1 | /* |
2 | * jcphuff.c |
3 | * |
4 | * Copyright (C) 1995-1997, Thomas G. Lane. |
5 | * This file is part of the Independent JPEG Group's software. |
6 | * For conditions of distribution and use, see the accompanying README file. |
7 | * |
8 | * This file contains Huffman entropy encoding routines for progressive JPEG. |
9 | * |
10 | * We do not support output suspension in this module, since the library |
11 | * currently does not allow multiple-scan files to be written with output |
12 | * suspension. |
13 | */ |
14 | |
15 | #define JPEG_INTERNALS |
16 | #include "jinclude.h" |
17 | #include "jpeglib.h" |
18 | #include "jchuff.h" /* Declarations shared with jchuff.c */ |
19 | |
20 | #ifdef C_PROGRESSIVE_SUPPORTED |
21 | |
22 | /* Expanded entropy encoder object for progressive Huffman encoding. */ |
23 | |
24 | typedef struct { |
25 | struct jpeg_entropy_encoder pub; /* public fields */ |
26 | |
27 | /* Mode flag: TRUE for optimization, FALSE for actual data output */ |
28 | boolean gather_statistics; |
29 | |
30 | /* Bit-level coding status. |
31 | * next_output_byte/free_in_buffer are local copies of cinfo->dest fields. |
32 | */ |
33 | JOCTET * next_output_byte; /* => next byte to write in buffer */ |
34 | size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
35 | INT32 put_buffer; /* current bit-accumulation buffer */ |
36 | int put_bits; /* # of bits now in it */ |
37 | j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ |
38 | |
39 | /* Coding status for DC components */ |
40 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
41 | |
42 | /* Coding status for AC components */ |
43 | int ac_tbl_no; /* the table number of the single component */ |
44 | unsigned int EOBRUN; /* run length of EOBs */ |
45 | unsigned int BE; /* # of buffered correction bits before MCU */ |
46 | char * bit_buffer; /* buffer for correction bits (1 per char) */ |
47 | /* packing correction bits tightly would save some space but cost time... */ |
48 | |
49 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
50 | int next_restart_num; /* next restart number to write (0-7) */ |
51 | |
52 | /* Pointers to derived tables (these workspaces have image lifespan). |
53 | * Since any one scan codes only DC or only AC, we only need one set |
54 | * of tables, not one for DC and one for AC. |
55 | */ |
56 | c_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; |
57 | |
58 | /* Statistics tables for optimization; again, one set is enough */ |
59 | long * count_ptrs[NUM_HUFF_TBLS]; |
60 | } phuff_entropy_encoder; |
61 | |
62 | typedef phuff_entropy_encoder * phuff_entropy_ptr; |
63 | |
64 | /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit |
65 | * buffer can hold. Larger sizes may slightly improve compression, but |
66 | * 1000 is already well into the realm of overkill. |
67 | * The minimum safe size is 64 bits. |
68 | */ |
69 | |
70 | #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ |
71 | |
72 | /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. |
73 | * We assume that int right shift is unsigned if INT32 right shift is, |
74 | * which should be safe. |
75 | */ |
76 | |
77 | #ifdef RIGHT_SHIFT_IS_UNSIGNED |
78 | #define ISHIFT_TEMPS int ishift_temp; |
79 | #define IRIGHT_SHIFT(x,shft) \ |
80 | ((ishift_temp = (x)) < 0 ? \ |
81 | (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ |
82 | (ishift_temp >> (shft))) |
83 | #else |
84 | #define ISHIFT_TEMPS |
85 | #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
86 | #endif |
87 | |
88 | /* Forward declarations */ |
89 | METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo, |
90 | JBLOCKROW *MCU_data)); |
91 | METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo, |
92 | JBLOCKROW *MCU_data)); |
93 | METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo, |
94 | JBLOCKROW *MCU_data)); |
95 | METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo, |
96 | JBLOCKROW *MCU_data)); |
97 | METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo)); |
98 | METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo)); |
99 | |
100 | |
101 | /* |
102 | * Initialize for a Huffman-compressed scan using progressive JPEG. |
