 | */ |
380 | if (nbits > MAX_COEF_BITS+1) |
381 | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); |
382 | |
383 | /* Emit the Huffman-coded symbol for the number of bits */ |
384 | if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) |
385 | return FALSE; |
386 | |
387 | /* Emit that number of bits of the value, if positive, */ |
388 | /* or the complement of its magnitude, if negative. */ |
389 | if (nbits) /* emit_bits rejects calls with size 0 */ |
390 | if (! emit_bits(state, (unsigned int) temp2, nbits)) |
391 | return FALSE; |
392 | |
393 | /* Encode the AC coefficients per section F.1.2.2 */ |
394 | |
395 | r = 0; /* r = run length of zeros */ |
396 | |
397 | for (k = 1; k < DCTSIZE2; k++) { |
398 | if ((temp = block[jpeg_natural_order[k]]) == 0) { |
399 | r++; |
400 | } else { |
401 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
402 | while (r > 15) { |
403 | if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) |
404 | return FALSE; |
405 | r -= 16; |
406 | } |
407 | |
408 | temp2 = temp; |
409 | if (temp < 0) { |
410 | temp = -temp; /* temp is abs value of input */ |
411 | /* This code assumes we are on a two's complement machine */ |
412 | temp2--; |
413 | } |
414 | |
415 | /* Find the number of bits needed for the magnitude of the coefficient */ |
416 | nbits = 1; /* there must be at least one 1 bit */ |
417 | while ((temp >>= 1)) |
418 | nbits++; |
419 | /* Check for out-of-range coefficient values */ |
420 | if (nbits > MAX_COEF_BITS) |
421 | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); |
422 | |
423 | /* Emit Huffman symbol for run length / number of bits */ |
424 | i = (r << 4) + nbits; |
425 | if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i])) |
426 | return FALSE; |
427 | |
428 | /* Emit that number of bits of the value, if positive, */ |
429 | /* or the complement of its magnitude, if negative. */ |
430 | if (! emit_bits(state, (unsigned int) temp2, nbits)) |
431 | return FALSE; |
432 | |
433 | r = 0; |
434 | } |
435 | } |
436 | |
437 | /* If the last coef(s) were zero, emit an end-of-block code */ |
438 | if (r > 0) |
439 | if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0])) |
440 | return FALSE; |
441 | |
442 | return TRUE; |
443 | } |
444 | |
445 | |
446 | /* |
447 | * Emit a restart marker & resynchronize predictions. |
448 | */ |
449 | |
450 | LOCAL(boolean) |
451 | emit_restart (working_state * state, int restart_num) |
452 | { |
453 | int ci; |
454 | |
455 | if (! flush_bits(state)) |
456 | return FALSE; |
457 | |
458 | emit_byte(state, 0xFF, return FALSE); |
459 | emit_byte(state, JPEG_RST0 + restart_num, return FALSE); |
460 | |
461 | /* Re-initialize DC predictions to 0 */ |
462 | for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) |
463 | state->cur.last_dc_val[ci] = 0; |
464 | |
465 | /* The restart counter is not updated until we successfully write the MCU. */ |
466 | |
467 | return TRUE; |
468 | } |
469 | |
470 | |
471 | /* |
472 | * Encode and output one MCU's worth of Huffman-compressed coefficients. |
473 | */ |
474 | |
475 | METHODDEF(boolean) |
476 | encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
477 | { |
478 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
479 | working_state state; |
480 | int blkn, ci; |
481 | jpeg_component_info * compptr; |
482 | |
483 | /* Load up working state */ |
484 | state.next_output_byte = cinfo->dest->next_output_byte; |
485 | state.free_in_buffer = cinfo->dest->free_in_buffer; |
486 | ASSIGN_STATE(state.cur, entropy->saved); |
487 | state.cinfo = cinfo; |
488 | |
489 | /* Emit restart marker if needed */ |
490 | if (cinfo->restart_interval) { |
491 | if (entropy->restarts_to_go == 0) |
492 | if (! emit_restart(&state, entropy->next_restart_num)) |
493 | return FALSE; |
