1 | /* |
2 | * jdcoefct.c |
3 | * |
4 | * Copyright (C) 1994-1997, Thomas G. Lane. |
5 | * This file is part of the Independent JPEG Group's software. |
6 | * For conditions of distribution and use, see the accompanying README file. |
7 | * |
8 | * This file contains the coefficient buffer controller for decompression. |
9 | * This controller is the top level of the JPEG decompressor proper. |
10 | * The coefficient buffer lies between entropy decoding and inverse-DCT steps. |
11 | * |
12 | * In buffered-image mode, this controller is the interface between |
13 | * input-oriented processing and output-oriented processing. |
14 | * Also, the input side (only) is used when reading a file for transcoding. |
15 | */ |
16 | |
17 | #define JPEG_INTERNALS |
18 | #include "jinclude.h" |
19 | #include "jpeglib.h" |
20 | |
21 | /* Block smoothing is only applicable for progressive JPEG, so: */ |
22 | #ifndef D_PROGRESSIVE_SUPPORTED |
23 | #undef BLOCK_SMOOTHING_SUPPORTED |
24 | #endif |
25 | |
26 | /* Private buffer controller object */ |
27 | |
28 | typedef struct { |
29 | struct jpeg_d_coef_controller pub; /* public fields */ |
30 | |
31 | /* These variables keep track of the current location of the input side. */ |
32 | /* cinfo->input_iMCU_row is also used for this. */ |
33 | JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ |
34 | int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
35 | int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
36 | |
37 | /* The output side's location is represented by cinfo->output_iMCU_row. */ |
38 | |
39 | /* In single-pass modes, it's sufficient to buffer just one MCU. |
40 | * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, |
41 | * and let the entropy decoder write into that workspace each time. |
42 | * (On 80x86, the workspace is FAR even though it's not really very big; |
43 | * this is to keep the module interfaces unchanged when a large coefficient |
44 | * buffer is necessary.) |
45 | * In multi-pass modes, this array points to the current MCU's blocks |
46 | * within the virtual arrays; it is used only by the input side. |
47 | */ |
48 | JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; |
49 | |
50 | #ifdef D_MULTISCAN_FILES_SUPPORTED |
51 | /* In multi-pass modes, we need a virtual block array for each component. */ |
52 | jvirt_barray_ptr whole_image[MAX_COMPONENTS]; |
53 | #endif |
54 | |
55 | #ifdef BLOCK_SMOOTHING_SUPPORTED |
56 | /* When doing block smoothing, we latch coefficient Al values here */ |
57 | int * coef_bits_latch; |
58 | #define SAVED_COEFS 6 /* we save coef_bits[0..5] */ |
59 | #endif |
60 | } my_coef_controller; |
61 | |
62 | typedef my_coef_controller * my_coef_ptr; |
63 | |
64 | /* Forward declarations */ |
65 | METHODDEF(int) decompress_onepass |
66 | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
67 | #ifdef D_MULTISCAN_FILES_SUPPORTED |
68 | METHODDEF(int) decompress_data |
69 | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
70 | #endif |
71 | #ifdef BLOCK_SMOOTHING_SUPPORTED |
72 | LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo)); |
73 | METHODDEF(int) decompress_smooth_data |
74 | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
75 | #endif |
76 | |
77 | |
78 | LOCAL(void) |
79 | start_iMCU_row (j_decompress_ptr cinfo) |
80 | /* Reset within-iMCU-row counters for a new row (input side) */ |
81 | { |
82 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
83 | |
84 | /* In an interleaved scan, an MCU row is the same as an iMCU row. |
85 | * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
86 | * But at the bottom of the image, process only what's left. |
87 | */ |
88 | if (cinfo->comps_in_scan > 1) { |
89 | coef->MCU_rows_per_iMCU_row = 1; |
90 | } else { |
91 | if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1)) |
92 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
93 | else |
94 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
95 | } |
96 | |
97 | coef->MCU_ctr = 0; |
98 | coef->MCU_vert_offset = 0; |
99 | } |
100 | |
101 | |
102 | /* |
103 | * Initialize for an input processing pass. |