103 | */ |
104 | |
105 | METHODDEF(void) |
106 | start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics) |
107 | { |
108 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
109 | boolean is_DC_band; |
110 | int ci, tbl; |
111 | jpeg_component_info * compptr; |
112 | |
113 | entropy->cinfo = cinfo; |
114 | entropy->gather_statistics = gather_statistics; |
115 | |
116 | is_DC_band = (cinfo->Ss == 0); |
117 | |
118 | /* We assume jcmaster.c already validated the scan parameters. */ |
119 | |
120 | /* Select execution routines */ |
121 | if (cinfo->Ah == 0) { |
122 | if (is_DC_band) |
123 | entropy->pub.encode_mcu = encode_mcu_DC_first; |
124 | else |
125 | entropy->pub.encode_mcu = encode_mcu_AC_first; |
126 | } else { |
127 | if (is_DC_band) |
128 | entropy->pub.encode_mcu = encode_mcu_DC_refine; |
129 | else { |
130 | entropy->pub.encode_mcu = encode_mcu_AC_refine; |
131 | /* AC refinement needs a correction bit buffer */ |
132 | if (entropy->bit_buffer == NULL) |
133 | entropy->bit_buffer = (char *) |
134 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
135 | MAX_CORR_BITS * SIZEOF(char)); |
136 | } |
137 | } |
138 | if (gather_statistics) |
139 | entropy->pub.finish_pass = finish_pass_gather_phuff; |
140 | else |
141 | entropy->pub.finish_pass = finish_pass_phuff; |
142 | |
143 | /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1 |
144 | * for AC coefficients. |
145 | */ |
146 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
147 | compptr = cinfo->cur_comp_info[ci]; |
148 | /* Initialize DC predictions to 0 */ |
149 | entropy->last_dc_val[ci] = 0; |
150 | /* Get table index */ |
151 | if (is_DC_band) { |
152 | if (cinfo->Ah != 0) /* DC refinement needs no table */ |
153 | continue; |
154 | tbl = compptr->dc_tbl_no; |
155 | } else { |
156 | entropy->ac_tbl_no = tbl = compptr->ac_tbl_no; |
157 | } |
158 | if (gather_statistics) { |
159 | /* Check for invalid table index */ |
160 | /* (make_c_derived_tbl does this in the other path) */ |
161 | if (tbl < 0 || tbl >= NUM_HUFF_TBLS) |
162 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); |
163 | /* Allocate and zero the statistics tables */ |
164 | /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
165 | if (entropy->count_ptrs[tbl] == NULL) |
166 | entropy->count_ptrs[tbl] = (long *) |
167 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
168 | 257 * SIZEOF(long)); |
169 | MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long)); |
170 | } else { |
171 | /* Compute derived values for Huffman table */ |
172 | /* We may do this more than once for a table, but it's not expensive */ |
173 | jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl, |
174 | & entropy->derived_tbls[tbl]); |
175 | } |
176 | } |
177 | |
178 | /* Initialize AC stuff */ |
179 | entropy->EOBRUN = 0; |
180 | entropy->BE = 0; |
181 | |
182 | /* Initialize bit buffer to empty */ |
183 | entropy->put_buffer = 0; |
184 | entropy->put_bits = 0; |
185 | |
186 | /* Initialize restart stuff */ |
187 | entropy->restarts_to_go = cinfo->restart_interval; |
188 | entropy->next_restart_num = 0; |
189 | } |
190 | |
191 | |
192 | /* Outputting bytes to the file. |
193 | * NB: these must be called only when actually outputting, |
194 | * that is, entropy->gather_statistics == FALSE. |
195 | */ |
196 | |
197 | /* Emit a byte */ |
198 | #define emit_byte(entropy,val) \ |
199 | { *(entropy)->next_output_byte++ = (JOCTET) (val); \ |
200 | if (--(entropy)->free_in_buffer == 0) \ |
201 | dump_buffer(entropy); } |
202 | |
203 | |
204 | LOCAL(void) |
205 | dump_buffer (phuff_entropy_ptr entropy) |
206 | /* Empty the output buffer; we do not support suspension in this module. */ |
207 | { |
208 | struct jpeg_destination_mgr * dest = entropy->cinfo->dest; |
209 | |
210 | if (! (*dest->empty_output_buffer) (entropy->cinfo)) |
211 | ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); |
212 | /* After a successful buffer dump, must reset buffer pointers */ |
213 | entropy->next_output_byte = dest->next_output_byte; |
214 | entropy->free_in_buffer = dest->free_in_buffer; |
215 | } |
216 | |
217 | |
