1 | /* |
2 | * jcsample.c |
3 | * |
4 | * Copyright (C) 1991-1996, Thomas G. Lane. |
5 | * This file is part of the Independent JPEG Group's software. |
6 | * For conditions of distribution and use, see the accompanying README file. |
7 | * |
8 | * This file contains downsampling routines. |
9 | * |
10 | * Downsampling input data is counted in "row groups". A row group |
11 | * is defined to be max_v_samp_factor pixel rows of each component, |
12 | * from which the downsampler produces v_samp_factor sample rows. |
13 | * A single row group is processed in each call to the downsampler module. |
14 | * |
15 | * The downsampler is responsible for edge-expansion of its output data |
16 | * to fill an integral number of DCT blocks horizontally. The source buffer |
17 | * may be modified if it is helpful for this purpose (the source buffer is |
18 | * allocated wide enough to correspond to the desired output width). |
19 | * The caller (the prep controller) is responsible for vertical padding. |
20 | * |
21 | * The downsampler may request "context rows" by setting need_context_rows |
22 | * during startup. In this case, the input arrays will contain at least |
23 | * one row group's worth of pixels above and below the passed-in data; |
24 | * the caller will create dummy rows at image top and bottom by replicating |
25 | * the first or last real pixel row. |
26 | * |
27 | * An excellent reference for image resampling is |
28 | * Digital Image Warping, George Wolberg, 1990. |
29 | * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. |
30 | * |
31 | * The downsampling algorithm used here is a simple average of the source |
32 | * pixels covered by the output pixel. The hi-falutin sampling literature |
33 | * refers to this as a "box filter". In general the characteristics of a box |
34 | * filter are not very good, but for the specific cases we normally use (1:1 |
35 | * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not |
36 | * nearly so bad. If you intend to use other sampling ratios, you'd be well |
37 | * advised to improve this code. |
38 | * |
39 | * A simple input-smoothing capability is provided. This is mainly intended |
40 | * for cleaning up color-dithered GIF input files (if you find it inadequate, |
41 | * we suggest using an external filtering program such as pnmconvol). When |
42 | * enabled, each input pixel P is replaced by a weighted sum of itself and its |
43 | * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF, |
44 | * where SF = (smoothing_factor / 1024). |
45 | * Currently, smoothing is only supported for 2h2v sampling factors. |
46 | */ |
47 | |
48 | #define JPEG_INTERNALS |
49 | #include "jinclude.h" |
50 | #include "jpeglib.h" |
51 | |
52 | |
53 | /* Pointer to routine to downsample a single component */ |
54 | typedef JMETHOD(void, downsample1_ptr, |
55 | (j_compress_ptr cinfo, jpeg_component_info * compptr, |
56 | JSAMPARRAY input_data, JSAMPARRAY output_data)); |
57 | |
58 | /* Private subobject */ |
59 | |
60 | typedef struct { |
61 | struct jpeg_downsampler pub; /* public fields */ |
62 | |
63 | /* Downsampling method pointers, one per component */ |
64 | downsample1_ptr methods[MAX_COMPONENTS]; |
65 | } my_downsampler; |
66 | |
67 | typedef my_downsampler * my_downsample_ptr; |
68 | |
69 | |
70 | /* |
71 | * Initialize for a downsampling pass. |
72 | */ |
73 | |
74 | METHODDEF(void) |
75 | start_pass_downsample (j_compress_ptr cinfo) |
76 | { |
77 | /* no work for now */ |
78 | } |
79 | |
80 | |
81 | /* |
82 | * Expand a component horizontally from width input_cols to width output_cols, |
83 | * by duplicating the rightmost samples. |
84 | */ |
85 | |
86 | LOCAL(void) |
87 | expand_right_edge (JSAMPARRAY image_data, int num_rows, |
88 | JDIMENSION input_cols, JDIMENSION output_cols) |
89 | { |
90 | register JSAMPROW ptr; |
91 | register JSAMPLE pixval; |
92 | register int count; |
93 | int row; |
94 | int numcols = (int) (output_cols - input_cols); |
95 | |
96 | if (numcols > 0) { |
97 | for (row = 0; row < num_rows; row++) { |
98 | ptr = image_data[row] + input_cols; |
99 | pixval = ptr[-1]; /* don't need GETJSAMPLE() here */ |
100 | for (count = numcols; count > 0; count--) |
101 | *ptr++ = pixval; |
102 | } |
103 | } |