104 | */ |
105 | |
106 | METHODDEF(void) |
107 | start_input_pass (j_decompress_ptr cinfo) |
108 | { |
109 | cinfo->input_iMCU_row = 0; |
110 | start_iMCU_row(cinfo); |
111 | } |
112 | |
113 | |
114 | /* |
115 | * Initialize for an output processing pass. |
116 | */ |
117 | |
118 | METHODDEF(void) |
119 | start_output_pass (j_decompress_ptr cinfo) |
120 | { |
121 | #ifdef BLOCK_SMOOTHING_SUPPORTED |
122 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
123 | |
124 | /* If multipass, check to see whether to use block smoothing on this pass */ |
125 | if (coef->pub.coef_arrays != NULL) { |
126 | if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) |
127 | coef->pub.decompress_data = decompress_smooth_data; |
128 | else |
129 | coef->pub.decompress_data = decompress_data; |
130 | } |
131 | #endif |
132 | cinfo->output_iMCU_row = 0; |
133 | } |
134 | |
135 | |
136 | /* |
137 | * Decompress and return some data in the single-pass case. |
138 | * Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
139 | * Input and output must run in lockstep since we have only a one-MCU buffer. |
140 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
141 | * |
142 | * NB: output_buf contains a plane for each component in image, |
143 | * which we index according to the component's SOF position. |
144 | */ |
145 | |
146 | METHODDEF(int) |
147 | decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
148 | { |
149 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
150 | JDIMENSION MCU_col_num; /* index of current MCU within row */ |
151 | JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
152 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
153 | int blkn, ci, xindex, yindex, yoffset, useful_width; |
154 | JSAMPARRAY output_ptr; |
155 | JDIMENSION start_col, output_col; |
156 | jpeg_component_info *compptr; |
157 | inverse_DCT_method_ptr inverse_DCT; |
158 | |
159 | /* Loop to process as much as one whole iMCU row */ |
160 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
161 | yoffset++) { |
162 | for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; |
163 | MCU_col_num++) { |
164 | /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ |
165 | jzero_far((void FAR *) coef->MCU_buffer[0], |
166 | (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK))); |
167 | if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
168 | /* Suspension forced; update state counters and exit */ |
169 | coef->MCU_vert_offset = yoffset; |
170 | coef->MCU_ctr = MCU_col_num; |
171 | return JPEG_SUSPENDED; |
172 | } |
173 | /* Determine where data should go in output_buf and do the IDCT thing. |
174 | * We skip dummy blocks at the right and bottom edges (but blkn gets |
175 | * incremented past them!). Note the inner loop relies on having |
176 | * allocated the MCU_buffer[] blocks sequentially. |
177 | */ |
178 | blkn = 0; /* index of current DCT block within MCU */ |
179 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
180 | compptr = cinfo->cur_comp_info[ci]; |
181 | /* Don't bother to IDCT an uninteresting component. */ |
182 | if (! compptr->component_needed) { |
183 | blkn += compptr->MCU_blocks; |
184 | continue; |
185 | } |
186 | inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; |
187 | useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width |
188 | : compptr->last_col_width; |
189 | output_ptr = output_buf[compptr->component_index] + |
190 | yoffset * compptr->DCT_scaled_size; |
191 | start_col = MCU_col_num * compptr->MCU_sample_width; |
192 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
193 | if (cinfo->input_iMCU_row < last_iMCU_row || |
194 | yoffset+yindex < compptr->last_row_height) { |
195 | output_col = start_col; |
196 | for (xindex = 0; xindex < useful_width; xindex++) { |
197 | (*inverse_DCT) (cinfo, compptr, |
198 | (JCOEFPTR) coef->MCU_buffer[blkn+xindex], |
199 | output_ptr, output_col); |
200 | output_col += compptr->DCT_scaled_size; |
201 | } |
202 | } |
203 | blkn += compptr->MCU_width; |
204 | output_ptr += compptr->DCT_scaled_size; |
205 | } |