494 | } |
495 | |
496 | /* Encode the MCU data blocks */ |
497 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
498 | ci = cinfo->MCU_membership[blkn]; |
499 | compptr = cinfo->cur_comp_info[ci]; |
500 | if (! encode_one_block(&state, |
501 | MCU_data[blkn][0], state.cur.last_dc_val[ci], |
502 | entropy->dc_derived_tbls[compptr->dc_tbl_no], |
503 | entropy->ac_derived_tbls[compptr->ac_tbl_no])) |
504 | return FALSE; |
505 | /* Update last_dc_val */ |
506 | state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; |
507 | } |
508 | |
509 | /* Completed MCU, so update state */ |
510 | cinfo->dest->next_output_byte = state.next_output_byte; |
511 | cinfo->dest->free_in_buffer = state.free_in_buffer; |
512 | ASSIGN_STATE(entropy->saved, state.cur); |
513 | |
514 | /* Update restart-interval state too */ |
515 | if (cinfo->restart_interval) { |
516 | if (entropy->restarts_to_go == 0) { |
517 | entropy->restarts_to_go = cinfo->restart_interval; |
518 | entropy->next_restart_num++; |
519 | entropy->next_restart_num &= 7; |
520 | } |
521 | entropy->restarts_to_go--; |
522 | } |
523 | |
524 | return TRUE; |
525 | } |
526 | |
527 | |
528 | /* |
529 | * Finish up at the end of a Huffman-compressed scan. |
530 | */ |
531 | |
532 | METHODDEF(void) |
533 | finish_pass_huff (j_compress_ptr cinfo) |
534 | { |
535 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
536 | working_state state; |
537 | |
538 | /* Load up working state ... flush_bits needs it */ |
539 | state.next_output_byte = cinfo->dest->next_output_byte; |
540 | state.free_in_buffer = cinfo->dest->free_in_buffer; |
541 | ASSIGN_STATE(state.cur, entropy->saved); |
542 | state.cinfo = cinfo; |
543 | |
544 | /* Flush out the last data */ |
545 | if (! flush_bits(&state)) |
546 | ERREXIT(cinfo, JERR_CANT_SUSPEND); |
547 | |
548 | /* Update state */ |
549 | cinfo->dest->next_output_byte = state.next_output_byte; |
550 | cinfo->dest->free_in_buffer = state.free_in_buffer; |
551 | ASSIGN_STATE(entropy->saved, state.cur); |
552 | } |
553 | |
554 | |
555 | /* |
556 | * Huffman coding optimization. |
557 | * |
558 | * We first scan the supplied data and count the number of uses of each symbol |
559 | * that is to be Huffman-coded. (This process MUST agree with the code above.) |
560 | * Then we build a Huffman coding tree for the observed counts. |
561 | * Symbols which are not needed at all for the particular image are not |
562 | * assigned any code, which saves space in the DHT marker as well as in |
563 | * the compressed data. |
564 | */ |
565 | |
566 | #ifdef ENTROPY_OPT_SUPPORTED |
567 | |
568 | |
569 | /* Process a single block's worth of coefficients */ |
570 | |
571 | LOCAL(void) |
572 | htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, |
573 | long dc_counts[], long ac_counts[]) |
574 | { |
575 | register int temp; |
576 | register int nbits; |
577 | register int k, r; |
578 | |
579 | /* Encode the DC coefficient difference per section F.1.2.1 */ |
580 | |
581 | temp = block[0] - last_dc_val; |
582 | if (temp < 0) |
583 | temp = -temp; |
584 | |
585 | /* Find the number of bits needed for the magnitude of the coefficient */ |
586 | nbits = 0; |
587 | while (temp) { |
588 | nbits++; |
589 | temp >>= 1; |
590 | } |
591 | /* Check for out-of-range coefficient values. |
592 | * Since we're encoding a difference, the range limit is twice as much. |
593 | */ |
594 | if (nbits > MAX_COEF_BITS+1) |
595 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
596 | |
597 | /* Count the Huffman symbol for the number of bits */ |
598 | dc_counts[nbits]++; |
599 | |
600 | /* Encode the AC coefficients per section F.1.2.2 */ |
601 | |
602 | r = 0; /* r = run length of zeros */ |
603 | |
604 | for (k = 1; k < DCTSIZE2; k++) { |
605 | if ((temp = block[jpeg_natural_order[k]]) == 0) { |