218 | /* Outputting bits to the file */ |
219 | |
220 | /* Only the right 24 bits of put_buffer are used; the valid bits are |
221 | * left-justified in this part. At most 16 bits can be passed to emit_bits |
222 | * in one call, and we never retain more than 7 bits in put_buffer |
223 | * between calls, so 24 bits are sufficient. |
224 | */ |
225 | |
226 | INLINE |
227 | LOCAL(void) |
228 | emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size) |
229 | /* Emit some bits, unless we are in gather mode */ |
230 | { |
231 | /* This routine is heavily used, so it's worth coding tightly. */ |
232 | register INT32 put_buffer = (INT32) code; |
233 | register int put_bits = entropy->put_bits; |
234 | |
235 | /* if size is 0, caller used an invalid Huffman table entry */ |
236 | if (size == 0) |
237 | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
238 | |
239 | if (entropy->gather_statistics) |
240 | return; /* do nothing if we're only getting stats */ |
241 | |
242 | put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ |
243 | |
244 | put_bits += size; /* new number of bits in buffer */ |
245 | |
246 | put_buffer <<= 24 - put_bits; /* align incoming bits */ |
247 | |
248 | put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */ |
249 | |
250 | while (put_bits >= 8) { |
251 | int c = (int) ((put_buffer >> 16) & 0xFF); |
252 | |
253 | emit_byte(entropy, c); |
254 | if (c == 0xFF) { /* need to stuff a zero byte? */ |
255 | emit_byte(entropy, 0); |
256 | } |
257 | put_buffer <<= 8; |
258 | put_bits -= 8; |
259 | } |
260 | |
261 | entropy->put_buffer = put_buffer; /* update variables */ |
262 | entropy->put_bits = put_bits; |
263 | } |
264 | |
265 | |
266 | LOCAL(void) |
267 | flush_bits (phuff_entropy_ptr entropy) |
268 | { |
269 | emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */ |
270 | entropy->put_buffer = 0; /* and reset bit-buffer to empty */ |
271 | entropy->put_bits = 0; |
272 | } |
273 | |
274 | |
275 | /* |
276 | * Emit (or just count) a Huffman symbol. |
277 | */ |
278 | |
279 | INLINE |
280 | LOCAL(void) |
281 | emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol) |
282 | { |
283 | if (entropy->gather_statistics) |
284 | entropy->count_ptrs[tbl_no][symbol]++; |
285 | else { |
286 | c_derived_tbl * tbl = entropy->derived_tbls[tbl_no]; |
287 | emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); |
288 | } |
289 | } |
290 | |
291 | |
292 | /* |
293 | * Emit bits from a correction bit buffer. |
294 | */ |
295 | |
296 | LOCAL(void) |
297 | emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart, |
298 | unsigned int nbits) |
299 | { |
300 | if (entropy->gather_statistics) |
301 | return; /* no real work */ |
302 | |
303 | while (nbits > 0) { |
304 | emit_bits(entropy, (unsigned int) (*bufstart), 1); |
305 | bufstart++; |
306 | nbits--; |
307 | } |
308 | } |
309 | |
310 | |
311 | /* |
312 | * Emit any pending EOBRUN symbol. |
313 | */ |
314 | |
315 | LOCAL(void) |
316 | emit_eobrun (phuff_entropy_ptr entropy) |
317 | { |
318 | register int temp, nbits; |
319 | |
320 | if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ |
321 | temp = entropy->EOBRUN; |
322 | nbits = 0; |
323 | while ((temp >>= 1)) |
324 | nbits++; |
325 | /* safety check: shouldn't happen given limited correction-bit buffer */ |
326 | if (nbits > 14) |
327 | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
328 | |
329 | emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4); |
330 | if (nbits) |
331 | emit_bits(entropy, entropy->EOBRUN, nbits); |
332 | |
333 | entropy->EOBRUN = 0; |
334 | |
335 | /* Emit any buffered correction bits */ |
336 | emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); |
337 | entropy->BE = 0; |
338 | } |
339 | } |
340 | |
341 | |
342 | /* |
343 | * Emit a restart marker & resynchronize predictions. |
344 | */ |
345 | |
346 | LOCAL(void) |
347 | emit_restart (phuff_entropy_ptr entropy, int restart_num) |
348 | { |
349 | int ci; |
350 | |
351 | emit_eobrun(entropy); |
352 | |
353 | if (! entropy->gather_statistics) { |
354 | flush_bits(entropy); |
355 | emit_byte(entropy, 0xFF); |
356 | emit_byte(entropy, JPEG_RST0 + restart_num); |