206 | } |
207 | } |
208 | /* Completed an MCU row, but perhaps not an iMCU row */ |
209 | coef->MCU_ctr = 0; |
210 | } |
211 | /* Completed the iMCU row, advance counters for next one */ |
212 | cinfo->output_iMCU_row++; |
213 | if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
214 | start_iMCU_row(cinfo); |
215 | return JPEG_ROW_COMPLETED; |
216 | } |
217 | /* Completed the scan */ |
218 | (*cinfo->inputctl->finish_input_pass) (cinfo); |
219 | return JPEG_SCAN_COMPLETED; |
220 | } |
221 | |
222 | |
223 | /* |
224 | * Dummy consume-input routine for single-pass operation. |
225 | */ |
226 | |
227 | METHODDEF(int) |
228 | dummy_consume_data (j_decompress_ptr cinfo) |
229 | { |
230 | return JPEG_SUSPENDED; /* Always indicate nothing was done */ |
231 | } |
232 | |
233 | |
234 | #ifdef D_MULTISCAN_FILES_SUPPORTED |
235 | |
236 | /* |
237 | * Consume input data and store it in the full-image coefficient buffer. |
238 | * We read as much as one fully interleaved MCU row ("iMCU" row) per call, |
239 | * ie, v_samp_factor block rows for each component in the scan. |
240 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
241 | */ |
242 | |
243 | METHODDEF(int) |
244 | consume_data (j_decompress_ptr cinfo) |
245 | { |
246 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
247 | JDIMENSION MCU_col_num; /* index of current MCU within row */ |
248 | int blkn, ci, xindex, yindex, yoffset; |
249 | JDIMENSION start_col; |
250 | JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
251 | JBLOCKROW buffer_ptr; |
252 | jpeg_component_info *compptr; |
253 | |
254 | /* Align the virtual buffers for the components used in this scan. */ |
255 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
256 | compptr = cinfo->cur_comp_info[ci]; |
257 | buffer[ci] = (*cinfo->mem->access_virt_barray) |
258 | ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
259 | cinfo->input_iMCU_row * compptr->v_samp_factor, |
260 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
261 | /* Note: entropy decoder expects buffer to be zeroed, |
262 | * but this is handled automatically by the memory manager |
263 | * because we requested a pre-zeroed array. |
264 | */ |
265 | } |
266 | |
267 | /* Loop to process one whole iMCU row */ |
268 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
269 | yoffset++) { |
270 | for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; |
271 | MCU_col_num++) { |
272 | /* Construct list of pointers to DCT blocks belonging to this MCU */ |
273 | blkn = 0; /* index of current DCT block within MCU */ |
274 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
275 | compptr = cinfo->cur_comp_info[ci]; |
276 | start_col = MCU_col_num * compptr->MCU_width; |
277 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
278 | buffer_ptr = buffer[ci][yindex+yoffset] + start_col; |
279 | for (xindex = 0; xindex < compptr->MCU_width; xindex++) { |
280 | coef->MCU_buffer[blkn++] = buffer_ptr++; |
281 | } |
282 | } |
283 | } |
284 | /* Try to fetch the MCU. */ |
285 | if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
286 | /* Suspension forced; update state counters and exit */ |
287 | coef->MCU_vert_offset = yoffset; |
288 | coef->MCU_ctr = MCU_col_num; |
289 | return JPEG_SUSPENDED; |
290 | } |
291 | } |
292 | /* Completed an MCU row, but perhaps not an iMCU row */ |
293 | coef->MCU_ctr = 0; |
294 | } |
295 | /* Completed the iMCU row, advance counters for next one */ |
296 | if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
297 | start_iMCU_row(cinfo); |
298 | return JPEG_ROW_COMPLETED; |
299 | } |
300 | /* Completed the scan */ |
301 | (*cinfo->inputctl->finish_input_pass) (cinfo); |
302 | return JPEG_SCAN_COMPLETED; |
303 | } |
304 | |
305 | |
306 | /* |
307 | * Decompress and return some data in the multi-pass case. |
308 | * Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
309 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
310 | * |
311 | * NB: output_buf contains a plane for each component in image. |
312 | */ |
313 | |
314 | METHODDEF(int) |
315 | decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