104 | } |
105 | |
106 | |
107 | /* |
108 | * Do downsampling for a whole row group (all components). |
109 | * |
110 | * In this version we simply downsample each component independently. |
111 | */ |
112 | |
113 | METHODDEF(void) |
114 | sep_downsample (j_compress_ptr cinfo, |
115 | JSAMPIMAGE input_buf, JDIMENSION in_row_index, |
116 | JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) |
117 | { |
118 | my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; |
119 | int ci; |
120 | jpeg_component_info * compptr; |
121 | JSAMPARRAY in_ptr, out_ptr; |
122 | |
123 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
124 | ci++, compptr++) { |
125 | in_ptr = input_buf[ci] + in_row_index; |
126 | out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor); |
127 | (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); |
128 | } |
129 | } |
130 | |
131 | |
132 | /* |
133 | * Downsample pixel values of a single component. |
134 | * One row group is processed per call. |
135 | * This version handles arbitrary integral sampling ratios, without smoothing. |
136 | * Note that this version is not actually used for customary sampling ratios. |
137 | */ |
138 | |
139 | METHODDEF(void) |
140 | int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
141 | JSAMPARRAY input_data, JSAMPARRAY output_data) |
142 | { |
143 | int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; |
144 | JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */ |
145 | JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
146 | JSAMPROW inptr, outptr; |
147 | INT32 outvalue; |
148 | |
149 | h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor; |
150 | v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor; |
151 | numpix = h_expand * v_expand; |
152 | numpix2 = numpix/2; |
153 | |
154 | /* Expand input data enough to let all the output samples be generated |
155 | * by the standard loop. Special-casing padded output would be more |
156 | * efficient. |
157 | */ |
158 | expand_right_edge(input_data, cinfo->max_v_samp_factor, |
159 | cinfo->image_width, output_cols * h_expand); |
160 | |
161 | inrow = 0; |
162 | for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
163 | outptr = output_data[outrow]; |
164 | for (outcol = 0, outcol_h = 0; outcol < output_cols; |
165 | outcol++, outcol_h += h_expand) { |
166 | outvalue = 0; |
167 | for (v = 0; v < v_expand; v++) { |
168 | inptr = input_data[inrow+v] + outcol_h; |
169 | for (h = 0; h < h_expand; h++) { |
170 | outvalue += (INT32) GETJSAMPLE(*inptr++); |
171 | } |
172 | } |
173 | *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); |
174 | } |
175 | inrow += v_expand; |
176 | } |
177 | } |
178 | |
179 | |
180 | /* |
181 | * Downsample pixel values of a single component. |
182 | * This version handles the special case of a full-size component, |
183 | * without smoothing. |
184 | */ |
185 | |
186 | METHODDEF(void) |
187 | fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
188 | JSAMPARRAY input_data, JSAMPARRAY output_data) |
189 | { |
190 | /* Copy the data */ |
191 | jcopy_sample_rows(input_data, 0, output_data, 0, |
192 | cinfo->max_v_samp_factor, cinfo->image_width); |
193 | /* Edge-expand */ |
194 | expand_right_edge(output_data, cinfo->max_v_samp_factor, |
195 | cinfo->image_width, compptr->width_in_blocks * DCTSIZE); |
196 | } |
197 | |
198 | |
199 | /* |
200 | * Downsample pixel values of a single component. |
201 | * This version handles the common case of 2:1 horizontal and 1:1 vertical, |
202 | * without smoothing. |
203 | * |
204 | * A note about the "bias" calculations: when rounding fractional values to |
205 | * integer, we do not want to always round 0.5 up to the next integer. |
206 | * If we did that, we'd introduce a noticeable bias towards larger values. |
207 | * Instead, this code is arranged so that 0.5 will be rounded up or down at |
208 | * alternate pixel locations (a simple ordered dither pattern). |
209 | */ |
210 | |
211 | METHODDEF(void) |
212 | h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
213 | JSAMPARRAY input_data, JSAMPARRAY output_data) |
214 | { |
215 | int outrow; |
216 | JDIMENSION outcol; |
217 | JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
218 | register JSAMPROW inptr, outptr; |
