1 | /* |
2 | * jdhuff.c |
3 | * |
4 | * Copyright (C) 1991-1997, Thomas G. Lane. |
5 | * This file is part of the Independent JPEG Group's software. |
6 | * For conditions of distribution and use, see the accompanying README file. |
7 | * |
8 | * This file contains Huffman entropy decoding routines. |
9 | * |
10 | * Much of the complexity here has to do with supporting input suspension. |
11 | * If the data source module demands suspension, we want to be able to back |
12 | * up to the start of the current MCU. To do this, we copy state variables |
13 | * into local working storage, and update them back to the permanent |
14 | * storage only upon successful completion of an MCU. |
15 | */ |
16 | |
17 | #define JPEG_INTERNALS |
18 | #include "jinclude.h" |
19 | #include "jpeglib.h" |
20 | #include "jdhuff.h" /* Declarations shared with jdphuff.c */ |
21 | |
22 | |
23 | /* |
24 | * Expanded entropy decoder object for Huffman decoding. |
25 | * |
26 | * The savable_state subrecord contains fields that change within an MCU, |
27 | * but must not be updated permanently until we complete the MCU. |
28 | */ |
29 | |
30 | typedef struct { |
31 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
32 | } savable_state; |
33 | |
34 | /* This macro is to work around compilers with missing or broken |
35 | * structure assignment. You'll need to fix this code if you have |
36 | * such a compiler and you change MAX_COMPS_IN_SCAN. |
37 | */ |
38 | |
39 | #ifndef NO_STRUCT_ASSIGN |
40 | #define ASSIGN_STATE(dest,src) ((dest) = (src)) |
41 | #else |
42 | #if MAX_COMPS_IN_SCAN == 4 |
43 | #define ASSIGN_STATE(dest,src) \ |
44 | ((dest).last_dc_val[0] = (src).last_dc_val[0], \ |
45 | (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
46 | (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
47 | (dest).last_dc_val[3] = (src).last_dc_val[3]) |
48 | #endif |
49 | #endif |
50 | |
51 | |
52 | typedef struct { |
53 | struct jpeg_entropy_decoder pub; /* public fields */ |
54 | |
55 | /* These fields are loaded into local variables at start of each MCU. |
56 | * In case of suspension, we exit WITHOUT updating them. |
57 | */ |
58 | bitread_perm_state bitstate; /* Bit buffer at start of MCU */ |
59 | savable_state saved; /* Other state at start of MCU */ |
60 | |
61 | /* These fields are NOT loaded into local working state. */ |
62 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
63 | |
64 | /* Pointers to derived tables (these workspaces have image lifespan) */ |
65 | d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; |
66 | d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; |
67 | |
68 | /* Precalculated info set up by start_pass for use in decode_mcu: */ |
69 | |
70 | /* Pointers to derived tables to be used for each block within an MCU */ |
71 | d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
72 | d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
73 | /* Whether we care about the DC and AC coefficient values for each block */ |
74 | boolean dc_needed[D_MAX_BLOCKS_IN_MCU]; |
75 | boolean ac_needed[D_MAX_BLOCKS_IN_MCU]; |
76 | } huff_entropy_decoder; |
77 | |
78 | typedef huff_entropy_decoder * huff_entropy_ptr; |
79 | |
80 | |
81 | /* |
82 | * Initialize for a Huffman-compressed scan. |
83 | */ |
84 | |
85 | METHODDEF(void) |
86 | start_pass_huff_decoder (j_decompress_ptr cinfo) |
87 | { |
88 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
89 | int ci, blkn, dctbl, actbl; |
90 | jpeg_component_info * compptr; |
91 | |
92 | /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. |
93 | * This ought to be an error condition, but we make it a warning because |
94 | * there are some baseline files out there with all zeroes in these bytes. |
95 | */ |
96 | if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 || |
97 | cinfo->Ah != 0 || cinfo->Al != 0) |
98 | WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); |
99 | |
100 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
101 | compptr = cinfo->cur_comp_info[ci]; |