316 | { |
317 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
318 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
319 | JDIMENSION block_num; |
320 | int ci, block_row, block_rows; |
321 | JBLOCKARRAY buffer; |
322 | JBLOCKROW buffer_ptr; |
323 | JSAMPARRAY output_ptr; |
324 | JDIMENSION output_col; |
325 | jpeg_component_info *compptr; |
326 | inverse_DCT_method_ptr inverse_DCT; |
327 | |
328 | /* Force some input to be done if we are getting ahead of the input. */ |
329 | while (cinfo->input_scan_number < cinfo->output_scan_number || |
330 | (cinfo->input_scan_number == cinfo->output_scan_number && |
331 | cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { |
332 | if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) |
333 | return JPEG_SUSPENDED; |
334 | } |
335 | |
336 | /* OK, output from the virtual arrays. */ |
337 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
338 | ci++, compptr++) { |
339 | /* Don't bother to IDCT an uninteresting component. */ |
340 | if (! compptr->component_needed) |
341 | continue; |
342 | /* Align the virtual buffer for this component. */ |
343 | buffer = (*cinfo->mem->access_virt_barray) |
344 | ((j_common_ptr) cinfo, coef->whole_image[ci], |
345 | cinfo->output_iMCU_row * compptr->v_samp_factor, |
346 | (JDIMENSION) compptr->v_samp_factor, FALSE); |
347 | /* Count non-dummy DCT block rows in this iMCU row. */ |
348 | if (cinfo->output_iMCU_row < last_iMCU_row) |
349 | block_rows = compptr->v_samp_factor; |
350 | else { |
351 | /* NB: can't use last_row_height here; it is input-side-dependent! */ |
352 | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
353 | if (block_rows == 0) block_rows = compptr->v_samp_factor; |
354 | } |
355 | inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
356 | output_ptr = output_buf[ci]; |
357 | /* Loop over all DCT blocks to be processed. */ |
358 | for (block_row = 0; block_row < block_rows; block_row++) { |
359 | buffer_ptr = buffer[block_row]; |
360 | output_col = 0; |
361 | for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) { |
362 | (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, |
363 | output_ptr, output_col); |
364 | buffer_ptr++; |
365 | output_col += compptr->DCT_scaled_size; |
366 | } |
367 | output_ptr += compptr->DCT_scaled_size; |
368 | } |
369 | } |
370 | |
371 | if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
372 | return JPEG_ROW_COMPLETED; |
373 | return JPEG_SCAN_COMPLETED; |
374 | } |
375 | |
376 | #endif /* D_MULTISCAN_FILES_SUPPORTED */ |
377 | |
378 | |
379 | #ifdef BLOCK_SMOOTHING_SUPPORTED |
380 | |
381 | /* |
382 | * This code applies interblock smoothing as described by section K.8 |
383 | * of the JPEG standard: the first 5 AC coefficients are estimated from |
384 | * the DC values of a DCT block and its 8 neighboring blocks. |
385 | * We apply smoothing only for progressive JPEG decoding, and only if |
386 | * the coefficients it can estimate are not yet known to full precision. |
387 | */ |
388 | |
389 | /* Natural-order array positions of the first 5 zigzag-order coefficients */ |
390 | #define Q01_POS 1 |
391 | #define Q10_POS 8 |
392 | #define Q20_POS 16 |
393 | #define Q11_POS 9 |
394 | #define Q02_POS 2 |
395 | |
396 | /* |
397 | * Determine whether block smoothing is applicable and safe. |
398 | * We also latch the current states of the coef_bits[] entries for the |
399 | * AC coefficients; otherwise, if the input side of the decompressor |
400 | * advances into a new scan, we might think the coefficients are known |
401 | * more accurately than they really are. |
402 | */ |
403 | |
404 | LOCAL(boolean) |
405 | smoothing_ok (j_decompress_ptr cinfo) |
406 | { |
407 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
408 | boolean smoothing_useful = FALSE; |
409 | int ci, coefi; |
410 | jpeg_component_info *compptr; |
411 | JQUANT_TBL * qtable; |
412 | int * coef_bits; |
413 | int * coef_bits_latch; |
414 | |
415 | if (! cinfo->progressive_mode || cinfo->coef_bits == NULL) |
416 | return FALSE; |
417 | |