219 | register int bias; |
220 | |
221 | /* Expand input data enough to let all the output samples be generated |
222 | * by the standard loop. Special-casing padded output would be more |
223 | * efficient. |
224 | */ |
225 | expand_right_edge(input_data, cinfo->max_v_samp_factor, |
226 | cinfo->image_width, output_cols * 2); |
227 | |
228 | for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
229 | outptr = output_data[outrow]; |
230 | inptr = input_data[outrow]; |
231 | bias = 0; /* bias = 0,1,0,1,... for successive samples */ |
232 | for (outcol = 0; outcol < output_cols; outcol++) { |
233 | *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) |
234 | + bias) >> 1); |
235 | bias ^= 1; /* 0=>1, 1=>0 */ |
236 | inptr += 2; |
237 | } |
238 | } |
239 | } |
240 | |
241 | |
242 | /* |
243 | * Downsample pixel values of a single component. |
244 | * This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
245 | * without smoothing. |
246 | */ |
247 | |
248 | METHODDEF(void) |
249 | h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
250 | JSAMPARRAY input_data, JSAMPARRAY output_data) |
251 | { |
252 | int inrow, outrow; |
253 | JDIMENSION outcol; |
254 | JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
255 | register JSAMPROW inptr0, inptr1, outptr; |
256 | register int bias; |
257 | |
258 | /* Expand input data enough to let all the output samples be generated |
259 | * by the standard loop. Special-casing padded output would be more |
260 | * efficient. |
261 | */ |
262 | expand_right_edge(input_data, cinfo->max_v_samp_factor, |
263 | cinfo->image_width, output_cols * 2); |
264 | |
265 | inrow = 0; |
266 | for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
267 | outptr = output_data[outrow]; |
268 | inptr0 = input_data[inrow]; |
269 | inptr1 = input_data[inrow+1]; |
270 | bias = 1; /* bias = 1,2,1,2,... for successive samples */ |
271 | for (outcol = 0; outcol < output_cols; outcol++) { |
272 | *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
273 | GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) |
274 | + bias) >> 2); |
275 | bias ^= 3; /* 1=>2, 2=>1 */ |
276 | inptr0 += 2; inptr1 += 2; |
277 | } |
278 | inrow += 2; |
279 | } |
280 | } |
281 | |
282 | |
283 | #ifdef INPUT_SMOOTHING_SUPPORTED |
284 | |
285 | /* |
286 | * Downsample pixel values of a single component. |
287 | * This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
288 | * with smoothing. One row of context is required. |
289 | */ |
290 | |
291 | METHODDEF(void) |
292 | h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
293 | JSAMPARRAY input_data, JSAMPARRAY output_data) |
294 | { |
295 | int inrow, outrow; |
296 | JDIMENSION colctr; |
297 | JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
298 | register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; |
299 | INT32 membersum, neighsum, memberscale, neighscale; |
300 | |
301 | /* Expand input data enough to let all the output samples be generated |
302 | * by the standard loop. Special-casing padded output would be more |
303 | * efficient. |
304 | */ |
305 | expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
306 | cinfo->image_width, output_cols * 2); |
307 | |
308 | /* We don't bother to form the individual "smoothed" input pixel values; |
309 | * we can directly compute the output which is the average of the four |
310 | * smoothed values. Each of the four member pixels contributes a fraction |
311 | * (1-8*SF) to its own smoothed image and a fraction SF to each of the three |
312 | * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final |
313 | * output. The four corner-adjacent neighbor pixels contribute a fraction |
314 | * SF to just one smoothed pixel, or SF/4 to the final output; while the |
315 | * eight edge-adjacent neighbors contribute SF to each of two smoothed |
316 | * pixels, or SF/2 overall. In order to use integer arithmetic, these |
317 | * factors are scaled by 2^16 = 65536. |
318 | * Also recall that SF = smoothing_factor / 1024. |
319 | */ |
320 | |
321 | memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ |
322 | neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ |
323 | |
324 | inrow = 0; |
325 | for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