606 | r++; |
607 | } else { |
608 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
609 | while (r > 15) { |
610 | ac_counts[0xF0]++; |
611 | r -= 16; |
612 | } |
613 | |
614 | /* Find the number of bits needed for the magnitude of the coefficient */ |
615 | if (temp < 0) |
616 | temp = -temp; |
617 | |
618 | /* Find the number of bits needed for the magnitude of the coefficient */ |
619 | nbits = 1; /* there must be at least one 1 bit */ |
620 | while ((temp >>= 1)) |
621 | nbits++; |
622 | /* Check for out-of-range coefficient values */ |
623 | if (nbits > MAX_COEF_BITS) |
624 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
625 | |
626 | /* Count Huffman symbol for run length / number of bits */ |
627 | ac_counts[(r << 4) + nbits]++; |
628 | |
629 | r = 0; |
630 | } |
631 | } |
632 | |
633 | /* If the last coef(s) were zero, emit an end-of-block code */ |
634 | if (r > 0) |
635 | ac_counts[0]++; |
636 | } |
637 | |
638 | |
639 | /* |
640 | * Trial-encode one MCU's worth of Huffman-compressed coefficients. |
641 | * No data is actually output, so no suspension return is possible. |
642 | */ |
643 | |
644 | METHODDEF(boolean) |
645 | encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
646 | { |
647 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
648 | int blkn, ci; |
649 | jpeg_component_info * compptr; |
650 | |
651 | /* Take care of restart intervals if needed */ |
652 | if (cinfo->restart_interval) { |
653 | if (entropy->restarts_to_go == 0) { |
654 | /* Re-initialize DC predictions to 0 */ |
655 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
656 | entropy->saved.last_dc_val[ci] = 0; |
657 | /* Update restart state */ |
658 | entropy->restarts_to_go = cinfo->restart_interval; |
659 | } |
660 | entropy->restarts_to_go--; |
661 | } |
662 | |
663 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
664 | ci = cinfo->MCU_membership[blkn]; |
665 | compptr = cinfo->cur_comp_info[ci]; |
666 | htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], |
667 | entropy->dc_count_ptrs[compptr->dc_tbl_no], |
668 | entropy->ac_count_ptrs[compptr->ac_tbl_no]); |
669 | entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; |
670 | } |
671 | |
672 | return TRUE; |
673 | } |
674 | |
675 | |
676 | /* |
677 | * Generate the best Huffman code table for the given counts, fill htbl. |
678 | * Note this is also used by jcphuff.c. |
679 | * |
680 | * The JPEG standard requires that no symbol be assigned a codeword of all |
681 | * one bits (so that padding bits added at the end of a compressed segment |
682 | * can't look like a valid code). Because of the canonical ordering of |
683 | * codewords, this just means that there must be an unused slot in the |
684 | * longest codeword length category. Section K.2 of the JPEG spec suggests |
685 | * reserving such a slot by pretending that symbol 256 is a valid symbol |
686 | * with count 1. In theory that's not optimal; giving it count zero but |
687 | * including it in the symbol set anyway should give a better Huffman code. |
688 | * But the theoretically better code actually seems to come out worse in |
689 | * practice, because it produces more all-ones bytes (which incur stuffed |
690 | * zero bytes in the final file). In any case the difference is tiny. |
691 | * |
692 | * The JPEG standard requires Huffman codes to be no more than 16 bits long. |
693 | * If some symbols have a very small but nonzero probability, the Huffman tree |
694 | * must be adjusted to meet the code length restriction. We currently use |
695 | * the adjustment method suggested in JPEG section K.2. This method is *not* |
696 | * optimal; it may not choose the best possible limited-length code. But |
697 | * typically only very-low-frequency symbols will be given less-than-optimal |