418 | /* Allocate latch area if not already done */ |
419 | if (coef->coef_bits_latch == NULL) |
420 | coef->coef_bits_latch = (int *) |
421 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
422 | cinfo->num_components * |
423 | (SAVED_COEFS * SIZEOF(int))); |
424 | coef_bits_latch = coef->coef_bits_latch; |
425 | |
426 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
427 | ci++, compptr++) { |
428 | /* All components' quantization values must already be latched. */ |
429 | if ((qtable = compptr->quant_table) == NULL) |
430 | return FALSE; |
431 | /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ |
432 | if (qtable->quantval[0] == 0 || |
433 | qtable->quantval[Q01_POS] == 0 || |
434 | qtable->quantval[Q10_POS] == 0 || |
435 | qtable->quantval[Q20_POS] == 0 || |
436 | qtable->quantval[Q11_POS] == 0 || |
437 | qtable->quantval[Q02_POS] == 0) |
438 | return FALSE; |
439 | /* DC values must be at least partly known for all components. */ |
440 | coef_bits = cinfo->coef_bits[ci]; |
441 | if (coef_bits[0] < 0) |
442 | return FALSE; |
443 | /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ |
444 | for (coefi = 1; coefi <= 5; coefi++) { |
445 | coef_bits_latch[coefi] = coef_bits[coefi]; |
446 | if (coef_bits[coefi] != 0) |
447 | smoothing_useful = TRUE; |
448 | } |
449 | coef_bits_latch += SAVED_COEFS; |
450 | } |
451 | |
452 | return smoothing_useful; |
453 | } |
454 | |
455 | |
456 | /* |
457 | * Variant of decompress_data for use when doing block smoothing. |
458 | */ |
459 | |
460 | METHODDEF(int) |
461 | decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
462 | { |
463 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
464 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
465 | JDIMENSION block_num, last_block_column; |
466 | int ci, block_row, block_rows, access_rows; |
467 | JBLOCKARRAY buffer; |
468 | JBLOCKROW buffer_ptr, prev_block_row, next_block_row; |
469 | JSAMPARRAY output_ptr; |
470 | JDIMENSION output_col; |
471 | jpeg_component_info *compptr; |
472 | inverse_DCT_method_ptr inverse_DCT; |
473 | boolean first_row, last_row; |
474 | JBLOCK workspace; |
475 | int *coef_bits; |
476 | JQUANT_TBL *quanttbl; |
477 | INT32 Q00,Q01,Q02,Q10,Q11,Q20, num; |
478 | int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; |
479 | int Al, pred; |
480 | |
481 | /* Force some input to be done if we are getting ahead of the input. */ |
482 | while (cinfo->input_scan_number <= cinfo->output_scan_number && |
483 | ! cinfo->inputctl->eoi_reached) { |
484 | if (cinfo->input_scan_number == cinfo->output_scan_number) { |
485 | /* If input is working on current scan, we ordinarily want it to |
486 | * have completed the current row. But if input scan is DC, |
487 | * we want it to keep one row ahead so that next block row's DC |
488 | * values are up to date. |
489 | */ |
490 | JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; |
491 | if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta) |
492 | break; |
493 | } |
494 | if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) |
495 | return JPEG_SUSPENDED; |
496 | } |
497 | |
498 | /* OK, output from the virtual arrays. */ |
499 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
500 | ci++, compptr++) { |
501 | /* Don't bother to IDCT an uninteresting component. */ |
502 | if (! compptr->component_needed) |
503 | continue; |
504 | /* Count non-dummy DCT block rows in this iMCU row. */ |
505 | if (cinfo->output_iMCU_row < last_iMCU_row) { |
506 | block_rows = compptr->v_samp_factor; |
507 | access_rows = block_rows * 2; /* this and next iMCU row */ |
508 | last_row = FALSE; |
509 | } else { |
510 | /* NB: can't use last_row_height here; it is input-side-dependent! */ |
511 | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
512 | if (block_rows == 0) block_rows = compptr->v_samp_factor; |
513 | access_rows = block_rows; /* this iMCU row only */ |
514 | last_row = TRUE; |
515 | } |
516 | /* Align the virtual buffer for this component. */ |
517 | if (cinfo->output_iMCU_row > 0) { |
518 | access_rows += compptr->v_samp_factor; /* prior iMCU row too */ |
