1 | /* |
2 | * jdct.h |
3 | * |
4 | * Copyright (C) 1994-1996, Thomas G. Lane. |
5 | * This file is part of the Independent JPEG Group's software. |
6 | * For conditions of distribution and use, see the accompanying README file. |
7 | * |
8 | * This include file contains common declarations for the forward and |
9 | * inverse DCT modules. These declarations are private to the DCT managers |
10 | * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms. |
11 | * The individual DCT algorithms are kept in separate files to ease |
12 | * machine-dependent tuning (e.g., assembly coding). |
13 | */ |
14 | |
15 | |
16 | /* |
17 | * A forward DCT routine is given a pointer to a work area of type DCTELEM[]; |
18 | * the DCT is to be performed in-place in that buffer. Type DCTELEM is int |
19 | * for 8-bit samples, INT32 for 12-bit samples. (NOTE: Floating-point DCT |
20 | * implementations use an array of type FAST_FLOAT, instead.) |
21 | * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE). |
22 | * The DCT outputs are returned scaled up by a factor of 8; they therefore |
23 | * have a range of +-8K for 8-bit data, +-128K for 12-bit data. This |
24 | * convention improves accuracy in integer implementations and saves some |
25 | * work in floating-point ones. |
26 | * Quantization of the output coefficients is done by jcdctmgr.c. |
27 | */ |
28 | |
29 | #if BITS_IN_JSAMPLE == 8 |
30 | typedef int DCTELEM; /* 16 or 32 bits is fine */ |
31 | #else |
32 | typedef INT32 DCTELEM; /* must have 32 bits */ |
33 | #endif |
34 | |
35 | typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data)); |
36 | typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data)); |
37 | |
38 | |
39 | /* |
40 | * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer |
41 | * to an output sample array. The routine must dequantize the input data as |
42 | * well as perform the IDCT; for dequantization, it uses the multiplier table |
43 | * pointed to by compptr->dct_table. The output data is to be placed into the |
44 | * sample array starting at a specified column. (Any row offset needed will |
45 | * be applied to the array pointer before it is passed to the IDCT code.) |
46 | * Note that the number of samples emitted by the IDCT routine is |
47 | * DCT_scaled_size * DCT_scaled_size. |
48 | */ |
49 | |
50 | /* typedef inverse_DCT_method_ptr is declared in jpegint.h */ |
51 | |
52 | /* |
53 | * Each IDCT routine has its own ideas about the best dct_table element type. |
54 | */ |
55 | |
56 | typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */ |
57 | #if BITS_IN_JSAMPLE == 8 |
58 | typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */ |
59 | #define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */ |
60 | #else |
61 | typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */ |
62 | #define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */ |
63 | #endif |
64 | typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */ |
65 | |
66 | |
67 | /* |
68 | * Each IDCT routine is responsible for range-limiting its results and |
69 | * converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could |
70 | * be quite far out of range if the input data is corrupt, so a bulletproof |
71 | * range-limiting step is required. We use a mask-and-table-lookup method |
72 | * to do the combined operations quickly. See the comments with |
73 | * prepare_range_limit_table (in jdmaster.c) for more info. |
74 | */ |
75 | |
76 | #define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE) |
77 | |
78 | #define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */ |
79 | |
80 | |
81 | /* Short forms of external names for systems with brain-damaged linkers. */ |
82 | |
83 | #ifdef NEED_SHORT_EXTERNAL_NAMES |
84 | #define jpeg_fdct_islow jFDislow |
85 | #define jpeg_fdct_ifast jFDifast |
86 | #define jpeg_fdct_float jFDfloat |
87 | #define jpeg_idct_islow jRDislow |
88 | #define jpeg_idct_ifast jRDifast |
89 | #define jpeg_idct_float jRDfloat |
90 | #define jpeg_idct_4x4 jRD4x4 |
91 | #define jpeg_idct_2x2 jRD2x2 |
92 | #define jpeg_idct_1x1 jRD1x1 |
93 | #endif /* NEED_SHORT_EXTERNAL_NAMES */ |
94 | |
95 | /* Extern declarations for the forward and inverse DCT routines. */ |
96 | |
97 | EXTERN(void) jpeg_fdct_islow JPP((DCTELEM * data)); |
98 | EXTERN(void) jpeg_fdct_ifast JPP((DCTELEM * data)); |
99 | EXTERN(void) jpeg_fdct_float JPP((FAST_FLOAT * data)); |
100 | |
101 | EXTERN(void) jpeg_idct_islow |
102 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
103 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
104 | EXTERN(void) jpeg_idct_ifast |
105 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
106 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
107 | EXTERN(void) jpeg_idct_float |
108 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
109 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
110 | EXTERN(void) jpeg_idct_4x4 |
111 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
112 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
113 | EXTERN(void) jpeg_idct_2x2 |
114 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
115 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
116 | EXTERN(void) jpeg_idct_1x1 |
117 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
118 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
119 | |
120 | |
121 | /* |
122 | * Macros for handling fixed-point arithmetic; these are used by many |
123 | * but not all of the DCT/IDCT modules. |
124 | * |
125 | * All values are expected to be of type INT32. |
126 | * Fractional constants are scaled left by CONST_BITS bits. |
127 | * CONST_BITS is defined within each module using these macros, |
128 | * and may differ from one module to the next. |
129 | */ |
130 | |
131 | #define ONE ((INT32) 1) |
132 | #define CONST_SCALE (ONE << CONST_BITS) |
133 | |
134 | /* Convert a positive real constant to an integer scaled by CONST_SCALE. |
135 | * Caution: some C compilers fail to reduce "FIX(constant)" at compile time, |
136 | * thus causing a lot of useless floating-point operations at run time. |
137 | */ |
138 | |
139 | #define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5)) |
140 | |
141 | /* Descale and correctly round an INT32 value that's scaled by N bits. |
142 | * We assume RIGHT_SHIFT rounds towards minus infinity, so adding |
143 | * the fudge factor is correct for either sign of X. |
144 | */ |
145 | |
146 | #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) |
147 | |
148 | /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. |
149 | * This macro is used only when the two inputs will actually be no more than |
150 | * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a |
151 | * full 32x32 multiply. This provides a useful speedup on many machines. |
152 | * Unfortunately there is no way to specify a 16x16->32 multiply portably |
153 | * in C, but some C compilers will do the right thing if you provide the |
154 | * correct combination of casts. |
155 | */ |
156 | |
157 | #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ |
158 | #define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const))) |
159 | #endif |
160 | #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ |
161 | #define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const))) |
162 | #endif |
163 | |
164 | #ifndef MULTIPLY16C16 /* default definition */ |
165 | #define MULTIPLY16C16(var,const) ((var) * (const)) |
166 | #endif |
167 | |
168 | /* Same except both inputs are variables. */ |
169 | |
170 | #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ |
171 | #define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2))) |
172 | #endif |
173 | |
174 | #ifndef MULTIPLY16V16 /* default definition */ |
175 | #define MULTIPLY16V16(var1,var2) ((var1) * (var2)) |
176 | #endif |
177 | |