698 | * lengths, so the code is almost optimal. Experimental comparisons against |
699 | * an optimal limited-length-code algorithm indicate that the difference is |
700 | * microscopic --- usually less than a hundredth of a percent of total size. |
701 | * So the extra complexity of an optimal algorithm doesn't seem worthwhile. |
702 | */ |
703 | |
704 | GLOBAL(void) |
705 | jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) |
706 | { |
707 | #define MAX_CLEN 32 /* assumed maximum initial code length */ |
708 | UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */ |
709 | int codesize[257]; /* codesize[k] = code length of symbol k */ |
710 | int others[257]; /* next symbol in current branch of tree */ |
711 | int c1, c2; |
712 | int p, i, j; |
713 | long v; |
714 | |
715 | /* This algorithm is explained in section K.2 of the JPEG standard */ |
716 | |
717 | MEMZERO(bits, SIZEOF(bits)); |
718 | MEMZERO(codesize, SIZEOF(codesize)); |
719 | for (i = 0; i < 257; i++) |
720 | others[i] = -1; /* init links to empty */ |
721 | |
722 | freq[256] = 1; /* make sure 256 has a nonzero count */ |
723 | /* Including the pseudo-symbol 256 in the Huffman procedure guarantees |
724 | * that no real symbol is given code-value of all ones, because 256 |
725 | * will be placed last in the largest codeword category. |
726 | */ |
727 | |
728 | /* Huffman's basic algorithm to assign optimal code lengths to symbols */ |
729 | |
730 | for (;;) { |
731 | /* Find the smallest nonzero frequency, set c1 = its symbol */ |
732 | /* In case of ties, take the larger symbol number */ |
733 | c1 = -1; |
734 | v = 1000000000L; |
735 | for (i = 0; i <= 256; i++) { |
736 | if (freq[i] && freq[i] <= v) { |
737 | v = freq[i]; |
738 | c1 = i; |
739 | } |
740 | } |
741 | |
742 | /* Find the next smallest nonzero frequency, set c2 = its symbol */ |
743 | /* In case of ties, take the larger symbol number */ |
744 | c2 = -1; |
745 | v = 1000000000L; |
746 | for (i = 0; i <= 256; i++) { |
747 | if (freq[i] && freq[i] <= v && i != c1) { |
748 | v = freq[i]; |
749 | c2 = i; |
750 | } |
751 | } |
752 | |
753 | /* Done if we've merged everything into one frequency */ |
754 | if (c2 < 0) |
755 | break; |
756 | |
757 | /* Else merge the two counts/trees */ |
758 | freq[c1] += freq[c2]; |
759 | freq[c2] = 0; |
760 | |
761 | /* Increment the codesize of everything in c1's tree branch */ |
762 | codesize[c1]++; |
763 | while (others[c1] >= 0) { |
764 | c1 = others[c1]; |
765 | codesize[c1]++; |
766 | } |
767 | |
768 | others[c1] = c2; /* chain c2 onto c1's tree branch */ |
769 | |
770 | /* Increment the codesize of everything in c2's tree branch */ |
771 | codesize[c2]++; |
772 | while (others[c2] >= 0) { |
773 | c2 = others[c2]; |
774 | codesize[c2]++; |
775 | } |
776 | } |
777 | |
778 | /* Now count the number of symbols of each code length */ |
779 | for (i = 0; i <= 256; i++) { |
780 | if (codesize[i]) { |
781 | /* The JPEG standard seems to think that this can't happen, */ |
782 | /* but I'm paranoid... */ |
783 | if (codesize[i] > MAX_CLEN) |
784 | ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); |
785 | |
786 | bits[codesize[i]]++; |
787 | } |
788 | } |
789 | |
790 | /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure |
791 | * Huffman procedure assigned any such lengths, we must adjust the coding. |
792 | * Here is what the JPEG spec says about how this next bit works: |
793 | * Since symbols are paired for the longest Huffman code, the symbols are |
794 | * removed from this length category two at a time. The prefix for the pair |
795 | * (which is one bit shorter) is allocated to one of the pair; then, |
796 | * skipping the BITS entry for that prefix length, a code word from the next |