357 | } |
358 | |
359 | if (entropy->cinfo->Ss == 0) { |
360 | /* Re-initialize DC predictions to 0 */ |
361 | for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) |
362 | entropy->last_dc_val[ci] = 0; |
363 | } else { |
364 | /* Re-initialize all AC-related fields to 0 */ |
365 | entropy->EOBRUN = 0; |
366 | entropy->BE = 0; |
367 | } |
368 | } |
369 | |
370 | |
371 | /* |
372 | * MCU encoding for DC initial scan (either spectral selection, |
373 | * or first pass of successive approximation). |
374 | */ |
375 | |
376 | METHODDEF(boolean) |
377 | encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
378 | { |
379 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
380 | register int temp, temp2; |
381 | register int nbits; |
382 | int blkn, ci; |
383 | int Al = cinfo->Al; |
384 | JBLOCKROW block; |
385 | jpeg_component_info * compptr; |
386 | ISHIFT_TEMPS |
387 | |
388 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
389 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
390 | |
391 | /* Emit restart marker if needed */ |
392 | if (cinfo->restart_interval) |
393 | if (entropy->restarts_to_go == 0) |
394 | emit_restart(entropy, entropy->next_restart_num); |
395 | |
396 | /* Encode the MCU data blocks */ |
397 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
398 | block = MCU_data[blkn]; |
399 | ci = cinfo->MCU_membership[blkn]; |
400 | compptr = cinfo->cur_comp_info[ci]; |
401 | |
402 | /* Compute the DC value after the required point transform by Al. |
403 | * This is simply an arithmetic right shift. |
404 | */ |
405 | temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); |
406 | |
407 | /* DC differences are figured on the point-transformed values. */ |
408 | temp = temp2 - entropy->last_dc_val[ci]; |
409 | entropy->last_dc_val[ci] = temp2; |
410 | |
411 | /* Encode the DC coefficient difference per section G.1.2.1 */ |
412 | temp2 = temp; |
413 | if (temp < 0) { |
414 | temp = -temp; /* temp is abs value of input */ |
415 | /* For a negative input, want temp2 = bitwise complement of abs(input) */ |
416 | /* This code assumes we are on a two's complement machine */ |
417 | temp2--; |
418 | } |
419 | |
420 | /* Find the number of bits needed for the magnitude of the coefficient */ |
421 | nbits = 0; |
422 | while (temp) { |
423 | nbits++; |
424 | temp >>= 1; |
425 | } |
426 | /* Check for out-of-range coefficient values. |
427 | * Since we're encoding a difference, the range limit is twice as much. |
428 | */ |
429 | if (nbits > MAX_COEF_BITS+1) |
430 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
431 | |
432 | /* Count/emit the Huffman-coded symbol for the number of bits */ |
433 | emit_symbol(entropy, compptr->dc_tbl_no, nbits); |
434 | |
435 | /* Emit that number of bits of the value, if positive, */ |
436 | /* or the complement of its magnitude, if negative. */ |
437 | if (nbits) /* emit_bits rejects calls with size 0 */ |
438 | emit_bits(entropy, (unsigned int) temp2, nbits); |
439 | } |
440 | |
441 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
442 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
443 | |
444 | /* Update restart-interval state too */ |
445 | if (cinfo->restart_interval) { |
446 | if (entropy->restarts_to_go == 0) { |
447 | entropy->restarts_to_go = cinfo->restart_interval; |
448 | entropy->next_restart_num++; |
449 | entropy->next_restart_num &= 7; |
450 | } |
451 | entropy->restarts_to_go--; |
452 | } |
453 | |
454 | return TRUE; |
455 | } |
456 | |
457 | |
458 | /* |
459 | * MCU encoding for AC initial scan (either spectral selection, |
460 | * or first pass of successive approximation). |
461 | */ |
462 | |
463 | METHODDEF(boolean) |
464 | encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
465 | { |
466 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
467 | register int temp, temp2; |
468 | register int nbits; |
469 | register int r, k; |
470 | int Se = cinfo->Se; |
471 | int Al = cinfo->Al; |
472 | JBLOCKROW block; |
473 | |
474 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
475 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
476 | |