519 | buffer = (*cinfo->mem->access_virt_barray) |
520 | ((j_common_ptr) cinfo, coef->whole_image[ci], |
521 | (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, |
522 | (JDIMENSION) access_rows, FALSE); |
523 | buffer += compptr->v_samp_factor; /* point to current iMCU row */ |
524 | first_row = FALSE; |
525 | } else { |
526 | buffer = (*cinfo->mem->access_virt_barray) |
527 | ((j_common_ptr) cinfo, coef->whole_image[ci], |
528 | (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE); |
529 | first_row = TRUE; |
530 | } |
531 | /* Fetch component-dependent info */ |
532 | coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); |
533 | quanttbl = compptr->quant_table; |
534 | Q00 = quanttbl->quantval[0]; |
535 | Q01 = quanttbl->quantval[Q01_POS]; |
536 | Q10 = quanttbl->quantval[Q10_POS]; |
537 | Q20 = quanttbl->quantval[Q20_POS]; |
538 | Q11 = quanttbl->quantval[Q11_POS]; |
539 | Q02 = quanttbl->quantval[Q02_POS]; |
540 | inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
541 | output_ptr = output_buf[ci]; |
542 | /* Loop over all DCT blocks to be processed. */ |
543 | for (block_row = 0; block_row < block_rows; block_row++) { |
544 | buffer_ptr = buffer[block_row]; |
545 | if (first_row && block_row == 0) |
546 | prev_block_row = buffer_ptr; |
547 | else |
548 | prev_block_row = buffer[block_row-1]; |
549 | if (last_row && block_row == block_rows-1) |
550 | next_block_row = buffer_ptr; |
551 | else |
552 | next_block_row = buffer[block_row+1]; |
553 | /* We fetch the surrounding DC values using a sliding-register approach. |
554 | * Initialize all nine here so as to do the right thing on narrow pics. |
555 | */ |
556 | DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; |
557 | DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; |
558 | DC7 = DC8 = DC9 = (int) next_block_row[0][0]; |
559 | output_col = 0; |
560 | last_block_column = compptr->width_in_blocks - 1; |
561 | for (block_num = 0; block_num <= last_block_column; block_num++) { |
562 | /* Fetch current DCT block into workspace so we can modify it. */ |
563 | jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1); |
564 | /* Update DC values */ |
565 | if (block_num < last_block_column) { |
566 | DC3 = (int) prev_block_row[1][0]; |
567 | DC6 = (int) buffer_ptr[1][0]; |
568 | DC9 = (int) next_block_row[1][0]; |
569 | } |
570 | /* Compute coefficient estimates per K.8. |
571 | * An estimate is applied only if coefficient is still zero, |
572 | * and is not known to be fully accurate. |
573 | */ |
574 | /* AC01 */ |
575 | if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { |
576 | num = 36 * Q00 * (DC4 - DC6); |
577 | if (num >= 0) { |
578 | pred = (int) (((Q01<<7) + num) / (Q01<<8)); |
579 | if (Al > 0 && pred >= (1<<Al)) |
580 | pred = (1<<Al)-1; |
581 | } else { |
582 | pred = (int) (((Q01<<7) - num) / (Q01<<8)); |
583 | if (Al > 0 && pred >= (1<<Al)) |
584 | pred = (1<<Al)-1; |
585 | pred = -pred; |
586 | } |
587 | workspace[1] = (JCOEF) pred; |
588 | } |
589 | /* AC10 */ |
590 | if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) { |
591 | num = 36 * Q00 * (DC2 - DC8); |
592 | if (num >= 0) { |
593 | pred = (int) (((Q10<<7) + num) / (Q10<<8)); |
594 | if (Al > 0 && pred >= (1<<Al)) |
595 | pred = (1<<Al)-1; |
596 | } else { |
597 | pred = (int) (((Q10<<7) - num) / (Q10<<8)); |
598 | if (Al > 0 && pred >= (1<<Al)) |
599 | pred = (1<<Al)-1; |
600 | pred = -pred; |
601 | } |
602 | workspace[8] = (JCOEF) pred; |
603 | } |
604 | /* AC20 */ |
605 | if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) { |
606 | num = 9 * Q00 * (DC2 + DC8 - 2*DC5); |
607 | if (num >= 0) { |
608 | pred = (int) (((Q20<<7) + num) / (Q20<<8)); |
609 | if (Al > 0 && pred >= (1<<Al)) |
610 | pred = (1<<Al)-1; |
611 | } else { |
612 | pred = (int) (((Q20<<7) - num) / (Q20<<8)); |
613 | if (Al > 0 && pred >= (1<<Al)) |
614 | pred = (1<<Al)-1; |
615 | pred = -pred; |
616 | } |
617 | workspace[16] = (JCOEF) pred; |
618 | } |
619 | /* AC11 */ |
620 | if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) { |