102 | dctbl = compptr->dc_tbl_no; |
103 | actbl = compptr->ac_tbl_no; |
104 | /* Compute derived values for Huffman tables */ |
105 | /* We may do this more than once for a table, but it's not expensive */ |
106 | jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, |
107 | & entropy->dc_derived_tbls[dctbl]); |
108 | jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, |
109 | & entropy->ac_derived_tbls[actbl]); |
110 | /* Initialize DC predictions to 0 */ |
111 | entropy->saved.last_dc_val[ci] = 0; |
112 | } |
113 | |
114 | /* Precalculate decoding info for each block in an MCU of this scan */ |
115 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
116 | ci = cinfo->MCU_membership[blkn]; |
117 | compptr = cinfo->cur_comp_info[ci]; |
118 | /* Precalculate which table to use for each block */ |
119 | entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; |
120 | entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; |
121 | /* Decide whether we really care about the coefficient values */ |
122 | if (compptr->component_needed) { |
123 | entropy->dc_needed[blkn] = TRUE; |
124 | /* we don't need the ACs if producing a 1/8th-size image */ |
125 | entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1); |
126 | } else { |
127 | entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE; |
128 | } |
129 | } |
130 | |
131 | /* Initialize bitread state variables */ |
132 | entropy->bitstate.bits_left = 0; |
133 | entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ |
134 | entropy->pub.insufficient_data = FALSE; |
135 | |
136 | /* Initialize restart counter */ |
137 | entropy->restarts_to_go = cinfo->restart_interval; |
138 | } |
139 | |
140 | |
141 | /* |
142 | * Compute the derived values for a Huffman table. |
143 | * This routine also performs some validation checks on the table. |
144 | * |
145 | * Note this is also used by jdphuff.c. |
146 | */ |
147 | |
148 | GLOBAL(void) |
149 | jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, |
150 | d_derived_tbl ** pdtbl) |
151 | { |
152 | JHUFF_TBL *htbl; |
153 | d_derived_tbl *dtbl; |
154 | int p, i, l, si, numsymbols; |
155 | int lookbits, ctr; |
156 | char huffsize[257]; |
157 | unsigned int huffcode[257]; |
158 | unsigned int code; |
159 | |
160 | /* Note that huffsize[] and huffcode[] are filled in code-length order, |
161 | * paralleling the order of the symbols themselves in htbl->huffval[]. |
162 | */ |
163 | |
164 | /* Find the input Huffman table */ |
165 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
166 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
167 | htbl = |
168 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
169 | if (htbl == NULL) |
170 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
171 | |
172 | /* Allocate a workspace if we haven't already done so. */ |
173 | if (*pdtbl == NULL) |
174 | *pdtbl = (d_derived_tbl *) |
175 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
176 | SIZEOF(d_derived_tbl)); |
177 | dtbl = *pdtbl; |
178 | dtbl->pub = htbl; /* fill in back link */ |
179 | |
180 | /* Figure C.1: make table of Huffman code length for each symbol */ |
181 | |
182 | p = 0; |
183 | for (l = 1; l <= 16; l++) { |
184 | i = (int) htbl->bits[l]; |
185 | if (i < 0 || p + i > 256) /* protect against table overrun */ |
186 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
187 | while (i--) |
188 | huffsize[p++] = (char) l; |
189 | } |
190 | huffsize[p] = 0; |
191 | numsymbols = p; |
192 | |
193 | /* Figure C.2: generate the codes themselves */ |
194 | /* We also validate that the counts represent a legal Huffman code tree. */ |
195 | |
196 | code = 0; |
197 | si = huffsize[0]; |
198 | p = 0; |
199 | while (huffsize[p]) { |
200 | while (((int) huffsize[p]) == si) { |
201 | huffcode[p++] = code; |
202 | code++; |
203 | } |
204 | /* code is now 1 more than the last code used for codelength si; but |
205 | * it must still fit in si bits, since no code is allowed to be all ones. |
206 | */ |
207 | if (((INT32) code) >= (((INT32) 1) << si)) |