477 | /* Emit restart marker if needed */ |
478 | if (cinfo->restart_interval) |
479 | if (entropy->restarts_to_go == 0) |
480 | emit_restart(entropy, entropy->next_restart_num); |
481 | |
482 | /* Encode the MCU data block */ |
483 | block = MCU_data[0]; |
484 | |
485 | /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ |
486 | |
487 | r = 0; /* r = run length of zeros */ |
488 | |
489 | for (k = cinfo->Ss; k <= Se; k++) { |
490 | if ((temp = (*block)[jpeg_natural_order[k]]) == 0) { |
491 | r++; |
492 | continue; |
493 | } |
494 | /* We must apply the point transform by Al. For AC coefficients this |
495 | * is an integer division with rounding towards 0. To do this portably |
496 | * in C, we shift after obtaining the absolute value; so the code is |
497 | * interwoven with finding the abs value (temp) and output bits (temp2). |
498 | */ |
499 | if (temp < 0) { |
500 | temp = -temp; /* temp is abs value of input */ |
501 | temp >>= Al; /* apply the point transform */ |
502 | /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ |
503 | temp2 = ~temp; |
504 | } else { |
505 | temp >>= Al; /* apply the point transform */ |
506 | temp2 = temp; |
507 | } |
508 | /* Watch out for case that nonzero coef is zero after point transform */ |
509 | if (temp == 0) { |
510 | r++; |
511 | continue; |
512 | } |
513 | |
514 | /* Emit any pending EOBRUN */ |
515 | if (entropy->EOBRUN > 0) |
516 | emit_eobrun(entropy); |
517 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
518 | while (r > 15) { |
519 | emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
520 | r -= 16; |
521 | } |
522 | |
523 | /* Find the number of bits needed for the magnitude of the coefficient */ |
524 | nbits = 1; /* there must be at least one 1 bit */ |
525 | while ((temp >>= 1)) |
526 | nbits++; |
527 | /* Check for out-of-range coefficient values */ |
528 | if (nbits > MAX_COEF_BITS) |
529 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
530 | |
531 | /* Count/emit Huffman symbol for run length / number of bits */ |
532 | emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); |
533 | |
534 | /* Emit that number of bits of the value, if positive, */ |
535 | /* or the complement of its magnitude, if negative. */ |
536 | emit_bits(entropy, (unsigned int) temp2, nbits); |
537 | |
538 | r = 0; /* reset zero run length */ |
539 | } |
540 | |
541 | if (r > 0) { /* If there are trailing zeroes, */ |
542 | entropy->EOBRUN++; /* count an EOB */ |
543 | if (entropy->EOBRUN == 0x7FFF) |
544 | emit_eobrun(entropy); /* force it out to avoid overflow */ |
545 | } |
546 | |
547 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
548 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
549 | |
550 | /* Update restart-interval state too */ |
551 | if (cinfo->restart_interval) { |
552 | if (entropy->restarts_to_go == 0) { |
553 | entropy->restarts_to_go = cinfo->restart_interval; |
554 | entropy->next_restart_num++; |
555 | entropy->next_restart_num &= 7; |
556 | } |
557 | entropy->restarts_to_go--; |
558 | } |
559 | |
560 | return TRUE; |
561 | } |
562 | |
563 | |
564 | /* |
565 | * MCU encoding for DC successive approximation refinement scan. |
566 | * Note: we assume such scans can be multi-component, although the spec |
567 | * is not very clear on the point. |
568 | */ |
569 | |
570 | METHODDEF(boolean) |
571 | encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
572 | { |
573 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
574 | register int temp; |
575 | int blkn; |
576 | int Al = cinfo->Al; |
577 | JBLOCKROW block; |
578 | |
579 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
580 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
581 | |
582 | /* Emit restart marker if needed */ |
583 | if (cinfo->restart_interval) |
584 | if (entropy->restarts_to_go == 0) |
585 | emit_restart(entropy, entropy->next_restart_num); |
586 | |
587 | /* Encode the MCU data blocks */ |
588 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
589 | block = MCU_data[blkn]; |
590 | |
591 | /* We simply emit the Al'th bit of the DC coefficient value. */ |
592 | temp = (*block)[0]; |
593 | emit_bits(entropy, (unsigned int) (temp >> Al), 1); |