797 | * shortest nonzero BITS entry is converted into a prefix for two code words |
798 | * one bit longer. |
799 | */ |
800 | |
801 | for (i = MAX_CLEN; i > 16; i--) { |
802 | while (bits[i] > 0) { |
803 | j = i - 2; /* find length of new prefix to be used */ |
804 | while (bits[j] == 0) |
805 | j--; |
806 | |
807 | bits[i] -= 2; /* remove two symbols */ |
808 | bits[i-1]++; /* one goes in this length */ |
809 | bits[j+1] += 2; /* two new symbols in this length */ |
810 | bits[j]--; /* symbol of this length is now a prefix */ |
811 | } |
812 | } |
813 | |
814 | /* Remove the count for the pseudo-symbol 256 from the largest codelength */ |
815 | while (bits[i] == 0) /* find largest codelength still in use */ |
816 | i--; |
817 | bits[i]--; |
818 | |
819 | /* Return final symbol counts (only for lengths 0..16) */ |
820 | MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); |
821 | |
822 | /* Return a list of the symbols sorted by code length */ |
823 | /* It's not real clear to me why we don't need to consider the codelength |
824 | * changes made above, but the JPEG spec seems to think this works. |
825 | */ |
826 | p = 0; |
827 | for (i = 1; i <= MAX_CLEN; i++) { |
828 | for (j = 0; j <= 255; j++) { |
829 | if (codesize[j] == i) { |
830 | htbl->huffval[p] = (UINT8) j; |
831 | p++; |
832 | } |
833 | } |
834 | } |
835 | |
836 | /* Set sent_table FALSE so updated table will be written to JPEG file. */ |
837 | htbl->sent_table = FALSE; |
838 | } |
839 | |
840 | |
841 | /* |
842 | * Finish up a statistics-gathering pass and create the new Huffman tables. |
843 | */ |
844 | |
845 | METHODDEF(void) |
846 | finish_pass_gather (j_compress_ptr cinfo) |
847 | { |
848 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
849 | int ci, dctbl, actbl; |
850 | jpeg_component_info * compptr; |
851 | JHUFF_TBL **htblptr; |
852 | boolean did_dc[NUM_HUFF_TBLS]; |
853 | boolean did_ac[NUM_HUFF_TBLS]; |
854 | |
855 | /* It's important not to apply jpeg_gen_optimal_table more than once |
856 | * per table, because it clobbers the input frequency counts! |
857 | */ |
858 | MEMZERO(did_dc, SIZEOF(did_dc)); |
859 | MEMZERO(did_ac, SIZEOF(did_ac)); |
860 | |
861 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
862 | compptr = cinfo->cur_comp_info[ci]; |
863 | dctbl = compptr->dc_tbl_no; |
864 | actbl = compptr->ac_tbl_no; |
865 | if (! did_dc[dctbl]) { |
866 | htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl]; |
867 | if (*htblptr == NULL) |
868 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
869 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]); |
870 | did_dc[dctbl] = TRUE; |
871 | } |
872 | if (! did_ac[actbl]) { |
873 | htblptr = & cinfo->ac_huff_tbl_ptrs[actbl]; |
874 | if (*htblptr == NULL) |
875 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
876 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]); |
877 | did_ac[actbl] = TRUE; |
878 | } |
879 | } |
880 | } |
881 | |
882 | |
883 | #endif /* ENTROPY_OPT_SUPPORTED */ |
884 | |
885 | |
886 | /* |
887 | * Module initialization routine for Huffman entropy encoding. |
888 | */ |
889 | |
890 | GLOBAL(void) |
891 | jinit_huff_encoder (j_compress_ptr cinfo) |
892 | { |
893 | huff_entropy_ptr entropy; |
894 | int i; |
895 | |
896 | entropy = (huff_entropy_ptr) |
897 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
898 | SIZEOF(huff_entropy_encoder)); |
899 | cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
900 | entropy->pub.start_pass = start_pass_huff; |
901 | |
902 | /* Mark tables unallocated */ |
903 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
904 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
905 | #ifdef ENTROPY_OPT_SUPPORTED |
906 | entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; |
907 | #endif |
908 | } |
909 | } |
910 | |