621 | num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9); |
622 | if (num >= 0) { |
623 | pred = (int) (((Q11<<7) + num) / (Q11<<8)); |
624 | if (Al > 0 && pred >= (1<<Al)) |
625 | pred = (1<<Al)-1; |
626 | } else { |
627 | pred = (int) (((Q11<<7) - num) / (Q11<<8)); |
628 | if (Al > 0 && pred >= (1<<Al)) |
629 | pred = (1<<Al)-1; |
630 | pred = -pred; |
631 | } |
632 | workspace[9] = (JCOEF) pred; |
633 | } |
634 | /* AC02 */ |
635 | if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) { |
636 | num = 9 * Q00 * (DC4 + DC6 - 2*DC5); |
637 | if (num >= 0) { |
638 | pred = (int) (((Q02<<7) + num) / (Q02<<8)); |
639 | if (Al > 0 && pred >= (1<<Al)) |
640 | pred = (1<<Al)-1; |
641 | } else { |
642 | pred = (int) (((Q02<<7) - num) / (Q02<<8)); |
643 | if (Al > 0 && pred >= (1<<Al)) |
644 | pred = (1<<Al)-1; |
645 | pred = -pred; |
646 | } |
647 | workspace[2] = (JCOEF) pred; |
648 | } |
649 | /* OK, do the IDCT */ |
650 | (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace, |
651 | output_ptr, output_col); |
652 | /* Advance for next column */ |
653 | DC1 = DC2; DC2 = DC3; |
654 | DC4 = DC5; DC5 = DC6; |
655 | DC7 = DC8; DC8 = DC9; |
656 | buffer_ptr++, prev_block_row++, next_block_row++; |
657 | output_col += compptr->DCT_scaled_size; |
658 | } |
659 | output_ptr += compptr->DCT_scaled_size; |
660 | } |
661 | } |
662 | |
663 | if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
664 | return JPEG_ROW_COMPLETED; |
665 | return JPEG_SCAN_COMPLETED; |
666 | } |
667 | |
668 | #endif /* BLOCK_SMOOTHING_SUPPORTED */ |
669 | |
670 | |
671 | /* |
672 | * Initialize coefficient buffer controller. |
673 | */ |
674 | |
675 | GLOBAL(void) |
676 | jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer) |
677 | { |
678 | my_coef_ptr coef; |
679 | |
680 | coef = (my_coef_ptr) |
681 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
682 | SIZEOF(my_coef_controller)); |
683 | cinfo->coef = (struct jpeg_d_coef_controller *) coef; |
684 | coef->pub.start_input_pass = start_input_pass; |
685 | coef->pub.start_output_pass = start_output_pass; |
686 | #ifdef BLOCK_SMOOTHING_SUPPORTED |
687 | coef->coef_bits_latch = NULL; |
688 | #endif |
689 | |
690 | /* Create the coefficient buffer. */ |
691 | if (need_full_buffer) { |
692 | #ifdef D_MULTISCAN_FILES_SUPPORTED |
693 | /* Allocate a full-image virtual array for each component, */ |
694 | /* padded to a multiple of samp_factor DCT blocks in each direction. */ |
695 | /* Note we ask for a pre-zeroed array. */ |
696 | int ci, access_rows; |
697 | jpeg_component_info *compptr; |
698 | |
699 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
700 | ci++, compptr++) { |
701 | access_rows = compptr->v_samp_factor; |
702 | #ifdef BLOCK_SMOOTHING_SUPPORTED |
703 | /* If block smoothing could be used, need a bigger window */ |
704 | if (cinfo->progressive_mode) |
705 | access_rows *= 3; |
706 | #endif |
707 | coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
708 | ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, |
709 | (JDIMENSION) jround_up((long) compptr->width_in_blocks, |
710 | (long) compptr->h_samp_factor), |
711 | (JDIMENSION) jround_up((long) compptr->height_in_blocks, |
712 | (long) compptr->v_samp_factor), |
713 | (JDIMENSION) access_rows); |
714 | } |
715 | coef->pub.consume_data = consume_data; |
716 | coef->pub.decompress_data = decompress_data; |
717 | coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ |
718 | #else |
719 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
720 | #endif |
721 | } else { |
722 | /* We only need a single-MCU buffer. */ |
723 | JBLOCKROW buffer; |
724 | int i; |
725 | |
726 | buffer = (JBLOCKROW) |
727 | (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
728 | D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); |
729 | for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { |
730 | coef->MCU_buffer[i] = buffer + i; |
731 | } |
732 | coef->pub.consume_data = dummy_consume_data; |
733 | coef->pub.decompress_data = decompress_onepass; |
734 | coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ |
735 | } |
736 | } |
737 | |