594 | } |
595 | |
596 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
597 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
598 | |
599 | /* Update restart-interval state too */ |
600 | if (cinfo->restart_interval) { |
601 | if (entropy->restarts_to_go == 0) { |
602 | entropy->restarts_to_go = cinfo->restart_interval; |
603 | entropy->next_restart_num++; |
604 | entropy->next_restart_num &= 7; |
605 | } |
606 | entropy->restarts_to_go--; |
607 | } |
608 | |
609 | return TRUE; |
610 | } |
611 | |
612 | |
613 | /* |
614 | * MCU encoding for AC successive approximation refinement scan. |
615 | */ |
616 | |
617 | METHODDEF(boolean) |
618 | encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
619 | { |
620 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
621 | register int temp; |
622 | register int r, k; |
623 | int EOB; |
624 | char *BR_buffer; |
625 | unsigned int BR; |
626 | int Se = cinfo->Se; |
627 | int Al = cinfo->Al; |
628 | JBLOCKROW block; |
629 | int absvalues[DCTSIZE2]; |
630 | |
631 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
632 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
633 | |
634 | /* Emit restart marker if needed */ |
635 | if (cinfo->restart_interval) |
636 | if (entropy->restarts_to_go == 0) |
637 | emit_restart(entropy, entropy->next_restart_num); |
638 | |
639 | /* Encode the MCU data block */ |
640 | block = MCU_data[0]; |
641 | |
642 | /* It is convenient to make a pre-pass to determine the transformed |
643 | * coefficients' absolute values and the EOB position. |
644 | */ |
645 | EOB = 0; |
646 | for (k = cinfo->Ss; k <= Se; k++) { |
647 | temp = (*block)[jpeg_natural_order[k]]; |
648 | /* We must apply the point transform by Al. For AC coefficients this |
649 | * is an integer division with rounding towards 0. To do this portably |
650 | * in C, we shift after obtaining the absolute value. |
651 | */ |
652 | if (temp < 0) |
653 | temp = -temp; /* temp is abs value of input */ |
654 | temp >>= Al; /* apply the point transform */ |
655 | absvalues[k] = temp; /* save abs value for main pass */ |
656 | if (temp == 1) |
657 | EOB = k; /* EOB = index of last newly-nonzero coef */ |
658 | } |
659 | |
660 | /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ |
661 | |
662 | r = 0; /* r = run length of zeros */ |
663 | BR = 0; /* BR = count of buffered bits added now */ |
664 | BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ |
665 | |
666 | for (k = cinfo->Ss; k <= Se; k++) { |
667 | if ((temp = absvalues[k]) == 0) { |
668 | r++; |
669 | continue; |
670 | } |
671 | |
672 | /* Emit any required ZRLs, but not if they can be folded into EOB */ |
673 | while (r > 15 && k <= EOB) { |
674 | /* emit any pending EOBRUN and the BE correction bits */ |
675 | emit_eobrun(entropy); |
676 | /* Emit ZRL */ |
677 | emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
678 | r -= 16; |
679 | /* Emit buffered correction bits that must be associated with ZRL */ |
680 | emit_buffered_bits(entropy, BR_buffer, BR); |
681 | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
682 | BR = 0; |
683 | } |
684 | |
685 | /* If the coef was previously nonzero, it only needs a correction bit. |
686 | * NOTE: a straight translation of the spec's figure G.7 would suggest |
687 | * that we also need to test r > 15. But if r > 15, we can only get here |
688 | * if k > EOB, which implies that this coefficient is not 1. |
689 | */ |
690 | if (temp > 1) { |
691 | /* The correction bit is the next bit of the absolute value. */ |
692 | BR_buffer[BR++] = (char) (temp & 1); |
693 | continue; |
694 | } |
695 | |
696 | /* Emit any pending EOBRUN and the BE correction bits */ |
697 | emit_eobrun(entropy); |
698 | |
699 | /* Count/emit Huffman symbol for run length / number of bits */ |
700 | emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); |
701 | |
702 | /* Emit output bit for newly-nonzero coef */ |
703 | temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1; |
704 | emit_bits(entropy, (unsigned int) temp, 1); |
705 | |
706 | /* Emit buffered correction bits that must be associated with this code */ |