208 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
209 | code <<= 1; |
210 | si++; |
211 | } |
212 | |
213 | /* Figure F.15: generate decoding tables for bit-sequential decoding */ |
214 | |
215 | p = 0; |
216 | for (l = 1; l <= 16; l++) { |
217 | if (htbl->bits[l]) { |
218 | /* valoffset[l] = huffval[] index of 1st symbol of code length l, |
219 | * minus the minimum code of length l |
220 | */ |
221 | dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; |
222 | p += htbl->bits[l]; |
223 | dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ |
224 | } else { |
225 | dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ |
226 | } |
227 | } |
228 | dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ |
229 | |
230 | /* Compute lookahead tables to speed up decoding. |
231 | * First we set all the table entries to 0, indicating "too long"; |
232 | * then we iterate through the Huffman codes that are short enough and |
233 | * fill in all the entries that correspond to bit sequences starting |
234 | * with that code. |
235 | */ |
236 | |
237 | MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits)); |
238 | |
239 | p = 0; |
240 | for (l = 1; l <= HUFF_LOOKAHEAD; l++) { |
241 | for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { |
242 | /* l = current code's length, p = its index in huffcode[] & huffval[]. */ |
243 | /* Generate left-justified code followed by all possible bit sequences */ |
244 | lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); |
245 | for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { |
246 | dtbl->look_nbits[lookbits] = l; |
247 | dtbl->look_sym[lookbits] = htbl->huffval[p]; |
248 | lookbits++; |
249 | } |
250 | } |
251 | } |
252 | |
253 | /* Validate symbols as being reasonable. |
254 | * For AC tables, we make no check, but accept all byte values 0..255. |
255 | * For DC tables, we require the symbols to be in range 0..15. |
256 | * (Tighter bounds could be applied depending on the data depth and mode, |
257 | * but this is sufficient to ensure safe decoding.) |
258 | */ |
259 | if (isDC) { |
260 | for (i = 0; i < numsymbols; i++) { |
261 | int sym = htbl->huffval[i]; |
262 | if (sym < 0 || sym > 15) |
263 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
264 | } |
265 | } |
266 | } |
267 | |
268 | |
269 | /* |
270 | * Out-of-line code for bit fetching (shared with jdphuff.c). |
271 | * See jdhuff.h for info about usage. |
272 | * Note: current values of get_buffer and bits_left are passed as parameters, |
273 | * but are returned in the corresponding fields of the state struct. |
274 | * |
275 | * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width |
276 | * of get_buffer to be used. (On machines with wider words, an even larger |
277 | * buffer could be used.) However, on some machines 32-bit shifts are |
278 | * quite slow and take time proportional to the number of places shifted. |
279 | * (This is true with most PC compilers, for instance.) In this case it may |
280 | * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the |
281 | * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. |
282 | */ |
283 | |
284 | #ifdef SLOW_SHIFT_32 |
285 | #define MIN_GET_BITS 15 /* minimum allowable value */ |
286 | #else |
287 | #define MIN_GET_BITS (BIT_BUF_SIZE-7) |
288 | #endif |
289 | |
290 | |
291 | GLOBAL(boolean) |
292 | jpeg_fill_bit_buffer (bitread_working_state * state, |
293 | register bit_buf_type get_buffer, register int bits_left, |
294 | int nbits) |
295 | /* Load up the bit buffer to a depth of at least nbits */ |
296 | { |
297 | /* Copy heavily used state fields into locals (hopefully registers) */ |
298 | register const JOCTET * next_input_byte = state->next_input_byte; |
299 | register size_t bytes_in_buffer = state->bytes_in_buffer; |
300 | j_decompress_ptr cinfo = state->cinfo; |
301 | |
302 | /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ |
303 | /* (It is assumed that no request will be for more than that many bits.) */ |
304 | /* We fail to do so only if we hit a marker or are forced to suspend. */ |