326 | outptr = output_data[outrow]; |
327 | inptr0 = input_data[inrow]; |
328 | inptr1 = input_data[inrow+1]; |
329 | above_ptr = input_data[inrow-1]; |
330 | below_ptr = input_data[inrow+2]; |
331 | |
332 | /* Special case for first column: pretend column -1 is same as column 0 */ |
333 | membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
334 | GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
335 | neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
336 | GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
337 | GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + |
338 | GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); |
339 | neighsum += neighsum; |
340 | neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + |
341 | GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); |
342 | membersum = membersum * memberscale + neighsum * neighscale; |
343 | *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
344 | inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
345 | |
346 | for (colctr = output_cols - 2; colctr > 0; colctr--) { |
347 | /* sum of pixels directly mapped to this output element */ |
348 | membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
349 | GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
350 | /* sum of edge-neighbor pixels */ |
351 | neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
352 | GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
353 | GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + |
354 | GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); |
355 | /* The edge-neighbors count twice as much as corner-neighbors */ |
356 | neighsum += neighsum; |
357 | /* Add in the corner-neighbors */ |
358 | neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + |
359 | GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); |
360 | /* form final output scaled up by 2^16 */ |
361 | membersum = membersum * memberscale + neighsum * neighscale; |
362 | /* round, descale and output it */ |
363 | *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
364 | inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
365 | } |
366 | |
367 | /* Special case for last column */ |
368 | membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
369 | GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
370 | neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
371 | GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
372 | GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + |
373 | GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); |
374 | neighsum += neighsum; |
375 | neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + |
376 | GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); |
377 | membersum = membersum * memberscale + neighsum * neighscale; |
378 | *outptr = (JSAMPLE) ((membersum + 32768) >> 16); |
379 | |
380 | inrow += 2; |
381 | } |
382 | } |
383 | |
384 | |
385 | /* |
386 | * Downsample pixel values of a single component. |
387 | * This version handles the special case of a full-size component, |
388 | * with smoothing. One row of context is required. |
389 | */ |
390 | |
391 | METHODDEF(void) |
392 | fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, |
393 | JSAMPARRAY input_data, JSAMPARRAY output_data) |
394 | { |
395 | int outrow; |
396 | JDIMENSION colctr; |
397 | JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
398 | register JSAMPROW inptr, above_ptr, below_ptr, outptr; |
399 | INT32 membersum, neighsum, memberscale, neighscale; |
400 | int colsum, lastcolsum, nextcolsum; |
401 | |
402 | /* Expand input data enough to let all the output samples be generated |
403 | * by the standard loop. Special-casing padded output would be more |
404 | * efficient. |
405 | */ |
406 | expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
407 | cinfo->image_width, output_cols); |
408 | |
409 | /* Each of the eight neighbor pixels contributes a fraction SF to the |
410 | * smoothed pixel, while the main pixel contributes (1-8*SF). In order |
411 | * to use integer arithmetic, these factors are multiplied by 2^16 = 65536. |
412 | * Also recall that SF = smoothing_factor / 1024. |
413 | */ |
414 | |
415 | memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ |
416 | neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ |
417 | |
418 | for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
419 | outptr = output_data[outrow]; |
420 | inptr = input_data[outrow]; |
421 | above_ptr = input_data[outrow-1]; |
422 | below_ptr = input_data[outrow+1]; |
423 | |
424 | /* Special case for first column */ |
425 | colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + |
426 | GETJSAMPLE(*inptr); |
427 | membersum = GETJSAMPLE(*inptr++); |
428 | nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
429 | GETJSAMPLE(*inptr); |
430 | neighsum = colsum + (colsum - membersum) + nextcolsum; |
431 | membersum = membersum * memberscale + neighsum * neighscale; |
432 | *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
433 | lastcolsum = colsum; colsum = nextcolsum; |
434 | |
435 | for (colctr = output_cols - 2; colctr > 0; colctr--) { |
436 | membersum = GETJSAMPLE(*inptr++); |
437 | above_ptr++; below_ptr++; |
438 | nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
439 | GETJSAMPLE(*inptr); |
440 | neighsum = lastcolsum + (colsum - membersum) + nextcolsum; |
441 | membersum = membersum * memberscale + neighsum * neighscale; |
442 | *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
443 | lastcolsum = colsum; colsum = nextcolsum; |
444 | } |
445 | |
446 | /* Special case for last column */ |
447 | membersum = GETJSAMPLE(*inptr); |
448 | neighsum = lastcolsum + (colsum - membersum) + colsum; |
449 | membersum = membersum * memberscale + neighsum * neighscale; |
450 | *outptr = (JSAMPLE) ((membersum + 32768) >> 16); |
451 | |
452 | } |
453 | } |
454 | |
455 | #endif /* INPUT_SMOOTHING_SUPPORTED */ |
456 | |
457 | |
458 | /* |
459 | * Module initialization routine for downsampling. |
460 | * Note that we must select a routine for each component. |
461 | */ |
462 | |
463 | GLOBAL(void) |
464 | jinit_downsampler (j_compress_ptr cinfo) |
465 | { |
466 | my_downsample_ptr downsample; |
467 | int ci; |
468 | jpeg_component_info * compptr; |
469 | boolean smoothok = TRUE; |
470 | |
471 | downsample = (my_downsample_ptr) |
472 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
473 | SIZEOF(my_downsampler)); |
474 | cinfo->downsample = (struct jpeg_downsampler *) downsample; |
475 | downsample->pub.start_pass = start_pass_downsample; |
476 | downsample->pub.downsample = sep_downsample; |
477 | downsample->pub.need_context_rows = FALSE; |
478 | |
479 | if (cinfo->CCIR601_sampling) |
480 | ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); |
481 | |
482 | /* Verify we can handle the sampling factors, and set up method pointers */ |
483 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
484 | ci++, compptr++) { |
485 | if (compptr->h_samp_factor == cinfo->max_h_samp_factor && |
486 | compptr->v_samp_factor == cinfo->max_v_samp_factor) { |
487 | #ifdef INPUT_SMOOTHING_SUPPORTED |
488 | if (cinfo->smoothing_factor) { |
489 | downsample->methods[ci] = fullsize_smooth_downsample; |
490 | downsample->pub.need_context_rows = TRUE; |
491 | } else |
492 | #endif |
493 | downsample->methods[ci] = fullsize_downsample; |
494 | } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && |
495 | compptr->v_samp_factor == cinfo->max_v_samp_factor) { |
496 | smoothok = FALSE; |
497 | downsample->methods[ci] = h2v1_downsample; |
498 | } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && |
499 | compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) { |
500 | #ifdef INPUT_SMOOTHING_SUPPORTED |
501 | if (cinfo->smoothing_factor) { |
502 | downsample->methods[ci] = h2v2_smooth_downsample; |
503 | downsample->pub.need_context_rows = TRUE; |
504 | } else |
505 | #endif |
506 | downsample->methods[ci] = h2v2_downsample; |
507 | } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 && |
508 | (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) { |
509 | smoothok = FALSE; |
510 | downsample->methods[ci] = int_downsample; |
511 | } else |
512 | ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); |
513 | } |
514 | |
515 | #ifdef INPUT_SMOOTHING_SUPPORTED |
516 | if (cinfo->smoothing_factor && !smoothok) |
517 | TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); |
518 | #endif |
519 | } |
520 | |