707 | emit_buffered_bits(entropy, BR_buffer, BR); |
708 | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
709 | BR = 0; |
710 | r = 0; /* reset zero run length */ |
711 | } |
712 | |
713 | if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ |
714 | entropy->EOBRUN++; /* count an EOB */ |
715 | entropy->BE += BR; /* concat my correction bits to older ones */ |
716 | /* We force out the EOB if we risk either: |
717 | * 1. overflow of the EOB counter; |
718 | * 2. overflow of the correction bit buffer during the next MCU. |
719 | */ |
720 | if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) |
721 | emit_eobrun(entropy); |
722 | } |
723 | |
724 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
725 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
726 | |
727 | /* Update restart-interval state too */ |
728 | if (cinfo->restart_interval) { |
729 | if (entropy->restarts_to_go == 0) { |
730 | entropy->restarts_to_go = cinfo->restart_interval; |
731 | entropy->next_restart_num++; |
732 | entropy->next_restart_num &= 7; |
733 | } |
734 | entropy->restarts_to_go--; |
735 | } |
736 | |
737 | return TRUE; |
738 | } |
739 | |
740 | |
741 | /* |
742 | * Finish up at the end of a Huffman-compressed progressive scan. |
743 | */ |
744 | |
745 | METHODDEF(void) |
746 | finish_pass_phuff (j_compress_ptr cinfo) |
747 | { |
748 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
749 | |
750 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
751 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
752 | |
753 | /* Flush out any buffered data */ |
754 | emit_eobrun(entropy); |
755 | flush_bits(entropy); |
756 | |
757 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
758 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
759 | } |
760 | |
761 | |
762 | /* |
763 | * Finish up a statistics-gathering pass and create the new Huffman tables. |
764 | */ |
765 | |
766 | METHODDEF(void) |
767 | finish_pass_gather_phuff (j_compress_ptr cinfo) |
768 | { |
769 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
770 | boolean is_DC_band; |
771 | int ci, tbl; |
772 | jpeg_component_info * compptr; |
773 | JHUFF_TBL **htblptr; |
774 | boolean did[NUM_HUFF_TBLS]; |
775 | |
776 | /* Flush out buffered data (all we care about is counting the EOB symbol) */ |
777 | emit_eobrun(entropy); |
778 | |
779 | is_DC_band = (cinfo->Ss == 0); |
780 | |
781 | /* It's important not to apply jpeg_gen_optimal_table more than once |
782 | * per table, because it clobbers the input frequency counts! |
783 | */ |
784 | MEMZERO(did, SIZEOF(did)); |
785 | |
786 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
787 | compptr = cinfo->cur_comp_info[ci]; |
788 | if (is_DC_band) { |
789 | if (cinfo->Ah != 0) /* DC refinement needs no table */ |
790 | continue; |
791 | tbl = compptr->dc_tbl_no; |
792 | } else { |
793 | tbl = compptr->ac_tbl_no; |
794 | } |
795 | if (! did[tbl]) { |
796 | if (is_DC_band) |
797 | htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; |
798 | else |
799 | htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; |
800 | if (*htblptr == NULL) |
801 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
802 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]); |
803 | did[tbl] = TRUE; |
804 | } |
805 | } |
806 | } |
807 | |
808 | |
809 | /* |
810 | * Module initialization routine for progressive Huffman entropy encoding. |
811 | */ |
812 | |
813 | GLOBAL(void) |
814 | jinit_phuff_encoder (j_compress_ptr cinfo) |
815 | { |
816 | phuff_entropy_ptr entropy; |
817 | int i; |
818 | |
819 | entropy = (phuff_entropy_ptr) |
820 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
821 | SIZEOF(phuff_entropy_encoder)); |
822 | cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
823 | entropy->pub.start_pass = start_pass_phuff; |
824 | |
825 | /* Mark tables unallocated */ |
826 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
827 | entropy->derived_tbls[i] = NULL; |
828 | entropy->count_ptrs[i] = NULL; |
829 | } |
830 | entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ |
831 | } |
832 | |
833 | #endif /* C_PROGRESSIVE_SUPPORTED */ |
834 | |