305 | |
306 | if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ |
307 | while (bits_left < MIN_GET_BITS) { |
308 | register int c; |
309 | |
310 | /* Attempt to read a byte */ |
311 | if (bytes_in_buffer == 0) { |
312 | if (! (*cinfo->src->fill_input_buffer) (cinfo)) |
313 | return FALSE; |
314 | next_input_byte = cinfo->src->next_input_byte; |
315 | bytes_in_buffer = cinfo->src->bytes_in_buffer; |
316 | } |
317 | bytes_in_buffer--; |
318 | c = GETJOCTET(*next_input_byte++); |
319 | |
320 | /* If it's 0xFF, check and discard stuffed zero byte */ |
321 | if (c == 0xFF) { |
322 | /* Loop here to discard any padding FF's on terminating marker, |
323 | * so that we can save a valid unread_marker value. NOTE: we will |
324 | * accept multiple FF's followed by a 0 as meaning a single FF data |
325 | * byte. This data pattern is not valid according to the standard. |
326 | */ |
327 | do { |
328 | if (bytes_in_buffer == 0) { |
329 | if (! (*cinfo->src->fill_input_buffer) (cinfo)) |
330 | return FALSE; |
331 | next_input_byte = cinfo->src->next_input_byte; |
332 | bytes_in_buffer = cinfo->src->bytes_in_buffer; |
333 | } |
334 | bytes_in_buffer--; |
335 | c = GETJOCTET(*next_input_byte++); |
336 | } while (c == 0xFF); |
337 | |
338 | if (c == 0) { |
339 | /* Found FF/00, which represents an FF data byte */ |
340 | c = 0xFF; |
341 | } else { |
342 | /* Oops, it's actually a marker indicating end of compressed data. |
343 | * Save the marker code for later use. |
344 | * Fine point: it might appear that we should save the marker into |
345 | * bitread working state, not straight into permanent state. But |
346 | * once we have hit a marker, we cannot need to suspend within the |
347 | * current MCU, because we will read no more bytes from the data |
348 | * source. So it is OK to update permanent state right away. |
349 | */ |
350 | cinfo->unread_marker = c; |
351 | /* See if we need to insert some fake zero bits. */ |
352 | goto no_more_bytes; |
353 | } |
354 | } |
355 | |
356 | /* OK, load c into get_buffer */ |
357 | get_buffer = (get_buffer << 8) | c; |
358 | bits_left += 8; |
359 | } /* end while */ |
360 | } else { |
361 | no_more_bytes: |
362 | /* We get here if we've read the marker that terminates the compressed |
363 | * data segment. There should be enough bits in the buffer register |
364 | * to satisfy the request; if so, no problem. |
365 | */ |
366 | if (nbits > bits_left) { |
367 | /* Uh-oh. Report corrupted data to user and stuff zeroes into |
368 | * the data stream, so that we can produce some kind of image. |
369 | * We use a nonvolatile flag to ensure that only one warning message |
370 | * appears per data segment. |
371 | */ |
372 | if (! cinfo->entropy->insufficient_data) { |
373 | WARNMS(cinfo, JWRN_HIT_MARKER); |
374 | cinfo->entropy->insufficient_data = TRUE; |
375 | } |
376 | /* Fill the buffer with zero bits */ |
377 | get_buffer <<= MIN_GET_BITS - bits_left; |
378 | bits_left = MIN_GET_BITS; |
379 | } |
380 | } |
381 | |
382 | /* Unload the local registers */ |
383 | state->next_input_byte = next_input_byte; |
384 | state->bytes_in_buffer = bytes_in_buffer; |
385 | state->get_buffer = get_buffer; |
386 | state->bits_left = bits_left; |
387 | |
388 | return TRUE; |
389 | } |
390 | |
391 | |
392 | /* |
393 | * Out-of-line code for Huffman code decoding. |
394 | * See jdhuff.h for info about usage. |
395 | */ |
396 | |
397 | GLOBAL(int) |
398 | jpeg_huff_decode (bitread_working_state * state, |
399 | register bit_buf_type get_buffer, register int bits_left, |
400 | d_derived_tbl * htbl, int min_bits) |
401 | { |
402 | register int l = min_bits; |
403 | register INT32 code; |
404 | |
405 | /* HUFF_DECODE has determined that the code is at least min_bits */ |
406 | /* bits long, so fetch that many bits in one swoop. */ |
407 | |
408 | CHECK_BIT_BUFFER(*state, l, return -1); |
409 | code = GET_BITS(l); |
410 | |
411 | /* Collect the rest of the Huffman code one bit at a time. */ |
412 | /* This is per Figure F.16 in the JPEG spec. */ |
413 | |
414 | while (code > htbl->maxcode[l]) { |
415 | code <<= 1; |
416 | CHECK_BIT_BUFFER(*state, 1, return -1); |
417 | code |= GET_BITS(1); |
418 | l++; |
419 | } |
420 | |
421 | /* Unload the local registers */ |
422 | state->get_buffer = get_buffer; |
423 | state->bits_left = bits_left; |
424 | |
425 | /* With garbage input we may reach the sentinel value l = 17. */ |
426 | |
427 | if (l > 16) { |
428 | WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); |
429 | return 0; /* fake a zero as the safest result */ |
430 | } |
431 | |
432 | return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; |
433 | } |
434 | |
435 | |
436 | /* |
437 | * Figure F.12: extend sign bit. |
438 | * On some machines, a shift and add will be faster than a table lookup. |
439 | */ |
440 | |
441 | #ifdef AVOID_TABLES |
442 | |
443 | #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x)) |
444 | |
445 | #else |
446 | |
447 | #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) |
448 | |
449 | static const int extend_test[16] = /* entry n is 2**(n-1) */ |
450 | { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, |
451 | 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; |
452 | |
453 | static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ |
454 | { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, |
455 | ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, |
456 | ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, |
457 | ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; |
458 | |
459 | #endif /* AVOID_TABLES */ |
460 | |
461 | |
462 | /* |
463 | * Check for a restart marker & resynchronize decoder. |
464 | * Returns FALSE if must suspend. |
465 | */ |
466 | |
467 | LOCAL(boolean) |
468 | process_restart (j_decompress_ptr cinfo) |
469 | { |
470 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
471 | int ci; |
472 | |
473 | /* Throw away any unused bits remaining in bit buffer; */ |
474 | /* include any full bytes in next_marker's count of discarded bytes */ |
475 | cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; |
476 | entropy->bitstate.bits_left = 0; |
477 | |
478 | /* Advance past the RSTn marker */ |
479 | if (! (*cinfo->marker->read_restart_marker) (cinfo)) |
480 | return FALSE; |
481 | |
482 | /* Re-initialize DC predictions to 0 */ |
483 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
484 | entropy->saved.last_dc_val[ci] = 0; |
485 | |
486 | /* Reset restart counter */ |
487 | entropy->restarts_to_go = cinfo->restart_interval; |
488 | |
489 | /* Reset out-of-data flag, unless read_restart_marker left us smack up |
490 | * against a marker. In that case we will end up treating the next data |
491 | * segment as empty, and we can avoid producing bogus output pixels by |
492 | * leaving the flag set. |
493 | */ |
494 | if (cinfo->unread_marker == 0) |
495 | entropy->pub.insufficient_data = FALSE; |
496 | |
497 | return TRUE; |
498 | } |
499 | |
500 | |
501 | /* |
502 | * Decode and return one MCU's worth of Huffman-compressed coefficients. |
503 | * The coefficients are reordered from zigzag order into natural array order, |
504 | * but are not dequantized. |
505 | * |
506 | * The i'th block of the MCU is stored into the block pointed to by |
507 | * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. |
508 | * (Wholesale zeroing is usually a little faster than retail...) |
509 | * |
510 | * Returns FALSE if data source requested suspension. In that case no |
511 | * changes have been made to permanent state. (Exception: some output |
512 | * coefficients may already have been assigned. This is harmless for |
513 | * this module, since we'll just re-assign them on the next call.) |
514 | */ |
515 | |
516 | METHODDEF(boolean) |
517 | decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
518 | { |
519 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
520 | int blkn; |
521 | BITREAD_STATE_VARS; |
522 | savable_state state; |
523 | |
524 | /* Process restart marker if needed; may have to suspend */ |
525 | if (cinfo->restart_interval) { |
526 | if (entropy->restarts_to_go == 0) |
527 | if (! process_restart(cinfo)) |
528 | return FALSE; |
529 | } |
530 | |
531 | /* If we've run out of data, just leave the MCU set to zeroes. |
532 | * This way, we return uniform gray for the remainder of the segment. |
533 | */ |
534 | if (! entropy->pub.insufficient_data) { |
535 | |
536 | /* Load up working state */ |
537 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
538 | ASSIGN_STATE(state, entropy->saved); |
539 | |
540 | /* Outer loop handles each block in the MCU */ |
541 | |
542 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
543 | JBLOCKROW block = MCU_data[blkn]; |
544 | d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn]; |
545 | d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn]; |
546 | register int s, k, r; |
547 | |
548 | /* Decode a single block's worth of coefficients */ |
549 | |
550 | /* Section F.2.2.1: decode the DC coefficient difference */ |
551 | HUFF_DECODE(s, br_state, dctbl, return FALSE, label1); |
552 | if (s) { |
553 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
554 | r = GET_BITS(s); |
555 | s = HUFF_EXTEND(r, s); |
556 | } |
557 | |
558 | if (entropy->dc_needed[blkn]) { |
559 | /* Convert DC difference to actual value, update last_dc_val */ |
560 | int ci = cinfo->MCU_membership[blkn]; |
561 | s += state.last_dc_val[ci]; |
562 | state.last_dc_val[ci] = s; |
563 | /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ |
564 | (*block)[0] = (JCOEF) s; |
565 | } |
566 | |
567 | if (entropy->ac_needed[blkn]) { |
568 | |
569 | /* Section F.2.2.2: decode the AC coefficients */ |
570 | /* Since zeroes are skipped, output area must be cleared beforehand */ |
571 | for (k = 1; k < DCTSIZE2; k++) { |
572 | HUFF_DECODE(s, br_state, actbl, return FALSE, label2); |
573 | |
574 | r = s >> 4; |
575 | s &= 15; |
576 | |
577 | if (s) { |
578 | k += r; |
579 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
580 | r = GET_BITS(s); |
581 | s = HUFF_EXTEND(r, s); |
582 | /* Output coefficient in natural (dezigzagged) order. |
583 | * Note: the extra entries in jpeg_natural_order[] will save us |
584 | * if k >= DCTSIZE2, which could happen if the data is corrupted. |
585 | */ |
586 | (*block)[jpeg_natural_order[k]] = (JCOEF) s; |
587 | } else { |
588 | if (r != 15) |
589 | break; |
590 | k += 15; |
591 | } |
592 | } |
593 | |
594 | } else { |
595 | |
596 | /* Section F.2.2.2: decode the AC coefficients */ |
597 | /* In this path we just discard the values */ |
598 | for (k = 1; k < DCTSIZE2; k++) { |
599 | HUFF_DECODE(s, br_state, actbl, return FALSE, label3); |
600 | |
601 | r = s >> 4; |
602 | s &= 15; |
603 | |
604 | if (s) { |
605 | k += r; |
606 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
607 | DROP_BITS(s); |
608 | } else { |
609 | if (r != 15) |
610 | break; |
611 | k += 15; |
612 | } |
613 | } |
614 | |
615 | } |
616 | } |
617 | |
618 | /* Completed MCU, so update state */ |
619 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
620 | ASSIGN_STATE(entropy->saved, state); |
621 | } |
622 | |
623 | /* Account for restart interval (no-op if not using restarts) */ |
624 | entropy->restarts_to_go--; |
625 | |
626 | return TRUE; |
627 | } |
628 | |
629 | |
630 | /* |
631 | * Module initialization routine for Huffman entropy decoding. |
632 | */ |
633 | |
634 | GLOBAL(void) |
635 | jinit_huff_decoder (j_decompress_ptr cinfo) |
636 | { |
637 | huff_entropy_ptr entropy; |
638 | int i; |
639 | |
640 | entropy = (huff_entropy_ptr) |
641 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
642 | SIZEOF(huff_entropy_decoder)); |
643 | cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; |
644 | entropy->pub.start_pass = start_pass_huff_decoder; |
645 | entropy->pub.decode_mcu = decode_mcu; |
646 | |
647 | /* Mark tables unallocated */ |
648 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
649 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
650 | } |
651 | } |
652 | |